Denise Huet 
email: denise.huet@univ-lorraine.fr
  
Non-linear problems in PDEs, a survey

come    

Introduction

The article is divided into several sections as follows 1 Variational formulation of a problem (Cf. L C. Evans [START_REF] Evans | Partial Differential Equations[END_REF]).

The linear case

Let L be the second order elliptic problem

Lu = - n i,j=1 (a i,j (x)u xi ) xj + n i=1 b i (x)u xi + c(x)u = f in U, u = 0 on ∂U (1) 
where U ⊂ R n is a bounded open set with smooth boundary, f : U → R is in L 2 (U ), and the coefficients a i,j , b i , and c are assumed to be in L ∞ (U ). An ellipticity condition is imposed on the a i,j = a j,i . The bilinear form

B(u, v) = U ( n i,j=1 a i,j (x)u xi v xj + n i=1 b i u xi v + cuv)dx, u, v ∈ H 1 o (U ) (2) 
is associated to [START_REF] Khellou | Some properties of Musielak spaces with only the log-Hölder condition and application[END_REF].

Definition 1. The formulation of the problem

u ∈ H 1 o (U ), B(u, v) = (f, v), ∀v ∈ H 1 o (U ) (3) 
is called the variational formulation of problem (1)

Unilateral constraints, variational inequalities

Cf. [START_REF] Evans | Partial Differential Equations[END_REF]. Let U be a smooth bounded open set in R n , and f be a given smooth function.

Consider the problem of minimizing the energy functional

I[w] = U 1 2 |Dw| 2 -f wdx (4) 
where D denotes the gradient vector, among all functions w belonging to

A = {w ∈ H 1 o (U )|w ≥ h a.e. in U } (5) 
where h : Ū → R is a given smooth function, called the obstacle. This problem has a unique solution u ∈ A with I[u] = min w∈A I[w]. Moreover, this solution u satisfies the inequality:

U Du . D(w -u)dx ≥ U f (w -u)dx, ∀w ∈ A, (6) 
that is called variational inequality ( [START_REF] Evans | Partial Differential Equations[END_REF],Theorems 3 and 4).

Elliptic variational inequalities 2.1 Set up

Cf. J.-L. Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linaires[END_REF]. Let V be a Hilbert space on R, J(v) = a(v, v) -2L(v) be a quadratic form , where a(u, v) is a continuous form, bilinear on V and L(v) is a continuous linear form on V . let K be a closed convex in V . Then, if a(u, v) = a(v, u) ∀u, v ∈ V and a(v, v) ≥ α||v|| 2 V , α > 0, ∀v ∈ V , there exists a single u ∈ K such that

J(u) ≤ J(v) ∀v ∈ K, (7) 
and u is solution of the variational inequality

a(u, v -u) ≥ L(v -u) ∀v ∈ K (8) 
Example 1. ( [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linaires[END_REF], Exemple 8.1. p. 242). In this example, Ω denotes a bounded open set in R n with a smooth boundary. Take V = H 1 (Ω) and

a(u, v) = n i,j=1 Ω a i,j (x) ∂u ∂x j ∂v ∂x i dx + Ω a o uvdx, (9) 
with the condition a o , a i,j = a j,i ∈ L ∞ (Ω), a o (x) ≥ α o > 0 p. p. in Ω [START_REF] Cte | Multi-solitons for nonlinear Klein-Gordon equations/F orum of Mathematics[END_REF] and the ellipticity condition:

n i,j=1 a ij (x)ξ i ξ j ≥ α|ξ| 2 , ∀ξ ∈ R n , p.p. in Ω. ( 11 
) Let K = {v|v ∈ H 1 (Ω), v ≥ 0, p.p. on ∂Ω}, (12) 
f ∈ L 2 (Ω) and L(v) = Ω f vdx. The single u ∈ K solution of ( 8) is characterized by

Au = f in Ω, where Au = - n i,j=1 ∂(a i,j ∂u ∂xj ) ∂x i + a o u (13) 
and the conditions on ∂Ω: ∂u ∂ν A ≥ 0, and

u ∂u ∂ν A = 0, (14) 
where

∂u ∂ν A = n i,j=1 a ij ∂u ∂xj cos(n, x i ).

Extension to Banach spaces

Let V be a Banach space, with dual V , and a(u, v) be a continuous bilinear form on V. The operator A ∈ L(V, V ) associated to a(u, v) is defined by:

a(u, v) = Au, v , Au ∈ V , v ∈ V. (15) 
and ( 8) becomes

Au, v -u ≥ L(v -u) ∀v ∈ K (16) 
2.3 Pseudo-monotone operators and resolution of inequalities of the form [START_REF] Kasman | Glimpses of soliton theory. The algebra and geometry of nonlinear PDE's[END_REF] Let V be a Banach space with dual V , A : V → V be a non linear operator, K be a closed convex in V . For f given in V , find the solutions u ∈ K of

Au, v -u ≥ f, v -u ∀v ∈ K (17) 
Definition 2. Let X be a topological vector space with dual X . An application [START_REF] Brezis | Opérateurs maximaux monotones and semi-groupes de contractions dans les espaces de Hilbert[END_REF], p. 21). Definition 3. Let V be a Banach space with dual V . An operator A : V → V is said to be pseudo-monotone if A is bounded and satisfies the following property: when u j → u for the weak topology of V and lim sup Au j , u j -u ≤ 0, then

A : D(A) ⊂ A → X is said to be monotone if ∀x 1 , x 2 ∈ D(A), Ax 1 -Ax 2 , x 1 -x 2 ≥ 0 (cf. H. Brezis
lim inf Au j , u j -v ≥ Au, u -v ∀v ∈ V, (18) 
([20] definition 2. 1, p. 179).

Remark 1. This definition 3 can be extended to more general topological vector spaces (H. Brezis [START_REF] Brezis | Equations and inequations nonlinéaires dans les espaces vectoriels en dualité[END_REF]).

Main results

If K is a bounded closed convex set in V , and A a pseudo-monotone operator from K to V , then, for f given in V , there exists u ∈ K satisfying [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. If K is unbounded, and if A satisfies the complementary condition: there exists 

v o ∈ K such that Av,v-vo ||v|| → ∞ if ||v|| → ∞,
× R n1 × R n2 such that (1) The function ξ → A α (x, η, ξ) resp. x → A α (x, η, ξ) is continuous for almost x ∈ Ω, resp. measurable for almost all η, ξ. (2) Set D k (u) = {D β (u), |β| = k}, δu = {u, Du, ..., D m-1 u}, A α (x, δu, , D m (v)) = A α (x, δu(x), D m (v)(x). Let 1 < p < ∞ and V be a closed subspace of W m,p which contains W m,p o . Then, it is assumed that ∃k ∈ L p (Ω), such that |A α (x, η, ξ)| ≤ c(|η| p-1 + |ξ| p-1 + k(x)) (19) 
These conditions imply that A α (x, δu, D m (u)) ∈ L p (Ω), and that the operator

A(u) = |α|≤m ( 1 ) |α| D α (A α (x, δu, D m (u)), (20) 
is pseudo-monotone ([20], Proposition 2. 6, p. 181).

Example 3. The obstacle problem (Cf. [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linaires[END_REF], Application 8.1, p.260). The following operator is considered:

Aϕ = - n i,j=1 ∂ ∂x i (a i,j ∂ϕ ∂x j ), a i,j ∈ C 1 ( Ω), ϕ ∈ H 1 o (Ω), (21) 
where Ω ⊂ R n is a bounded set with a smooth boundary Γ and A satifies the condition n i,j=1

a ij ξ i ξ j ≥ α(ξ 2 1 + ... + ξ 2 n ) ∀ξ ∈ R n , α > 0. ( 22 
)
Let ψ ∈ H 1 (Ω) with ψ 0 on Γ and Aψ 0, in the sense of measures, and

K = {v ∈ H 1 o (Ω), v ψ p. p on Ω}, (23) 
then, A is monotone, hemicontinuous, bounded from H 1 o (Ω) to H -1 (Ω) and for f ∈ H -1 (Ω), there exists a unique u ∈ K solution of the inequality [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. See also sections 8.1 and 8.2.

Example 4. An elliptic free-boundary problem (cf. C Baiocchi [START_REF] Cottel | Variational inequalities and complementary problems[END_REF], p. [START_REF] Musiliak | Orlicz spaces and modular spaces[END_REF][START_REF] Pego | Letter to the Editor[END_REF][START_REF] Schwartz | Analyse, Topologie générale[END_REF][26][27][START_REF] Yuan | Long time dynamics for nonlinear wave-type equations with or without damping[END_REF][START_REF] Yuan | Conditional stability of muti-solitons for the 1D NLKG equation with double power nonlinearit:y[END_REF][30][31][32][33]. Let D be an open subset of R 2 , f, ψ be a real smooth function on D, and

Ω = {(x, y) ∈ D : u(x, y) > ψ(x, y). ( 24 
)
We look for a couple {Ω, u}. Let

K = {v ∈ H 1 o (D) : v ≥ ψ}. (25) 
It is a closed convex subset of H 1 o (D). We look for u(x, y)

∈ K satisfying a(u, u -v) ≤ (u -v) ∀v ∈ K, (26) 
where a(v, w)

= D gradv . gradw dxdy, (v) = D f vdxdy, ∀v ∈ K (27)
This problem corresponds to the problem of an elastic membrane stretched upon an obstacle (ψ )and submitted to a system of vertical forces f(x,y).

Example 5. Cf. C. Baiocchi [START_REF] Baiocchi | Su un problema di frontiera libera connesso a questioni di idraulica[END_REF]. A dam free boundary problem. It concerns a steady plane linear flow through a rectangular dam which separates two reservoirs but the dam, builded up with a homogeneous isotropic porous medium is an impervious horizontal surface.The corresponding mathematical problem (P) is stated as follows: given three real numbers a, h, H, a > 0, H < h < 0, find a real function y = ϕ(x), defined and regular on {0 ≤ x ≤ a} with ϕ(0) = H, ϕ(a) > h, such that, if Ω = {(x, y) ∈ R 2 |0 < x < a, 0 < y < ϕ(x)}, there exists a function u(x, y) defined and regular on the closure of Ω such that: u(x, y) is harmonic in Ω ( 28)

u(0, y) = H∀y ∈ [0, H], u(a, y) = h ∀y ∈ [0, h), u(a, y) = y ∀y ∈ [h, ϕ(a)] (29) 
u(x, ϕ(x)) = ϕ(x), u(x, 0) = 0 ∀x ∈ (0, a) (30) 
∂u ∂ν = 0 on the curve y = ϕ(x) (31) 
Here, as usual, ∂u ∂ν denotes the normal derivative to the curve.

Remark 3. A solution of problem (P) is denoted by (ϕ, Ω, u)

Let R be the rectangle {(x, y)|0 < x < a; 0 < y < H}, and g be the function defined on ∂R by

g(x, 0) = H 2 2 - H 2 -h 2 2a
x ∀x ∈ (0, a) (32)

g(0, y) = 1 2 (H -y) 2 ∀y ∈ [0, H], g(a, y) = 1 2 (h -y) 2 ∀y ∈ [0, h], (33) 
g(x, y) = 0 elsewhere. (34)

For u ∈ H 1 (R), γu ∈ H 1/2 (∂R) denotes the trace of u on ∂R. Let

K = {v ∈ H 1 (R)|γv = g; v(x, y) ≥ 0 a.e.R}. (35) 
Then, there exits a unique solution w ∈ K of the inequation

R w x (v x -w x ) + w y (v y -w y )dxdy ≥ R (w -v)dxdy (36) for all v ∈ K. ( [2],Theorem 3.2.) Next, set ϕ(x) = sup{y|(x, y) ∈ Ω ∀x ∈ (0, a)}; ϕ(0) = lim x→0 + ϕ(x), ϕ(a) = lim x→a -ϕ(x), (37) 
and

Ω = {(x, y)|0 < x < a, 0 < y < ϕ(x)} (38) Then, if U (x, y) = y -w y (x, y) and u = U | Ω , (39) 
(ϕ, Ω, u) is a solution of problem (P) ([2], Theorem 3. 4 ).

Many other examples are presented in the references.

Duality in Banach spaces

Cf. L. Schwartz [START_REF] Schwartz | Analyse, Topologie générale[END_REF] p. 86. Let E be a Banach space or, more generaly, a separate locally convex topological vector space and E be its dual. For e ∈ E and e ∈ E e , e or e, e

denotes the value of e at e. Weak topology σ(E, E ), on E. The weak topology on E is the weakest topology such that the map e ∈ E, → e , e is continuous for any e ∈ E . This topology is denoted σ(E, E ) and the space E equipped with this topology is noted E σ . This topology is also defined by the family of semi-norms:

p A (e) = max e ∈A
| e , e |, A "parties finies" de E .

A sequence e n ∈ E, σ(E, E ) converges to e ∈ E if and only if e n -e, e → 0, for any e ∈ E , as n → ∞.

In the same way, a sequence e n ∈ E , σ(E , E) converges to e ∈ E if and only if e n -e , e → 0 for any e ∈ E, as n → ∞. This topology is defined by the family of semi-norms

p A (e ) = max e∈A | e, e |, A "parties finies" de E. (42) 
4 Non-linear evolution problems

In this section, Ω denotes a bounded subset of R n with a smooth enough boundary ∂Ω and

Q = Ω × [0, T ]
4.1 Parabolic problems

An abstract result

Let V be a reflexive Banach space and H a Hilbert space with V ⊂ H ⊂ V , V dense in H. We denote by -Λ the generator of a semi-group s → G(s) in V, H, V , G(s) being a contraction semi-group in H. The respective domains of Λ are denoted by D(Λ : V), D(Λ; H), D(Λ; V ). Let A : V → V be a non-linear pseudo-monotone operator and K be a closed convex in V.

The operator A is assumed to be coercif i.e. there exists

v o ∈ K such that (A(v),v-vo) ||v|| V → ∞ as ||v|| V → ∞, where v o ∈ K ∩ D(Λ; V ).
Under the above assumptions, and G(s)K ⊂ K, for any f ∈ V , there exists u ∈ K solution to the inequation [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linaires[END_REF], Example 9.1 p. 266). Consider the operator A defined in [START_REF] Douiri | Nonlinear unilateral problems without sign condition in Musielak spaces[END_REF]. The corresponding parabolic evolution problem (P) is

(Λu, v -u) + (Au, v -u) ≥ (f, v -u) ∀v ∈ K (43) Example 6. ([
∂u ∂t + Au = f in Q; u ≥ 0 on Σ = ∂Ω × [0, 1] (44) 
with the conditions ∂u ∂ν A ≥ 0, and u ∂u ∂ν A = 0, (45)

and u(x, 0) = u o (x). Take V = H 1 (Ω), H = L 2 (Ω), K = {v ∈ H 1 (Ω)|v ≥ 0 on ∂Ω}, V = L 2 (0, T ; V ), H = L 2 (0T ; H), K = {v ∈ L 2 (0, T ; V )|v(t) ∈ K a.e}, Λ = d dt .
Thanks to the above results, the variational formulation of problem (P) is :

given f ∈ V find u ∈ K ∩ D(Λ; V , ) such that (Λu, v -u) + (A(u), v -u) ≥ (f, v -u) ∀v ∈ K (46)
and there exists u ∈ K solution of the inequation (46).

A similar example is presented in [START_REF] Brezis | Equations and inequations nonlinéaires dans les espaces vectoriels en dualité[END_REF] p. 167. 

A(ϕ) = - n i=1 ∂ ∂x i (| ∂ϕ ∂x i | p-2 ∂ϕ ∂x i ) + |ϕ| p-2 ϕ (47) Take V = W 1,p (Ω), 2 < p < ∞, K = {v ∈ W 1,p (Ω)|v ≥ 0 on ∂Ω}, V = L p (0, T ; V ), K = {v ∈ V|v(t) ∈ K p.p.}
The dual of V is given by the Riesz's representation theorem: let p = p p-1 be the Hölder conjugate exponent of p. Then, for every bounded linear functional

L ∈ (W 1,p (Ω) ), there exist f o , ...f n ∈ L p such that L(u) = Ω f o (x)u(x) + n i=1 f i (x) ∂u ∂x i (x) dx (48) 
for all u ∈ W 1,p (Ω) and

||L|| (W 1,p (Ω)) = ( n i=0 ||f i || p L p (Ω) ) 1 p (49) 
(Cf. G. Leoni, [START_REF] Leoni | A first course in Sobolev spaces[END_REF]). The operator A is defined by

(Au, v) = T 0 n i=1 Ω | ∂u ∂x i | p-2 ∂u ∂x i ∂v ∂x i dx + Ω |u| p-2 uvdx (50) Take Λ = d dt and D(λ, V) = {v ∈ V, v ∈ V, v(0) = 0}.
Then, given f ∈ V , there exists u ∈ K satisfying the "weak" inequality (46). The above problem is the variational formulation of the following problem:

∂u ∂t - n i=1 ∂ ∂x i (| ∂u ∂x i | p-2 ∂u ∂x i ) + |u| p-2 u = f in Q, (51) 
with the conditions on Σ

u ≥ 0, F(u) = n i=1 | ∂u ∂x i | p-2 ∂u ∂x i cos(n, x i ) ≥ 0, u . F(u) = 0, (52) 
and the initial condition

u(x, 0) = 0 in Ω. ( 53 
)
See also section 8.3

Kortweg-De Vries (KDV) equation

In [26], R. Temam considers the following KDV equation:

∂u ∂t + u ∂u ∂x + α ∂ 3 u ∂x 3 = 0 (54)
with the conditions: 55), is proved, by means of a parabolic regularization. The perurbed corresponding parabolic equation is

u(x, 0) = u o (x), u(0, t) = u(1, t), 0 < x < 1 = Ω, 0 < t < T. ( 55 
) For α = 0, real, if u o ∈ H 1 (Ω), the existence of a solution u ∈ L ∞ (0, T ; H 1 (Ω)) of problem (54)-(
∂u ∂t + u ∂u ∂x + α ∂ 3 u ∂x 3 + ∂ 4 u ∂x 4 = 0 (56)
with the conditions (55). From [START_REF] Lions | Sur certaines équations paraboliques non linéaires[END_REF], there exists u ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 2 (Ω)) solution to problem (55) -( 56). Next, a suitable limiting procedure, as → 0, leads to u ∈ L ∞ (0, T ; H 1 (Ω)) solution to problem (54)-(55).

Hyperbolic problems

Let V and H be Hilbert spaces such that V ⊂ H, V dense in H and V → H continuous, and

K be a closed convex subset of V . Consider a family of operators t ∈ [0, T ] → A(t) ∈ L(V, V ) with A * (t) = A(t)
, ∀t, and

t → (A(t)u, v) ∈ C 2 ([0, T ]), ∀u, v ∈ V, (A (t)v, v) ≤ 0 ∀v ∈ V, (57) and ( 
A(t)v, v) ≥ α||v|| 2 , α > 0, ∀v ∈ V, ∀t ∈ [0T ] (58) Take f ∈ L 2 (0, T ; H) f ∈ L 2 (0, T ; H), u o ∈ V, A(0)u o ∈ H, u 1 ∈ K, (59) 
then, there exists a unique u such that

u ∈ L ∞ (0, T ; V ), u ∈ L ∞ (0, T ; V ), u" ∈ L ∞ (0, T ; H), u (t) ∈ K a.e., (60) 
and

T 0 (u"(t) + A(t)u(t) -f (t), v(t) -u (t))dt ≥ 0, ∀v ∈ L 2 (0, T ; V ), v(t) ∈ K a.e. ( 61 
)
and 

u(0) = u o , u (0) = u 1 , (62) 
A(t)ϕ = - n i,j=1 ∂ ∂x i (a ij (x, t) ∂ϕ ∂x j ) + a o (x, t)ϕ (63) 
with the conditions

a i,j = a j,i , a o ∈ C 2 (Q) ( 64 
) n i,j=1 a ij (x, t)ξ i ξ j ≥ α|ξ| 2 , ∀(ξ, t) ∈ Q, α > 0, a o (x, t) ≥ α o in Q. ( 65 
) Take H = L 2 (Ω), V = H 1 o (Ω), K = {v|v ≥ 0 a.e. in Ω}, (66) 
and

u o ∈ H 2 (Ω) ∩ H 1 o (Ω), u 1 ∈ H 1 o (Ω), u 1 ≥ 0 a.e. in Ω. ( 67 
)
Thanks to the above results there exist a unique solution of the problem:

∂u ∂t ≥ 0, ∂ 2 u ∂t 2 + A(t)u -f ≥ 0 ∂u ∂t ( ∂ 2 u ∂t 2 + A(t)u -f )) = 0, in Q, ( 68 
) and u(x, 0) = u o , ∂u ∂t (x, 0) = u 1 , u = 0, on ∂Ω (69) 
For other examples, see [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linaires[END_REF] Remark 7.4, p.408.

Solitons

Cf. [START_REF] Kasman | Glimpses of soliton theory. The algebra and geometry of nonlinear PDE's[END_REF] 5.1 Solitons, solutions of the Korteweg de Vries (KdV) equation

The Korteweg de Vries equation is the non-linear equation

u t = 3 2 uu x + 1 4 u xxx (70) 
Generally, we cannot find closed formulas for the solutions of non-linear PDEs. However, in [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF], D. Korteweg and G. de Vries obtain a family of solutions to (70) which translate and maintain their shape . Among them are the functions

u sol(k) (x, t) = 8k 2 (e kx+k 3 t + e -kx-k 3 t ) 2 (71) 
for any value of the constant k. This formula represents a translating solitary wave that travels at speed k 2 and has height 2k 

y 2 = 4x 3 -k 1 x -k 2 (73)
The graph depends of the number 27k 2 2 -k 3 1 . If this number is negative, the graph has two components. If it is positive , the graph has one component (cf . [START_REF] Kasman | Glimpses of soliton theory. The algebra and geometry of nonlinear PDE's[END_REF], section 4.2). The Weierstrass p-function, ℘(z) = ℘(z, k 1 , k 2 ) has the property that, for every z in its domain, x = ℘(z) and y = ℘ (z) satisfy the equation (73). Let u(x, t) be a solution of the KdV equation of the form

u(x, t) = w(x + ct), (74) 
for some function w and some number c. Then,

-2℘(x + ct + ω; k 1 , k 2 ) + 2c/3 (75)
is a solution of the KDV equation for any choice of ω, k 1 , k 2 ) and c ([16],section 4.3).

The τ function.

Cf. [START_REF] Kasman | Glimpses of soliton theory. The algebra and geometry of nonlinear PDE's[END_REF] Section 5.2. It is a function of the form:

τ (x, t) = n i=1 c i e aix+bit (76) 
with the property that

u(x, t) = 2∂ 2 x log(τ ) = 2τ τ xx -2τ 2 x τ 2 (77)
is a n-soliton solution of the KdV equation

The KP equation

Cf. [START_REF] Kasman | Glimpses of soliton theory. The algebra and geometry of nonlinear PDE's[END_REF], section 9. The KP equation is the nonlinear partial differential equation in three variables: x, y, t of the form

u yy = 4 3 u xt -2u 2 x -2uu xx - 1 3 u xxxx (78) 
which can be rewrited as

u yy = 4 3 ∂ ∂ x u t - 3 2 uu x - 1 4 u xxx (79) 
and the expression in the parentheses is equal to zero when u is a solution of the KdV equation (70). For any two numbers λ 1 = λ 2 , the function

u(x, y, t) = 2(λ 1 -λ 2 ) 2 + e (λ1+λ2)x+(λ 2 1 +λ 2 2 )y+(λ 3 1 +λ 3 2 )t (e λ1x+λ 2 1 y+λ 3 1 t) + e λ2x+λ 2 2 y+λ 3 2 t ) 2 (80) 
is a solution to (78). The graph looks like a straight line wavefront traveling at constant speed across the xy-plane. If, in (80), u is independent of y, with λ 1 = k and λ 2 = -k ,we obtain u(x,t) given by the formula (71), solution of the KdV equation. 

The Bilinear KP equation

A function τ (x,
is solution of the KP equation.

The Boussinesq equation

The equation:

α tt = - 4 3 α 2 x - 4 3 αα xx - 1 3 α xxxx (83) 
is a form of the Boussinesq equation. A suitable change of variables leads to the equivalent equation:

α tt = α 2 x + αα xx + 1 4 α xxxx . (84) 
Remark 4. In fact, M. J. Boussinesq studied solitary waves and published his first results as early as 1871 [START_REF] Boussinesq | Theorie de l'intumenscence liquide appele onde solitaire ou de translation, se propageant dans un canal rectangulaire[END_REF] and [START_REF] Boussinesq | Théorie des ondes et des remous qui se propagent le long d'un canal rectaangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[END_REF] 

The Nonlinear Klein-Gordon (NLKG) equation

Cf. X. Yuan [START_REF] Yuan | Long time dynamics for nonlinear wave-type equations with or without damping[END_REF]. In one dimension, the nonlinear Klein-Gordon equation with double power nonlinearity has the form:

∂ 2 t u -∂ 2 x u + u -|u| p-1 u + |u| q-1 u = 0, (t, x) ∈ [0, ∞) × R, (85) 
with the conditions

u |t=0 = u o ∈ H 1 (R), ∂ t u |t=0 = u 1 ∈ L 2 (R), (86) 
where 1 < q < p < ∞. This equation can be rewritten as the first order system in time for the function u = (u 1 , u 2 )

∂ t u 1 u 2 = JH u 1 u 2 + 0 f (u 1 ) , ( 87 
)
where

J = 0 1 -1 0 , H = -∂ 2 x + 1 0 0 1 f (u 1 ) = |u 1 | p-1 u 1 -|u 1 | q-1 u 1 (88) 
A stationnary solution u(t, x) = (q(x), 0) of ( 87) is an H 1 weak solution of the equation

q" -q + f (q) = 0 x ∈ R (89)
This equation has a unique H 1 weak solution, which is positive and even, denoted by Q, [START_REF] H; Berestycki | Nonlinear scalar field equation. I. Existence of a ground state[END_REF]. Set

Q = (Q, 0), Q = Q( x √ 1 -2 ), Q = Q -l∂xQ (90) 
where l ∈ R, with -1 < < 1. Then we obtain solitons such that u (t, x) = Q (x -t) is a solution of equation ( 87) . These solutions are unstable with respect to perturbation of the initial data with one direction of instability. Let

L = -∂ 2 x + 1 -f (Q) (91)
obtained by linearization of equation ( 87) around (Q, 0). This operator has a unique negative eigenfunction -ν 2 o (ν o > 0), with corresponding smooth even eigenfunction Y . For -1 < < 1, set

Y = Y x √ 1 -2 and Z + =   ( ∂ x Y + νo √ 1-2 Y )e νo √ 1-2 x Y e νo √ 1-2   (92)
Then, Z + is an unstable direction around Q ([28], Section 1. 2. 1). Concerninig multi-solitons, R.Cte et al . [START_REF] Cte | Multi-solitons for nonlinear Klein-Gordon equations/F orum of Mathematics[END_REF] obtain the following existence result: let l 1 , ...l N , be a set of different velocities with l n = l n for all n = n and x 1 , ..., x N shift parameters.Then there exist a time T 0 > 0, constants C > 0, and γ o > 0 only depending on the set (l n ) n , and (x n ) n and a solution u(t) = (u 87), globally defined for forward times and satisfying

1 (t), u 2 (t)) ∈ C[T 0 , ∞) : H 1 × L 2 ) of (
||u(t) - n=N n=1 Q n (x -n t -x n || H 1 ×L 2 ≤ Ce -γot . (93) 
( [START_REF] Yuan | Long time dynamics for nonlinear wave-type equations with or without damping[END_REF], Theorem 1.1) . Their conditional stability is studied in [START_REF] Yuan | Conditional stability of muti-solitons for the 1D NLKG equation with double power nonlinearit:y[END_REF]. Namely: let N ≥ 2. For all n ∈ {1, ..., N }, let σ n = ±1, n ∈ (-1 + 1) with 1 < 2 < ... < N < 1. Then, there exist

L o > 0, C o > 0, δ o > 0 and L > L o , 0 < δ < δ o , such that ||u(t) - N n=1 σ n Q n ( . -y n (t)|| H 1 ×L 2 ≤ C o (δ + e -γoL ) (94) 
for all t ≥ 0, where y 1 (t), ..., y N (t) are C 1 functions satisfying, for all n = 1, ..., N, t ≥ 0,

|y n (0) -y o n | ≤ C o (δ + e -γoL ), | . y n (t) -l n | ≤ C 2 o (δ + e -γoL ) (95) 
Here, u(t) is the solution of the 1D NLKG equation with appropriate initial data close to conditions (86) (Cf. [START_REF] Yuan | Long time dynamics for nonlinear wave-type equations with or without damping[END_REF] section 1.2.2) .

Soliton structures

This subsection is taken from [START_REF] Morales | Periodic and soliton strucrures in a generalized Klein-Gordon equation with horizontal singular lines[END_REF].

In [START_REF] Morales | Periodic and soliton strucrures in a generalized Klein-Gordon equation with horizontal singular lines[END_REF], N. Morales and M. Manora consider the traveling wave system:

(c 2 -C -3C n1 θ 2 )θ" -2ω 2 o V o (θ -θ 3 ) = 0 (96)
that is related, via the relation θ(ξ) = φ(x, t), ξ = x -ct, to the nonlinear Klein-Gordon equation

∂ 2 φ ∂t 2 -C + 3C n1 ( ∂φ ∂x ) 2 ∂ 2 φ ∂x 2 + 2ω 2 o V o (φ -φ 3 ) = 0. ( 97 
)
This equation concerns a one dimensional chain made of particles with identical masses and subjected to a non-linear periodic double-well one site potential

V (φ) = V o (1 -φ) 2 /2.
Here, φ(x, t) is the scalar dimensionless displacement of particules, ω o is the frequency and V o , C , C n,1 are positive constants, and c is the wave speed.

Remark 5. If c 2 -C > 0, the equation ( 96) is singular over the lines y = ± c 2 -C 3Cn1 .

New solitons structure are introduced: Definition 6. We say that θ is an N -Drop-compacton solution of (96) if θ : R → R has a compact support on [A, B], N smooth relative extrema on (A, B) and verifies the equation (96) almost everywhere in R. Definition 7. We say that θ is a N -Drop-kink solution of (96) if θ : R → R has N smooth relative extrema, verifies the equation ( 96) almost every where in R and

lim t→-∞ θ(t) = lim t→+∞ θ(t) (98) 
Example 9. The graphs of a 3-Drop-compacton and of a 5-Drop-kink solutions of (96) are presented in [START_REF] Morales | Periodic and soliton strucrures in a generalized Klein-Gordon equation with horizontal singular lines[END_REF] 

(Figures 11,12) , when c 2 -C > 0, γ = 2, β = 1. Here α = c 2 -C 3C n1 , β = 2ω 2 o V o 3C n1 > 0, γ = α 2 /β < 0 (99) 
6 Modular spaces 6.1 The set M(Ω)

Cf. O. Mendez et al. [START_REF] Mendez | Analysis on function spaces of Musielak-Orlicz type[END_REF]. Let (Ω, A, µ) be a measure space with a σ-finite measure µ i. e. there exists an increasing sequence (Ω j ) such that µ(Ω j ) < ∞ and

Ω : ∪ ∞ j=1 Ω j , (100) 
where A is the Borel class of subsets of Ω, µ is the Lebesgue measure on A.

Definition 8. The set of all Borel measurable real valued functions on Ω, with the usual identificaton u = v iff u(x) = v(x) almost everywhere, is denoted by M(Ω) Definition 9. A simple function is a finite linear combination of characteristic functions of sets of finite measure. The class of simple functions is denoted by S ([21], Definition 2.1.3.).

Modular

Cf. [START_REF] Mendez | Analysis on function spaces of Musielak-Orlicz type[END_REF], p. 27 Definition 1.3.1.

Definition 10. An s-convex modular (0 < s ≤ 1) on a real or complex vector space X is a function ρ : X → [0, ∞] that satisfies the following conditions:

1)ρ(x) = 0x = 0 2)ρ(αx) = |α|ρ(x) for any x ∈ X, |α| = 1 3)ρ(αx + (1 -α)y) ≤ α s ρ(x) + (1 -α) s ρ(y) for all x, y ∈ X, α ∈ (0, 1].
In particular, if s = 1 the modular is said to be convex. A convex modular ρ on X is left (right)-continuous if , for any x ∈ X, the map

α → ρ(αx) (101) 
is left (right)-continuous on (0, ∞) ([0, ∞)). If ρ is both left-and right-continuous, it is referred as a continuous modular.

Musielak-Orlicz spaces

Cf. [START_REF] Mendez | Analysis on function spaces of Musielak-Orlicz type[END_REF], Chapter 2. Let (Ω, A, µ) be a measure space.

Musielak-Orlicz functions

A function ϕ : Ω × [0, ∞) → [0, ∞) is a Musielak-Orlicz function on Ω, if it satifies the following properties: 1)ϕ(., t) is measurable for each t ∈ [0, ∞),
2)for a.e. x ∈ Ω, ϕ(x, .) is non decreasing, convex, continuous and ϕ(x,

0) = 0, 3) ϕ(x, t) > 0 for t > 0 4)ϕ(x, t) → ∞ as t → ∞. It is an Orlicz function, if it is independent of x, i.e. if ϕ : [0, ∞) → [0, ∞] satisfies the following properties: 1) ϕ(0) = 0 and ϕ(t) > 0 if t > 0. 2) lim t→∞ ϕ(t) = ∞, 3)lim t→0 ϕ(t) = 0
4) ϕ is nondecreasing, convex and continuous.

If ϕ is a Musielak-Orlicz function on Ω, the functional

ρ ϕ (u) = u ∈ M → ρ ϕ (u) = Ω ϕ(x, |u(x)|)dx (102) 
is a convex, left-continuous modular.

Definition 11. A Musielak-Orlicz function ϕ is log-Hölder continuous on Ω if there exists a constant A > 0 such that ϕ(x, t) ϕ(y, t) ≤ t

( A log 1 |x-y| ) (103)
for all t ≥ 1 and all x, y ∈ Ω with |x -y| ≥ 1 2 .

Proper Musielak-Orlicz functions

A Musielak-Orlicz function (or L ϕ (Ω)) is said to be proper if it contains the class of simple functions (cf. Definition 9) and satisfies the condition

Ω 1 F (x)u(x)dx ≤ C(F )||u|| ϕ . ( 104 
)
Example 10. ( [START_REF] Mendez | Analysis on function spaces of Musielak-Orlicz type[END_REF] Example 2.1.6). Let Ω ⊆ R n , A the Borel σ-algebra of subsets of Ω, µ be the Lebesgues measure a p a measurable function on Ω with 1 ≤ p < ∞. The Musielak-Orlicz function

ϕ : (x, t) ∈ Ω × [0, ∞) → t p(x) ∈ [0, ∞) (105) is proper if p + = sup x∈[0,∞) p(x) < ∞; It is not proper if p + = ∞. 6.3.3 Musielak-Orlicz spaces L ϕ (Ω)
Let ϕ be a Musielak-Orlicz function on Ω. The associated Musielak-Orlicz space is the vector-space

L ϕ (Ω) = {u ∈ M(Ω)|ρ ϕ (λ|u|) < ∞, for some λ > 0}. ( 106 
)
On L ϕ (Ω)

||v|| ϕ = inf{λ > 0 : Ω ϕ(λ -1 |v(x)|)dx ≤ 1}, ( 107 
)
is a norm, called the Luxemburg norm. Moreover if ϕ is proper, L ϕ (Ω) equipped with the Luxemburg norm is a Banach space.

Musielak-Orlicz class

Let ϕ be a Musielak-Orlicz function and consider the functional

ρ ϕ,Ω = Ω ϕ(x, |u(x)|)dx, (108) 
where u : Ω → R is a measurable function. The Musielak class associated to ϕ is the set

K ϕ (Ω) = {u : Ω → R measurable |ρ ϕ (u) < ∞} (109) 
It is not a linear space. The largest vector subspace contained in K ϕ (Ω) is denoted by E ϕ (Ω) (J. Musiliak [START_REF] Musiliak | Orlicz spaces and modular spaces[END_REF], Section 7. 4) So, we have

E ϕ (Ω) ⊂ K ϕ (Ω) ⊂ L ϕ (Ω). (110) 

Application

In [START_REF] Boyun | Gradient estimates in Orlicz spaces for nonlinear elliptic equations with BMO nonlinearity in nonsmooth domains[END_REF], S-S Byun considers a problem with BMO nonlinearity, in a sufficiently flat Reifenberg domain, problem which is not of variational type. This problem was already mentioned in D.Huet [START_REF] Huet | A survey of topics related to partial differential equations[END_REF], Section 1.4.3 . 

Duality

Main result Let (Ω, A, µ) be a σ-finite measure space and ϕ be a proper Musielak-Orlicz function, then the dual of L ϕ (Ω) is

(L ϕ (Ω)) = L ϕ * (Ω). ( 113 
) Moreover 1)If u ∈ L ϕ * the inequalities ||u|| ϕ * ≤ ||u|| (L ϕ (Ω)) ≤ 2||u|| ϕ * (114) hold, 2) If ϕ * is also proper, then L ϕ (Ω) is reflexive and (L ϕ * (Ω)) = L ϕ (Ω) (115)
6.5 Musielak-Sobolev spaces

6.5.1 Space W m,ϕ (Ω)
Let ϕ be a Musielak-Orlicz function and m ∈ N. The Musielak-Sobolev space W m,ϕ (Ω) is defined as:

W m,ϕ (Ω) = {u ∈ L ϕ (Ω)|D α u ∈ L ϕ (Ω), |α| ≤ m} (116) 
equipped with the norm:

||u|| m,ϕ (Ω) = ||u|| ϕ + m |α|=1 ||D α u|| ϕ , (117) 
the space W m,ϕ (Ω), is a Banach space ([21], Definition 3. 1. 1.). In the same way, the space W m E ϕ (Ω) is defined as

W m E ϕ (Ω) = {u ∈ E ϕ (Ω)|∀|α| < m D α u ∈ E ϕ (Ω)} (118) 6.5.2 Spaces W m,ϕ 0 (Ω) and W -m,ϕ * (Ω) The Schwartz space D(Ω) = C ∞ o (Ω) is contained in W m,ϕ (Ω), for any non negative m. The space W m,ϕ 0 (Ω) [resp. W m o E ϕ (Ω) ] is the closure of D(Ω) in W m,ϕ (Ω) [resp. W m E ϕ (Ω)] The space W -m,ϕ * (Ω) [resp.W -m E ϕ * (Ω)] is the space of distributions f such that f = |α|≤m (-1) |α| D α f α (119) with f α ∈ L ϕ * [resp. f α ∈ E ϕ * (Ω)
] endowed with its usual quotient norms (J.-P Gossez et al. [START_REF] Gossez | Variational inequalities in Orlicz-Sobolev spaces[END_REF]).

7 An abstract result 

CS

:= (W m,ϕ o (Ω), W m o E ϕ (Ω); W -m,ϕ * (Ω), W -m E ϕ * (Ω)) (120) 
are complementary systems.

Variational inequalities in a complementary system

Cf. 

u -v, T u ≤ u -v, f ∀v ∈ K (121)
is studied. Under suitable conditions on the data, the above problem has, at least, one solution [START_REF] Gossez | Variational inequalities in Orlicz-Sobolev spaces[END_REF] Proposition 1.

8 Application: variational inequalities in Musielak-Sobolev spaces

Applications are often concerned with operators of the form

A(u) = |α|≤m (-1) |α| D α A α (x, u, ∇u, ...∇ m u) (122) 
with different assumptions on m and the coefficients A α , [START_REF] Gossez | Variational inequalities in Orlicz-Sobolev spaces[END_REF], [START_REF] Benkirane | Variational inequalities in Musielak-Orlicz-Sobolev spaces[END_REF], [START_REF] Douiri | Nonlinear unilateral problems without sign condition in Musielak spaces[END_REF].

8.1 The obstacle problem in J.-P. Gossez et al. [START_REF] Gossez | Variational inequalities in Orlicz-Sobolev spaces[END_REF] Here m = 1, the complementary system is (120), and an obstacle function ψ : Ω → R is given. Conditions on Ω, on the A α , f and ψ are proposed such that the results of section 7 are valid with:

T : D(T ) = {u ∈ W 1,ϕ 0 (Ω); A α ∈ L ϕ * (Ω), ∀|α| ≤ 1} → W -1,ϕ * (Ω), via the formula v, T u = Ω |α|≤1 A α (x, u, ∇u)D α vdx, (123) 
for v ∈ W 1,ϕ 0 (Ω), and

K = {u ∈ W 1,ϕ (Ω) : u ≥ ψ a.e. in Ω (124) 
This is the case, in particular, if Ω is bounded with a smooth boundary, ψ ∈ W 1 E ϕ (Ω) and f ∈ W -1,ϕ * (Ω) ( [START_REF] Gossez | Variational inequalities in Orlicz-Sobolev spaces[END_REF], Proposition 10). Similar results are presented in [START_REF] Benkirane | Variational inequalities in Musielak-Orlicz-Sobolev spaces[END_REF].

8.2 A nonlinear unilateral problem in S. M. Douiri [START_REF] Douiri | Nonlinear unilateral problems without sign condition in Musielak spaces[END_REF] Let Ω be a bounded Lipschitz domain in R N , N ≥ 2 and ϕ be a Musiliak function which satisfies the log-Hölder continuity condition on Ω ((103)).The following problem A(u) + g(x, u, ∇u) = f in Ω, u = 0 on ∂Ω, f, g(x, u, ∇u) ∈ L 1 (Ω) (125) is considered . Here A(u) = -div a(x, u, ∇u) is an operator defined on D(A) ⊂ W 1,ϕ (Ω) → W -1,ϕ * (Ω). The existence of a solution to (125) is proved via variational inequalities. Let ω : Ω → R be a measurable function and consider the convexe set: Let Ω be a bounded Lipschitz domain of R N , N ≥ 2, and Q = Ω × (0, T ), T > 0. Let varphi be a Musielak function which satisfies the log-Hölder continuity condition on Q. The Musielak-Sobolev spaces of order 1 are introduced as follows:

K ω = {u ∈ W 1,ϕ (Ω), u ≥ ω a.
W 1,x L ϕ (Q) = {u ∈ L ϕ Q : D α x u ∈ L ϕ (Q) ∀|α| ≤ 1}, (130) 
and

W 1,x E ϕ (Q) = {u ∈ E ϕ Q : D α x u ∈ E ϕ (Q) ∀|α| ≤ 1}, (131) 
The last space is a subspace of the first one and, equipped with the corresponding standard norm, are, both, Banach spaces. Moreover they form a complementary system. The space W 1,x o (Q) is the norm closure of the Schwartz space D(Q) in W 1,x (Q) and its dual is denoted by W -1,x L ϕ * (Q). The following parabolic problem is considered: 

∂b(u) ∂t + A(u) -div Φ(x, t, u) = f in Q, (132) 
for all v ∈ W 1,x 0 L ϕ (Q) ∩ L ∞ (Q) such that ∂v ∂t ∈ W -1,x L ϕ * (Q) + L 1 (Q)
, all k > 0 and all τ ∈ (0, T ). ([1] Theorem 4).
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 20 , Theorem 7.1, p. 403. Example 8. (cf. [20], Example 7.1, p. 407). Consider the operator

2 .Figure 3 . 5 - 1 .Definition 5 .

 23515 Cases k = 1 and k = 2 are illustrated in[START_REF] Kasman | Glimpses of soliton theory. The algebra and geometry of nonlinear PDE's[END_REF] In these cases, the solutions u sol(1) , u sol(2) have only one peak, and are called 1-soliton. More generally, an n-soliton of the KdV equation has n separate peaks at most times. Nevertheless, each peak is referred as being a soliton and we have the definition: The function u(x, t) is a pure n-soliton of the KdV equation if all the following apply: 1-It is a solution of the KdV equation (70). 2-It is continuous for all x and t. 3-lim x→±∞ u(x, t) = 0 4-It can be written in the rational-exponential form u(x, t) = m i=1 c i e aix+bit n j=1 C j e Aj x+Bj t , (72) for some positive integers m and n and real numbers a i , b i , c i , A j , B J , C j . 5-For sufficiently large values of |t| the graph of y = u(x, t) has n local maxima. ([16], Definition 5. 1.) 5.1.1 The Weierstrass p-functions Cf. [27] Chapter XX. Elliptic curves are curves of the form

( 4 )

 4 Cf.[START_REF] Mendez | Analysis on function spaces of Musielak-Orlicz type[END_REF] , Section 2.Definition 12. On Ω × [0, ∞) the conjugate of the Musielak-Orlicz function ϕ, is the function ϕ * (x, t) = sup s≥0 (st -ϕ(x, s))(111)It is a Musielak-Orlicz function such that ϕ * * = ϕ and ts ≤ ϕ(x, t) + ϕ * (x, s) (Young's inequality).
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 14 Section 1. Let (Y, Y o ; Z, Z o ) be a complementary system. A mapping T with domain D(T ) ⊂ Y into Z and a convex set K are considered Several conditions are imposed on T, namely, finite continuity, sequential pseudo-monotonicity, T u remains bounded in Z whenever u ∈ D(T ) remains bounded in Y and u -ū, T u , where ū is some element in Y o , remains bounded from above. Let K ⊂ Y , and f be a given function in Z o . The problem of finding a solution u ∈ K ∩ D(T ) of the variational inequality

  = {u : Ω → R, measurable, such that T k (u) ∈ W 1,ϕ (Ω), ∀k > 0}, (127)where T k (s) = max(-k, min(k, s)) for all s ∈ R. The following unilateral problem, is associated to (125):u ∈ T 1,ϕ o (Ω), u ≥ ω a.e. in Ω, (128) Ω a(x, u, ∇u).∇T k (u -v)dx + Ω g(x, u, ∇u)T k (u -v)dx ≤ Ω f T k (u -v)dx(129)for all v ∈ K ω ∩ L ∞ (Ω), and all k > 0. Suitable assumptions on a, g and k ω , such that problem (128)-(129) and therefore problem (125) has at least one solution, are presented.

8. 3 A

 3 nonlinear parabolic problem in M. Ait Khellou et al.[START_REF] Khellou | Some properties of Musielak spaces with only the log-Hölder condition and application[END_REF] 

  with the conditions u = 0 on ∂Ω × (0, T ), and b(u)(t = 0) = b(u o ),(133)where b : R → R is a strictly increasing C 1 function such that b(0) = 0 and 0 < b o ≤ b (s) ≤ b 1 , ∀s ∈ R, with b o and b 1 are given real numbers. The operator A : D(A) ⊂ W 1,x L ϕ (Q) → W -1,x L ϕ * (Q) is defined by A(u) = -div a(x, t, u, ∇u).Here, a and Φ are suitable Carathéodory functions. Functions f and u o are assumed to be in L 1 (Q). Suitable addittional assumptions are presented, such that Problem (132)-(133) has, at least, one solution u in the following sense:T k (u) ∈ W 1,x 0 L ϕ (Q),andΩ S k (b(u(τ ) -v(τ ))dx + τ 0 ∂v ∂t , T k (b(u) -v) dt+ Qτ a(x, t, u, ∇u).∇T k (b(u) -v)dxdt + Qτ Φ(x, t, u)∇T k (b(u) -v)dxdt ≤ Qτ f T k (b(u) -v)dxdt + Ω S k (b(u o ) -v(0))dx

  Remark 2. A bounded, hemicontinuous , monotone operator is pseudo-monotone ([20], Proposition 2. 5, p.179). Let Ω ⊂ R n be a bounded set with a regular boundary ∂Ω and A α , |α| ≤ m a family of real functions defined on Ω

	Example 2.

then, there exists u ∈ K satisfying (17) (

[START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linaires[END_REF]

, Theorems 8. 1 and 8. 2, p. 245) Definition 4. Let E be a topological vector space with dual E . A map A : E → E is said to be hemicontinuous if, for all x, y ∈ E, the map t ∈ [0, 1] → A(x -tx + ty), x -y is continuous

[START_REF] Brezis | Equations and inequations nonlinéaires dans les espaces vectoriels en dualité[END_REF]

.

  Theorem 9.2). Notations and assumptions are the same as in subsection 4.1.1. The weak abstract result is : there exists u ∈ K such that inequality (46) is valid for all

	4.1.2 A weak abstract result
	(Cf. [20],

v ∈ K ∩ D(Λ; V ).

Example 7. ([20], Example 9.9, p.281).Consider the operator

  y, t) is said to be a τ -function for the KP Equation if it satisfies the Bilinear KP equation

	-3τ 2 y + 3τ 2 xx + 3τ τ yy + 4τ t τ x -4τ τ xt -4τ x τ xxx + τ τ xxxx = 0	(81)
	and, if τ (x, y, t) is a τ -function for the KP equation, then so is λτ (x, y, t), for any constant
	λ, i.e. the KP equation is closed under scalar multiplication. Moreover, for any τ -function
	solution of the equation (81),	
	u(x, y, t) = 2	∂ 2 ∂x 2 log τ (x, y, t)

  Definition 13. Cf.[START_REF] Benkirane | Variational inequalities in Musielak-Orlicz-Sobolev spaces[END_REF]. Let Y, Z be two real Banach spaces in duality with respect to a continuous pairing , , and Y o , Z o be subspaces of Y, Z respectively. Then, (Y, Y o ; Z, Z o ) is called a complementary system if, by means of the above pairing, Y o can be identified to Z and Z o to Y .

	Example 11.

7.1 Complementary system