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Nonlinear Vector Fields: An Interconnected Approach

Nonlinear vector fields appear frequently in several theoretical and applied contexts, including differential equations, coordinates transformations, manifolds, tensor calculus, computer graphics, computer vision, deep learning, artificial intelligence, to name but a few areas. Because of their typically key role in these situations, it becomes important to devise concepts and methods that can allows their respective visualization and characterization. In this work, one such approach is described in which Jacobian matrices and metric tensors obtained from samples along the vector field domain are considered as the means for providing information about the respectively local (i.e. around the sample points) geometrical changes implied. After these matrices are obtained, they are represented as nodes of complex network, while the strength of the pairwise links are made to correspond to the coincidence similarity between the respective Jacobian matrices or metric tensors. Thanks to the selectivity and robustness of the coincidence similarity index, the obtained networks provide particularly comprehensive and detailed visualizations and characterizations of the multidimensional nonlinear vector fields effects on the local geometry of the transformed domain. Simple and effective indices quantifying the isometry and linearity of matrices, based on the coincidence similarity, is also described and applied to complement the presented visualizations and characterizations. The potential of the described concepts and methods is illustrated respectively to diverse 2D, 3D and 4D nonlinear vector fields. The obtained results suggest that the reported methodology can be effectively applied in a wide range of areas involving nonlinear vector fields, including deep learning, computer vision, relativity, and quantum mechanics.

Introduction

Several important problems of theoretical and applied nature involves vector fields in the two main rules: coordinates changes and mappings from one space to the same or another space, such as in physical laws.

Though the first type of applications concerns coordinates changes, it often also requires respective basis transformation, in the sense that not every coordinate change will imply a respective basis change, as is the case with simple translations of the system of coordinates (which has no effect on the mapped geometry). A few non-exclusive examples of coordinates change include: (i) acquiring, representing and transforming most types of real-world data, whose respective original basis is seldom known; (ii) considering multiple and/or moving or adaptable coordinate viewpoints as in computer vision, robotics or scientific visualization; (iii) employing non-linear coordinate systems transformation including cylindrical, spherical and curvilinear frames that are more adapted to the intrinsic geometry of specific problems; and (iv) compensating for geometrical distortions implied by data acquisition, etc.

In the above cases, the vector field acts on the original coordinates, resulting in a new system of coordinates. Though we shall also take into account linear coordinate changes in our developments, the present work focuses on nonlinear changes of coordinates.

The second main type of applications of vector fields concerns mappings from vectors of one space into vectors in the same or another vector space having the same or distinct dimension. Examples of this type of application include: (a) modeling of natural dynamics in terms of multivariate differentia equations (e.g. electromagnetism, relativity, quantum mechanics, biology, etc.); (b) processing and analysis of multispectral or stereoscopic images; (c) neuronal networks and deep learning; and (d) multivariate operations in statistics and control theory.

The latter situation in which vector fields act as multidimensional maps does not necessarily imply changes of 1 coordinates.

Constituting different operations, these two cases can be estimated as first-order approximations in distinct manners. In the case of vector fields implementing mappings without basis changes, it is possible to resource to the respective Jacobian matrix. In the other case, involving basis transformations, not only the Jacobian matrix, but also its associated metric tensor, can be taken into account because the latter reflects how the geometric changes locally.

The focus of the present work is to visualize and analyze the local effects of nonlinear vector fields of any dimension (constrained by available computational resources) as applied to coordinates changes and multivariate maps. By local it is meant the linear first-order approximation of the vector fields at several reference points of interest.

Though the Jacobian matrix and the derived metric tensor provide a fully comprehensive characterization of the local effects of non-linear vector fields, it is difficult to go much further than the interpretation of the determinant of these matrices, or some basic statistics such as mean and standard deviation, in several practical applications. The problem is the substantial loss of information implied by studying the effects of the nonlinear transformation while considering just a few scalar functionals, which implies in a non-invertible representation of the original mapping. Indeed, each entry J i,j in the Jacobian matrix, as well as in the associated metric tensor, conveys specific information of interest regarding geometrical effects of the vector fields.

However, the consideration of all entries in the Jacobian matrix and metric tensor is by no means straightforward, especially when more than one point of interest are being considered. Though statistical approaches can be used to study the variations of the Jacobian matrices, the nonlinearity of the vector fields will typically imply in large variations for most entries J i,j , so that the respective averages will often have little significance.

As a matter of fact, the visualization and analysis of the effects of nonlinear vector fields require a more elaborate approach allowing effective visualization and quantification of the effects while taking into account all the entries in the Jacobian matrix and associated metric tensor.

In the present work, we describe to a possible methodology for trying to achieve the just mentioned objective. More specifically, the recently described coincidence similarity index (e.g. [START_REF] Da | Coincidence complex networks[END_REF]) is employed to quantify how Jacobian matrices and metric tensors obtained for several reference points in a same vector field relate one another, yielding respective complex networks that can then be effectively visualized and/or analyzed while taking into account all original entries.

We start by briefly revising basic concepts including lin-ear coordinates change and maps, then addressing firstorder approximation of nonlinear vector fields, the concept of invariant inner product in terms of the Gram matrix, as well as how these matrices change under linear transformations. This is followed by the presentation of the possibility to study the effects of nonlinear vector fields in terms of first-order approximations involving the respective Jacobian. A review of the basic concepts underlying the coincidence similarity index and coincidence similarity networks is then provided, followed by the respective application to the visualization and analysis of nonlinear vector fields.

Linear Coordinates Changes and Linear Mappings

In this section we revise the concepts of linear map and linear coordinates change, which constitute the two main operations considered in the present work.

Let S be an M -dimensional vector space with a generic basis b = (b 1 , b 2 , . . . , b M ). A generic vector in this space is henceforth represented as v = (x 1 , x 2 , . . . , x M ).

A linear map (or transformation) L from this space onto itself consists of the following application:

L : v ∈ S -→ r ∈ S | r = L(v) = A v (1) 
where A is an M × M real-valued matrix.

The transformation from the old basis to a new basis S can be specified in terms of a transformation matrix A operating in covariant manner, so that:

b = b A (2) 
which can be expressed in Einstein notation as follows:

b = b i A i (3) 
As depicted in Figure 1(a), this operation does not involve coordinates change, which is addressed next.

The coordinates v of the vectors in the old space S can be linearly changed to new coordinates ṽ as follows:

ṽ = A -1 v (4)
which corresonds to a contravariant operation in S, which in Einstein notation becomes:

ṽ = A i x i (5) 
This coordinates change is illustrated in Figure 1(b), which also includes the respective effect on the associated co-basis and dual vectors.

Unlike in a linear map, we now have that not only the basis is changed, but also the vectors coordinates, the associated co-basis, as well as the dual vector coordinates. Case (a) can also be understood as a linear map with matrix A -1 , and case (b) can be alternatively understood as a coordinates change by matrix A -1 . Observe that the bases and coordinates remain respectively covariant and contravariant in both interpretations of the effect of matrix A. These two interpretations should not be confounded with the dual bases of the spaces.

Nonlinear Multidimensional Maps

Let X and Ỹ be two vector spaces with respective dimensions R M and R N , for any non-negative integers M and N . A vector field ϕ can be established between these two spaces, corresponding to a map from vectors in X into vectors in Y , i.e.:

ϕ : x ∈ X -→ y ∈ Y | ϕ(x) = y (6) 
where:

ϕ = (ϕ 1 (x), ϕ 2 (x), . . . , ϕ N (x)); x = (x 1 , x 2 , . . . , x M ); y = (y 1 , y 2 , . . . , y N )
As a simple example of vector field, let us consider the following case in R 2 :

ϕ x (x, y) = x 2 (y + 0.1) 0.2 ϕ y (x, y) = y 2 (x + 0.1) 0.1 (7) 
It is an intrinsic feature of every vector field that they can also be understood as a vector of scalar fields, as illustrated in Figure 2 respectively to the vector field above. Here, we have each of the components of the vector field shown as a scalar field sharing the same domain among themselves and with the original vector field. In case ϕ is first-order differentiable, we can obtain its Jacobian matrix [START_REF] Hubbard | Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach[END_REF][START_REF] Johnson | Applied multivariate analysis[END_REF] (after Carl G. J. Jacobi, 1804-1851), with dimension N × M , as follows:

J ϕ =      ∂ ϕ1 ∂x1 ∂ ϕ1 ∂x2 . . . ∂ ϕ1 ∂x M ∂ ϕ2 ∂x1 ∂ ϕ2 ∂x2 . . . ∂ ϕ2 ∂x M . . . ∂ ϕ N ∂x1 ∂ ϕ N ∂x2 . . . ∂ ϕ N ∂x M      (8)
In the case of the above example, we have:

J = 2 x(y + 0.1) 0.2 0.2 x 2 (y+0.1) 0.8 0.1 y 2 (x+0.1) 0.9 2 y(x + 0.1) 0.1 (9) 
The Jacobian provides all possible first-order information about the mapping implemented by the vector field. For instance, a differential displacement dx in X will imply a respective displacement dy in the mapped vector that can be expressed as follows:

dy = J ϕ dx (10) 
which can be understood as a vector generalization of the total derivative of the gradient, taking into account each of the scalar fields corresponding to the components of ϕ.

This property of the Jacobian allows us to approximate, around a reference point x 0 = (x 1,0 , x 2,0 , . . . , x M,0 ), any first-order differentiable vector field in terms of its following Taylor series:

ϕ x0 (x) ≈ ψ(x 0 ) = ϕ(x 0 ) + J ϕ x0 (x -x 0 ) (11) 
Given that a vector field is a vector of scalar fields, each one associated to a respective surface, we have that the above first-order approximation can be understood as providing tangent planes to the respective surfaces at the point of reference.

In case multiple points are considered, e.g. corresponding to the crossings of a multidimensional mesh associated to the domain, we can understand that the whole surfaces are being approximated in terms of patches of respective planes approximating the manifold around each point (e.g. [START_REF] Eisenhart | Riemannian geometry[END_REF][START_REF] Petersen | Riemannian geometry[END_REF]). In that case, a respective manifold atlas could be obtained by, in the case of each generic point x, taking the specific approximation corresponding to the closest reference point.

This type of approximation could eventually be made more accurate by considering higher order derivatives in the Taylor series, such as the Hessian matrix.

Figure 3 illustrates the approximation of a non-linear multidimensional mapping ϕ from R 2 to R 2 in terms of its respective Taylor series and Jacobian at a specific reference point. Provided each of the components of the vector field are relatively smooth, effective first-order approximations can be obtained around a small neighborhood of the reference point.

In case the Jacobian is a square matrix, its determinant det(J) supplies important information about the geometrical changes implemented by the mapping ϕ around each reference point. In particular, we have that: • In case det(J) > 0, we have that the mapped vector preserves the direction as the original vector around each reference point, while det(J) < 0 means that the direction is reversed;

• The map is invertible around the reference point iff det(J) ̸ = 0.

Therefore, the determinant of the Jacobian quantifies the local (i.e. first-order) property changes implemented by the mapping by ϕ. However, the information provided by the Jacobian is much more comprehensive than what can be inferred from its determinant, but the effective analysis of this additional information is not so straightforward to be inferred from the entries in a Jacobian matrix.

As presented in the following sections, the Jacobian of the mapping ϕ can also be used to characterize changes in the inner product, and therefore metrics, as consequence of the vector field mapping.

The Inner Product

Some vector spaces S are endowed with an inner product, which maps ordered pairs of vectors of S into the real field

R, i.e.: (v, r) ∈ S × S -→ ⟨v, r⟩ ∈ R (12) 
This mapping needs to satisfy the following three conditions:

• Positive definiteness: ⟨v, v⟩ > 0;

• Commutativity: ⟨v, r⟩ = ⟨r, v⟩;

• Bilinearity: ⟨v, c r + d u⟩ = c ⟨v, r⟩ + d ⟨v, u⟩.

In addition, it can be verified that inner product are tensors.

Let us calculate the inner product between two vectors v = (v x , v y ) and r = (r x , r y ), in a space S with generic basis b = (b y , b y ) that does not need to be orthornormal. First, we express the two vectors in terms of the respective basis vectors:

v = v x b x + v y b y ; r = r x b x + r y b y
Then, by applying the properties of the inner product, it follows that:

⟨v, r⟩ = ⟨v x b x + v y b y , r x b x + r y b y ⟩ = = r x ⟨v x b x , b x ⟩ + r y ⟨v x b x , b y ⟩ + + r x ⟨v y b y , b x ⟩ + r y ⟨v y b y , b y ⟩ = = v x ⟨b x , b x ⟩ r x + v x ⟨b x , b y ⟩ r y + + v y ⟨ b y , b x ⟩ r x + v y ⟨b y , b y ⟩ r y = = v x ⟨ b y , b x ⟩ v x ⟨b y , b y ⟩ v y ⟨ b y , b x ⟩ v y ⟨b y , b y ⟩ r x r y = = v x v y ⟨ b x , b x ⟩ ⟨b x , b y ⟩ ⟨ b y , b x ⟩ ⟨b y , b y ⟩ r x r y (13) 
The obtained 2 × 2 matrix is known as the Gram or Gramian matrix, named after Jørgen Pedersen Gram (1850-1916), which is henceforth expressed as:

G = g xx g xy g yx g yy = ⟨ b x , b x ⟩ ⟨b x , b y ⟩ ⟨ b y , b x ⟩ ⟨b y , b y ⟩ (14) 
and the respective inner product becomes:

⟨v, r⟩ = v T G r. (15) 
There are some important and interesting aspects about the above obtained expression for the inner product.

For instance, we have that the inner product takes into account both the coordinates of the vectors and the basis in which they are expressed in a way that, as it can be shown (see Section 5), makes the inner product invariant The main subject addressed in the present work consists in studying the effect of non-linear transformation of data and/or mappings (functions) under a possibly non-linear vector field ϕ, as illustrated in this figure respective to R 2 . The original vector space, with coordinates (x, y) is mapped by a vector field ϕ(x, y) into vectors of another space (x, ỹ). Because the considered mappings can be highly non-linear, it becomes important to study the effects of the respective transformation in terms of first-order approximations φ(x, y) within small neighborhoods around points of interest (x 0 , y 0 ). These first-order approximations can be readily implemented by considering the Jacobian of the vector field ϕ(x, y).

to linear transformations. In fact, the Gram matrix provides the resources for compensating the effect of distinct basis vector on the inner product value even in spaces that are not necessarily orthonormal.

In the particular case in which the basis is orthonormal, G becomes the identity matrix, and we have:

⟨v, r⟩ = v • r = v T r (16) 
which corresponds to the conventionally used dot product, which is the particular instance of the more general inner product respective to orthornormal (i.e. Euclidean) spaces.

Before proceeding to verifying how the inner product changes under basis transformations, we will derive the inner product expression again, but now by using Einstein notation (e.g. [START_REF] Einstein | Die Grundlage der allgemeinen Relativitätstheorie[END_REF][START_REF] Da | A journey into the multifaceted universe of coordinates change, basis transformation, dual spaces, and invariance[END_REF]).

We start by expressing the two vectors v and r, as well as the basis vectors b x and b y , in terms of numeric indices instead of 'x' and 'y', i.e.:

v = v 1 , v 2 = (v x , v y ) ; r = r 1 , r 2 = (r x , r y ) ; b 1 = b x ; b 2 = b y which allows us to write: v = b i v i ; r = b j r j from which: ⟨v, r⟩ = (b i v i ), ( b j r j ) = = (b i v i ), b j r j = = ⟨b i , b j ⟩ v i r j
which is precisely the same result as in Equation 13, therefore substantiating the marked potential of the Einstein notation for simplifying summations.

Transformed Inner Products

Given the specific interest of the present work on transformed spaces, it becomes particularly important to compare the inner product between two vectors in two distinct vector spaces interrelated by a basis transformation specified in terms of respective transformation matrix A, as illustrated in Figure 4.

The relation between the two original vectors in the old space S and the new space S can be readily expressed as:

ṽ = A -1 v r = A -1 r
where the old and/or new spaces do not need to be orthonormal.

Let G be the Gram matrix in the new vector space, so that the respective inner product in the new space can be written as:

⟨ṽ, r⟩ = ṽT G r (17) 
Let us impose invariance of the inner vector under the considered generic linear transformation:

⟨ṽ, r⟩ = ṽT G r = A -1 T v G A -1 r = = v T A -1 T G A -1 r = v T r = ⟨v, r⟩
from which it is possible to obtain a Gram matrix G as follows:

A -1 T G A -1 = I =⇒ =⇒ G A -1 = A T I = G = A T I A =⇒ =⇒ G = A T A (18) 
Let G be the Gram matrix in the new vector space, so that the respective inner product in the new space can now be alternatively written as:

⟨ṽ, r⟩ = ṽT G r = ṽT A T A r = ṽT A T [A r] = = [A ṽ] T [A r] = v T r (19) 
As with the Jacobian matrix, the determinant of the metric tensor also has interesting interpretations, in particular as the square of the volume of the parallelotope defined by the vectors that constitute the basis of the space X where the inner product is being calculated. Thus, det(G) = 1 is expected in the case of orthonormal bases, but other bases can also lead to unit determinant.

Let us illustrate the above developments in terms of the following numeric example concerning a linear basis transformation of the two vectors:

v = (1, 2) r = (-2, 3)
Let the original system have the canonical basis b = ( î, ĵ). The inner product between v and v in this old orthonormal basis is given as:

⟨v, r⟩ = (1, 2) • (-2, 3) = 4
Now, let the new basis b be chosen as follows:

bx = î + ĵ by = 2 î + ĵ
which implies the transformation matrix:

à = 1 2 1 1 (20) 
The two vectors in this new basis therefore have coordinates expressed as:

ṽ = A -1 v = (3, -1) r = A -1 r = (8, -5)
The respective dot product yields:

v • r = 3 -1 8 -5 = 29
which is, evidently, not the same as the inner product in the old system.

However, by applying Equation 18, we obtain:

⟨v, r⟩ = ṽT G r (21) 
where G can be obtained from the transformation matrix A as follows:

G = A T A = 2 3 3 5 (22) 
So that we can now write:

⟨v, r⟩ = ṽT A T A r = = 3 -1 2 3 3 5 8 -5 = 4 (23) 
which is the same as the inner product between the two vectors in the old basis. Observe that the Gram matrix obtained from matrix A provided the means for compensating for the linear basis transformation, resulting in the respective invariance of the inner product.

Because the Gram matrix completely specifies the metric associated to the manifold around the reference point, it provides an effective resource for studying the local geometric effects of the transformation. This is precisely the point considered in the present work, in the sense that we use the Gram matrix of the Jacobian approximation of the local manifold defined by the nonlinear vector field as the basic resource for visualizing and characterizing its local geometrical effects.

The determinant of the obtained metric tensor is det( G) = 1, indicating that parallelogram determined by the vectors of the new basis have unit area.

6 Jacobian-Based Characterization of Coordinates Changes Implemented by Nonlinear Multidimensional Maps .

We have already seen in Section 3 how the Jacobian matrix, in particular its determinant, can be employed to characterize the geometric changes, around a reference point, implied by a mapping by a nonlinear multidimensional map ϕ. In this section, we discuss and illustrates how the Jacobian metric tensor can be applied to characterize the effects of the nonlinear multidimensional mapping on the inner product between two vectors, as well as respective properties including magnitude and distances.

Given a multidimensional vector field approximated by a respective Jacobian matrix around a reference point, the basic idea is to use the metric tensor of that matrix as the basic resource from which to identify local changes of inner product and related measurements. This can be immediately achieved by proceeding as in the previous section, but taking the Jacobian matrix, or metric tensor, as the linear transform A.

We start by writing the respectively implied Gram matrix as:

G = J T J (24) 
Observe that, by construction, this matrix is always symmetric, and also covariant. In addition, it depends only on the linear approximation of the mapping ϕ, and not directly of the old or new bases, though it does depend on how the former is mapped into the latter.

The Gram matrix above expresses the changes of inner product values implied by the mapping ϕ around each point x of interest, but this requires the analysis of the matrix G, which can be substantially large in some cases involving several features. Therefore, it becomes necessary to adopt specific ways in which to analyze these metric tensors, which is not a particularly straightforward task because several components are typically involved.

One particular point to be kept in mind is that the most the metric tensor approaches the identity matrix, the smaller the respective changes of inner product under the effect of the mapping ϕ.

A more direct approach to analyze the Jacobian metric tensor consists of taking into account statistical measurements including the average and standard deviation, as illustrated in the following in terms of specific 2D numeric case.

Let the nonlinear mapping from R 2 to R 2 as in Equation 7, from which the Jacobian of the respective map can be readily obtained for each considered point (x, y). The two components of this vector field have been chosen as not to be completely symmetric for the sake of generality.

Figure 5 illustrates the result of the mapping of an 11 × 11 mesh within the square 0 < x ≤ 1, 0 < y ≤ 1 implemented by the above nonlinear vector field. This can be understood as a coordinate transformation or a visualization of the vectors obtained by that field.

Observe how the mapping, in the case of this specific vector field, becomes more linear as one moves from the origin of the coordinate system toward the center of the mapped region. Also shown are local squared regions obtained by the nonlinear map (in red) as well as the region obtained by the respective first-order approximation (in blue). These two mappings can hardly be distinguished, illustrating the effectiveness of the respective first-order Taylor series approximation.

For simplicity's sake, let us assume that the vectors x = (x, y) to be mapped belong to the square 0 < x ≤ 1 and 0 < y ≤ 1. By sampling this square with an orthogonal mesh with resolution ∆x = ∆y = 0.01, we can obtain 121 respective reference points. Jacobian matrices and respective metric tensors. The average and standard deviation of these matrices are presented in the following (truncated decimals):

⟨G⟩ = 1.058 0.252 0.145 1.184 ; G σ = 1.002 0.276 0.172 1.080 (25) 
We can observe that the average metric tensor has a marked diagonal structure, implying relatively little metric distortions. However, the substantial obtained standard deviation implies that the average metric tensor is not particularly representative of the metric effects implemented by the considered map ϕ.

Though additional information about the effect of the mapping ϕ on the inner product can be eventually de- The result of the mapping of a mesh in the square 0 < x ≤ 1, 0 < y ≤ 1 in R 2 by the nonlinear vector field specified in Eq. 7. The linearity of this mapping can be verified to increase from the origin of the coordinate system toward the center of the mapped region. The figure also shows the mapping of a square region around the red point by the original field (in red) and by the respective firstorder approximation (in blue), based on the local Jacobian matrix.

rived from higher order statistics, as well as maxima and minima, these statistically founded approaches will not be particularly simple to be interpreted. Another important respective limitation is that the use of a limited set of statistical measurements necessarily implies that substantial information about the effects of the map can be lost. To any extent, even moderately nonlinear maps tend to yield large standard deviations, therefore reducing the significance of the respective statistical interpretations.

In this work, an alternative (or complementary) approach to the characterization of the effects of nonlinear multidimensional maps in terms of the Jacobian matrix and its associated metric tensor is described, based on coincidence similarity networks [], which is described along the following sections, starting with a brief overview of the coincidence similarity and respectively obtained complex networks.

Coincidence Similarity Networks

As recently described [], given a dataset with E entries, each characterized by F respective features (or properties, measurements), it is possible to derive a respective coincidence similarity complex network by taking each of the E entries as a respective node, and establishing the weights of respectively links between each pair of nodes i and j as corresponding to the coincidence similarity between the feature vectors f i and f j .

The coincidence similarity has been described as a particularly strict quantification of the similarity between two multisets, or vectors, which has several interesting properties [] including high selectivity and sensitivity, inherent normalization in the intervals [0, 1] or [-1, 1] without completely overlooking the vectors magnitudes (as is the case with the cosine similarity), marked tolerance to perturbations of some of the features, as well as substantial invariance to affine and other types of transformations.

In case all features are non-negative, the Jaccard similarity between two non-zero feature vectors f i and f j can be expressed as follows:

J (f i , f j ) = F k=1 min (f i,k , f j,k ) F k=1 max (f i,k , f j,k ) (26) with 0 ≤ J (f i , f j ) ≤ 1.
The respective interiority index (also known as overlap, e.g. [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]) can be obtained as:

I(f i , f j ) = F k=1 min (f i,k , f j,k ) F k=1 min (f i,k , f j,k ) (27) with 0 ≤ I(f i , f j ) ≤ 1.
Now, the coincidence similarity between two non-zero feature vectors can be expressed as:

C(f i , f j ) = [J (f i , f j )] K [I(f i , f j )] ( 28 
)
with 0 ≤ C(f i , f j ) ≤ 1, and D ∈ R.

The higher the value of the parameter D, the more strict, i.e. selective and sensitive, the comparison of the similarity between the matrices.

Generalized versions of the above indices, to be used in case the feature vectors can have negative, are as follows ([9, 10, 11, 1]):

J (f i , f j ) = F k=1 s xy min((|f i,k |, |f j,k |) F k=1 max (|f i,k |, |f j,k |) (29) I(f i , f j ) = F k=1 min (|f i,k |, |f j,k |) F k=1 min (|f i,k |, |f j,k |) (30)
where:

s xy = sign(f i,k ) sign(f j,k ) (31) with -1 ≤ J (f i , f j ), I(f i , f j ), C(f i , f j ), ≤ 1.
For additional approaches related the Jaccard for negative values, in the context of L1 norm, see also [START_REF] Mirkin | Mathematical Classification and Clustering[END_REF][START_REF] Akbas | L1 norm based multiplicationfree cosine similiarity measures for big data analysis[END_REF].

Observe that the Jaccard, interiority, and coindicence similarity indices are all intrinsically symmetric (or commutative).

Thanks to their effectiveness, the coincidence similarity index and the respective networks have been successfully applied to several situations, including nonlinear filtering of 3D scalar fields [START_REF] Tokuda | Impact of the topology of urban streets on mobility optimization[END_REF], comparing patterns by template matching [START_REF] Da | On similarity[END_REF], segmenting images [START_REF] Da | Multiset neurons[END_REF], studying relationships between city structures [START_REF] Costa | A similarity approach to cities and features[END_REF], defining the autorrelation and cross-relation of graphs and networks [START_REF] Da | Autorrelation and cross-relation of graphs and networks[END_REF], automatically identifying city motifs [START_REF] Tokuda | Identification of city motifs: a method based on modularity and similarity between hierarchical features of urban networks[END_REF], quantifying the similarity between enzymes [START_REF] Reis | Enzyme similarity networks[END_REF], studying the morphology of neuronal cells [START_REF] Benatti | Neuromorphic networks as revealed by features similarity[END_REF], as well as revealing patterns in bipartite networks [START_REF] Da | Discovering patterns in bipartite networks[END_REF], among other results.

Jacobian Coincidence Similarity Networks

. The coincidence similarity-based approach described in this work for visualization and characterization of nonlinear vector fields involves the following steps:

• Define e a (possibly uniform) sampling of the domain of the vector field, involving i = 1, 2, . . . , P samples x i = (x i,1 , x i,2 , . . . , x i,M ), each of which constituting a reference point for the respective first-order approximation;

• Obtain analytically, or estimate numerically, the Jacobian matrix at each of the considered reference points. This matrix provides an estimation of the local effects, around the respective reference point, of the geometric alterations implemented by the nonlinear vector field at that region;

• In the case of characterization of nonlinear coordinates changes, obtain or estimate also the Jacobian metric tensors from the respective P Jacobian matrices;

• Considering each Jacobian matrix (and/or metric tensor) as a node of a network, obtain the respective interconnections between each pair of these nodes as corresponding to the coincidence similarity between the elements of the respective Jacobian matrices (or metric tensors). A respective Jacobian complex network is obtained expressing the similarity interrelationship between each of the considered Jacobian matrices and/or tensors;

• The thus obtained Jacobian similarity complex network can then be visualized by using diverse visualization methods (e.g. [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF]), and characterized in a variety of manners.

As a consequence, Jacobian matrices and respective metric tensors which are similar one another will imply strong coincidence similarity links in the respectively obtained network. Regions that undergo similar geometric changes as a consequence of the action of the vector field will tend to result strongly interconnected, possibly establishing communities or modules in the respective networks. In the extreme cases of identity mapping, all nodes will be interconnected with links with maximum similarity equal to 1, therefore resulting in a completely connected network.

While the above described procedure takes into account only the elements of the Jacobian matrices as features to be compared by the coincidence similarity index, it is also possible to incorporate into those feature vectors the coordinates of the sampled points. In case this procedure is adopted, the resulting network will reflect not only the similarity between the elements of the Jacobian matrices, but also the relative proximity between the respective sampling points used to determine those matrices.

Once the suggested Jacobian matrices have been obtained, they can be not only visualized, but also quantitatively characterized by using the several available topological measurements of complex networks (e.g. [START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF][START_REF] Barabási | Network Sience[END_REF][START_REF] Wasserman | Social Network Analysis: Methods and Applications[END_REF][START_REF] Newman | Networks: An introduction[END_REF]).

Because one particularly important property of Jacobian matrices concern their similarity to a diagonal matrix, it is also possible to consider the coincidence similarity index to quantify in a strict manner how much each of the obtained Jacobian matrices resembles a purely diagonal matrix. This can be done simply by applying the coincidence similarity between the feature vectors corresponding to the elements of the matrix to have its isometry quantified, and a purely diagonal matrix with the same dimension.

t is interesting to observe that the isometric index provides a direct indication about both the linearity and isometry of the mapping as approximated in terms of the first-order Taylor series around each reference point.

In case we are interested in quantifying only the linearity of the vector field mapping, we can resource to the following modification of the isometric function as the following linearity index of a generic matrix A with dimensionN × N :

L(A) = N C(A, I) tr(A) ( 32 
)
where I is the identity matrix with the same dimension as matrix A, and tr(A) is the trace of A.

The effectiveness of the above described isometry and linearity indices can be readily appreciated from the following examples, with the resulting isometry and similarity indices values shown in this order, separated by a colon: The first case-example to be considered for illustrating the potential of the proposed coincidence similarity approach to studying nonlinear vector fields concerns the nonlinear vector field specified in Equation 7, with respective partial derivatives expressed in Equation 9. We shall use the same mesh sampling scheme of the old space S as in the example in Section 6. Figure 6 depicts the coincidence similarity network obtained for the set of 121 Jacobian matrices derived from the considered vector field while using D = 7. As all other networks in this work, the Fruchterman-Reingold visualization methodology (e.g. [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF]) has been adopted.

A planar, strongly bilaterally symmetric structure has been obtained which accurate and comprehensively reflects the local geometrical modifications implemented by this nonlinear vector field, which are shown in Figure 5.

Compared to the statistical characterization discussed in Section 6, the obtained representation of the geometrical effects of the considered nonlinear vector field is substantially more comprehensive and detailed, providing direct indication not only about the global distribution of effects, but also revealing the similarity between the geometrical effects at local scales (around the samples). The "peacock tail-like" coincidence similarity network obtained for the set of 121 Jacobian matrices defined by the nonlinear vector field in Eq. 7 while adopting D = 7. The colors, associated to values increasing from cyan to magenta, express the respective Jacobian determinants. As all other networks in this work, the Fruchterman-Reingold visualization methodology (e.g. [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF]) has been applied.

As described in [START_REF] Da | Multiset neurons[END_REF][START_REF] Da | Supervised image segmentation by using multiset similarity neurons[END_REF], it is also possible to incorporate the coordinates of the reference points into the feature vectors obtained from the Jacobian matrices or metric tensors, therefore implying the coincidence similarity comparison to take into account also the spatial adjacency between the mesh points.

In the case of the vector field in the current specific example, it has been verified that little alteration was observed when this type of information was also taken into account, indicating that the coincidences similarities between only the metric alterations, shown in network shown in Figure 6, already reflect the spatial adjacency. In other words, the mapping implemented for regions, defined by reference points, that have similar metric alterations also tend to be spatially adjacent in the original mesh. This test of the influence of the spatial coordinates of the reference point on the obtained network provides an interesting resource for complementing the analysis of the vector fields effects.

Of special relevance is the fact that the local information provided by the metric tensors are naturally integrated into the global scale by the network interconnections, corresponding to the whole considered vector field. As such, the described coincidence methodology therefore supplied a manner to integrate both scales in a same effective representation.

In particular, strong interconnections correspond to more similar Jacobian matrices and, therefore, similar geometrical effects. A mesh of more intense interconnec-tions can be observed, with link strengths decreasing from south to north along the bilateral axis. Strong links indicate that the two regions are markedly similar regarding the metric alterations implemented by the vector field, and not how linear they are, which can be complemented by using the isometry index as presented subsequently in this section.

In addition, we have that though the strong links define chains along the obtained network, reflecting the transitivity of the metric alteration similarities, the overall network remains largely planar, therefore indicating a progressive change of metric alterations.

The network in Figure 6 also shows, in terms of colors progressing from cyan to magenta, the Jacobian determinants respective to each of the references points (samples). A gradation from the main vertex of the network (121) can be readily observed, progressing toward smaller determinant values along the main bilateral symmetry axis in the obtained network. This is fully compatible with the fact that (see Figure 5) the local space resulted locally more contracted at the regions that are nearer to the coordinate system origin.

Figure 7 depicts the same previous coincidence similarity network, but now with the heatmap indicating the isometry index, instead of the Jacobian determinant. Interestingly, a markedly distinct mapping can be observed, with the most isometric region resulting at the center of the obtained network. This is a consequence of the fact that high isometry index values tends to be obtained when the Jacobian determinant is close to 1 which, in the case of this specific vector field tends to happen near the middle of the considered domain.

The distribution of the linearity index in the obtained metric tensor network is shown in Figure 8. The obtained results directly reflect the original bilateral symmetry of the nonlinear vector field in Equation 7. Maximum linearity is achieved along the diagonal, decreasing steadily as one departs from it toward any of the two sides.

It is interesting to consider the type of mutual relationships between the Jacobian determinant, isometry, and linearity functionals. Figure 9 presents the pairwise scatterplots between these measurements, respectively to the vector field in Equation 7. These results indicate that the three functionals are mostly uncorrelated, therefore providing complementary information about the mapping implemented by the respective vector field. However, given that the isometry provides a more strict quantification of metric preservation at each first-order approximation regions, we shall be limited to showing this measurement along the remainder of the present work.

The network obtained for the same field as above, but considering the Jacobian matrices instead of the respective metric tensors, is illustrated in Figure 10. The ob- The same nework as in Fig. 6, but with the isometry, instead of the Jacobian determinant, being indicated by colors. The distribution of this also important measurement of the geometrical effects of the vector field can be readily verified to be distinct from the distribution of the local Jacobian determinants. We have that the most central manifolds in Fig. 5 are those that are the most isometric.

Figure 8: The same network as in Fig. 6, but with the linearity index, instead of the Jacobian determinant, being indicated by colors. The obtained distribution directly and accurately reflects the intrinsic bilateral symmetry of the original nonlinear vector field.

tained network is mostly similar to that observed for the metric tensors, though the nodes resulted more compact near the center of the mesh (near to node 61). A larger region of adjacent nodes with high isometry, compared to the network using metric tensors, has been obtained, thus indicating that the spatial expansions/compressions associated to the respective Jacobian matrices tend to be intrinsically more isometric.

Let us now approach a distinct nonlinear vector field given as follows:

ϕ x = x 2 ϕ y = y 2 (33)
Unlike the vector field in Equation 7, now we have uncoupled components, leading to a mapping as shown in Figure 11.

The Jacobian matrix of the vector field above is as follows:

J = 2 x 0 0 2 y
The metric tensor network obtained for the above vector field is depicted in Figure 12. Though the results are mostly similar to the network obtained for the vector field in Equation 7, a smaller region or relatively high isometry can be observed. Now we consider the following skewed, though also uncoupled, version of the previous vector field:

ϕ x = x 2 ϕ y = y 3
which has Jacobian matrix equal to:

J = 2 x 0 0 3 y 2 (34)
Figure 10: The network obtained for the vector field in Eq 7 while considering the similarity between Jacobian matrices at the mesh reference points, instead of the metric tensors as above. The heatmap identifies the respective isometry indices. Overall, at least for this specific vector field, the Jacobian matrices network resembles the metric tensor network, though the nodes near the center of the mesh resulted even more similar and isometric, leading to the compaction of the respective nodes near the node with label 61.

Recall that the tensor matrix provide a complete indication of the metric changes implemented by the vector field, while the Jacobian matrix reflects the differential changes in the vector field components.

Figure 11: Visualization of the vector field in Eq. 33 in terms of scalar fields respective to its two components.

The respectively obtained metric tensor network is shown in Figure 13. The asymmetry of the original vector field is readily reflected into the loss of the bilateral symmetry of the resulting metric tensor network, though the region with higher relative isometry remained mostly at the same position, though also altered. Another interesting vector field to be analyzed corresponds to that underlying polar coordinate systems, which can be expressed as follows:

ϕ x = x 2 + y 2 ϕ y = arctan y x .
whose respective Jacobian matrix is composed of the following partial derivatives:

             ∂ϕx ∂x = x √ x 2 +y 2 ∂ϕx ∂y = y √ x 2 +y 2 ∂ϕy ∂x = - y x 2 (1+y 2 /x 2 )) ∂ϕy ∂y = 1 x 2 (1+y 2 /x 2 ))
. The mapping of this vector field as a morphing field can be visualized in Figure 14, which evidentiates its highly asymetrical (from the Cartesian perspective) nature implying intense respective metric alterations. Figure 16 depicts the metric tensor network obtained for the polar vector field. A substantially less intense overall similarity between the involved metric tensors is observe in this case as compared to the previous case examples addressed so far in this section. This is a direct consequence of the more intricate and marked metric changes implemented by this type of nonlinear mapping, which departs substantially from the Cartesian symmetry. The most isometric region resulted near the original mesh point [START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | Coincidence complex networks[END_REF].

This specific polar mapping has also been verified to lead to a distinct Jacobian matrix network, illustrated in Figure 16. Compared to the respective metric tensor counterpart, the Jacobian matrix network resulted relatively more interconnected, with the matrices corresponding to the mesh reference points near the point (0, 0, 0) coalescing into a completely connected subgraph.

All in all, the case examples presented in this section corroborate the potential of the coincidence similarity network approach for revealing, in an integrated manner, the Let us now consider the following nonlinear, uncoupled vector field in R 3 :

   ϕ x = x 2 ϕ y = y 2 ϕ z = y 2 .
whose Jacobian matrix can be readily expressed as:

J =   2 x 0 0 0 2 y 0 0 0 2 z   .
The metric tensor network obtained for this vector field with D = 9 is illustrated in Figure 17, which is strongly bilaterally symmetric as could have been expected. Interestingly, a single region achieves a peak of isometry, corresponding to the node shown in magenta. A similarly uncoupled, but asymmetric vector can be written as:

   ϕ x = x 2 ϕ y = y 3 ϕ z = y 3 (35)
with respective Jacobian matrix:

J =   2 x 0 0 0 3 y 2 0 0 0 3 z 2  
Its respective metric tensor network is shown in Figure 18. This matrix is markedly distinct to that in Equation 10, even though the respective equations are both uncoupled and not so distinct one another. In addition to moderately skewing the main bilateral symmetry axis, the network also resulted largely modular, including two large modules which are strongly bilaterally symmetric. The metric tensor network obtained for the nonliner, uncoupled vector field in Eq. 10. Interestingly, the intrinsic asymmetry of this vector field implied a relatively mild alteration of the bilateral symmetry, but a strong impact on the modularity of the network, giving rise to two large and relatively symmetric communities at the righthand side of the figures.

A Case Example in R 4

As it follows from their own nature, the concepts and methods described in the present work for visualization and characterization of nonlinear vector fields are completely general regarding the dimensionality of the involved fields. Actually, except for computation resources limitation, the described approaches can be applied to any dimensionalities.

Observe that, however, the implied computational resources grow exponentially with the number of dimensions. Therefore, to obtain a reasonable mesh resolution, the required number of points grows substantially.

In this section, we illustrate the application of the suggested approach to the following simple and uncoupled vector field having R 4 as its domain:

       ϕ x = x 2 ϕ y = y 2 ϕ z = y 2 ϕ x = x 2 .
which leads to the following Jacobian matrix:

J =     2 x 0 0 0 0 2 y 0 0 0 0 2 z 0 0 0 0 2 w     (36) 
The respectively obtained metric tensor network, shown in Figure 19, resulted with a moderate bilateral symmetry, having a quite small set of nodes presenting peak values of the isometry index. Of particular interest is the fact that the nodes tend to group into small clusters of five individuals.

Figure 19: The metric tensor network obtained for the symmetric, uncoupled nonlinear vector field in Eq. 11. The resulting structure presents a moderate bilateral symmetry, with a small group of nodes with relatively high values of the isometry index (in magenta). Especially interesting is the grouping of the involved nodes in clusters of 5 individuals.

12 Nonlinear Dynamical Systems Systems of ordinary differential equations are intrinsically underlain by respective vector fields governing the time-evolution of the respective state corresponding to instances of the state vectors v = (x 1 , x 2 , . . . , x M ). As a consequence, the specific properties of these vector field mappings are essentially important for the resulting dynamics which, in the case of nonlinear mappings, can be chaotic and lead to fractal attractors.

In this section, we illustrate the application of the concepts and methods described in the present work to the characterization of non-linear vector fields defining two important systems of ordinary differential equations, namely the Lotka-Volterra and Lorenz dynamics.

One important point to be kept in mind is that, because nonlinear dynamics can depend critically on infinitesimal characteristics of the associated maps, the respective firstorder approximations may not be enough to effectively capture the respective dynamics intricacy. Nevertheless, a better understanding of how the associated nonlinear vector fields change the local metric can provide interesting insights about the respectively implemented dynamics.

We start with the Lotka-Volterra system, which can be expressed in terms of its basic instance:

ϕ x = x -x y ϕ y = -y + x y
which leads to the following Jacobian matrix: The metric tensor network obtained for the Lotka-Volterra system is depicted in Figure 22, obtained by using D = 9 and two different thresholds applied to the obtained coincidence similarities. These threshold become an important resource in cases, such as in this considered system, in which most of the obtained coincidence similarities values result relatively similar, therefore implying in mostly connected networks. By selecting appropriate threshold values, the intricacies of these networks can then be revealed. These situations characterized by similar coincidence similarities happen in case the components of the vector field are particularly smooth.

J = 1 -y -x y -1 + x
Surprisingly regular and homogeneous networks have been obtained, despite the nonlinearity of this system of differential equations. Indeed, the original orthogonal mesh has been nearly perfectly reproduced in the obtained metric tensor networks. It is particularly interesting to compare these networks with those obtained for the vector field in equation 7, which is not markedly different from the Lotka-Voterra systems of ordinary differential equations.

Figure 21: Morphing field of an orthogonal mesh in the original state space implemented by the nonlinear vector field in Eq. 12. Despite the seeming simplicity of the equation components in the original system of differential equations, a highly skewed morphing has been obtained which also involves negative values.

However, although an intensely symmetric orthogonal mesh has been obtained, it is still planar, indicating that the local metric tensors undergo a progressive transitive change. Indeed, such a change can be readily verified by observing the progression from less to more isometric mapping as one goes from the left to the righthand side of the networks in the network at the top of Figure 22. Of additional interest is the fact that the distribution of the values of the isometry index is not symmetric, but gradually skewed toward the lower part of the presented network.

We now proceed to investigating the Lorenz system of ordinary differential equations. Here, the following parametric configuration will be considered:

   ϕ x = 10 x -10 y ϕ y = 28 x -xz -y ϕ z = xy -8 3 x .
which has the following Jacobian matrix:

J =   10 -10 0 28 -z -1 -x y -8 3 x 0   ;
Figure 23 present the three component equations of the Lorenz system which, in the case of the considered interval 0 < x ≤ 1 and 0 < y ≤ 1, correspond approximately to three respective planes.

The metric tensor networks resulting for the considered Lorenz system are depicted in Figure 24 respectively to Because the surfaces defined by the component equations of this system, in a similar manner to the Lotka-Volterra case, are particularly smooth, similar values of coincidence similarity are obtained, requiring the application of a threshold in order to reveal the intricacies of the original vector field.

Another consequence of the marked smoothness of the fields in the chosen interval 0 < x ≤ 1 and 0 < y ≤ 1, the obtained networks directly reflect the original 3D orthogonal mesh. In the first network, obtained for T = 0.2, we can readily identify the original 3D mesh, which is progressively dismantled into a string of sequentially connected panels for T = 0.3, completely separated panels for T = 0.4, which are subsequently separated into 49 strings of metric tensors for T = 0.5. Despite the relative simplicity and homogeneity of these results, they actually provide an interesting information about the respective vector field in the sense that one, among the three possible manners of separating the planes of the 3D mesh, has taken place. Similarly, out of the two possibilities for separating the planes into strings, one of them prevailed. This was caused because the similarities along each of the axes had different magnitudes, so that those along the axis with smaller values resulted separated.

It is also interesting to observe that the accurate identification of the mapped 3D mesh, planes and strings, well illustrates the several special properties of the coincidence similarity index, including normalization and enhanced selectivity and sensitivity.

In order to complement our analysis of the Lorenz system, we repeat it considering a more conventionally interval -15 < x ≤ 11 and -15 < y ≤ 15, leading to the results shown in Figure 25. Substantially more elaborated and heterogeneous networks have been obtained. The original 3D mesh can be more hardly perceived (T = 0.2), showing the constituent planes to merge at the righthand side. As the threshold is increased to T = 0.25, the planes become more separate at only one of the sides of the network. A network completely different from those obtained for the smaller domain was obtained for T = 0.3, characterized by several branches. The strings obtained for T = 0.4 are also less regular and longer than those obtained previously, with some strings involving cycles.

Interestingly, while the isometry index values obtained in for the smaller domain presented a smooth variation between two extremities, in the case of the larger domain a small group was obtained characterized by much smaller relative isometry values.

In addition to reflecting the more intricate structure of the vector field underlying the Lorenz system of differential equations, this example also showed how much the choice of the domain can influence the structure of the obtained metric tensor networks. For this reason, it is important to consider regions that are particularly relevant for each studied cases. Another interesting possibility is to proceed by adaptatively zooming into the domain regions presenting enhanced heterogeneity of features of specific interest. 13 Paths and Random Walks in Jacobian Networks

Given a vector field represented in terms of its respective Jacobian matrix or metric tensor networks, it constitutes an interesting endeavor to consider how possible paths and random walks can be performed while taking into account specific rules defined in terms of the strength of the respective links. This type of dynamics is considered and illustrated briefly in the present section respectively to the nonlinear vector field in Equation 35, which has respective tensor metric network as shown in Figure 16.

First, observe that a path in these networks will be understood as a deterministic trajectory in which, starting from a specific point v, one moves according to some deterministic criterion along the adjacent mesh nodes with the largest or smallest coincidence similarity. Contrariwise, in a random walk, the next adjacent mesh node is taken according to some random, but possibly preferential, criterion.

However, while determining a path, it may happen that more than one outgoing edges have satisfy the imposed criterion, in which case one of the needs to be taken randomly. Therefore, paths are not necessarily completely deterministic.

Interestingly, these two types of trajectories can be understood kinds of differential equations governed by interrelationships between the spatial changes implemented by the respective vector fields.

Figure 26 illustrates, in the original domain (x, y) instead of in the network space, two self-avoiding path obtained by considering movements along the less similar interconnections between the visited nodes, starting from different initial positions. The metric tensor network was restricted by taking its subgraph satisfying the respec-tive nodes adjacency in the original mesh in the R 2 space (x, y). Remarkably elaborate paths, such as those shown in the figure, are typically obtained in this type of polar vector field as a consequence of its pronounced heterogeneity of associated metric tensors implied by the fact that polar and Cartesian coordinates being markedly distinct.

Concluding Remarks

Despite the unending complexity underlying the universe, several relatively simple mathematical approaches have proven to be at the same time versatile and effective for addressing and modeling a wide range of structures and phenomena. First-order approximations, through respective Taylor series and Jacobian matrices, constitute a prototypical example of simple methods that can effectively represent and describe, at the local level, the action of functions, scalar fields, curves, surfaces, and vector fields (e.g. [START_REF] Da | A journey into the multifaceted universe of coordinates change, basis transformation, dual spaces, and invariance[END_REF]).

Vector fields, particularly those that are nonlinear can be frequently found in virtually all areas of science and technology. These fields typically implement multidimensional functional mappings and coordinates transformations. Though the Jacobian of these vector fields, which provide valuable information about the local metric alterations implemented by the field, can often be obtained analytically or estimated numerically with relative simplicity, it remains a challenge to achieve comprehensive and accurate visualizations and characterizations of the geometrical effects of the vector field action from several respective Jacobian matrices and/or metric tensors.

Described recently, the coincidence similarity index presents several interesting features, including high selectivity, sensitivity and robustness [START_REF] Da | Multiset neurons[END_REF][START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF], that has The metric tensor networks obtained for the Lorenz system of ordinary differential equations respectively to four increasing threshold values, which imply a successive separation of the mapped 3D mesh into a string of panels, which are then separated, and subsequently dismantled into 49 strings of metric tensors. All separated components in these results are characterized by metric tensors implying similar metric alterations. allowed its effective application to the development of several related concepts and applications.

In the present work, we described how a set of Jacobian matrices and/or related metric tensors obtained from vector fields can be mapped into respective complex networks where each matrix is associated to a node, while the strength of the links are defined by pairwise coincidence similarity values of the Jacobian matrices or metric tensors.

In a sense, the approach described and illustrated in the present work can be considered a direct extension of the concept of complex coincidence similarity networks [START_REF] Da | Coincidence complex networks[END_REF], which also provided the means for visualizing and analyzing intricate manifolds derived from multidimensional datasets. In both cases, the translation of relationships underlying dataset and mathematical structures of interest in terms of coincidence the similarity index provided supplied an effective manner to "seeing", into the multidimensional space of the mapping, the basic framework underling the respective datasets and mathematical structures.

Indeed, except for computational resource limitations, the proposed methodology can applied to very high domain and data dimensions, providing a natural integration of the more local information about the geometry of the mapping as provided by the respective Jacobian matrices into an integrated, global representation of the respective geometrical backbone of interrelationships.

In order to complement the characterization provided by the networks, two indices capable of effectively quantifying the isometry and linearity of each local Jacobian matrix have also been described and applied.

After revising the main involved concepts and methods to some depth, we proceed to present the methodology for visualizing and characterizing nonlinear vector fields in terms of respective Jacobian matrices and/or metric tensors associated to a set of samples, more specifically uniform orthogonal meshes, defined in the domain of the vector field.

The application and potential of the described concept and methods have been illustrated respectively to several case examples in R 2 , R 3 and R 4 , including polar coordinates and two important systems of ordinary differential equations, corresponding to the Lotka-Volterra and Lorenz dynamical systems.

Several interesting results have been obtained and dis- cussed, including the identification of the homogeneity/heterogeneity of the mappings, the unveiling of symmetries underlying each respective vector field mapping, as well as the verification that heterogeneities in the original vector field can lead to the formation of communities, or modules, in the respectively obtained networks. Interesting results have been obtained also regarding the effectiveness of the isometry and linearity indices in complementing the characterization of the studied vector fields in terms of the respective Jacobian networks. The possibility to consider dynamics underlain by the Jacobian similarity networks has also been briefly outlined and illustrated, leading to intricate trajectories in the case of the vector field implementing transformations from Cartesian to polar coordinates.

Though the reported concepts and methods will be potentially more useful in case the Jacobian matrices are numerically estimated, the study of the properties of analytically described vector fields can also benefit from the insights about both the local and global properties of the mapping that can be derived from the respective Jacobian networks.

Figure 1 :

 1 Figure1: A same square matrix A can be understood to implement: (a) a change from coordinate system S to coordinate systems S; or (B) a linear map from vectors of S into vectors of that same space. Case (a) can also be understood as a linear map with matrix A -1 , and case (b) can be alternatively understood as a coordinates change by matrix A -1 . Observe that the bases and coordinates remain respectively covariant and contravariant in both interpretations of the effect of matrix A. These two interpretations should not be confounded with the dual bases of the spaces.

Figure 2 :

 2 Figure 2: The vector field in Equation 7 visualized as two separate respective scalar fields, corresponding to each of the two involved components.

•

  The value of | det(J)| indicates how the hypervolume changes around the reference point. Expansion is observed in case | det(J)| > 1, contraction for 0 < | det(J)| < 1, and no change for | det(J)| = 1;

Figure 3 :

 3 Figure3: The main subject addressed in the present work consists in studying the effect of non-linear transformation of data and/or mappings (functions) under a possibly non-linear vector field ϕ, as illustrated in this figure respective to R 2 . The original vector space, with coordinates (x, y) is mapped by a vector field ϕ(x, y) into vectors of another space (x, ỹ). Because the considered mappings can be highly non-linear, it becomes important to study the effects of the respective transformation in terms of first-order approximations φ(x, y) within small neighborhoods around points of interest (x 0 , y 0 ). These first-order approximations can be readily implemented by considering the Jacobian of the vector field ϕ(x, y).

Figure 4 :

 4 Figure4: The inner product between two vectors in an old vector space (x, y) is conserved when of linear mapping, by matrix A, onto a new vector space (x, ỹ). The dot product, however, is only conserved when of translation between Cartesian systems (orthonormal bases).

Figure 5 :

 5 Figure5: The result of the mapping of a mesh in the square 0 < x ≤ 1, 0 < y ≤ 1 in R 2 by the nonlinear vector field specified in Eq. 7. The linearity of this mapping can be verified to increase from the origin of the coordinate system toward the center of the mapped region. The figure also shows the mapping of a square region around the red point by the original field (in red) and by the respective firstorder approximation (in blue), based on the local Jacobian matrix.
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  Case-Examples in R 2

Figure 6 :

 6 Figure6: The "peacock tail-like" coincidence similarity network obtained for the set of 121 Jacobian matrices defined by the nonlinear vector field in Eq. 7 while adopting D = 7. The colors, associated to values increasing from cyan to magenta, express the respective Jacobian determinants. As all other networks in this work, the Fruchterman-Reingold visualization methodology (e.g.[START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF]) has been applied.

Figure 7 :

 7 Figure7: The same nework as in Fig.6, but with the isometry, instead of the Jacobian determinant, being indicated by colors. The distribution of this also important measurement of the geometrical effects of the vector field can be readily verified to be distinct from the distribution of the local Jacobian determinants. We have that the most central manifolds in Fig.5are those that are the most isometric.

Figure 9 :

 9 Figure9: The scatterplots defined by the Jacobian determinant, isometry, and linearity indices respectively to the nonlinear vector field in Eq. 7. The three functionals result mostly uncorrelated and distinct, thus indicating that they can provide complementary information about the vector field mapping.

Figure 12 :

 12 Figure12: The metric tensor network resulting from the vector field in Eq. 33, being similar to the previously obtained network, but with more restricted high isometry region.

Figure 13 :

 13 Figure 13: The metric tensor network obtained for the nonlinear vector field in Eq. 34. The previous bilateral symmetry has been completely lost.

Figure 14 :

 14 Figure 14: The morphing field of the polar mapping implemented by the vector field in Eq. 35 departs markedly from the Cartesian symmetry.

Figure 15 :

 15 Figure 15: The polar vector field mapping metric tensor network, shown in this figure, is markedly less interconnected than the previous case examples.

Figure 16 :

 16 Figure16: The Jacobian matrix networks resulting in the case of the polar vector field mapping is more interconnected than the network obtained for the respective metric tensors.

  local and global geometric changes implied by the respective nonlinear vector fields. In the next section, some examples in R 3 are illustrated and discussed. 10 Case-Examples in R 3

Figure 17 :

 17 Figure 17: The metric tensor network resulting for the nonlinear, uncoupled vector field in Eq. 10 for D = 9. The obtained network is strongly bilaterally symmetric and characterized by a peak of isometric index value shown in magenta.

Figure 18 :

 18 Figure18: The metric tensor network obtained for the nonliner, uncoupled vector field in Eq. 10. Interestingly, the intrinsic asymmetry of this vector field implied a relatively mild alteration of the bilateral symmetry, but a strong impact on the modularity of the network, giving rise to two large and relatively symmetric communities at the righthand side of the figures.

Figures 21

 21 Figures 21 presents the morphing field of an orthogonal mesh in the original state space. Despite the simplicity of the original system of differential equations, a highly skewed morphing field results, indicating substantial change in the local metric implied by the nonlinear mapping.

Figure 20 :

 20 Figure 20: The Lotka vector field in Equation 12 visualized as two separate respective scalar fields. Observe the negative values resulting in the second equation component ϕx shown in (b).

Figure 22 :

 22 Figure 22: The metric tensor networks obtained for the Lotka-Volterra system of ordinary differential equations considering D = 9 and two distinct thresholds. An almost perfectly symmetric network is obtained in both cases. The distribution of the isometry index values, however, varies progressively and asymmetrically along two extremities of the networks..

Figure 23 :

 23 Figure 23: Visualization of the three scalar fields corresponding to the components of the Lorenz system of ordinary differential equations. The three obtained surfaces are almost planes.

Figure 24 :

 24 Figure24: The metric tensor networks obtained for the Lorenz system of ordinary differential equations respectively to four increasing threshold values, which imply a successive separation of the mapped 3D mesh into a string of panels, which are then separated, and subsequently dismantled into 49 strings of metric tensors. All separated components in these results are characterized by metric tensors implying similar metric alterations.

Figure 25 :

 25 Figure25: The metric tensor networks obtained for the Lorenz system of ordinary differential equations respectively to four increasing threshold values, which imply a successive separation of the mapped 3D mesh into a string of panels, which are then separated, and subsequently dismantled into 49 strings of metric tensors. All separated components in these results are characterized by metric tensors implying similar metric alterations.

Figure 26 :

 26 Figure 26: Two trajectories determined by following the links with smaller similarity, starting from two distinct initial discrete (mesh) positions (x, y). Remarkably elaborate paths have been obtained in both cases as a consequence of polar coordinates presenting symmetry completely distinct from the symmetries underlying Euclidean spaces.
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