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Abstract 21 

Among the most common contaminants in marine ecosystems, trace elements are 22 

recognized as serious pollutants. In Corsica (NW Mediterranean Sea), near the old 23 

asbestos mine at Canari, trace elements from the leaching of mine residues have 24 

been discharged into the sea for several decades. The aim of this study was to 25 

assess the levels of contamination in this area and the potential effects on 26 

Paracentrotus lividus (Lamarck, 1816) using pollution indices, accumulation factors 27 

and biochemical tools. For this purpose, the concentration of 24 trace elements was 28 

measured in sea urchins (gonads and gut content), macroalgae, seawater column 29 

and sediment collected at 12 stations nearby the old asbestos mine and at a 30 

reference site. The bioaccumulation of trace elements occurs as follows: macroalgae 31 

> gut > gonads. TEPI contribute to highlight contamination gradients which are 32 

mainly due to the dominant marine currents allowing the migration of mining waste 33 

along the coastline. This hypothesis was supported by TESVI, which identified 34 

characteristic trace elements in the southern area of the mine. High hydrogen 35 

peroxide content, associated with elevated catalase and glutathione-S-transferase 36 

enzyme activities, were also identified at these sites and at the reference site. Trace 37 

elements contamination as well as several abiotic factors could explain these results 38 

(e.g. microbiological contamination, hydrodynamic events, etc.). The results obtained 39 

in this study suggest that oxidative stress induced by contamination does not affect 40 

the health of Paracentrotus lividus. This work has provided a useful dataset allowing 41 

better use of sea urchins and various tools for assessing trace element contamination 42 

in coastal ecosystems. 43 

 44 
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1. Introduction 48 

Coastal ecosystems are at the interface between the marine and terrestrial domains 49 

and provide many goods and ecosystem services of high value (Costanza et al., 50 

2017). Coastal marine waters are particularly vulnerable to a wide range of 51 

disturbances such as climate change effects and the release into the sea of a wide 52 

variety of contaminants (Livingston et al., 1994; Mostofa et al., 2013). These habitats 53 

are subject to an increase in anthropogenic activities that can lead to high levels of 54 

contamination (Islam & Tanaka, 2004). The presence of these contaminants can 55 

have a devastating effect on organisms and their ecosystems, making marine 56 

pollution a global concern (Abdel-Shafy & Mansour, 2016; Torres et al., 2016). 57 

Among the major pollutants, trace elements are a real ecological issues because of 58 

their toxicity, their persistence and their ability to accumulate in marine organisms 59 

and even be biomagnified through the trophic chain (Rainbow & Luoma, 2011; 60 

Bonanno & Di Martino, 2017). The inputs of trace elements in marine environment 61 

derived from natural geogenic pollution (geological phenomena) and/or 62 

anthropogenic sources (e.g. mining, agriculture, petrochemical industry, aquaculture, 63 

sewage waste water) result in increased concentration levels (D'Adamo et al., 2008; 64 

Barhoumi et al., 2014). The trace elements can be classified as essential or non-65 

essential (Jiang et al., 2014). Essential elements have a biological function in 66 

organisms, such as copper, iron and zinc and non-essential trace elements are not 67 

involved in any metabolic mechanism, such as cadmium, mercury and lead (Amiard, 68 

2011). Above a certain threshold, all trace elements present a potential threat for 69 

organisms (Nordberg et al., 2007). As a result of the threats caused by trace 70 

elements, continuous monitoring of their presence and concentration must be 71 

undertaken (Richir & Gobert, 2014). 72 
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The Mediterranean Sea, which represents 0.82% of the global ocean surface area, is 73 

one of the main hotspots of marine biodiversity in the world, with 4–18% of identified 74 

marine species (Coll et al., 2010). However, the coastal areas surrounding this semi-75 

enclosed sea are subjected to the increasing synergistic effects of global changes 76 

and intensive anthropogenic activities leading to significant alterations in the structure 77 

and functioning of trophic webs and to the degradation of coastal and marine 78 

ecosystems (Coll et al., 2012; Ramírez et al., 2018; Stock et al., 2018a). Located in 79 

the northwestern Mediterranean Sea, Corsica Island has long been considered as a 80 

pristine region with low anthropogenic disturbances resulting in low levels of 81 

contamination (Gobert et al., 2017). However, recent studies have revealed major 82 

trace elements contamination near an old asbestos mine in northern Corsica (Cary et 83 

al., 2013; Ternengo et al., 2018; El Idrissi et al., 2020). These high levels originate 84 

from untreated material directly discharged into the sea during the active period of 85 

the asbestos mine between 1948 and 1965 (BRGM, 2017; Cary et al., 2013). The 86 

continuous leaching of these mining residues, still present on the sides of the mine, 87 

contributes to the dispersal of nickel, chromium and cobalt along the coastline 88 

(Galgani et al., 2006; Kantin & Pergent-Martini, 2007). Apart from the threat 89 

associated with the old asbestos mine, this region is characterized by relatively low 90 

levels of anthropogenic pressure (i.e. industrial, agricultural and urban activities; 91 

ASR, 2011). Because of these specificities, this sector represents a privileged study 92 

area to assess the trace elements contamination from a specific source within the 93 

coastal ecosystems. 94 

The bioaccumulation of trace elements by marine organisms can occur through 95 

various pathways such as absorption and/or adsorption directly from sediments and 96 

interstitial seawater but also through ingestion, which will potentially affect other 97 
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species along the food chain (Adamo et al. 2005; Chen et al. 2007; Türkmen et al., 98 

2008). In order to assess bioaccumulation and biomagnification to clarify the toxicity 99 

and fate of trace elements in organisms, it is important to determine the 100 

concentrations in the different biological and environmental matrices (water column, 101 

sediment, plants, animals; Jha, 2004). Echinoderms, and in particular sea urchins, 102 

are particularly suitable organisms for use in bioindication studies (Parra-Luna et al., 103 

2020). Along the Mediterranean coast, Paracentrotus lividus (Lamarck, 1816) is 104 

frequently considered as a good bioindicator of local pollution because of its wide 105 

distribution, abundance, benthic behavior, sedentary habits, rapid response and its 106 

recognized sensitivity to a variety of pollutants (Sugni et al., 2007; Amri et al., 2017; 107 

Rouhane-Hacene et al., 2017). Described as the organs that accumulate the most 108 

trace elements, its gonads and gut are of interest in studies assessing contamination 109 

levels in coastal marine ecosystems (Augier et al., 1989; Warnau et al., 1998; Geraci 110 

et al., 2004). P. lividus is also a species of economic importance due to its valued 111 

consumption in several countries (Fernández-Boán et al., 2013; Powell et al., 2014; 112 

Sun & Chiang, 2015), and ecological significance, controlling the dynamics of 113 

seaweeds and seagrass through its grazing activity (Lawrence & Sammarco, 1982; 114 

Boudouresque & Verlaque, 2013). 115 

The use of biomarkers as bioindicators is an important approach in aquatic 116 

biomonitoring to assess the relationships between exposure to environmental 117 

pollutants and increased effects on individuals and populations (Bouzahouane et al., 118 

2018). The effects of pollutants on the marine ecosystem can be expressed in terms 119 

of biochemical endpoints (Kamel et al., 2014). The exposure of aquatic organisms to 120 

trace elements can lead to the production of reactive oxygen species (ROS; Nieto et 121 

al., 2010), causing an imbalance between the production of ROS and endogenous 122 
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antioxidant activity (Beyersmann & Hartwig, 2008). Oxidative stress is involved in 123 

DNA damage, protein oxidation and lipid peroxidation (Winston & Digiulio, 1991). In 124 

view of this, it is relevant to assess the activities of antioxidant enzymes acting 125 

against oxidative stress such as catalase (CAT), glutathione peroxidase (GPX), 126 

glutathione-s-transferase (GST) and superoxide dismutase (SOD). The content of 127 

malondialdehyde (MDA), a by-product of lipid peroxidation, and the level of hydrogen 128 

peroxide (H2O2) in the tissues of organisms is also a good indicator of oxidative 129 

stress intensity. Therefore, oxidative stress biomarkers are widely used in marine 130 

ecotoxicology (Kamel et al. 2014; Benedetti et al., 2015; Ghribi et al., 2020). 131 

The aims of this study are (i) to assess the reliability of different matrices (sea urchin, 132 

macroalgae, water column and sediment) to characterize 24 trace elements 133 

contamination levels; (ii) to test the effectiveness of several indices used in 134 

ecotoxicological studies in order to confirm their use in the assessment of 135 

contamination; (iii) to determine the bioaccumulation, biomagnification and biota-136 

sediment accumulation factor of trace elements, and (iv) to estimate the effects of 137 

trace elements contamination on the oxidative stress of P. lividus. 138 

  139 
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2. Material and methods 140 

2.1. Study area 141 

The study area is located on the northwest coast of Corsica (NW Mediterranean Sea; 142 

Fig. 1A; Fig. 1B). This rocky coast is characterized by the occurrence of several cliffs 143 

(40 to 50 m high) formed of ophiolitic rocks (pillow-lavas and prasinites, gabbros, 144 

serpentinites and peridotites) and of mineral characteristics of the rubble sand 145 

belongs to the serpentine, olivine, pyroxene and amphibole groups (Bernier et al., 146 

1997; Lafabrie et al., 2008). In this area, the old asbestos mine of Canari extends 147 

along 1 km of rocky coastline (42°49'15''N, 9°19'41'' E; Fig. 1C). After the discovery 148 

of the asbestos deposit in 1898, the mine was industrially exploited from 1948 to 149 

1965 (BRGM, 1997). During this active period of exploitation, up to 28,000 tons of 150 

asbestos was produced yearly and approximately 4.5 million m3 of solid mine waste 151 

was directly discharged into the Mediterranean Sea (BRGM, 1997; Méria, 2004). The 152 

soils surrounding the old mine are covered by dense scrubland vegetation (upstream 153 

of the mine: over 400 m) while the natural revegetation of the exploited areas 154 

(downstream of the old mine) remains very reduced (BRGM, 1999).  155 

Although the mine has been closed for over 50 years, the leaching of mining 156 

residues, present along the coastline of the mine, still contributes to the dispersal of 157 

nickel, chromium and cobalt into the marine environment (Galgani et al., 2006; Kantin 158 

& Pergent-Martini, 2007). Indeed, in the southern part of the shoreline, there are 159 

many beaches (e.g. Albo, Nonza) resulting from the southward transport of 160 

discharged rubble (360,000-400,000 m3 yr-1) associated with the old asbestos mine 161 

of Canari (Fig. 1C; Bernier et al., 1997; Méria, 2004). The sediment enrichment of 162 

these beaches results from two sources: a natural enrichment by coarse sediments 163 

from small coastal rivers and an artificial enrichment due to discharged rubbles 164 
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(Pouquet, 1958; Bernier et al., 1997). Greater amounts of sediment are provided by 165 

artificial sources (mixture of cobbles and pebbles, sands and silts) continually eroded 166 

and winnowed by wave action (Bernier et al., 1997). Currently, the low levels of 167 

anthropogenic activity in this area and the local sources of contamination associated 168 

with the old mine provide a unique mesocosm to study the contamination in the 169 

marine environment (ASR, 2011). 170 

Six sampling sites located along the coast were selected (Fig. 1C): one in front of the 171 

old asbestos mine (Old Mine: OM), two to the north (Punta di Canelle: PC; Canelle: 172 

CN) and three to the south (Punta Bianca: PB; Albo: AB; Nonza: NZ). Samples were 173 

also collected at a reference site (RF), recognized as having a low level of trace 174 

elements contamination (Fig. 1D; Gobert & Richir, 2019; El Idrissi et al., 2020). These 175 

sites were selected to provide a basis for assessing the differences in trace elements 176 

concentration in order to establish a potential gradient of contamination and also to 177 

better understand the effects of these different concentrations on the organisms. 178 

2.2. Collection and processing of biological samples 179 

Individuals (n = 28) of P. lividus sea urchin and macroalgae species observed at 180 

each sampling site were collected at two distinct depths for each site (3 m and 6 m 181 

depth) in winter (Fig. 1C; Fig. 1D). As indicated by El Idrissi et al. (2020), the winter 182 

season avoids bias due to the reproductive stage of the urchins. In total, 364 sea 183 

urchins of commercial size (~50 mm) were collected and directly transported in a 184 

cooler with oxygenated seawater to the laboratory. Among the macroalgae collected 185 

at each site, the three most dominant taxa were retained and presented in this study 186 

(Ericaria amentacea (C.Agardh) Molinari & Guiry, 2020, Dictyota dichotoma (Hudson) 187 

J.V.Lamouroux, 1809 and Ellisolandia elongata (J.Ellis & Solander) K.R.Hind & 188 
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G.W.Saunders, 2013). Three samples of each macroalgae (≈ 500 g wet weight) were 189 

collected at the different sites. 190 

After sampling, macroalgae were rinsed with ultrapure MilliQ™ water and placed at –191 

20 °C until chemical analysis. The specimens of P. lividus were measured, weighed 192 

and dissected. The sex ratio has been respected to avoid bias. Gonads and guts 193 

collected from sea urchins (n = 16) from each station were immediately weighed and 194 

stored at –20 °C. Frozen samples were lyophilized (CHRIST LCG Lyochamber 195 

Guard 121550 PMMA/Alpha 1-4 LD plus) and ground with an agate mortar. 196 

Approximately 0.2 g of each dried material was mineralized in Teflon digestion 197 

vessels, in a closed microwave digestion labstation (Ethos D, Milestone Inc. Sorisole, 198 

Italy), using nitric acid (HNO3, 60%) and hydrogen peroxide (H2O2, 30%) as reagents 199 

(Suprapur grade, Merck, Darmstadt, Germany). 200 

2.3. Collection and processing of sediment samples 201 

Sediment samples were collected at each station using a 0.1 m2 Van Veen grab from 202 

the bottom (top 20 cm). After collection, the sediments were stored at –20 °C until 203 

chemical analysis. Frozen sediments were lyophilized (BenchTop 3L, VirTis 204 

Company Inc.) and were eluted for 4 h at room temperature with 30 mL of HCl 1N 205 

(Suprapure grade, Merck, Darmstadt, Germany), according to Townsend et al. 206 

(2007). A 4-h extraction time in HCl 1N ensures the removal of the available 207 

precipitated trace elements while not favouring the extraction of natural geogenic 208 

metals (Snape et al., 2004). Eluates were then diluted to an appropriate volume of 50 209 

mL, centrifuged for 10 min at 2000 rotations per minute and separated from their 210 

remaining culot prior to being analyzed. 211 

2.4. Trace element concentrations  212 

2.4.1. Bioavailable concentrations in the seawater column 213 
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The concentration of trace elements in the seawater column at each site was 214 

measured using diffusive gradients in thin films (DGTs) devices (DGT Research Ltd., 215 

UK). DGT units, fixed with a nylon fishing line to a plastic stage buried in the 216 

sediment, floated freely in the seawater column for one week. After recovery, DGTs 217 

were rinsed with ultrapure MilliQ™ water and stored at 4 °C until analysis. As trace 218 

metal diffusion coefficients through the diffusive layer depend on water temperature, 219 

average temperatures were recorded using HOBO TidbiT® v2 loggers (accuracy: ± 220 

0.21 °C). 221 

2.4.2. Trace element analysis 222 

The concentration of 24 trace elements (Ag, Al, As, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, 223 

Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, U, V, Zn) were determined by Inductively 224 

Coupled Plasma Mass Spectrometry using Dynamic Reaction Cell technology (ICP-225 

MS ELAN DRC II, Perkin Elmer), according to the method described by Richir & 226 

Gobert (2014). In order to check the purity of the chemicals used, analytical blanks 227 

were analyzed similarly to the samples and were performed every 40 samples. 228 

Analytical accuracy was checked by analyzing Certified Reference Materials (CRM): 229 

DORM-4 (fish protein), NIST1566b (oyster), NIST2976 (mussel tissue), BCR-60 230 

(Lagarosiphon major), BCR-661 (Platyhypnidium riparioides) and GBW07603 (bush 231 

twigs and leaves). For each TE, detection limit (LD) and quantification limit (LQ) were 232 

calculated, depending on their specific blank distribution (Grinzaid et al. 1977; Currie, 233 

1999). The total Hg (THg) content of biological samples was determined using atomic 234 

absorption spectrometry at 254 nm, in a Direct Mercury Analyser (DMA 80 153 235 

Milestone, Minnesota, USA). Quality assessment was operated using replicates, 236 

standards (THg 100 ng g-1), blanks (HCl 1%) and CRM at the beginning and the end 237 

of each series. The results are expressed in milligrams of element per kilogram of dry 238 
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weight (mg kg-1 DW) for tissue and sediment, and in milligrams of element per litre 239 

(mg L-1). TEs with values below the detection limit were removed from the database. 240 

For the others, concentrations below the LD were replaced with a value of LD/2, as 241 

reported by Skrbić et al. (2010). 242 

2.5. Histological study 243 

The gonads of six sea urchins from different stations were fixed in formaldehyde in 244 

order to perform a histological study and determine the reproductive stage. This 245 

enables us to determine whether trace elements levels are influenced by the 246 

reproductive stage in this study. Gonadal tissues were dehydrated using ethanol 247 

(from 70 to 100%) then placed in Neo-Clear™, xylene substitute, before being 248 

embedded in paraffin. After cooling the blocks, two duplicate sections (thickness: 5 249 

μm) were taken using a microtome, mounted on slides, and air-dried for the 250 

deparaffinization of the tissue in preparation for rehydration. After that, the sections 251 

were stained with Masson's Trichrome and observed under a light microscope to 252 

determine the stage of maturity based on the stages described by Byrne (1990): 253 

stage 1, recovery; stage 2, growing; stage 3, premature; stage 4, mature; stage 5, 254 

partly spawned; stage 6, spent. 255 

2.6. Biochemical analyses 256 

For the oxidative stress study, the gonads of six sea urchins per station were fixed in 257 

liquid nitrogen before storage at –80 °C. Samples were homogenized using a Potter-258 

Elvehjem homogenizer in chilled phosphate buffer (100 mM, pH 7.4; 25 mg w/w per 259 

mL of buffer) containing 20% glycerol and 0.2 mM phenylmethylsulfonyl fluoride as a 260 

serine protease inhibitor. The homogenates were centrifuged at 15,000 × g for 30 261 

min at 4 °C and the supernatant was used for biochemical assays. Protein 262 

concentration was measured as described in Bradford (1976) and was used to 263 
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normalize the final unit for biomarker responses. Biomarkers including superoxide 264 

dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione-S-265 

transferase (GST) and determination of malondialdéhyde (MDA) content were 266 

assessed as described by Greani et al. (2017). The hydrogen peroxide (H2O2) 267 

concentration was determined using a PeroxiDetect Kit (Sigma, Aldrich, St. Louis, 268 

MO, United States) as described by Lourkisti et al. (2020). 269 

2.7. Elemental and isotopic analyses 270 

Gut content of P. lividus (n = 12 per site) and food sources (D. dichotoma, E. 271 

elongata and E. amentacea) were analyzed through elemental and isotopic analyses. 272 

The sea urchins and macroalgae samples were dried at 60 °C for 48-96 h and 273 

successively ground to a homogenous powder with agate mortal. As acidification is 274 

known to alter N stable isotope ratios (Mateo et al., 2008), acidified samples (E. 275 

elongata) were analyzed twice: once for stable C isotopic ratios, using decarbonated 276 

material, and once for N isotopic ratios, using native material. Samples of food 277 

source (1-5 mg) and gut content (2-3 mg) were subsequently loaded into tin capsules 278 

(8 x 5 mm, Elemental Microanalysis). Stable isotope ratio measurements were 279 

performed via continuous flow-elemental analysis-isotope-ratio mass spectrometry 280 

(CF-EA-IRMS) at University of Liège, using a Vario Micro Cube elemental analyser 281 

(Elementar Analysensysteme GmBH, Hanau, Germany) coupled to an Isoprime 100 282 

mass spectrometer (Isoprime, Cheadle, UK). Isotopic ratios of C and N were 283 

expressed conventionally (Coplen 2011), using standard delta (δ) notation relative to 284 

their respective international standards, Vienna-Pee Dee Belemnite (VPDB) and 285 

atmospheric N2. Certified reference materials (CRM) of sucrose (IAEA-C6, δ13C = –286 

10.8 ± 0.5‰) and ammonium sulphate (IAEA-N2, δ15N = 20.3 ± 0.2‰) obtained from 287 

the International Atomic Energy Agency (IAEA, Vienna, Austria), were used for the 288 
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measurement of isotopic ratios. These CRM, procedural blanks and internal 289 

replicates (i.e., glycine and in-house seagrass reference materials) were used to 290 

assess the analytical precision. Standard deviations on multi-batch replicate 291 

measurements were 0.1‰ for δ13C and 0.2‰ for δ15N. 292 

The relative contribution of macroalgae to the diet of the sea urchin P. lividus was 293 

estimated with a Bayesian isotopic mixing model (MixSIAR, Stock and Semmens, 294 

2016; Stock et al., 2018b). The application of the mixing model provided accurate 295 

information concerning the contribution of macroalgae species to the sea urchin 296 

tissues and recognized the main components of the diet under different conditions 297 

(Peterson, 1999; Fry, 2006; Wing et al., 2008; Cabanillas-Terán et al., 2016). The 298 

model runs included the isotopic signatures of each individual, isotopic compositions 299 

of food sources (mean ± SD) and trophic enrichment factors (TEFs; mean ± SD) 300 

corresponding to the isotopic composition difference of consumer tissues and the 301 

potential food sources (Mascart et al., 2018). Though the use of suitable TEFs is 302 

required to run mixing model, there are no specific TEF for the taxa studied here, and 303 

we used widely applicable values (i.e., 0.4 ± 1.2‰ for C, 2.3 ± 1.6‰ for N) from 304 

McCutchan et al. (2003). The model was run using the MixSIAR 3.1.12 package in R 305 

4.1. The results of the mixing model showing the calculated sea urchin dietary 306 

proportions were represented using mean ± SD and 95% credible intervals (CI95) 307 

indicating the intervals of probability density function distributions. 308 

2.8. Numerical procedures 309 

In order to compare the contamination levels at the different sites, the Trace Element 310 

Pollution Index (TEPI) was calculated for each site. The TEPI allows a reliable 311 

comparison of study sites, regardless of trace elements or the biological model used 312 

(Richir and Gobert, 2014). The index was calculated with concentrations measured in 313 
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gonads, digestive tract and macroalgae to confirm its robustness. The data were 314 

standardized by mean normalization as recommended for the calculation by Richir 315 

and Gobert (2014). TEPI values were calculated using the following formula:  316 

TEPI = (Cf1 ∗ Cf2 ∗…∗ Cfn)1/n 317 

where Cfn is the mean normalized concentration of the trace element at each site and 318 

n is the number of trace elements examined. The higher the TEPI value, the more 319 

contaminated the site is. In order to classify and compare the trace elements 320 

according to their spatial variability on all the studied sites, the Trace Element Spatial 321 

Variation Index (TESVI) was determined for each element according to Richir and 322 

Gobert (2014). For each trace element, TESVI was calculated as follows: 323 

TESVI = [(xmax / xmin)/(∑(xmax / xi) / n)] ∗ SD 324 

where xmax and xmin are the maximum and minimum mean concentrations recorded 325 

among the n sites, xi are the mean concentrations recorded at each of the n sites, 326 

and SD is the standard deviation of the mean ratio ∑(xmax / xi) / n. For a given trace 327 

element, the higher the value of the TESVI, the more its environmental levels will 328 

vary overall across the study area. Therefore, the higher the TESVI, the more 329 

representative it is of a site. 330 

Bioaccumulation is generally referred to as a process in which the chemical 331 

concentration in an organism achieves a level that exceeds that in the environment, 332 

the diet, or both (Gobas et al., 2009). The extent to which chemicals bioaccumulate is 333 

expressed by several values, including bioaccumulation factor (BAF), 334 

biomagnification factor (BMF) and biota-sediment accumulation factor (BSAF). BAF 335 

is ratio of the steady chemical concentrations in an aquatic water-respiring organism 336 

(CB, g kg-1 WW) and the water (CW, g L-1) determined from field data in which 337 
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sampled organisms are exposed to a chemical in the water and in their diet. BAF is 338 

calculated using the following formula: CB /CW. BFM is the ratio of the steady state 339 

chemical concentrations in an organism (CB, g kg-1 WW) and the diet of the organism 340 

(CD, g kg-1 WW) determined from field data. Lastly, BSAF is the ratio of the chemical 341 

concentrations in an organism (CB, g kg-1 DW) and the sediment (CS, g kg-1 DW). 342 

Data were expressed as mean ± standard error (SE) and analyzed using XLSTAT 343 

software. The data were transformed in order to meet the conditions of application of 344 

the parametric tests and to reduce the effect of outliers skewing the data distribution. 345 

Analyses of variance (ANOVA) followed by post-hoc Tukey’s honestly significant 346 

difference (HSD) tests were performed. The relationship between enzymatic activities 347 

and trace elements was measured by Pearson correlation coefficient. A significant 348 

difference was considered a p-value less than 0.05. 349 

  350 
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3. Results 351 

3.1. Distribution of trace element content 352 

The levels in Be and Bi levels were below the detection limit in all matrices analyzed, 353 

so they were not considered in the statistical analyses of the results. In addition, Hg 354 

concentrations were also below the detection limit in the sediments and the seawater 355 

column. For the sake of clarity, only 14 representative examples chosen among the 356 

24 studied trace elements are graphically illustrated throughout the paper, and 357 

discussion mainly revolves around these selected examples. The mean trace 358 

element concentrations measured in the different matrices (sea urchins, macroalgae, 359 

sediment and seawater column) are presented in Fig. 2. 360 

Trace element concentrations follow the sequence: Fe> Zn> Al> Ni> Cr> Mn> Cu> 361 

V> Se> Co> Mo> Cd> Ag> Pb in sea urchin gonads; Fe> Al> Cr >Ni> Zn> Mn> Cu> 362 

V> Se> Co> Cd> Mo> Ag> Pb in sea urchin guts; Fe> Al> Ni> Cr> Mn> Cu> V> Zn> 363 

Co> Pb> Mo> Cd> Ag in macroalgae; Fe> Pb> Al> Ni> V> Zn> Se> Mn> Cr> Cu> 364 

Co> Mo> Cd> Ag in seawater column and Fe > Al> Ni> Cr> Mn> V> Co> Cu> Zn> 365 

Se> Pb> Mo> Cd> Ag in sediment (Fig. 2). 366 

3.2. Spatial variations of trace elements 367 

There is no significant difference in trace elements concentrations between the 368 

samples collected at 3 m depth and those collected at 6 m depth. The TEPI was 369 

calculated with concentrations in sea urchin gonads, sea urchin guts and macroalgae 370 

(Fig. 3). In gonads and guts, a gradient of contamination clearly appeared, with 371 

higher contamination to the south of the old asbestos mine, particularly at Albo 372 

(gonads: 1.367, guts: 1.172) and Nonza (gonads: 1.161, guts: 1.201; Fig. 3A; Fig. 373 

3B). In contrast, the reference site is the least contaminated, with a TEPI of 0.456 for 374 

the gonads and 0.529 for guts (Fig. 3A; Fig. 3B).  375 
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The TEPI calculated with macroalgae showed a more contrasting gradient with the 376 

Canelle site, located north of the mine, similarly contaminated to Nonza (0.902 and 377 

0.907, respectively; Fig. 3C). The four trace elements with the highest TESVI in 378 

gonads, guts and macroalgae are Co, Cr, Fe and Ni (Table 1). The highest 379 

concentrations were noted at Albo for the four trace elements (Table 1). Therefore, 380 

Co concentrations are 10 to 20-fold higher at Albo than at the reference site, Cr 96 to 381 

172-fold, Fe 2 to 9-fold and Ni approximately 38-fold. 382 

3.3. Bioaccumulation, biomagnification and biota-sediment accumulation 383 

factors 384 

The BAF and BSAF were calculated with the concentrations in the gonads and guts 385 

of the sea urchin and with concentrations measured in macroalgae (Table 2). Most 386 

trace elements were most bioaccumulated in macroalgae then the guts and finally the 387 

gonads (Al, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, V; Table 2). Only Zn had a higher 388 

accumulation in the gonads in comparison to the guts and macroalgae (Table 2). 389 

Among the macroalgae studied, the isotopic analysis highlighted that sea urchins 390 

collected fed mainly on E. elongata (96.6 ± 2.3%; CI95: 90.8-99.6%) and very little on 391 

D. dichotoma (2.5 ± 2.2%; CI95: 0.1-8.4%) and E. amentacea (0.9 ± 0.9%; CI95: 0-392 

3.2%; Fig. 4). In order to calculate the BMF, a weighted average of macroalgae was 393 

used for accuracy. Therefore, the formula used in this study was: 394 

CB/(CD1 ∗ 0.966 + CD2 ∗ 0.025 + CD3 ∗ 0.009) 395 

where, CB is the concentration measured in guts, CD1 the concentration in E. 396 

elongata, CD2 in D. dichotoma and CD3 in E. amentacea. The highest BMFs were 397 

obtained for Ag, Cd and Mo, elements for which the guts accumulate more than the 398 

other matrices (Table 2). 399 
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3.4. Biotic factors of the sea urchin 400 

The histological analysis highlighted that sea urchins were mostly at stage 4 (mature) 401 

and stage 5 (partly spawned; Fig. 5). However, variations were observed at Punta 402 

Bianca where ~30% of the sea urchins had already spawned and at the reference 403 

site where 50% of the sea urchins had reached the premature stage (Fig. 5). 404 

Significant differences were noted between the concentrations measured in the male 405 

and female gonads. Females exhibited higher concentrations of Cd, Mn, Se, and Zn 406 

while high Mo, Pb, and V levels were found in males (p-value < 0.05). In contrast, no 407 

significant differences were found for biomarkers of stress. In the guts, the only 408 

significant difference between males and females is measured for Zn with a 409 

concentration 1.5-fold higher in females (p-value < 0.001). 410 

3.5. Biochemical analyses 411 

There was no significant difference between sites regarding MDA content and 412 

specific activities of SOD and GPX (Fig. 6). At the same time, the specific activity of 413 

CAT and the H2O2 levels were higher in sea urchins collected at Albo, Nonza and at 414 

the reference site (Fig. 6). Finally, the highest specific activity of GST was measured 415 

in sea urchins at Albo and three sites (Reference site, Nonza and Old Mine; Fig. 6). 416 

Specific activities of CAT and GST as well as H2O2 levels in sea urchin gonads 417 

showed significant positive correlation (p-value < 0.001, Table A.1). In addition, there 418 

were significant positive correlations for several trace elements with CAT and H2O2 419 

(Table A.1). Accordingly, increased concentrations of Al, Cr, Cu, Fe, Mn, Pb, and Se 420 

resulted in higher specific CAT activity and H2O2 levels in the gonads (p-value < 421 

0.05). 422 

 423 
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4. Discussion 424 

The study of environmental contamination requires a deep knowledge of the 425 

distribution of pollutants and their concentrations in biotopes and organisms (Lagadic 426 

et al., 1998; Ramade, 2007). For this purpose, trace element concentrations were 427 

analyzed in sea urchins (gonads and guts), three macroalgae species, the seawater 428 

column and sediment. The trace elements follow an almost similar sequence 429 

regardless of the environmental matrices studied, although there are some notable 430 

differences. Fe is the predominant trace element resulting from its essential character 431 

(Phillips & Rainbow et al., 1989; Lohan & Tagliabue, 2018) or from the contamination 432 

of the ecosystem as described in the literature (Brik et al., 2018). Fe is an essential 433 

trace element playing a major role for many species due to its role in various 434 

physiological processes (e.g. photosynthesis, enzymatic activity, reproduction, etc.) 435 

and it is also included in geochemical processes (Sunda, 2001; Thuróczy et al., 436 

2011). However, in contrast to the literature, Fe concentrations exceeded Zn 437 

concentrations in the gonads (Strogyloudi et al., 2014; Ternengo et al., 2018; El 438 

Idrissi et al., 2020). This is due to the remarkably high concentrations of Fe, 2 to 8-439 

fold higher than in many studies (Warnau et al., 1998; Storelli et al., 2001; Soualili et 440 

al., 2008; Strogyloudi et al., 2014). According to Blum et al. (2006), the serpentinites 441 

of Cap Corse could generate significant Fe content explaining these high contents at 442 

the studied sites. Although Fe is an essential requirement for marine organisms, an 443 

excessive concentration could be harmful to their health and must therefore be 444 

monitored (Fosmire, 1990). Zn is the second element measured in high concentration 445 

in the gonads. It is the only trace element with a higher accumulation factor in the 446 

gonads than in the guts and macroalgae. This accumulation could be due to its 447 

intervention in gametogenesis and in particular in ovogenesis explaining its high 448 
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content in females compared to males (Unuma et al., 2003, 2007). In contrast to the 449 

sediment, macroalgae, gonads and guts of sea urchins where Pb is among those 450 

with the lowest concentrations, this trace element is the second most abundant in the 451 

distribution sequence of the seawater column. It is one of the most abundant and 452 

common non-essential trace elements in the environment (Mishra et al., 2006). Its 453 

concentration in the seawater column (2.17 ± 0.83 mg L-1) is considerably higher than 454 

previously reported in the literature (Lin et al., 2000; Bruland & Lohan, 2003). This is 455 

may be due to point contamination of the water column during the period of this study 456 

or contamination of DGTs during material handling. Seawater column analysis is 457 

reported to be less relevant in the literature for trace element monitoring due to its 458 

high fluctuations caused by several factors such as hydrodynamic energy (Jahan & 459 

Strezov, 2019). Moreover, it is not always possible to analyze all the contaminants in 460 

this biotope, the concentration levels being too low and the analytical techniques not 461 

being sensitive enough in this study for Hg. 462 

Calculation of the TEPI through measurement of trace element contents in the 463 

gonads and guts of the sea urchin enabled us to determine a gradient of 464 

contamination with a higher concentration to the south of the old asbestos mine, in 465 

particular at Albo and Nonza. The occurrence of a similar north-south gradient within 466 

this area has already been demonstrated in other matrices such as mussels (Kantin 467 

et al., 2015). In the literature, it has been established that asbestos wastes were 468 

accumulated to the south of the old asbestos mine (BRGM, 1997; Cary et al., 2013). 469 

These materials migrated along the coastline due to the effect of swell and prevailing 470 

marine currents (BRGM, 1997). As a result, the wastes expanded the coastline 471 

southward for 5 km from the old mine, progressively filling the beach at Albo and 472 

creating the beach at Nonza (about 1 500 m long; BRGM, 1997). A total of one 473 
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million tons of excavated material was transported to the artificial beaches during the 474 

35 years of operation of the site (Boulmier et al., 1999; Hervé et al., 1997; Cary et al., 475 

2013). This observation highlights the important role that the marine environment 476 

plays in the diffusion and distribution of contaminants in the environment. Hence, it is 477 

necessary to take care during the selection process of the sampling site for 478 

ecotoxicological studies and to consider which can contribute to the variability of 479 

contaminants at local scale. Moreover, sites at 3 and 6 m depth are similarly 480 

impacted by diffusion, indicating that the contamination affects the whole of the 481 

studied bathymetric range. 482 

The Albo and Nonza beaches are characterized by black pebbles constituted by 483 

serpentine (BRGM, 1997). The serpentinites are characterized by high levels of Fe 484 

and Mg (Morrison et al., 2009) which may explain the high Fe concentrations found at 485 

Albo with a high TESVI whatever the matrices studied. Co, Cr, and Ni are also 486 

present in high concentrations at Albo with significant concentration differences 487 

compared to the reference site. Previous works have also highlighted a high 488 

contamination of Ni, Cr and Co in marine sediments in the area adjacent (15 km of 489 

coastline) to the old asbestos mine at Canari (Andral & Tomasino, 2007; Kantin & 490 

Pergent-Martini, 2007) and an accumulation of these elements in several marine 491 

organisms (Bouchoucha & Andral, 2010; El Idrissi et al., 2020). According to several 492 

authors, in addition to Fe, serpentinites are naturally enriched in other trace elements 493 

such as Cr, Ni and Co (Morrison et al., 2009; Siebecker, 2010; Tashakor et al., 494 

2011), explaining these high concentration levels in the region and particularly to the 495 

south of the old mine. The general formula of serpentine is Mg5 {Si2O4} (OH)4 and 496 

substitution of Mg by Fe (II), Fe (III), Cr, Al, Ni and Mn may occur (Mével, 2003). In 497 

the same way, large amounts of Mg and/or Fe are reported, disproportionate 498 
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richness in Ni, Cr and Co and poorness in Ca in the serpentinite (Lee et al., 2004; Pal 499 

et al., 2006). Thus, even though mine drainage was the main cause of these 500 

contamination variations, there is a general sensitivity related to a particularly 501 

concentrated geochemical background. The assessment of ecosystem quality 502 

requires good knowledge of the natural geochemical context in order to distinguish 503 

the trace elements naturally present in the environment from those resulting from 504 

anthropogenic activities. 505 

Serpentine soils are considered a source of geogenic pollution by many researchers 506 

because of the trace elements they contain and their potential deleterious effect at 507 

high concentrations in the environment (Caillaud et al., 2009; Tashakor et al., 2011). 508 

In this regard, recent experiments have been performed to determine the impacts of 509 

concentrations measured in this area on Paracentrotus lividus but no significant 510 

effect were highlighted on the larvae, even in the presence of chronic contamination 511 

(El Idrissi et al., 2022a, 2022b). 512 

The TEPI of macroalgae also indicated strong contamination at Albo but no north-513 

south contamination gradient has been highlighted. Indeed, the macroalgae located 514 

in the northern part of the mine exhibited contamination levels similar to those located 515 

in the south, resulting in a gradient around the mine rather than north-south. This 516 

result may be related to a reversal phenomenon of the littoral drift (from south to 517 

north) during a strong storm in 1973 causing a transport of sediment from the rubble 518 

discharge towards the north (Bernier et al., 1997). 519 

Macroalgae may be better able to accumulate than sea urchins as indicated by the 520 

different accumulation factors calculated in this study. Thus, the macroalgae can be 521 

particularly useful to determine the presence of a contaminant at the specific location. 522 

However, it is necessary to be careful when interpreting contamination levels at the 523 
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risk of overestimating them (Richir, 2013). Moreover, if the aim of the study is to 524 

identify the magnitude of well-integrated contamination, the sea urchin may be a 525 

better tool for assessing a contamination gradient. 526 

It is commonly recognized that the accumulation of contaminants in marine 527 

organisms occurs through three compartments: the seawater column, food and 528 

sediments (Bouzahouane et al., 2018). Accumulation can lead to high internal 529 

concentrations resulting in toxicity, even when external concentrations are low 530 

(ECHA, 2017). According to some authors, sediment often plays the role of a local 531 

sink for contaminants, which can increase the concentrations of benthic organisms 532 

that indiscriminately ingest sediment particles while feeding (Li et al., 2019; Jacobs, 533 

1998). In the present study, the BSAFs are mostly low (less than 1) indicating low 534 

bioaccumulation (Warnau et al., 1998). These low values are notably related to high 535 

trace element concentrations in the sediment. Only Ag, Cd, Mo, Se and Zn have 536 

BSAFs higher than 1 with concentrations in organisms equivalent to those recorded 537 

in the literature (e.g. Guendouzi et al., 2017; Rouane-Hacene et al., 2017; Warnau et 538 

al., 1998). A high BSAF does not necessarily indicate a risk and rather suggests high 539 

concentrations in the organism due to its essential role in physiological processes 540 

and low concentrations in sediments, as with Zn for instance. Therefore, the 541 

efficiency of trace element absorption from different sources may vary according to 542 

ecological needs, organism metabolism and concentrations in different compartments 543 

(Bouzahouane et al., 2018). Variations in trace elements within the same species can 544 

therefore have different origins. The reproductive stage of the sea urchin is known as 545 

a parameter influencing trace element concentrations (El Idrissi et al., 2020). In the 546 

present study, the sea urchins are almost all at the same stage of reproduction 547 

except at Punta Bianca where about 30% of the sea urchins have already spawned 548 
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(stage 5) and at the reference site where 50% of the gonads are premature (stage 3). 549 

This information probably indicates a low overestimation of gonadal contamination 550 

levels at Punta Bianca and the reference site compared to the other investigated 551 

sites where a dilution effect occurs (El Idrissi et al., 2020). In this study, BAFs 552 

indicate that the majority of trace elements are most bioaccumulated in macroalgae 553 

then the gut and later the gonads. Therefore, the use of guts might be more 554 

interesting than gonads in studies assessing local variations in trace element 555 

contamination. Indeed, this compartment of the sea urchin bioaccumulates more 556 

making concentrations higher and therefore the analytical analysis more accurate. In 557 

addition, in contrast to the gonads, the majority of the trace elements do not vary 558 

according to the sex. Investigations should be conducted to assess whether 559 

reproductive stages and the source of food have an impact on the concentrations in 560 

the guts. In the present study, we estimated BMF using the guts and macroalgae that 561 

the urchin could potentially feed on. Although in some conditions, P. lividus can be 562 

omnivorous (Wangensteen et al., 2011), it remains mainly herbivorous (Agnetta et 563 

al., 2013; Boudouresque & Verlaque, 2013). Several factors such as seasonality 564 

(Verlaque, 1987), abiotic parameters or resources available within the biotope (Paine 565 

& Vadas, 1969; Frantzis et al., 1988) can influence its choice. Therefore, for this 566 

work, three species of macroalgae were collected because of the presence of P. 567 

lividus in their beds and their high abundance in the sites. Isotopic analyses identified 568 

E. elongata as the main food source compared to D. dichotoma and E. amentacea. 569 

Frantzis & Grémare (1992) have already demonstrated a preference of P. lividus for 570 

this macroalgae which is consistent with our results. The most biomagnified trace 571 

elements (Ag, Cd and Mo) are those measured at low concentrations and are among 572 

the last elements in the distribution regardless of the matrices studied. Luy et al. 573 
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(2011) have also studied these elements and, according to them, the levels of Ag 574 

and Mo measured in seagrass reflect the background level of agriculture in this area. 575 

Several studies suggest that exposure to trace element contamination can induce a 576 

cascade of events such as ROS production (Farombi et al., 2007; Nieto et al., 2010). 577 

Thus, antioxidant defense mechanisms are crucial to maintain the redox balance 578 

between pro-oxidants and antioxidants in aerobic organisms (Limon-Pacheco & 579 

Gonsebatt, 2009; Chan & Wang, 2019). In order to estimate the effects of trace 580 

element contamination on the oxidative stress of P. lividus, analyses were performed 581 

on the gonads of sea urchins collected at different locations of the contamination 582 

gradient (north to south). The highest specific activity of CAT, GST and H2O2 was 583 

reported in the south of the old asbestos mine where the contamination is the 584 

highest. A positive correlation between the specific activity of CAT, H2O2 and some 585 

trace elements is noted confirming an effect of contaminants on the oxidative stress 586 

of sea urchin and on the reliability of biomarkers used in this study. In the 587 

mitochondrial respiratory chain, H2O2 can react directly with metal ions such as Fe or 588 

Cu, by the Fenton reaction, and form the hydroxyl radical which is a powerful oxidant 589 

(Regoli & Giuliani, 2014; Mejdoub et al., 2017). Consequently, the elimination of H2O2 590 

is a key strategy of organisms against oxidative stress (Regoli et al., 2002a; Mejdoub 591 

et al., 2017). According to Giarratano et al. (2013), the simultaneous induction of 592 

GST and CAT activities suggests a similar pattern for hydrogen peroxide removal. 593 

Therefore, the increase in these enzymes suggests an activation of detoxification 594 

processes, probably reflecting high stress (Louiz et al., 2016). A large number of 595 

other studies have shown higher activity of CAT and GST in organisms collected 596 

from contaminated sites (Bougherira et al., 2015; Keblouti et al., 2015; Bouzenda et 597 

al., 2017). Regoli et al. (2002b) consider CAT a sensitive and important biomarker of 598 
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oxidative stress superior to SOD, explaining the invariance of specific SOD activity in 599 

this study. These high specific activities of CAT and GST as well as this high H2O2 600 

content were also measured at the reference site which however has a low 601 

concentration of trace elements. The main difficulty in using biomarkers in the natural 602 

environment is the interference with other environmental factors (Lagadic et al., 603 

1998). In contrast to experiments under controlled conditions, various factors can 604 

lead to responses of biochemical parameters in the natural environment (Lagadic et 605 

al., 1998; Ramade, 2007). As a result, many factors such as meteorological 606 

conditions, interactions with other contaminants than those studied, or interspecific 607 

relationships can complexify the interpretation of oxidative stress responses (Lagadic 608 

et al., 1998). In this case, the same habitat at the reference site was chosen as for 609 

the sites near the old asbestos mine in order to minimize variation; it thus appears 610 

that other factors led to these high values. Further study would be of interest to 611 

determine the source of this significant oxidative stress response. Finally, despite the 612 

higher levels of H2O2 in sea urchin gonads collected to the south of the mine and at 613 

the reference site, the level of MDA, a by-product of lipid peroxidation, did not 614 

significantly vary, suggesting that the antioxidant enzyme system of P. lividus 615 

prevented oxidative damage from occurring (Amri et al., 2017; Ding et al., 2018). 616 

 617 

5. Conclusion 618 

This study assessed the reliability of sea urchins and macroalgae in the assessment 619 

of contamination in coastal ecosystems. The sea urchin gut appears to be a good 620 

bioindicator tool for assessing trace element levels. In this context, it would be 621 

interesting to perform complementary studies in order to understand the influence of 622 

several parameters such as the season and the food sources of the sea urchin. TEPI 623 
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allowed identification of the different levels of contamination by highlighting the 624 

gradients of contamination in the old asbestos mine using sea urchins and 625 

macroalgae. TESVI enabled us to determine with efficiency the trace elements 626 

characteristic (Co, Cr, Fe, Ni) of the Albo site.  The high levels of these trace 627 

elements in the different matrices are due to the discharges of the old mine swept 628 

along by the sea current and the geology of the region composed by serpentinites.  629 

The contamination generated by the old asbestos mine causes oxidative stress very 630 

well regulated by the antioxidant mechanisms of the sea urchin. This study also 631 

highlighted the need for caution when interpreting biomarkers of stress under 632 

environmental conditions due to the different factors involved. Finally, this research 633 

shows that the effects of the old asbestos mine are still present and in order to 634 

prevent them, it is essential to stabilize the surrounding environment and soils 635 

through revegetation action and to maintain monitoring of the marine environment. 636 

Currently, a large-scale project to remediate and to rehabilitate the area is underway. 637 

A study of the effects of this project on the surrounding marine ecosystems would be 638 

relevant at short-term, beacause of the increased risk of contamination from this 639 

rehabilitation work, and in the long-term to monitor potential beneficial effects. 640 
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Table Captions 1133 

Table 1. Trace Element Spatial Variation Index (TESVI) of 22 trace elements 1134 

examined in sea urchins (gonads and guts) and macroalgae from six sites near the 1135 

old asbestos mine (Corsica, NW Mediterranean Sea; PC: Punta di Canelle; CN: 1136 

Canelle; OM: Old Mine; PB: Punta Bianca; AB: Albo; NZ: Nonza; RF: Reference site). 1137 

The higher the TESVI value, the greater the spatial variation of that element among 1138 

the sampling locations. In dark grey, the higher values. 1139 

Table 2. Bioaccumulation (BAF), biomagnification (BMF) and biota-sediment 1140 

accumulation (BSAF) factor of 14 trace elements. TE: Trace elements; SW: 1141 

Seawater.  1142 

  1143 
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Table 1.  1144 

 1145 

Trace elements 

Sea urchins 
Macroalgae 

Gonads Guts 

TESVI 
Site  

xmax 
TESVI Site xmax TESVI Site xmax 

Ag 1.622 NZ 3.964 CN 0.216 PC 

Al 4.896 AB 1.321 AB 0.776 AB 

As 0.704 AB 0.962 OM 2.357 AB 

Ba 0.710 PC 0.182 PB n.a n.a 

Cd 1.354 PC 0.370 CN 0.639 PC 

Co 8.243 AB 31.789 AB 10.124 AB 

Cr 194.926 AB 406.518 AB 13.335 AB 

Cu 0.589 NZ 0.750 NZ 4.422 AB 

Fe 16.854 AB 15.238 AB 10.913 AB 

Hg 1.703 AB 0.576 RF n.a n.a 

Li 0.160 AB 0.247 PB n.a n.a 

Mn 3.078 AB 6.650 AB 3.897 AB 

Mo 0.454 PC 0.652 RF 1.871 AB 

Ni 56.107 AB 50.454 AB 17.229 AB 

Pb 0.296 RF 0.488 RF 0.422 CN 

Sb 0.794 CN 0.304 RF 0.185 AB 

Se 0.790 NZ 3.457 NZ 3.451 AB 

Sn 1.002 AB 2.190 RF 2.893 AB 

Sr 0.960 AB 0.520 PB 0.237 PC 

U 3.293 CN 0.120 PB n.a n.a 
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V 3.735 AB 1.310 AB 2.000 OM 

Zn 1.429 PC 0.287 PC 0.204 CN 

 1146 

  1147 
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Table 2. 1148 

 1149 

TE 

BAF BMF BSAF 

gonads/ 

SW 

guts/ 

SW 

 macroalgae/ 

SW 

guts/ 

macroalgae 

gonads/ 

sediment 

guts/ 

sediment 

macroalgae

/sediment 

Ag 50.3526 163.6319 29.8274 5.5936 38.7261 167.7989 22.9402 

Al 11.2258 46.8450 117.4314 0.1401 0.0038 0.0210 0.0395 

Cd 33.4045 181.6255 13.1774 6.9715 23.6158 171.2038 9.3159 

Co 5.5608 18.1816 41.7896 0.1351 0.0205 0.0894 0.1541 

Cr 7.5379 45.2430 98.6556 0.1514 0.0086 0.0691 0.1131 

Cu 5.0336 14.3122 21.8451 0.2092 0.2221 0.8419 0.9638 

Fe 13.1917 59.3457 148.6595 0.1393 0.0086 0.0516 0.0970 

Mn 3.7815 18.2950 36.8864 0.1556 0.0109 0.0702 0.1061 

Mo 3.1471 13.0912 2.7865 3.2869 2.5737 14.2747 2.2788 

Ni 2.2670 11.1937 32.2017 0.1214 0.0081 0.0532 0.1149 

Pb 0.0097 0.0361 0.1022 0.1169 0.0794 0.3938 0.8352 

Se 170.7810 502.6702 958.6628 0.1535 1.5232 5.9777 8.5503 

V 0.7858 1.8492 4.5681 0.1535 0.0720 0.2259 0.4185 

Zn 38.8205 10.4672 5.4270 0.8050 8.7230 3.1360 1.2195 

 1150 
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Figure Captions 1152 

Figure 1. Location of the study area in Corsica Island (A, B) and the sampling sites 1153 

(C, D). PC: Punta di Canelle; CN: Canelle; OM: Old Mine; PB: Punta Bianca; AB: 1154 

Albo; NZ: Nonza; RF: Reference site 1155 

Figure 2. Distribution of trace element (TE) concentrations in sea urchins P. lividus 1156 

(gonads: A, guts: B), macroalgae (C), seawater column (D) and marine sediments 1157 

(E). 1158 

Figure 3. Trace Element Pollution Index (TEPI) determined using sea urchins 1159 

(gonads: A, orange points, guts: B, purple points) and macroalgae (C, green points), 1160 

of the seven sites (PC: Punta di Canelle; CN: Canelle; OM: Old Mine; PB: Punta 1161 

Bianca; AB: Albo; NZ: Nonza; RF: Reference site). No macroalgae samples were 1162 

collected at RF. 1163 

Figure 4. Relative contributions of three food sources (Dictyota dichotoma, 1164 

Ellisolandia elongata and Ericaria amentacea) to the diet of P. lividus individuals 1165 

sampled near the old asbestos mine at Canari (Corsica, NW Mediterranean). 1166 

Figure 5. Maturity stage of sea urchin gonads (%) at each site (PC: Punta di Canelle; 1167 

CN: Canelle; OM: Old Mine; PB: Punta Bianca; AB: Albo; NZ: Nonza; RF: Reference 1168 

site). 1169 

Figure 6. Changes in specific activities of (A) superoxyde dismutase (SOD), (B) 1170 

catalase (CAT), (C) glutathione peroxidase (GPX), (D) glutathione-S-transferase 1171 

(GST) and changes in (E) hydrogen peroxide (H2O2) and (F) malondialdehyde (MDA) 1172 

contents in gonads of P. lividus collected at seven sites (PC: Punta di Canelle; CN: 1173 

Canelle; OM: Old Mine; PB: Punta Bianca; AB: Albo; NZ: Nonza; RF: Reference site). 1174 

Dissimilar letters denote significant differences between groups (p-value < 0.05). 1175 
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Figure 2. 1180 

 1181 

  1182 



 

58 

 

Figure 3. 1183 
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Figure 4.  1186 
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Figure 5.  1189 
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