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Abstract

Pantographic blocks are metamaterials made of a finite number of parallel pantographic sheets

interconnected by cylindrical pivots. In this paper, a pantographic block subjected to 3-point

flexure, where the prescribed displacements are parallel to the pantographic plane, shows essentially

monoclastic deformation (i.e., one of the principal curvatures of the top surface is found to be

negligible wrt. the other one). Pantographic blocks are modeled herein with a second gradient 3-

dimensional continuum model that is valid at the length scale of a pantographic cell. This reduced

order model allows for predictive numerical simulations whose computational burden is relatively

small. Second gradient effects (i.e., higher-order terms contributing to the strain energy) are

limited to the second derivatives along the fibers of their transverse displacements. Digital Volume

Correlation (DVC) techniques are employed to measure deformed shapes of pantographic blocks.

A model-driven initialization procedure of DVC is followed to quantify the shape of pantographic

blocks in large displacements and strains. In the present case, the previous numerical model was

also used for initialization purposes.

Keywords: Digital Volume Correlation (DVC), Metamaterials, Second Gradient Continua, Pan-

tographic block, Monoclastic Deformation.

∗Corresponding Author. alessandro.ciallella@univaq.it

1



1 Introduction

In the current research efforts concerning “exotic” metamaterials and the related metamaterial synthe-

sis problem, a special role is played by pantographic mesostructures and meso-architectures. The meta-

materials synthesized by using peculiar mesostructures [TGMD17, Cia20, AYA22, BdST23] exhibit

some unusual properties whose exploitation may lead to interesting engineering applications [dSA+19,

dSS+19b, BDBT21, SRCC22, Spa22, ESKZ23]. Moreover, on the basis of available theoretical re-

sults [BEPd19, EAC+19, E+20, de20, SB21, ER22], when using pantographic meso-architectures as

fundamental substructures at multiple length scales one may synthesize a large class of generalized

continua that include at least the set of n-th gradient continua [ASd03, SAI11]. Very similar pan-

tographic substructures may also be found in fiber-reinforced composites [CG+16, SYP+22]. It is

therefore interesting to investigate the mechanical behavior of what seems to be the simplest 3D meta-

material specimen that can be assembled by using pantographic sheets [TGCR16, MLG+18, TMP+18,

DASD+19, LVCF22] as elementary constituents. A first attempt to study such 3D metamaterial can

be found in Refs. [ES+19, YBd20]. It was designed as a “combination” of a finite number of planar

parallel pantographic sheets that are mechanically interconnected by cylindrical hinges having the

same dimensions and mechanical properties as those used in each pantographic sheet (Figure 1).

A homogenized continuum model may be introduced to study the behavior of the pantographic

block at the length scale of the pantographic cells. The strain energy then depends on second deriva-

tives of the displacement field. More precisely, as they are related at the mesolevel to flexure of

pantographic fibers, the second derivatives involved in the macro-strain energy are associated with

transverse displacements. Pantographic blocks are therefore endowed with properties of “incomplete”

second gradient continua [BdGP17, EdBS18]. For this reason, a strong anisotropy of the mechanical re-

sponse of pantographic blocks is envisioned, namely, in the plane of pantographic sheets the properties

correspond to those of (incomplete) second gradient materials, while in their orthogonal direction, a

standard first gradient material response is expected. In this paper the expression for the deformation

energy is postulated for the macro-description of pantographic blocks based on heuristic considerations

taking into account the meso-architecture of the considered metamaterial, as recently introduced in

[SdG+22]. The results of numerical simulations using this strain energy density have a twofold aim,

namely, to initialize the DVC algorithm used to process the reconstructed volumes collected with the

tomographic device available at LMPS, and to calibrate the numerical model.

Most of the materials used in mechanical and civil engineering have positive Poisson’s ratios (i.e.,

they contract laterally when stretched). However, materials characterized by negative Poisson’s ratio

exist and have been developed in recent years [Lak93, BSW+13]. It has to be noted that the limitations

on transverse area changes due to a given elongation, summarized by the analytical statement limiting
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the Poisson ratio’s to the interval [−1, 1/2] in isotropic and infinitesimal elasticity, are not necessarily

valid in the case of second gradient and/or anisotropic materials [TC05]. The deformed shape of a

medium under different loading conditions is strongly related to Poisson effects. Anticlastic, synclastic

and monoclastic deformation modes are three possible observations for external surfaces [Koe84].

Anticlastic deformation corresponds to surfaces taking the shape of a saddle after flexure (i.e., the

two principal curvatures are opposite in sign). If the two principal curvatures have the same sign,

the deformation mode is concave or convex and it is referred to as synclastic. Last, if one of the two

principal curvatures is equal to zero and the other one different from zero, the deformation mode is said

to be monoclastic [Pre10]. First order gradient materials generally experience anticlastic deformations

when subjected to flexure [dSdSV+64, Lam91, Sea08]. The deformation mode of a pantographic block

is investigated herein when loaded in three-point flexure.

In the analyses presented in this paper, Digital Volume Correlation (DVC) was used to mea-

sure displacement fields of a pantographic block subjected to 3-point flexure. DVC possibly requires

tailored approaches to the problems under consideration [FCG+13, VVS+22]. A new model-driven

DVC step was introduced to initialize the minimization scheme. The most interesting effects concern

pantographic blocks subjected to large displacements and strain regimes. This feature required so-

phisticated initialization as standard algorithms may fail under these conditions dealing with periodic

mesostructures and very large deformations. The outline of the paper is the following. In Section 2,

the continuum second gradient model used for simulating the behavior of the pantographic block is

introduced. The experimental setup is then discussed, and simulations are used to produce a proper

initialization for the DVC analysis. All the preliminary steps of FE-based DVC are provided. In

Section 3, the DVC results are discussed and compared with numerical simulations obtained via the

proposed theoretical model (Section 4).

2 Model-Initialized DVC of In-Situ Flexure

In this section, the selected second gradient model is introduced. The experimental setup is then

discussed. The simulations according to the model were used to initialize the DVC analyses.

2.1 Strain energy of pantographic blocks

The pantographic block (Figure 1) is characterized by an internal architecture organized along three

distinct orthogonal directions. Two of them define the pantographic plane of the scissor mechanism

whose unit vectors L and M in the reference configuration give the directions of the so-called fibers

(or beams). The third direction is described by vector N, and represents the axis of the column of the
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hinges. Introducing the standard deformation tensor F , namely, the gradient of the placement field,

the current images of these three vectors are appraised as

λ l = FL, µm = FM, ηn = FN (1)

where l, m, n are the unit vectors in the current (deformed) configuration under the transformation F .

Figure 1: Nominal geometry of a pantographic block

It is assumed that the behavior of the pantographic block is the same for all planes parallel to the

one on which L and M lay (i.e., π), and is characterized by the strain energy [GRT17, TGGD17, Gio21]

wπ =
1

2

[
Ke((λ− 1)2 + (µ− 1)2) + Ksγ

2+

Kt (κ2
tL + κ2

tM ) + Kn (κ2
nL + κ2

nM ) + Kg (κ2
gL + κ2

gM )
]

(2)

that has two main contributions, namely, i) the first-gradient part based on the measures of deformation

(λ − 1), (µ − 1), and γ, which represent the change of length in the directions L and M as well as

the change of angle between these two directions in the deformation process from the reference to the

current configuration as defined by Equation (3); ii) the second-gradient part based on the measures

of deformation representing twist and curvature in the directions L and M, respectively. Specifically,

the distortion angle between L and M is evaluated as

sin γ = l ·m (3)
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while the measures of twist deformation, flexure normal to the plane π, and geodesic flexure read

κtL = (n× l) · dn

dSL
, κnL = n · dl

dSL
, κgL = −(n× l) · dl

dSL
(4)

and

κtM = (n×m) · dn

dSM
, κnM = n · dm

dSM
, κgM = −(n×m) · dm

dSM
(5)

for the fibers along the directions L and M, respectively. In Equations (4) and (5), SL and SM are

the abscissas along the two fiber directions. The energy density (2) is based on a Kirchhoff beam

model [Gio20, Gre20].

The behavior in the direction N was assumed to be only characterized by a first-gradient model

wN =
1

2

{
KeN (η − 1)2 + KsN (γ2

LN + γ2
MN ) + 2 Kc [(λ− 1)(η − 1) + (µ− 1)(η − 1)]

}
(6)

where the first contribution represents a storage of elastic energy due to a change of length in the

direction N; the second part is related to shear in directions L and N as well as M and N; the last

term represents an exchange of energy between stretching modes in the pantographic plane π and the

orthogonal direction N. In particular, the shear strains are defined as

sin γLN = l · n, sin γMN = m · n (7)

where Ke, Ks, Kt, Kn, Kg, KeN , KsN , and Kc are material parameters. It is then assumed that the

strain energy density is the sum of the two contributions given by Equations (2) and (6).

2.2 Experimental setup

The specimens under investigation were fabricated via selective laser sintering (SLS) from PA2200

polyamide powder at Warsaw University of Technology, starting from the designed nominal geometry

shown in Figure 1. The pantographic block was a rectangular cuboid of sides 121.8 mm, 56.8 mm,

and 26 mm, in which the pantographic sheets had dimensions 121.8 × 56.8 mm2, and the length

of the specimen in the direction parallel to the pivots was 26 mm. An in situ 3-point flexural test

was performed by prescribing a displacement in the pantographic plane, parallel to the side whose

length was 56.8 mm. These directions are referred to as longitudinal, vertical and transverse, which

are associated with the {x}, {z} and {y} axes, respectively. The beams of the scissor pantographic

mechanism belong to the planes {x, z}, while the pivots are cylinders whose axes are parallel to {y}.

The designed structure had 11 layers of beams and every pair of successive layers was connected with
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138 hinges (i.e., 13 vertical rows of 6 hinges alternating with 12 rows of 5 hinges), for a total of 1380

hinges. The beams had a rectangular cross-section of 2 × 1 mm2, and the connecting cylinders had a

diameter of 0.90 mm with a length of 1.5 mm.

The 3-point flexural test was performed by prescribing a displacement in the pantographic plane,

parallel to the vertical z axis. The test was monitored via micro-computed x-ray tomography [MW14]

to acquire 3D scans of the reference and deformed configurations [BMA+10]. The supports were made

of ABS, printed with Fused Deposition Modeling (FDM). Two supports were fixed to the bottom plate

on the testing machine at a distance of 8.2 mm, and the last one to the top plate, in correspondence

to the middle horizontal position of the others. The test was conducted up to the stroke limit of the

testing machine, controlling the motion of the lower supports. Corrugated cardboard (i.e., undulated

polypropylene sheet) was placed between the specimen and the supports to prevent locking of the

beam ends with respect to the supports.

Six tomographic scans were acquired during the experiment. Two scans corresponded to the un-

loaded configuration, the first one used as the reference scan while the second one, was used to evaluate

measurement uncertainties and the baseline level for the correlation residuals. The other four scans

were acquired in the deformed configurations for increasing stroke. After the acquisition of the unde-

formed scans, a 10-mm spacer was installed to allow for larger displacements at the stoke limit of the

testing machine. The first scan was acquired after an additional 14 mm stroke. The next three scans

were acquired every 5 mm, so that scans 1 to 4 were acquired for a total prescribed displacement of 24,

29, 34, and 39 mm, respectively. The hardware parameters of the experiment are reported in Table 3.

The reconstructed volumes represented 143 mm×40.75 mm×67.48 mm with 83 µm / vx resolution

corresponding to 1723 × 491 × 813 voxels.

In Figure 2 a section of three of the reconstructed volumes is shown (i.e., reference configuration

and scans corresponding to 24 and 39 mm prescribed displacements). For the sake of conciseness, most

results will focus on these last two scans. The section was initially parallel to the pantographic plane

so that a fiber layer is clearly visible in the unloaded configuration (Figure 2(a)). In Figure 2(b,c), the

sections were no longer parallel to the fiber layer due to out-of-plane motions. The hinges connecting

the layers are visible as small white dots. The deformation of the beams was very large, especially

for the last deformation level (Figure 2(c)). The magnitude of the vertical displacements was equal to

hundreds of voxels, which was very challenging for DVC analyses.
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(a)

(b) (c)

Figure 2: Sections in the pantographic plane {x, z} for the different scanned configurations: (a) ref-
erence (unloaded) configuration; (b) 24 mm and (c) 39 mm prescribed displacements. Axis labels are
expressed in voxels.

The reaction force and stroke were continuously recorded during the test (Figure 3). At zero

displacement of the actuator, a large vertical black bar is shown, which shows the fluctuation of the

reaction forces during the acquisition of the scans in the unloaded configuration, as well as during

the installation of the spacers. From 0 to 10 mm, there were no available data. The reaction force

measured during the loading steps is illustrated in light gray. The four successive vertical black

bars correspond to force acquisitions during tomographic scans. The plot essentially shows a linear

response. However, a small hardening effect appeared in the last part of the loading history, which was

related to the triggering of fiber flexure for large displacements, and corresponded to the activation

of second gradient contributions of of the placement field. In the first part of the loading history,

the beams actually tended not to deform, as it is less costly in terms of energy to concentrate the

deformation in the connecting hinges. It is worth noting the beams remained almost unbent up to the

first deformation step (Figure 2(b)), while in the next loading steps increasing flexure of the beams

occurred (Figure 2(c)). These higher order terms are not present in classical Continuum Mechanics

theories. Thus, it is crucial to understand them to fully characterize this type of metamaterial [GGB17].

In the present experiment, the energy contribution associated with the elongation of the fibers was

expected to be negligible [Spa20]. No significant nonlinear deformation mechanisms (i.e., plasticity

and/or damage) appeared during the tests as evidenced by the essentially linear response.

7



Figure 3: Comparison between measured force vs. prescribed displacement of the specimen during
scan acquisition (vertical black bars) as well as loading steps (light gray), and predicted response via
FE simulations (dash-dotted dark gray line).

2.3 Parameter calibration

A heuristic calibration of the model parameters was performed herein to fit the force-stroke response

(Figure 3) up to the first loading step (i.e., 24 mm deflection). The calibrated parameters are reported

in Table 1. While the simulation proved to be robust even for larger deflections (i.e., up to 39 mm),

thereby allowing for the initialization of incremental DVC analyses, the force-displacement plot result-

ing from the simulations was less consistent for strokes beyond the second loading step (i.e., 29 mm

deflection, see Figure 3).

Table 1: Calibrated model parameters

Ke 1.4 × 105 N/m
Ks 13 N/m
Kg 9.5 × 10−2 Nm
Kn 1.2 × 10−2 Nm
Kt 10−2 Nm
KeN 6.5 MN/m2

KsN 35 MN/m2

Kc 2.6 MN/m2

2.4 Mesh in the reference configuration

FE-based DVC [RHVB08, HBC+16] was to be utilized in the analyses of the previous test. The sought

displacement field u is expressed as

u(x, {vvv}) =
∑
i

υiNi(x), (8)
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where Ni(x) are the vectorial shape functions associated with the nodal displacements υi, gathered

in the column vector {υυυ}, which are the unknowns to be measured. To determine them, the sum of

squared differences are minimized over the considered region of interest (ROI), i.e., given ρ the gray

level residual computed for each voxel belonging to the ROI

ρ(x, {vvv}) = I0(x) − It(x + u(x, {vvv})), (9)

where I0 and It are the gray level for every voxel in the reference and deformed scans, the measured

nodal displacements read

{υυυ}meas = arg min
{υυυ}

Φ2
c({vvv}) (10)

with

Φ2
c({υυυ}) =

∑
x∈ROI

ρ2(x, {vvv}). (11)

A penalty term was considered to perform so-called Hencky-elasticity regularization [dSS+19a]

Φ2
m({vvv}) = {vvv}⊤[K]⊤[K]{υυυ} , (12)

so that, to determine the nodal displacements via regularized DVC, the weighted sum is minimized

{υυυ}meas = arg min
{υυυ}

(
Φ2

c({υυυ}) + wmΦ2
m({∂υυυ})

)
. (13)

where {∂υυυ} denotes the column vector of incremental displacements from one analysis to the next, and

[K] the rectangular stiffness matrix associated with bulk and free surface nodes. The regularization

weight wm is proportional to a length, referred to as regularization length ℓm, raised to the power

4 [TTRMH14]. Section 2.6 will discuss the choice of the regularization length.

An FE mesh of the specimen was thus needed. The starting point was the STL model of the

to-be-printed pantographic structure. Figure 4 shows the mesh in the nominal configuration generated

with Gmsh [GR09]. The dimensions of the beam and hinges were significantly different, as much finer

details were required to mesh them. Due to small printing errors, incorrect sample placement and

possible application of preload, the reference (experimental) configuration generally does not match

that of the design prepared for printing. For this reason, a backtracking procedure [ALS+21] was

required to fit the mesh constructed from the nominal printing geometry to the reference scan of the

unloaded configuration. The backtracked mesh was finally cropped, cutting out the last two vertical

rows of pivots on both sides of the specimen, which otherwise in the configuration with the maximum

deformation would end up outside the monitored volume (Figure 2). The final mesh was made of
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37,759 nodes and 141,882 T4 elements whose mean size (measured as the cube root of the average

elementary volume) was 6 vx.

(a) (b)

Figure 4: FE mesh in the nominal configuration. Overall (a) and detail of the hinge meshing (b).

The reconstructed volumes were registered using the Correli 3.0 framework [LNM+15] in which

Hencky’s regularization was implemented (Table 4) since there was virtually no contrast within the

printed parts. In the present case, the measured displacement field u was parameterized with the

nodal displacements associated with the finite element discretization based on 4-noded (T4) tetrahe-

dra [HBC+16].

2.5 DVC initialization

Large displacements between successive acquisitions of the deformed configuration (Figure 2), also due

to the peculiar structure of the studied block, make it hard to deal with for DVC analyses. The latter

ones had to be tailored to the present case. The prescribed displacements with respect to the reference

configuration was 24, 29, 34, and 39 mm for the four deformed configurations. Expressed in voxels,

they correspond to 290, 350, 410 and 470 vx. These amplitudes were therefore very large compared to

the height of the specimen (i.e., 56.8 mm or 684 vx). In particular, the first deformed configuration

(Figure 2(b)) was the most challenging. A proper initialization of DVC analyses had then be devised

to enable for convergence.

In the present case, DVC was “model-initialized,” namely, finite element (FE) simulations were

performed with the commercial code COMSOL Multiphysics® using the model introduced in Sec-

tion 2.1 and calibrated in Section 2.3. A rectangular parallelepiped of size equal to that of the tested
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sample size was analyzed numerically. The focus was on the material points that were located in the

undeformed configuration in correspondence with the centers of mass of the pivots of the actual meta-

material. The predicted positions of these material points were used to initialize the pivot motions.

Elastic simulations with the backtracked mesh with prescribed pivot motions were then performed to

determine the displacement of any other node.

The heuristic calibration of the material parameters for the energy density was sufficient to properly

capture the overall deformation of the pantographic block. Due to buckling in the transverse direction

triggered by imperfections that were not accounted for, a rigid translation only in the transverse

direction had to be added as an additional correction. This phenomenon had to be accounted for

due to the small dimensions of the specimens (26 mm in width), which make a displacement of the

order of 5 mm (or 60 vx) observed comparable to the size of the unitary cell of the mesostructure.

Figure 5 shows the positions of the hinges predicted by the numerical simulation for a 24 mm prescribed

displacement drawn in one section of the first deformed volume. The prediction was quite accurate,

and sufficient to ensure good initialization of the DVC algorithm.

Figure 5: Numerically predicted positions of the pivots (red + symbols) drawn on a section of scan 1
(prescribed displacement 24 mm). Actual positions of the pivots are visible as small white dots. Axis
labels are expressed in voxels.

2.6 Direct DVC calculations

Thanks to the previous initialization, it was then possible to run direct DVC analyses for the 4 deformed

scans (i.e., always using as reference the undeformed scan). The DVC calculations were stopped when

the L2-norm of displacement corrections were less than 10−1 vx. This level was identical to the

standard displacement uncertainty (for the selected regularization length, see below) that was assessed

with the repeat scan acquired prior to sample deformation.

Figure 6(a) shows the root mean square (RMS) gray level residual Φc versus the equilibrium gap

Φm for different regularization lengths. The five data for each regularization length correspond, with
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increasing gray level residual, to scan 0 (i.e., second scan in the unloaded configuration), and then to

scans 1 to 4 of the deformed configurations. The analysis of scan 0 provides information on uncertainties

and on the order of magnitude of noise effects. Scans 1 to 3 have comparable residuals, suggesting

that the analysis was effective for them. For the fourth scan instead, extremely high deformations

resulted in higher gray level residuals. By increasing the regularization length, the equilibrium gap

Φm decreased because more weight was given to the penalty term. It was accompanied by gray level

residual increases, which remained modest up to scan 3. This observation proves that the applied

regularization was consistent with the underlying material behavior. Conversely, Figure 6(b) shows

that more care should be exercised for scan 4.

(a) (b)

Figure 6: (a) Equilibrium gap Φm vs. gray level residual Φc for the five analyzed scans and for different
regularization lengths (expressed in voxels). (b) Corresponding plot in arithmetic scale for scan 4.

One criterion used to select the optimal regularization weight is to look for the maximum curvature

(i.e., L-curve criterion [Han00]) in the graph above for the maximum prescribed displacement, in

arithmetic scale (Figure 6(b)). According to this criterion, the regularization length ℓm = 25 vx

provides the best trade-off between Φc and Φm. Therefore, the regularization length lm = 25 vx was

selected (Table 4). For that regularization length, the gray level residuals are shown in Appendix B.

Given the fact that they remained on average less than twice the level observed for the repeat scan

(Figure 6(a)), the DVC analyses were deemed trustworthy.

3 DVC Results

The DVC results are discussed hereafter for the first and last deformed configurations. First, the

displacement fields are analyzed. Then, the motions of the hinges are reported to assess the deformation

mode of the pantographic block.
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3.1 Displacement fields

The measured displacement fields in the three directions are displayed in Figures 7 and 8. As expected,

the displacement amplitudes were very large compared to the overall dimensions of the specimen, and

thus compared to the dimensions of the elementary pantographic cell. The flexural displacement

was prescribed in the vertical direction, and the main effect was that the entire specimen shortened

considerably in that direction, almost uniformly as a first approximation. The bottom of the specimen

remained essentially flat, with virtually no curvature of the lower plane noticeably in correspondence

with the position of the top loading support. In the upper plane, the curvature under the top support

was very slight compared to the right side of the specimen and became more pronounced in the left

side of the specimen (Figure 8(a), see also Figure 2). This phenomenon was due to the design of the

specimen, which was chiral and in addition had an odd number of pantographic sheets. Thus one of

the two beam families was predominant.

(a) (b)

(c)

Figure 7: DVC measured vertical (a), longitudinal (b) and transverse (c) displacement fields for the
first loading step (24 mm). Labels are expressed in voxels. The displacements are shown on the mesh
in its deformed configuration.

The range of vertical displacement levels found for both scans was consistent with the prescribed

stroke (see dynamic range of color bars in Figures 7 and 8). Specifically, the prescribed displacements

of 24 and 39 mm correspond to 290 and 470 vx, respectively. It is worth noting that the minimum

displacements were not equal to zero. This was due to the fact that when cropping the volumes after

reconstruction, the deformed sample was centered and thus the top support had apparent translations
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(Figure 2).

As a result of the mesostructure behavior, given the prescribed flexural displacement, the specimen

elongated significantly in the longitudinal direction. The deformation first concentrated in the hinges,

and more specifically hinge shear [CPDG22], while the beams deformed much less and the pantographic

structure translated the vertical compression into longitudinal elongation. The quantification of this

effect is shown in Figures 7(b) and 8(b), where longitudinal displacement measurements are shown on

the deformed configurations of the specimen. The range of measured displacements was 344 vx (i.e.,

about 28.5 mm) for the first scan and 445 vx (i.e., about 36.9 mm) for the last one.

(a) (b)

(c)

Figure 8: DVC measured vertical (a), longitudinal (b) and transverse (c) displacement fields for the
last loading step (39 mm). Labels are expressed in voxels. The displacements are shown on the mesh
in its deformed configuration.

Last, in the transverse direction non negligible displacements were measured with respect to the

size of the elementary cell of the mesostructure. In Figures 7(c) and 8(c), the measured transverse

displacements are displayed on the meshes in deformed configurations. It is interesting to note that

the displacements are not significantly changing for the reported scans. The measured range varied

from 52 vx for first scan 1 to 60 vx for the last one (i.e., from 4.3 mm to 5 mm, respectively). This

level had the same order of magnitude as the size of elementary cells in the periodic design, which was

exactly 5 mm. The transverse displacements appear to be related to specimen sliding on the lower

supports, particularly the left one, probably originating from printing defects that initiated buckling,

and possibly imperfect specimen placement after the installation.
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3.2 Hinge kinematics

From these experimental data, it is of interest to extract some information about the hinges, in partic-

ular, because the continuous model for which the energy described in Section 2.1 was postulated was

built to predict the location of the geometric centers of the interconnecting hinges. Piola’s identifica-

tion conjecture underlies the use of the continuous model for similar mesostructured media, and the

geometric centers of the hinges are chosen as control points [DAP15, dGPR16]. It was already reported

how the numerical prediction of the position of the hinges in the deformed configurations was the basis

of the initialization of the DVC procedure (Figure 5). Let us now address some considerations based

on the analysis of the hinge motions.

Having successfully carried out FE-based DVC analyses, the behavior of various constituents of

the metamaterial can be studied for different deformed configurations. The mesh elements that in the

nominal geometry make up the hinges were selected. As an example, Figure 9 shows the configuration

of the hinges in their reference state and in the deformed configuration with maximum deflection. One

can then look for more specific information about the hinges, such as specific sections in the specimen

or follow the positions of their centers of mass.

(a) (b)

Figure 9: Configuration of hinges in the (a) reference (i.e., unloaded) and (b) last deformed (i.e.,
39 mm deflection) configurations. Labels are expressed in voxels.

Details of Figure 9 are shown in Figure 10 where a set of hinges in the {y, z} plane (i.e., orthog-

onal to the pantographic plane) is plotted in the previous configurations. The cross-sections of the

pantographic block remained nearly planar and rectangular. While the vertical length of the sec-

tions (parallel to the prescribed displacement) was reduced, the sides in the transverse direction (i.e.,

orthogonal to the flexural displacement) remained almost unchanged.
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(a) (b)

Figure 10: Detail of Figure 9. Comparison of the same cross-section in the {y,z} plan for (a) the
reference (i.e., unloaded) and (b) last deformed (i.e., 39 mm deflection) configurations. Labels are
expressed in voxels.

3.3 Deformation mode

Let us now study the deformed shape of the pantographic block during the test; in particular, on the

deformed shape of the top surface, which underwent maximum curvature, and analyze the type of

deformation mode. The deformed surface to be studied was built by interpolating the positions of the

center of mass of four consecutive central top and horizontal rows of pivots, selecting from the vertical

columns with five pivots as highlighted on one {x, z} section in Figure 11(a). This choice was made to

locally study the surface of the pantographic block affected by the highest longitudinal curvature but

avoiding to deal with the top pivots where artifacts may occur due to direct contact with the support.

Figure 11: (a) Selected pivots for building the interpolating top surface on one {x,z} section.
(b) Paraboloid interpolating the vertical positions of the center of mass of the selected pivots, and
actual positions of the centers of mass of the pivots measured via DVC for 39 mm deflection (red
markers). Labels are expressed in voxels.

The interpolation was performed by looking for the six coefficients of a complete second-order
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polynomial interpolation z = P2 (x, y) that gives the best fit of the positions of the pivots according

to the least squares error. The interpolating paraboloid is then studied to evaluate the principal

curvatures. In Figure 11(b), both interpolating paraboloid and actual positions of the centers of mass

of the pivots measured via DVC are shown for the maximum deflection.

The curvatures of the paraboloid were investigated to distinguish the kind of deformation mode,

namely, anticlastic (saddle shape), synclastic (eggshell shape) or monoclastic (cylindrical shape). The

Gaussian curvature and the two principal curvatures were evaluated locally at the critical point XC

having horizontal tangent plane. Let K(XC) = κ1(Xc)κ2(XC) be the Gaussian curvature, where

κ1 and κ2 are the principal curvatures [Pre10]. The deformation mode corresponds to K > 0 for

synclastic surfaces, K < 0 for anticlastic surfaces, and K = 0 with κ1 and κ2 both not vanishing for

monoclastic surfaces. In the present case, the critical point was not exactly centered in the middle

of the specimen but slightly shifted toward the right end, due to asymmetry of the deformed shape

of the specimen already discussed. Small negative Gaussian curvatures K were found (Table 2). The

principal directions associated with the principal curvatures were parallel to the longitudinal and

transverse directions of the beam (as expected). The principal curvatures were both quite small, with

the curvature corresponding to the transverse direction about 20% of the longitudinal one, but with

opposite sign, denoting strictly speaking a weak anticlastic mode. The transverse curvature, however,

was presumably increased because of out-of-plane transverse displacements of the specimen due to

sliding on the supports. In addition, the transverse radius of curvature was still significantly large

compared to the dimensions of the specimen sides. Overall, these observations and the smallness of

the Gaussian curvature confirmed that the deformation mode was that of an essentially monoclastic

surface (i.e., that the deformed surface was well approximated by a monoclastic mode).

Table 2: Curvatures assessed from experimental measurements and numerical simulations

Surface Longitudinal curvature Transverse curvature Gaussian curvature K
Figure 11(b) 6.5 × 10−3 mm−1 −1.3 × 10−3 mm−1 −8.45 × 10−6 mm−2

Figure 14 3.8 × 10−3 mm−1 −8.1 × 10−5 mm−1 −3.08 × 10−7 mm−2

Figure 16(a) 12.7 × 10−3 mm−1 −4.6 × 10−3 mm−1 −5.84 × 10−5 mm−2

Figure 16(b) 9.9 × 10−3 mm−1 −4.9 × 10−3 mm−1 −4.81 × 10−5 mm−2

4 Numerical Simulations

This section deals with the numerical simulations of the flexural test with the calibrated constitutive

law. The predicted deformation mode is compared with actual observations. Last, another flexural

configuration is proposed to induce anticlastic deformation.
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4.1 Predicted deformation mode

The continuum macro-model whose energy density was postulated in Section 2.1 was further probed

to predict the deformed shapes of the pantographic block in 3-point flexure. It is worth noting that the

DVC analyses needed the prediction obtained by the second gradient model for the initialization step,

but the final results were independent of the theoretical model. In Figures 12 and 13, the displacement

fields are reported along the three directions for prescribed deflections of 24 and 39 mm, respectively,

which correspond to the first and last scan of the test (Section 2.2). Similar conclusions were drawn

from intermediate steps, and are thus not reported for the sake of brevity. The correspondence with

the reported experimental results was very good (Figures 7 and 8). As discussed above, the only

unpredicted effect was related to sliding that led to transverse displacements in the actual test. In the

numerical simulations, the displacements in the transverse direction were essentially vanishing and no

action triggering possible buckling was considered. Note that in all plots the lines on the model are

material lines drawn to allow for easier comparison of the numerical results with the experiment and

eliminate any ambiguity as to which setup was considered for the 3-point flexural test.

(a) (b)

(c)

Figure 12: FE results for a prescribed deflection of 24 mm in the vertical direction. (a) Vertical,
(b) longitudinal, and (c) transverse displacement fields.

The other apparent difference with the experiment concerns the range of longitudinal amplitudes.
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The amplitude range was over 30 mm in Figure 12(b) and over 40 mm for Figure 13(b). As shown in

Figure 5, the correspondence with the experiment was actually very good, and this apparent difference

was due to the fact that the region over which the DVC analysis was performed was cropped as

explained at the end of Section 2.4. Instead, the simulations were performed on a model of same size

as the physical specimen for consistency with the experiment. Last, the simulations could not predict

any asymmetry in terms of vertical displacements.

(a) (b)

(c)

Figure 13: FE simulation results for a prescribed displacement of 39 mm in the vertical direction.
(a) Vertical, (b) longitudinal, and (c) transverse displacement fields.

For the purpose of comparison with the interpolated top surface of the real experiment, the pre-

dicted deformation of the top surface was studied in the same way as before. The positions of the

same pivots were interpolated with a second order polynomial, and the best fit paraboloid shown in

Figure 14 was obtained. Consistent with the experiment, in the present case the Gaussian curvature K

at the critical point was negligible, and the deformation mode was monoclastic. As to the longitudinal

principal curvatures, the theoretical prediction is about 60% of the experimental one. In the transverse

direction, the curvature was in this case very small as a consequence of the quasi-absence of strains in

that direction.
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Figure 14: Paraboloid interpolating the vertical positions of the center of mass of the selected pivots,
and positions of the centers of mass of the pivots predicted by numerical simulations (red markers).

4.2 Anticlastic deformation mode

Numerical simulations were finally performed for a second case in which the prescribed load was

orthogonal to the pantographic plane. Investigating the behavior of such metamaterial for different

loading directions is of interest given the anisotropy of the model and material. The parameters used

in this new simulation were the same as those gathered in Table 1 as well as the way the boundary

conditions were implemented. The FE analysis produced displacement fields shown in Figure 15; the

three components of the displacement field are displayed on the deformed configuration for an applied

deflection of 10 mm. A different response is observed under these new loading conditions. The bottom

side of the specimen this time no longer remained flat but lowered in the middle, and raises at the

ends, rotating the cross-sections. Further, the displacements in the transverse direction, i.e., {z}-axis

direction in Figure 15, are no longer negligible. The elongation and flexure of the pantographic planes

are clearly visible.
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(a) (b)

(c)

Figure 15: FE simulation results for a prescribed displacement of 10 mm in the vertical direction.
(a) Vertical, (b) longitudinal, and (c) transverse displacement fields.

An anticlastic deformation mode appeared in this case, namely, the curvatures in the longitudinal

and transverse directions were nonzero and of opposite sign. The top and bottom pantographic surfaces

were studied constructing the paraboloid interpolation of the position of the corresponding pivots,

similarly to what was previously performed in the other two cases. The top and bottom surfaces are

reported in Figure 16. The Gaussian curvature was evaluated at the critical point, which is the middle

point of the suface, and was found to be negative. The two principal directions associated with the

principal curvatures were again the longitudinal and transverse directions. Regarding the principal

curvatures, the transverse one was very close for both top and bottom surfaces, while the longitudinal

one, instead, increased almost 30% from the bottom to the top surface (Table 2).
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(a) (b)

Figure 16: Paraboloid interpolating the vertical positions of the center of mass of the pivots in the top
(a) and bottom (b) planes, and positions of the centers of mass of these pivots predicted by numerical
simulations (red markers).

5 Conclusion

For isotropic and linear elastic materials subjected to 3-point flexure, anticlastic curvatures are induced

by the coupling between local transverse elongation and flexure. The latter is well described by the

Saint-Venant solution [dSdSV+64, Lam91, Sea08]. Conversely, second gradient materials are governed

by more general strain energies. There are material directions along which large deformations are

possibly associated with very low energies. Consequently, it was envisioned that some exotic effects may

arise. In this paper, it was proven via DVC analyses that a pantographic block, when subjected to 3-

point flexure in which the prescribed displacements were parallel to the pantographic plane, experienced

deformations well approximated by a monoclastic mode for the top surface, while it remained essentially

flat at the bottom.

The second order reduced constitutive model introduced herein showed a rather satisfactory agree-

ment with the experimental evidence, in particular in predicting the displacements and a monoclastic

deformation mode. The model parameters were only calibrated at the global level (i.e., based on the

overall force vs. stroke curve). In the future, it is desirable to calibrate the parameters by using more

kinematic data. The expected results would generalize those already reported [Fed15, Gio16, PAG17,

GHD+18].

Having studied the flexural response of a pantographic block with prescribed displacements in the

pantographic plane, it was natural to investigate its deformation mode when the displacements were

applied in the direction orthogonal to the pantographic plane. An anticlastic mode was predicted.

This difference is not surprising since the pantographic block was described by second derivatives

of displacements along the pantographic planes and first derivatives along the thickness. Additional

experiments are thus needed to further confirm these predictions. Other experimental campaigns are

scheduled to fully validate the proposed model on tests other than 3-point flexure and to investigate

the dynamic behavior of such metamaterials (see, for instance, Refs. [CGE+22, Eug22]).
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The model-driven initialization for the DVC analyses proved to be very effective in overcoming

the challenges due to large displacements and periodicity of the pantographic mesostructure. This

procedure may also be followed when initialization is made complicated by other phenomena, such as

the onset of damage or fracture, for instance using finer models [EYPT22, PTM+22].
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Appendices

A. DVC hardware and DVC parameters

Table 3 reports the hardware parameters of the experiment, and Table 4 the DVC parameters.

Table 3: DVC hardware parameters

Tomograph North Star Imaging X50+
X-ray source XRayWorX XWT-240-CT
Target / Anode W (reflection mode)
Filter none
Voltage 120 kV
Current 180 µA
Tube to detector 500 mm
Tube to object 272.685 mm
Detector Dexela 2923
Definition 1536 × 1944 pixels (2 × 2 binning)
Number of projections 1200
Angular amplitude 360°
Frame average 5 per projection
Frame rate 10 fps
Acquisition duration 25 min 58 s
Reconstruction algorithm filtered back-projection
Gray Levels amplitude 8 bits
Volume size 1723 × 491 × 813 voxels (after crop)
Field of view 143 × 40.75 × 67.48 mm3 (after crop)
Image scale 83 µm/voxel

Table 4: DVC analysis parameters

DIC software Correli 3.0 [LNM+15]
Image filtering none
Element length (mean) 6 vx
Shape functions linear (T4 elements [HBC+16])
Mesh see Figure 4
Matching criterion penalized sum of squared differences
Regularization length ℓm = 25 vx
Interpolant cubic

B. Gray level residuals

The gray level residual fields are reported in Figure 17 for each loading step. The residual field was

fairly homogeneous, except in the immediate vicinity of the supports (particularly at the top and

bottom right), where high local flexure of the beam ends was not fully captured, partly because of

the presence of cardboard. Higher RMS residuals found for the fourth scan were due to a residual

field that had larger values on average throughout the sample. In that case, the larger deflection and

especially more significant flexure of the beams produced a larger residual over the whole specimen.
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(a) (b)

(c) (d)

Figure 17: Gray level residual fields for the different considered loading steps: (a) 24 mm, (b) 29 mm,
(c) 34 mm and (d) 39 mm deflections. Axis labels are expressed in voxels, the dynamic range for
registered volumes was 255 (i.e., 8 bits). The residuals are shown on the meshes in their deformed
configuration.
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