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Abstract
We present a generalisation of the all-Mach solver of Fuster & Popinet (2018) [1] to account for
heat diffusion between two different compressible phases. By solving a two-way coupled system
of equations for pressure and temperature, the current code is shown to increase the robustness
and accuracy of the solver with respect to classical explicit discretization schemes. Different test
cases are proposed to validate the implementation of the thermal effects: an Epstein-Plesset
like problem for temperature is shown to compare well with a spectral method solution. The
code also reproduces free small amplitude oscillations of a spherical bubble where analytical
solutions capturing the transition between isothermal and adiabatic regimes are available. We
show results of a single sonoluminescent bubble (SBSL) in standing waves, where the result
of the DNS is compared with that of other methods in the literature. Moreover, the Rayleigh
collapse problem is studied in order to evaluate the importance of thermal effects on the peak
pressures reached during the collapse of spherical bubbles. Finally, the collapse of a bubble
near a rigid boundary is studied reporting the change of heat flux as a function of the stand-off
distance.
Keywords:

1. Introduction

Bubble cavitation is relevant in many engineering processes. The inception of a bubble
and its interaction with nearby boundaries is sometimes intended, sometimes not. Examples of
the former scenario are: laser-induced forward transfer (LIFT) [2–5], lithotripsy [6], needle-free
injection technologies [7, 8], sonochemistry [9] etc. An example of the latter scenario is when5

bubbles nucleate in the low pressure regions behind rotating ship turbines upon which they
collapse, thus inflicting damage and causing erosion [10]. Understanding the complex bubble
dynamics is therefore crucial for tuning and controlling these processes. Further examples are
given in the review by Lohse (2018) [11]. Experiments are usually a great tool of unravelling
the intricate physics of bubble motion; however, there are many technical limitations that10

render the access to all the fluid properties quite impossible. The need thus emerges for decent
numerical tools that correctly model two-phase compressible flows.

Baer & Nunziato (1986) [12] proposed a seven equations model where they solve for the con-
servation of mass, momentum and total energy in each of the two phases, as well as an equation
for the volume fraction. Several authors later adapted this “parent model” and used it to solve15

interface problems as well as fluid mixtures with several velocities [13–16]. Using an asymptotic
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analysis in the limit of stiff velocity relaxation only, or in the limit of both stiff velocity and
pressure relaxation, one obtains a six [17–19] or five [17, 20] equations model, respectively. Heat
and mass transfer are taken into account through empirical relations depending on the type of
process that is studied. In such methods, due to the treatment of the convective terms, pres-20

sure oscillations as well as temperature spikes occurred at discontinuities or interfaces where a
jump in material properties usually exists. Johnsen & Ham (2012) [21] proposed approaches
to overcome these spurious errors; however, temperature undershoots could still happen, thus
affecting the solution when heat diffusion between the phases is taken into account. Beig &
Johnsen (2015) [22] later developed an efficient treatment of the temperature, yielding better25

solutions in the cases of coupling via heat diffusion. Such solvers have been used to study the
temperatures produced by inertially collapsing bubbles near rigid surfaces [23].

Another family of numerical methods, capable of capturing the compressibility effects, stem
from the generalisation of numerical schemes developed for incompressible flows [24–28]. In
particular, the all-Mach method is appealing for the simulation of different kinds of flows30

ranging from subsonic to supersonic conditions. The main advantage of this method is its
capability to retrieve the incompressible limit without the classical time step restriction of
compressible solvers, where one needs to computes an acoustic CFL condition based on the
speed of sound in the least compressible fluid. Fuster & Popinet (2018) [1] recently proposed
an all-Mach solver using the Volume-of-Fluid (VoF) method for the tracking of the interface,35

taking into account viscous and capillary forces. The solver, implemented in the free software
program Basilisk [29], previously assumed adiabatic processes only. In the present work, we
extend it by taking into account heat diffusion between the phases. For this end we derive a
two-way coupled system of equations for pressure and temperature which we implicitly solve
using a multigrid solver. A plethora of additional phenomena where temperature is important40

could then be investigated.
The manuscript is organised as follows: in section 2, we present the governing equations

embedded in the all-Mach solver, including the newly derived two-way coupled systems of
equations for pressure and temperature. In section 3, we describe the employed numerical
scheme, as well as the multigrid solver used for the solution of the aforementioned system of45

equations. In section 4, we propose new test cases to validate the correct implementation of
the thermal effects, ranging from the linear to the strongly non-linear regimes. In section 5, we
present numerical examples of the spherical and axisymmetric Rayleigh collapse of a bubble.
Finally, we draw our conclusion and provide an outlook for future work.

2. Governing equations50

The equations, governing the compressible two-phase flows considered in the present work,
are presented in this section. The mass and momentum conservation equations, written in their
conservative form, read,

∂ρi
∂t

+∇ · (ρiui) = 0, (1)

∂ (ρiui)

∂t
+∇ · (ρiuiui) = ∇ · τ i, (2)

where the subscript i denotes either phases, set throughout this paper to 1 or 2 for the liquid55

and gas phases, respectively. In equations 1 and 2, ρ is the density, u is the velocity field, τ is
Cauchy’s stress tensor defined as,

τ i = −piI + µi

(
∇ui +∇uT

i

)
, (3)

p is the pressure field, µ is the dynamic viscosity, and I is the identity tensor. Note that,
following Stokes’ hypothesis [30], the bulk viscosity is neglected. This assumption, commonly
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used in the analysis of compressible flows, states that an isotropic expansion of a liquid element60

does not induce viscous stresses [31].
In the absence of mass transfer, the velocity field is continuous across the interface u1 ·

n = u2 · n, where n is the unit vector normal to this interface. It is therefore convenient
to work in a one-fluid formulation, similarly to classical incompressible formulations, with a
single continuous averaged velocity field u. Here and in the following, the bar characterizes an65

averaging process. The Laplace equation gives the pressure jump at the interface,

p1 − p2 = σκ+ µ1n · τ 1 · n− µ2n · τ 2 · n, (4)

where σ is the surface tension coefficient and κ is the local curvature. Applying this jump
condition, we obtain the averaged momentum equation which we actually solve in the one-fluid
formulation,

∂ρu

∂t
+∇ · (ρu u) = ∇ · τ + σκδsn, (5)

where δs is a characteristic function only defined at the interface.70

In the absence of mass transfer effects, the conservation of total energy is written as,

∂

∂t

[
ρi

(
ei +

1

2
u2

i

)]
+∇ ·

[
ρi

(
ei +

1

2
u2

i

)
ui

]
= ∇ · (τ i · ui)−∇ · qi, (6)

where e is the specific internal energy, and q is the heat flux given by Fourier’s law,

qi = −ki∇Ti, (7)

where k is the thermal conductivity, and T is the temperature field. The present work takes
into account heat diffusion, whereas the previous version of the all-Mach solver only consid-
ered adiabatic processes [1]. The all-Mach solver is a density based solver with the density,75

momentum and total energy as its primitive variables. However, in order to compute fluxes,
the solver makes use of an evolution equation for pressure, similar to the Poisson equation in
incompressible solvers, when projecting the velocity field to make it divergence free [32]. To
obtain such an equation in the current formulation, we first write the enthalpy equation,

ρicp,i
DTi

Dt
= βiTi

Dpi
Dt

−∇ · qi, (8)

where cp is the specific heat capacity, β is the thermal dilation coefficient, and D/Dt is the80

total derivative. We then express the density differential as the sum of both isothermal and
isobaric processes,

dρ =

(
∂ρ

∂p

)
T

dp+

(
∂ρ

∂T

)
p

dT =
γ

c2
dp− ρβdT, (9)

using the definitions of the speed of sound c, the ratio of specific heats γ, and the thermal
dilation β. If we then combine equations 1, 8, and 9, we obtain an equation for pressure that
reads85 (

γi
ρic2i

− β2
i Ti

ρicp,i

)
Dpi
Dt

= − βi

ρicp,i
∇ · qi −∇ · ui. (10)

We thus have a two-way coupled system of equations 8 and 10, for both the temperature and
the pressure fields. This is to be contrasted with the previous version of the all-Mach solver [1],
where only equation 10 is solved while neglecting heat transfer (q = 0). To close the system
of equations, an equation of state (EoS), relating the thermodynamic quantities {p,ρ,T}, is
needed. We employ the Noble-Abel Stiffened-Gas (NASG) EoS which shows a better agreement90

with experiments than the Stiffened-Gas (SG) EoS, regarding the relation between the liquid’s
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Γ1 1.19
Π1 (Pa) 7028× 105

b1 (m3/kg) 6.61× 10−4

q1 (J/kg) −1177788
cp,1 (J/kg/K) 4285
cv,1 (J/kg/K) 3610

Table 1: NASG EoS parameters and thermodynamic properties for liquid water in the temperature range
[300 : 500] K.

specific volume v1 and its temperature [33], and thus a better relation between ρ1 and T1. The
NASG EoS reads

ρiei =
pi + ΓiΠi

Γi − 1
(1− ρibi) + ρiqi, (11)

where Γ, Π, b, and q are fitting parameters, different for each fluid. The values of these
parameters, and other thermodynamic properties, are presented in table 1 for liquid water.95

Throughout this paper, gases are considered to be ideal, thus obeying the perfect gas EoS.
The latter is retrieved from the NASG EoS by setting Γ2 = γ2, and Π2 = b2 = q2 = 0. The
expression of the thermal dilation coefficient, derived in the framework of NASG, is written as,

βi =
1

vi

(
∂vi
∂Ti

)
p

= − 1

ρi

(
∂ρi
∂Ti

)
p

=
(Γi − 1)cv,i

(Γi − 1)cv,iTi + bi(pi +Πi)
. (12)

In this EoS, the speed of sound c is expressed as follows,100

c2i =
Γi(pi +Πi)

ρi(1− ρibi)
. (13)

Finally, let the interface be represented by a Heaviside function H equal to 1 in the reference
phase. The position of the interface is then tracked by solving an advection equation for H,

∂H
∂t

+ u · ∇H = 0. (14)

3. Numerical scheme

In this section we present an overview of the numerical method, detailed in [1], with the
added steps regarding the implementation of the heat diffusion effects, and a description of105

the employed multigrid solver. This solver uses the volume fraction of a reference phase, the
individual component of both density and total energy, as well as the averaged momentum as
primitive variables. The discretization in time of the mass, averaged momentum, total energy,
and volume fraction evolution equations gives a system of equations of the form,

Y n+1 − Y n

∆t
+∇ · F (adv) = ∇ · F (non−adv) + S, (15)

with

Y =


C1

C1ρ1
C2ρ2
ρu

C1ρ1eT,1
C2ρ2eT,2

 , F (adv) =


C1u
C1ρ1u
C2ρ2u
ρu u

C1ρ1eT,1u
C2ρ2eT,2u

 , F (non−adv) =


0
0
0
τ

C1(τ 1 · u− q1)
C2(τ 2 · u− q2)

 , S =


C1∇ · u

0
0

σκ∇C
0
0

 ,
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where eT,i = ei +
1
2
|u|2 is the total energy per unit mass and the colour function C1 is equal to110

the volume fraction of the reference phase in a control volume represented by the grid cell, and
C2 = 1−C1. Note that in the absence of mass transfer, the interface is advected with the flow
at a velocity us = u1 ·n = u2 ·n. It is therefore convenient to work in a one-fluid formulation,
similarly to classical incompressible formulations, given the continuity of the velocity field across
the interface. The average of a quantity ϕ is defined as ϕ = Cϕ1 + (1− C)ϕ2. We would then115

have averaged properties, such as density ρ and viscosity µ, and an averaged momentum field
ρu, out of which the flow velocity u can be derived and used for the advection of the colour
function and the conserved quantities.

An important property of the all-Mach solver is that, similar to a Riemann solver, it is based
on the computation of fluxes and therefore exactly conserves mass, momentum and energy in120

the absence of surface tension forces. In particular, the advection fluxes F (adv) are obtained by
using a consistent scheme for the advection of the conserved quantities (density, momentum,
and total energy) and the volume fraction C, as described in [1, 34]. This avoids any numerical
diffusion of the conserved quantities when computing the advection fluxes, especially for high
density ratios [34]. In other words, the discontinuity in these quantities is advected exactly at125

the same velocity as that of the moving interface. The employed VoF method is geometric,
in which the interface has a sharp representation [35]. The numerical scheme used for the
advection, proposed by Weymouth & Yue (2010) [36], conserves mass to machine accuracy in
the incompressible limit. It is preceded by a PLIC reconstruction of the sharp interface, where
the normal n to each interfacial segment is computed using the Mixed Youngs-Centered (MYC)130

method described in [37]. The advection fluxes are computed in a directionally split manner as
detailed in [36]. Without lack of generality, after this step we compute the advected values of
the primitive variables,

Y (adv) ≡ Y n −∆t∇ · F (adv) (16)
as well as the updated values of the volume fraction. A predicted value of the velocity field at
the end of the time-step (un+1

pred), which already accounts for viscous and surface tension effects135

is obtained by implicitly solving the averaged momentum equation,

ρun+1
pred − ρu(adv)

∆t
= −∇pn +∇ ·

[
µ
(
∇upred +∇uT

pred

)]n+1
+ σκ∇Cn+1, (17)

where the pressure gradient is evaluated at the previous time step.
The resulting estimation of the velocity field is finally corrected using

un+1 = u∗ − ∆t

ρn+1∇pn+1, (18)

where u∗ is defined as
u∗ ≡ un+1

pred +
∆t

ρn+1∇pn. (19)

To compute the pressure gradient, we take the divergence of equation 18140

∇ · un+1 = ∇ · u∗ −∇ ·
(

∆t

ρn+1∇pn+1

)
. (20)

For incompressible flows ∇ · un+1 = 0 and equation 20 becomes a Poisson equation that is
sufficient to compute the pressure field pn+1 and the divergence-free velocity field un+1 from
equation 18. Naturally, this is not the case in a compressible framework, where ∇·un+1 is not
necessarily zero, therefore leaving us with two unknowns: un+1 and pn+1, and with the need of
an additional equation to close the system. In the previous version of the all-Mach solver [1],145

equation 10 served this purpose, neglecting, however, heat diffusion. The novelty in the present
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work is the implementation of the thermal effects by solving the two-way coupled system of
equations 8 and 10,

ρcp
T n+1 − T (adv)

∆t
= βT (adv)p

n+1 − p(adv)

∆t
+∇ ·

(
k∇T n+1

)
, (21)

(
γ

ρc2
− β2T (adv)

ρcp

)
pn+1 − p(adv)

∆t
=

β

ρcp
∇ ·

(
k∇T n+1

)
−∇ · u∗ +∇ ·

(
∆t

ρ
∇pn+1

)
, (22)

where equation 22 is obtained by combining 10 and 20. More information on the discretization150

of the conductive term is presented in Appendix A. Note that T (adv) and p(adv) are provisional
values obtained after the advection step although not advected per se. These fields are therefore
not cloned as tracers and associated with the colour function C, as is the case for the conserved
quantities. Rather, p(adv) is computed from the advected total energy via the equation of state,
similarly to what has been done in [25] and [38],155

p(adv) =
ρeT

(adv) − 1
2ρ|u|

2 − ΓΠ
Γ− 1 (1− ρb) + ρq

1− ρb
Γ− 1

, (23)

where ρeT
(adv) is the averaged total energy after the advection step (equation 16). The provi-

sional temperature T (adv) is then obtained from p(adv) also by means of the EOS,

T (adv) =
(1− ρb)p(adv) +Π(1− ρb)

ρ(cp − cv)
. (24)

Equations 21 and 22 are then rearranged in the form of a Poisson-Helmholtz system of mutually
coupled equations,

∇ ·
(
k∇T n+1

)
+ λ1T

n+1 + λ2p
n+1 = λT , (25)

160

∇ ·
(
1

ρ
∇pn+1

)
+ λ3p

n+1 + λ4∇ ·
(
k∇T n+1

)
= λp. (26)

where,

λ1 = −ρcp
∆t

, (27)

λ2 =
βT (adv)

∆t
, (28)

λ3 = − 1

∆t2

(
γ

ρc2
− β2T (adv)

ρcp

)
, (29)

λ4 =
β

ρcp
, (30)

λT = λ1T
(adv) + λ2p

(adv), (31)

λp = λ3p
(adv) +

1

∆t
∇ · u∗. (32)

This system is of the form,
L(a) = b, (33)

where, L(·) is a linear operator, and a = [T n+1 pn+1]T and b = [λT λp]
T are both vectors.

This system of mutually coupled equations can therefore be solved efficiently using a multigrid
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implicit solver, described for the SGN equations by Popinet [29]. When solving time-dependent
problems, a good initial guess ã = a − δa, is available, where δa is an unknown correction.165

Therefore, it is usually more efficient to solve for the equivalent problem,

L(δa) = b− L(ã) = res, (34)

where res is the residual. Owing to the linearity of the operator L(·), δa can be added to the
initial guess ã, and the process is then repeated until the residual falls below a given tolerance.
The procedure can be summarised by the following steps:

1. Compute the residual res = b− L(ã).170

2. If ∥res∥ < ϵ, ã is good enough, stop.
3. Else, solve L(δa) ≃ res.
4. Add δa to ã and go back to step 1.

For all the computations reported in this manuscript, the tolerance ϵ is set to 10−6. The
multigrid solver therefore yields estimated values of T n+1 and pn+1 that can be readily use to175

compute the fluxes required to update the averaged momentum and the total energy. The
velocity field un+1, and by extension the momentum, is then computed using Eq. 18.

To update the total energy of each component, we account for the fact that the resultant
pressure at the cell centres corresponds to the one-fluid averaged field pn+1 = Cpn+1

1 + (1 −
C)pn+1

2 , out of which the pressure in each phase is derived using Laplace’s law,

pn+1
1 = pn+1 + (1− C)σκn+1, (35)
pn+1
2 = pn+1 − Cσκn+1. (36)

These pressures are then used to update the total energy in each phase at the end of the time
step,

(CiρieT,i)
n+1 = (CiρieT,i)

(adv)+∆t
[
−Ci∇ · (piu)n+1 + Ci∇ ·

(
µi

(
∇u+∇uT

)
· u

)n+1 − Ci∇ · qn+1
i

]
.

(37)
Once all primitive variables are updated, it is possible to compute the final values of the derived180

variables such as the pressure and temperature fields via the EoS, which will the be consistent
with the values of the conservative variables obtained at the end of the time-step. The numerical
scheme is summarised in the commented algorithm 1.

4. Test cases

In this section, we propose test cases used to validate the correct implementation of the185

thermal effects in compressible solvers in both linear and strongly non-linear regimes. The
results are compared either to classical numerical methods and models already available in the
literature, and to analytical solutions when available.

4.1. Epstein-Plesset like problem for temperature
The first test case is inspired by Epstein and Plesset (1950) [39] who came up with analytical190

solutions for the shrinkage and growth of gas bubbles in undersaturated and supersaturated
liquid-gas solutions, respectively. The change in bubble radius is driven by the diffusion of gas
across the interface, given an initial difference between the gas concentration at the interface and
in the liquid bulk. An analytical solution is reached provided one neglects the advective terms
in the diffusion equation. This assumption is physically justified when the diffusive process is195

slow, which is typically the case for gas diffusion in liquids for small gas concentrations, thus
avoiding convective effects by density gradients [40].
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Algorithm 1: Summary of the algorithm (Comments in red)
Initialisation of C1ρ1, C2ρ2, p, T (Eq. 24), ρu, C1ρ1eT,1, C2ρ2eT,2; /* C1=C, C2=1-C */
while t < tend do

Set ∆t; /* e.g. using an acoustic CFL */
Obtain qi = Ciρi

ρu
C1ρ1+C2ρ2

;
Clone ρi, qi and Ei as tracers to be advected with C;
Perform directional-split advection to evaluate F (adv) [1];
Compute ρu(adv) = q1 + q2;
Solve the mixture momentum equation for un+1

pred (Eq. 17);
Define a provisional velocity field u∗ (Eq. 19);
Obtain face velocities; /* Average of centre velocities of neighbouring
cells */

Obtain provisional pressure p(adv) (Eq. 23); /* EOS */
Obtain provisional temperature T (adv) (Eq. 24); /* EOS */
Evaluate β (Eq. 12);
Evaluate ρc2 (Eq. 13);
Evaluate λ coefficients (Eqs. 27–31); /* Previously computed face velocities
are used to evaluate the divergence term in Eq. 32 */

Solve the Poisson-Helmholtz system of mutually coupled equations 25–26 for pn+1

and T n+1;
Update face velocities (Eq. 20); /* Cell centre velocities, which are used
to evaluate the momentum, are computed from face velocities by the
same averaging method */

Update C1ρ1eT,1 (Eq. 37) using pn+1
1 (Eq. 35);

Update C2ρ2eT,2 (Eq. 37) using pn+1
2 (Eq. 36);

end
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Figure 1: (a) A gas bubble, initially hotter than the surrounding liquid ∆T = Tb − T∞ = 350 K, shrinks and
reaches a new radius while approaching the thermal equilibrium with the liquid. (b) A gas bubble, initially cooler
than the surrounding liquid ∆T = Tb − T∞ = −175 K, expands and reaches a new radius while approaching
the thermal equilibrium with the liquid. The colour code depicts the temperature field, and τ = R2

0/κth,g is the
diffusive time scale of the gas.

In this paper we test the shrinkage and growth of a spherical gas bubble in a liquid due
to the diffusion of temperature between the two phases. From a quick look at the equation
of state for an ideal gas, one can notice that the gas expands if heated, with its pressure kept200

the same, and shrinks if cooled. Even before any formal statement of an equation of state was
put forth, this behaviour had been observed. Charles performed the first experiments in 1787,
credited later on by Gay-Lussac in 1802 who published the linear relationship between volume
and temperature at constant pressure [41]. This was later called Charles’s law,

V1

T1

=
V2

T2

. (38)

We perform axisymmetric simulations of an air bubble inside liquid water, subject to an ini-205

tial temperature difference between the gas and the liquid. The parameters of this prob-
lem, as well as the properties of the fluids are rendered dimensionless by the liquid density
ρl = 975.91 kg/m3, pressure p∞ = 5 × 106 Pa, temperature T∞ = 350 K and initial bubble
radius R0 = 10−4 m. The domain size is set to L = 8R0. The grid spacing is uniform and set
to 128 cells per initial bubble radius (∆ = R0/128). The boundaries of the domain, except for210

the axis of symmetry, have outflow boundary conditions where we impose a Dirichlet condition
for pressure (p = p∞), and a zero Neumann for both normal and tangential velocity compo-
nents. A key point is to set an initially uniform pressure p∞ across the whole domain. For the
sake of simplicity, we neglect surface tension so as to avoid dealing with the Laplace pressure
jump, which induces pressure changes inside the bubble as it shrinks or expands. This will215

also simplify the theory to which we will compare our numerical results. However, viscosity is
taken into account for it damps any interfacial corrugation that might arise from the absence of
capillary forces. Figure 1a presents a sequence of events for a case where the bubble is initially
hotter than the liquid, with ∆T = Tb − T∞ = 350 K. The time is shown in multiples of the
diffusive time scale of the gas τ = R2

0/κth,g, with κth,g = kg/ρgcp,g the thermal diffusivity of220

the gas. One clearly sees that as the heat diffuses into the liquid, the bubble shrinks until it
reaches a new equilibrium state. Owing to the much higher liquid thermal conductivity, one
hardly sees any increase in the liquid temperature, even at the bubble wall. Heat is rapidly
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Figure 2: A comparison between our code, implemented in Basilisk, and the spectral method’s solution for the
cases (a) ∆T = Tb − T∞ = 350 K and (b) ∆T = Tb − T∞ = −175 K.

diffused and the assumption of a constant temperature at the bubble interface is usually a
decent approximation in theoretical models. This is mainly the case for non-condensible gas225

bubbles in sufficiently cold liquids [42]. Figure 1b shows the case where the bubble is initially
cooler than the liquid, with ∆T = Tb − T∞ = −175 K. Heat thus diffuses into the bubble
interior which keeps expanding until thermal equilibrium with the liquid is established.

The equilibrium radii for both cases are given by equation 38. The temporal evolution of the
bubble radius is of interest as well and should be validated. As previously mentioned, Epstein230

and Plesset (1950) analytically derived R(t) by neglecting the advective terms; however, making
the same approximation in this case proved to be a simplistic solution. The reason is that this
process is relatively fast, especially at early times where Ṙ is of large magnitude. Therefore,
the advective terms could not be simply neglected. To make sure that our code also captures
the correct temporal evolution of R(t), we recur to a spectral method solution of the enthalpy235

equation inside the gas, coupled to an equation for the bubble radius [43–46]. In the absence of
viscous dissipation, the enthalpy equation inside the bubble, with temperature as the primitive
variable, is written as [47]

γ

γ − 1

p

T

[
∂T

∂t
+

1

γp

(
(γ − 1) kg

∂T

∂r
− 1

3
rṗ

)
∂T

∂r

]
− ṗ = kg∇2T, (39)

with
ṗ =

3

R

[
(γ − 1) kg

∂T

∂r

∣∣∣∣
R

− γpṘ

]
, (40)

the equation of pressure, assumed to be spatially uniform inside the bubble, which is typically240

the case for low densities of the gas [48]. In our case, ṗ = 0 since the motion is driven by a
temperature rather than by a pressure gradient. Equation 40 is thus simplified to a description
of the temporal evolution of the bubble radius as a function of the temperature gradient at the
interface. As can be seen, at t = 0, Ṙ → ∞. The assumption of a constant temperature at the
bubble interface is employed, enabling us to solve the coupled system of equations 39–40 only,245

completely disregarding what happens in the liquid. The details of the spectral method [45]
used for the solution is described in Appendix B.

Figure 2 shows a pretty good agreement between our current implementation of the thermal
effects and the spectral method’s solution. Our code well predicts the equilibrium radii as well
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Figure 3: (a) A grid convergence study for the cast ∆T = Tb − T∞ = 350 K. The inset is a zoom on R/R0 for
t ≃ τ . The different curves are for different numbers of cells per initial bubble radius. (b) A log-log plot of the
L2 norm of the error as a function of the mesh size. The black line, with a slope equal to 2, depicts a numerical
scheme that is exactly second order convergent in space.

as the temporal evolution in both cases. There is a slight discrepancy in R(t), most probably250

due to the fact that viscosity is taken into account in our code. In the spectral method, an
inviscid liquid was assumed. Viscosity dampens the motion and this is why we see a very small
offset between the two solutions, with ours being slightly slower. Were viscosity to be included
in the spectral solution, an additional equation, of the Rayleigh-Plesset type, would have been
needed for R(t). But this approximation is perfectly sufficient for our current purposes.255

Figure 3a shows that as the grid is refined, R(t) converges. 128 cells per initial bubble radius
seems to be a sufficient resolution for decent results, since one barely discerns any changes with
respect to a finer mesh. The results in figure 2 are thus produced with this resolution. Figure
3b shows the L2 norm of error with respect to the grid size, both in a log scale. Although
our implementation of the thermal effects is done implicitly, meaning it being unconditionally260

stable, a constant “diffusive” CFL is set for the grid convergence study,

C = κth,g
∆t

∆2
=

1

2
. (41)

The L2 norm of error is then computed from R(t) as follows,

∥ϵ∥2 =

[
100∑
i=0

(R∆(iτ/100)−R∆∗(iτ/100))
2

]1/2

, (42)

where ∆∗ = 1/256 is the most refined mesh size. As expected, the smaller the ∆, the smaller
the error. Compared to the solid black line in figure 3b, our method converges at second order
in space.265

4.2. Free linear oscillations of a gas bubble
Except in idealised analytical setups, every oscillating bubble experiences damping of its

motion via several mechanisms: acoustic radiation in the liquid, viscous dissipation at the
bubble wall, and thermal effects. These mechanisms alter the natural frequency of a bubble
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[49]. Chapman and Plesset (1971) [50] made available a theory for the free oscillations of a gas270

bubble in the linear regime. They quantify the contribution of each of the above mechanisms
to the overall damping of the motion. In addition they show that as the equilibrium radius of
the bubble decreases, the oscillation transitions from an adiabatic to an isothermal regime, in
the framework of polytropic processes. Later, Prosperetti and co-workers studied the thermal
effects in forced radial oscillations [42, 51, 52]. More recently, the theory was generalised, taking275

into account the effect of mass transfer on the attenuation of the bubble motion [53, 54]. In the
present work, we will focus on the thermal conduction contribution to the damping of free linear
oscillations of a gas bubble, and check that our code well captures the predicted transition. For
that end, both viscosity and surface tension are neglected.

We briefly describe the theory used for the comparison. For the details, the reader is referred280

to the relevant publication [50]. The temporal evolution of the bubble radius is described as

R(t) = R0 + ξ expΩt = R0 + ξ exp [(ζ + iω) t], (43)

where R0 is the equilibrium radius, ξ ≪ R0 is the amplitude of the perturbation, ζ a damping
factor and ω the angular frequency of the oscillation.

By linearising the equations, i.e. conservation of mass, momentum and energy, as well as the
equation of state, and by applying the linearised boundary conditions, Chapman and Plesset285

(1971) [50] were able to find an equation for Ω which, in the absence of capillary and viscous
effects, reads

Ω2 = −
(
1 +

ΩR0

cl

)
G

ρlR2
0

, (44)

where

G =
p0κth,gR

2
0 (λ2 − λ1)(

Ω
λ1

− κth,g

)(
R0λ

1/2
1 cothR0λ

1/2
1

)
−

(
Ω
λ2

− κth,g

)(
R0λ

1/2
2 cothR0λ

1/2
2

) , (45)

and where the constants λ1 and λ2 are the roots of the quadratic equation

Ω2 −
(
γ
p0
ρ0

+ Ωκth,g

)
λ+

p0
ρ0

κth,g

Ω
λ2 = 0. (46)

Equation 44 can then be solved in the complex plane by any root finding algorithm. Once Ω290

is computed, the logarithmic decrement Λ, an indicator of the motion’s attenuation, can be
readily obtained as

Λ =
ζ

f
= 2π

ζ

ω
. (47)

where f is the frequency of the oscillation. Minnaert (1933) [49] derived the natural frequency
of a bubble in an adiabatic regime. In such cases, the polytropic coefficient is equal to the ratio
of specific heats in the gas γp = γ, and the natural frequency, again in the absence of viscous,295

capillary and acoustic effects, reads

ω0 =

(
3γp0
ρlR2

0

)1/2

, (48)

where p0 is the equilibrium pressure. Since heat transfer between the phases is taken into ac-
count, equation 48 no longer holds. Instead, an “effective” polytropic coefficient γp is computed
as a correction to Minnaert’s frequency, in order to include thermal effects,

ω =

(
3γpp0
ρlR2

0

)1/2

. (49)
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Figure 4: (a) Logarithmic decrement at the end of one cycle of free bubble oscillation for different values of the
equilibrium radius. (b) Effective polytropic coefficient γp computed using equation 49 for different values of the
equilibrium radius.

Figure 5: (a) Normalised radius as a function of time for (a) R0 = 10−2 m and (b) R0 = 10−5 m. Times are
normalised with the respective oscillation period for each case T = 1/f = 2π/ω. The solid lines are obtained
using equation 43.
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We perform spherically symmetric simulations of an air bubble in liquid water at T∞ =300

350 K and p∞ = 1 atm. The equilibrium density of air is computed using the ideal gas
equation of state ρ0 = p0/ [T0 (cp,g − cv,g)], where p0 = p∞ in the absence of surface tension and
T0 = T∞. The bubble is slightly put out of equilibrium with the initial radius Ri = 1.001R0.
Since mass is conserved, the initial density is given by ρi = ρ0 (R0/Ri)

3. The initial pressure is
computed assuming a polytropic process, with its coefficient given by equation 49,305

pi = p0

(
R0

Ri

)3γp

. (50)

The initial temperature Ti is then computed using the equation of state. The thermodynamic
properties of both fluids are constants taken at the equilibrium pressure and temperature.
The resolution is uniform and set to 2048 cells per equilibrium bubble radius (∆ = R0/2

11).
Zero Neumann boundary conditions are imposed for both the pressure and the radial velocity
component in this spherically symmetric simulation. The domain size is set to L = 256R0,310

large enough for a bubble to complete an oscillation cycle before being affected by spurious
pressure reflections at the boundary from previous acoustic emissions, 2L > 2πcl/ω. Therefore,
a Dirichlet boundary condition for pressure p = p∞ could have been used also instead of the
vanishing Neumann with virtually no change in the results, since the domain length is much
bigger than the relevant scales of this problem. For a correct prediction of the acoustic emissions,315

the pressure waves should be accurately resolved. Therefore, an acoustic CFL condition is
employed, based on the speed of sound in the liquid,

Cac = cl
∆t

∆
=

1

2
. (51)

Simulations were carried out for R0 ∈ {5×10−6, 10−5, 10−4, 10−3, 10−2} m. Figure 4a shows
the theoretical logarithmic decrement (equation 47). Basilisk ’s results computed at the end
of one free oscillation cycle are in good agreement with the theory. This means that the code320

correctly captures the thermal damping. Figure 4b shows a perfect agreement between the
theoretically and numerically computed effective polytropic coefficients. The code correctly
captures the transition from an adiabatic to an isothermal oscillation as the equilibrium radius
decreases. Air as a diatomic gas has γ = 1.4, so the effective γp decreases from 1.4 to 1.

Figure 5a shows the temporal evolution of the radius for the case R0 = 10−2 m, compared325

with equation 43. This is an adiabatic regime as can be seen from figure 4b. The damping
merely consists of acoustic radiation. Very good agreement is achieved with the analytical
solution, both in terms of the attenuation and the oscillation frequency. The figure also shows
how the logarithmic decrement Λ is extracted from the numerical simulations. Figure 5b shows
the comparison for the case R0 = 10−5 m. This is a nearly isothermal case, and one can see330

that the motion is damped further. Thermal conduction now has an important contribution as
compared to figure 5a. The agreement is also good.

4.3. Single bubble sonoluminescence (SBSL)
Single bubble sonoluminescence is the periodic light emission from an acoustically strongly

driven gas bubble at a specific set of parameters, i.e. forcing amplitude, frequency, concentration335

of dissolved gas etc [55]. The bubble strongly and rapidly collapses so that the internal energy
is highly focused in a very small volume, leading to strong heating of the gas, partial ionisation,
and a recombination of ions and electrons (thermal bremsstrahlung [56]). This process of light
emission is surprisingly stable and periodic, and also visible to the naked eye in the dark [55].
It is a challenging problem from the numerical point of view for it is strongly non-linear, and340

an interplay between many physical aspects, i.e. heat and mass transfer, acoustic radiation
etc. Since our numerical method does not allow mass transfer at the moment, this aspect
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Figure 6: A single bubble of initial radius R0 = 4.5 µm at p∞ = 1 atm is subject to a pressure signal of
amplitude Pa = 1.2 atm at r = 0 and of frequency f = 26.5 kHz. The figure shows the bubble radius with
respect to time, for different numerical methods.

will be neglected, despite being important experimentally and having a direct effect on the
temperatures generated inside the bubble. We will assume that the bubble exists at the centre
of a spherical flask of radius R∞ = 0.01 m, surrounded by liquid water at atmospheric pressure.345

After having verified that our code is capable of producing a standing wave in pure liquid [57]
(Appendix C), we performed the simulation of a single sonoluminescent bubble in liquid water.
The test case is inspired by Brenner, Hilgenfeldt & Lohse (2002) [55] and is that of an Argon
bubble with an initial radius of R0 = 4.5 µm, in a spherical flask of radius R∞ = 0.01 m, driven350

with a pressure signal of amplitude Pa = 1.2 atm and of frequency f = 26.5 kHz. Spherical
symmetry is assumed, and the simulation is performed in the r-coordinate only. To achieve
a standing wave of amplitude Pa = 1.2 atm at r = 0, the amplitude ∆p∞ of the sinusoidal
driving is computed using equation C.7, and plugged in the Dirichlet boundary condition C.4.
A zero Neumann for the radial velocity is employed. The grid spacing is uniform and set to355

approximately 128 cells per initial bubble radius (∆ ≃ R0/128). Argon is a monoatomic noble
gas, so its ratio of specific heats is γ = 5/3. Both viscous and capillary effects are taken into
account in this simulation. Figure 6 shows the bubble radius as a function of time for one
oscillation cycle. Our results are compared to those of Brenner, Hilgenfeldt & Lohse (2002)
[55] and Zhou & Prosperetti (2020) [58] for the same case. The former authors employed a360

Rayleigh type equation to obtain their result (blue dots in figure 6), while the latter authors
performed DNS of the bubble interior, including an equation for temperature, coupled with a
Keller-Miksis equation for a description of the bubble radius (red dots in figure 6). The bubble
first expands isothermally, then violently collapses. Light is emitted at the end of this rapid
adiabatic collapse. Afterbounces also occur until a new oscillation cycle begins. The results365

show reasonable agreement, particularly between the current and Zhou & Prosperetti’s (2020)
[58] because both take into account thermal dissipation. Therefore, the results of both show
further damping (especially for the afterbounces) than Brenner, Hilgenfeldt & Lohse’s (2002)
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Figure 7: (a) Pressure field p(r, t) inside the spherical flask with respect to time. (b) Zoom in on the radial
range [0− 50] µm, occupied by the oscillating bubble, the radius of which is denoted by the red line.

[55] who treated the thermal damping only approximately. The current method is a full DNS,
both inside and outside the bubble. This is why we also see further damping in the present370

results than in Zhou & Prosperetti’s (2020) [58]. The model they use considers the liquid to
be only weakly compressible, so the amount of the bubble’s internal energy lost to acoustic
radiation is underestimated [48].

Figure 7a shows the pressure field p(r, t) inside the spherical flask with respect to time.
On the large scale, one clearly recognizes the sinusoidal driving in the colour change from375

dark to light. At different times, one sees the propagation of high pressure waves as white
straight lines, the slope of which is the speed of sound in the liquid, as indicated in the figure.
A disadvantage of the present code in simulating acoustically driven bubbles is the reflection
of emitted pressure/shock waves at the boundary which spuriously contaminate the physical
process. This is why only one oscillation cycle is simulated, with a numerical domain larger380

than 2000 times the initial radius of the bubble. With a careful inspection, one sees that
around t = 25 µs, the first emitted shock wave is reflected at r = R∞, and is carried back
as a rarefaction wave. However, since the numerical domain is large enough, the physical
process remains intact, which would not be the case had the simulation been continued for an
additional oscillation cycle. Figure 7b is a zoom in on the region of interest, occupied by the385

oscillating bubble. The bubble radius is depicted by the red line, and one clearly sees that the
pressure/shock waves that we just discussed are emitted at the moment of the main collapse, as
well as at subsequent collapses from the afterbounces. The capturing of this acoustic dissipation
is one of the advantages of this method over others [55, 58].

Figure 8 shows the temperature, in log scale, at the bubble centre r = 0 as function of time.390

At the moment of the main bubble collapse, the temperature peaks and reaches T ∼ 27500 K.
This is somewhat higher than the 15000K often reported [59], but consistent order of magnitude
wise. The reason for the lower temperature in experiment lies in the water molecules which
enter the bubble and reduce the effective polytropic exponents, and partial ionisation, which
does the same [60]. T (r = 0) also increases at each of the subsequent collapses, with the peaks395

gradually decreasing in value since the rebounds and collapses become weaker and weaker over
time due to viscous, acoustic and thermal damping.
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Figure 8: Bubble centre temperature T (r = 0, t) as a function of time. The temperature is represented in a log
scale.

5. Numerical examples

5.1. Spherical Rayleigh collapse
In this section, we perform spherically symmetric simulations of the Rayleigh collapse prob-400

lem [61]. But rather, the content of our bubble is gaseous instead of being void. Due to an
initially lower pressure p0 inside the bubble, the latter collapses and performs many oscillation
cycles before reaching an equilibrium state, provided damping mechanisms exist of course. Oth-
erwise, the bubble keeps oscillating indefinitely. In the current framework, the aim is to check
the effect of heat transfer on the collapse, as compared to a purely adiabatic case. Therefore,405

viscous and capillary forces are neglected. In particular, we compare the maximum pressure
reached by the bubble at the end of the first collapse phase. Concurrently, the bubble reaches
its minimum volume which we also compare.

We start by theoretically predicting the behaviour of the bubble in the two limiting cases:
the adiabatic and isothermal bubble response of a bubble in an inviscid incompressible liquid410

in the absence of surface tension. For this end, we write the conservation of the mechanical
energy in the liquid,

∂

∂t

[
ρl
1

2
u2

l

]
+∇ ·

[
ρl
1

2
u2

lul

]
= −∇ · (pl · ul) , (52)

and we integrate over the whole liquid volume using Gauss’s theorem,

dEk

dt
= −
ˆ

∇ · (pl · ul) dVl = −
ˆ

pl(ul · n)dS, (53)

where Ek =
´

1
2
ρlu

2
l dVl. The liquid volume is enclosed between two surfaces where the pressure

is uniform: the interface, where in absence of surface and viscous effects the pressure is equal to415

that of the bubble pb, and the far away boundary where the pressure is assumed to be constant
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Figure 9: (a) Normalised maximum pressure achieved by the bubble at the end of its first collapse as a function
of the maximum Mach number in the simulation. The adiabatic and isothermal theories are given by equations
56 and 57, respectively. (b) Normalised minimum volume reached by the bubble as a function of the maximum
Mach number in the simulation.

and equal to p∞. Thus, eq. 53 can be readily integrated in time between t = 0 and any
arbitrary instant,

Ek(t) =

ˆ Vb(t)

V0

(p∞ − pb)dVb, (54)

where we have imposed that the initial kinetic energy in the liquid is zero. We have also used the
mass conservation relation

´
(ul · n)dS = dVb

dt
. If we evaluate this expression for the particular420

time at which the bubble reaches its minimum volume and the liquid velocity becomes zero,
then,

p∞ (Vmin − V0)−
ˆ Vmin

V0

pbdVb = 0, (55)

which can be integrated for a known relation between the bubble pressure and volume. For
instance, if we assume a polytropic processes then pbV

γ
b = p0V

γ
0 (adiabatic case), then

p∞ (Vmin − V0) +
p0V

γ
0

γ − 1

(
V 1−γ
min − V 1−γ

0

)
= 0, (56)

which is a non-linear equation where Vmin can thus be computed using any root finding algo-425

rithm. The maximum pressure pmax achieved by the bubble at this instant is immediately found
using the relation between pressure and volume imposed by a polytropic process. Analogously,
in the isothermal limit pbVb = p0V0 and the resulting equation is

p∞ (Vmin − V0)− p0V0 ln

(
Vmin

V0

)
= 0. (57)

For the simulations, an air bubble, with an initial radius R0 = 10−4 m, is initialised with a
pressure p0 = 0.1 bar. The surrounding liquid is assumed to be water at T∞ = 293.15 K, with430

a density ρl = 998.21 kg/m3. Simulations are done for a wide range of liquid far field pressures
p∞/p0 ∈ [2, 100]. In all cases, the bubble is initially supposed to be in thermal equilibrium
with the surroundings T0 = T∞. The domain size is set to 64 times the initial radius of the
bubble, and the employed resolution is ∆ = R0/1024. Zero Neumann boundary conditions are
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imposed for both the pressure and the radial velocity component in this spherically symmetric435

simulation.
Figure 9a shows the normalised maximum pressure reached inside the bubble at the end

of the first collapse phase, as a function of the maximum Mach number Mamax = Umax/cl,
where padmax = p0 (V0/Vmin)

γ is the maximum pressure computed after obtaining Vmin using
the adiabatic theory eq. 56, and Umax =

(
padmax/ρl

)1/2 given by the incompressible theory. As440

the initial pressure ratio p∞/p0 increases, the collapse of the bubble becomes more violent and
compressibility effects will become much more important. Therefore, a more descriptive dimen-
sionless number is the aforementioned maximum Mach number. The result of the adiabatic
simulations, where the thermal conductivities of both fluids are set to zero, are in agreement
with the adiabatic theory for small Mamax. As the latter number increases, the maximum445

pressure achieved in the simulations becomes less than that predicted by the incompressible
adiabatic theory eq. 56. A more important fraction of the bubble’s internal energy is then
radiated via pressure/shock waves to the surrounding liquid. Therefore, the bubble achieves
less compression, and reaches minimum volumes that are larger than those predicted by the
theory, as can be seen in figure 9b. When heat diffusion between the phases is taken into450

account, the bubble is compressed further. As expected, the results of the thermal all-Mach
code in figures 9a-b lie in the envelope delimited by both theories, until compressibility effects
become prominent. At much larger pressure ratios, the Rayleigh collapses become much more
violent, with a much higher collapse velocity (p∞/ρl)

1/2. Therefore the Peclet number, defined
as Pe = R0(p∞/ρl)

1/2/κth,g where κth,g is the thermal diffusivity of the gas, becomes much455

larger. This means that thermal diffusion happens at a much longer time as compared to ad-
vection. Therefore, thermal all-Mach should converge towards its adiabatic counterpart, which
seems to be the trend in our simulations as well (solid black lines in figure 9a). It must be stated
that although the peak pressures reached during an isothermal compression are higher than
those of an adiabatic one (figure 9a), the internal energy e = pV/ (γ − 1) is smaller since the460

bubble volume reached at the end of the compression is smaller in the isothermal case (figure
9b). Indeed, one would expect the internal energy to be smaller in the isothermal limit since
heat is evacuated from the bubble.

5.2. Bubble collapse near a rigid boundary
Studies of a collapsing bubble near a rigid boundary abounds in the literature [1, 23, 62, 63].465

In the present work, we also tackle it, with a special focus on the temperature field and the heat
flux across the bubble. Axisymmetric simulations of a collapsing air bubble in the vicinity of a
rigid boundary are performed. The surrounding liquid is assumed to be water at p∞ = 1 atm
and T∞ = 293.15 K, with a density ρl = 998.21 kg/m3. The bubble’s radius is initially set to
R0 = 10−4 m, and its pressure to pb,0 = p∞/20. The parameters and properties of the problem470

are then rendered dimensionless by R0, ρl, ∆p0 = p∞ − pb,0 and T∞. Times will therefore be
represented as multiples of the Rayleigh collapse time tR = 0.915R0 (ρl/∆p0)

1/2 [61]. Water
is supposed to be inviscid, with a hypothetical surface tension defined by a Weber number of
We = ∆p0R0/σ = 1000. The bubble is initially supposed to be in thermal equilibrium with
the surroundings Tb,0 = T∞, and with a density of ρg = ρl/1000. The domain size is set to 64475

times the initial radius of the bubble, and the employed resolution is ∆ = R0/256, gradually
coarsened far from the bubble (Appendix A of [5]). The bottom boundary has the conditions
of a rigid wall, i.e. u = 0, and a zero pressure gradient in the normal direction (∂p/∂z = 0).
The top and right boundaries have outflow conditions where we impose the pressure as p = p∞,
zero normal velocity gradients and vanishing shear stresses (top: ∂vr/∂z = 0, ∂vz/∂z = 0,480

right: ∂vz/∂r = 0, ∂vr/∂r = 0). Three cases are simulated, where the difference only lies in
the initial distance H between the bubble centre and the rigid wall (z = 0). Let δ = H/R0 be
the stand-off ratio, it spans the following set δ ∈ {2, 3, 4}. All other parameters are kept the
same.
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Figure 10: Snapshots of a collapsing bubble near a rigid boundary for (a-c) δ = 2, (d-f) δ = 3, (g-i) δ = 4. The
left hand panel of each snapshot shows the temperature field with the velocity vectors in the liquid. It must be
stated that the scale of the vectors is not common amongst all the snapshots in order to show the motion in
each case. The right hand panelshows the pressure field. The respective instants in time are indicated on top
of each snapshot.
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Figure 11: (a) Dimensionless heat flux across the bubble surface with respect to time, calculated using equation
62, for the different stand-off ratios. (b) Normalised surface area of the bubble with respect to time, for the
different values of the stand-off ratio. (c) Zoom around the moment of bubble collapse, showing the minimum
surface area achieved for different stand-off ratios.

The collapse of the bubble is driven by the initial pressure difference ∆p0. As the bubble is485

compressed, its internal pressure increases. Lord Rayleigh (1917) [61] was the first to quantify
the huge increase of the liquid pressure at the bubble wall. The existence of a boundary breaks
the spherical symmetry of the pressure field, which can be seen in figures 10a, 10d and 10g
where an imbalance in pressure exists between the top and bottom walls of the bubble. The
closer the bubble is to the boundary, the more important this imbalance is. The effect of this490

can also be seen in the shape of the inner jet that pierces the bubble, directed towards the rigid
boundary, and which becomes thicker for smaller δ. The bubble reaches its minimum volume,
associated with the highest internal pressure and temperature. The inner jet finally impacts
the bottom wall of the bubble and breaks it into a toroidal structure (figures 10c, 10f and
10i). The main difference between the pressure and the temperature field is that the former is495

fairly uniform inside the bubble, while the latter is a function of space. The temperature field
is continuous across the bubble interface; therefore, a thin thermal boundary layer insures a
smooth transition between the inside and the outside of the bubble wall. This boundary layer
can be better discerned as Ṙ decreases (figures 10f and 10i) so that the bubble wall motion is
isothermal and not adiabatic. The temperature of the liquid hardly increases, even at the close500

vicinity of the interface owing to the much higher thermal conductivity of the liquid.
It is of interest to check the heat flux across the bubble interface, for the different stand-off

ratios, and check whether the difference in the bubble shape, and thus surface area, affects it
or not. Let the bubble be our control volume. In the absence of mass transfer effects, it is
considered as a closed thermodynamic system. The first law of thermodynamics is therefore505

written as,
dU = δQ− δW, (58)

where U = ρe is the internal energy of the bubble, Q the heat supplied to the system and W
the mechanical work done by the system due to pressure differences. Derived with respect to
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time, each of the above terms is expressed as follows,
dU

dt
=

d

dt

˚
ρedV, (59)

∂Q

∂t
= −
‹

q · ndS, (60)

∂W

∂t
= p

dV

dt
. (61)

For a perfect gas, ρe = p/ (γ − 1), and since the pressure inside the bubble is uniform, equation
58, derived with respect to time, yields an expression for the heat flux across the bubble
interface,

−
‹

q · ndS =
1

γ − 1
V
dp

dt
+

γ

γ − 1
p
dV

dt
. (62)

Figure 11a shows the heat flux across the bubble surface for the different stand-off ratios510

δ. As previously mentioned, δ is the only parameter that changes between the simulations,
therefore the heat flux appears to be a function of it. Namely, the heat flux seems to increase
with decreasing δ. Figure 11b shows the normalised surface area of the bubble with respect
to time. As the bubble collapses, it deviates from the spherical shape due to the previously
discussed mechanisms. This deformation is more prominent for smaller δ, translated by a bigger515

bubble surface area as can be seen from the inset (figure 10c). This leads to further contact
between both phases, and therefore to a larger heat flux.

6. Conclusions and outlook
In this paper, we presented a generalisation of the all-Mach solver [1], previously adiabatic,

so that it takes into account heat diffusion between the different phases. Therefore, we derived520

a two-way coupled system of equations for pressure and temperature, which was then solved
implicitly using a multigrid solver. Different test cases were proposed to validate the correct
implementation of the thermal effects. An Epstein-Plesset like problem is studied, where a
temperature gradient exists across the bubble wall and drives the flow. The temporal evolution
of the bubble radius is shown to compare well with a spectral method solution. The code525

also reproduces free small amplitude oscillations of a spherical bubble. As the equilibrium
radius decreases, the Peclet number associated with the bubble oscillations also decreases.
Analytical solutions therefore predict a transition from adiabatic to isothermal oscillations. A
good agreement between the simulations and the theory is achieved. In addition, we show
results of a single sonoluminescent bubble (SBSL) in standing waves, where the result of the530

DNS is compared with that of other methods in the literature. Besides capturing the thermal
effects, our code exhibits the strongest damping as compared to the other tested methods
because it solves for the compressible effects in the liquid, and thus accurately predicts the
emission of shock waves. Using the solver, the spherical Rayleigh collapse was studied for a
wide range of pressure ratios showing a comparison between thermal and adiabatic simulations.535

For high pressure ratios, the collapses became much more violent and tended to the adiabatic
limit, even when thermal diffusion was taken into account. Finally, the axisymmetric collapse
of a bubble near a rigid boundary was studied, giving the change of heat flux as a function of
the stand-off distance.

The present work extends the applicability of the all-Mach solver to the simulation of540

compressible multiphase flows where thermal effects are relevant. Applications could be the
study of thermal ablation by means of bubble inception and collapse close to boundaries. Also,
the current implementation is one step further towards the simulation of boiling flows for
example. Future work could be the extension of the all-Mach solver to include mass transfer
and phase change, which would allow the simulation of a plethora of physical flows involving545

all the previous effects.
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Figure A.12: This figure depicts a 3x3 stencil, and can be analogously extruded to account for the third
dimension. The temperature field T and the volume fraction C are cell-centred and shown in black, whereas
the thermal conductivity and the gradient of temperature are defined as face vectors shown in red.
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Appendix A. Discretization of the conductive term560

In this appendix, we provide the discretization method of the conductive term in equations
6, 8, and 10. The term in question is −∇ · q = ∇ · (k∇T ). The thermal conductivity k is
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defined as a face vector shown in red in figure A.12. It is computed using an arithmetic average
k̄ = Cfk1+(1− Cf ) k2, where Cf is the face volume fraction interpolated from the neighbouring
cells, and k1 and k2 are the thermal conductivities of the liquid and gas phase, respectively.

kx
i,j =

(
Ci−1,j + Ci,j

2

)
k1 +

(
1− Ci−1,j + Ci,j

2

)
k2,

kx
i+1,j =

(
Ci,j + Ci+1,j

2

)
k1 +

(
1− Ci,j + Ci+1,j

2

)
k2,

ky
i,j =

(
Ci,j−1 + Ci,j

2

)
k1 +

(
1− Ci,j−1 + Ci,j

2

)
k2,

ky
i,j+1 =

(
Ci,j + Ci,j+1

2

)
k1 +

(
1− Ci,j + Ci,j+1

2

)
k2.

The presence of the interface is thus taken into account as such, and the heat flux across the
faces in this one-fluid formulation is then given by,

qxi,j = −kx
i,j∇T x

i,j = −kx
i,j

(
Ti,j − Ti−1,j

∆

)
,

qxi+1,j = −kx
i+1,j∇T x

i+1,j = −kx
i+1,j

(
Ti+1,j − Ti,j

∆

)
,

qyi,j = −ky
i,j∇T y

i,j = −ky
i,j

(
Ti,j − Ti,j−1

∆

)
,

qyi,j+1 = −ky
i,j+1∇T y

i,j+1 = −ky
i,j+1

(
Ti,j+1 − Ti,j

∆

)
.

Therefore, we will have the heat transfer term evaluated at the cell centre {i, j} as

−∇ · q = −
(
qxi+1,j − qxi,j

∆
+

qyi,j+1 − qyi,j
∆

)
. (A.1)

Alternatively, one could employ a harmonic average, k̄ = (Cf/k1 + (1− Cf )/k2)
−1, for the

thermal conductivity. Figure A.13 shows both averaging methods for the test case in section
4.1. The results show a pretty good agreement with merely a small discrepancy between the two
averaging methods, as shown by the zoomed view over the region delimited by the black dashed565

box. In this case, the arithmetic mean seems to fit better with the Spectral solution. However,
we do not make further comments on this matter, leaving the reader the choice between the two
averaging methods, since one might be better than the other in specific cases, and a systematic
study would then be needed to settle the choice, which is beyond the scope of our current work.

570

Appendix B. Spectral method

With the assumptions we made in section 4.1, equations 39–40 are reduced to the following,
assuming spherical symmetry,

γ

γ − 1

p

T

[
∂T

∂t
+

γ − 1

γp
kg

(
∂T

∂r

)2
]
=

kg
r2

∂

∂r

(
r2
∂T

∂r

)
, (B.1)

Ṙ =
γ − 1

γp
κg

∂T

∂r

∣∣∣∣
R

. (B.2)
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Figure A.13: This figure depicts the same test case as the one in figure 2a. The blue curve is the Spectral
method solution, the orange markers represent the numerical solution employing an arithmetic mean for the
thermal conductivity k, and the yellow markers represent the numerical solution employing a harmonic mean
for k. The inset is a zoomed view over the region delimited by the black dashed box.

It is numerically convenient to treat the problem as that of a fixed boundary, so we use the575

following coordinate mapping,
y =

r

R(t)
. (B.3)

The equations are then transformed to,

γ

γ − 1

p

T
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∂T

∂t
+

γ − 1

γp
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R2

(
∂T
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∂
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(
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)
, (B.4)

Ṙ =
γ − 1

γp

κg

R

∂T

∂y

∣∣∣∣
y=1

. (B.5)

We now attempt to solve the advection-diffusion problem, taking into account the change of
boundary via a spectral method. To that end, we expand the temperature into Chebyshev580

polynomials,

T (t, y) =
N∑

n=0

an(t)T2n(y), (B.6)

where T2n are the Chebyshev polynomials. Notice that only even polynomials are used so as to
enforce the symmetry boundary condition at y = 0. We substitute expansion B.6 into equation
B.4 and the result is evaluated at the Gauss-Lobatto collocation points yn,

yn = cos
( nπ

2N

)
, n = 1, 2..., N. (B.7)

This yields N coupled ODEs of the type ȧn = f(an), for the N + 1 coefficients. The last585

equation is constructed from the constant temperature boundary condition at y = 1, which we
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Figure C.14: The amplitude of the standing pressure wave ∆pl,0 at r = 0, normalised by the amplitude of the
driving signal ∆p∞, as a function of the dimensionless parameter 2fR∞/cl. The solid line is computed using
equation C.7.

derive with respect to time,
N∑

n=0

ȧnT2n(1) = 0. (B.8)

With the added ODE for the bubble radius, equation B.5, we have a system of N+2 coupled
first order ODEs, which is linearised and then implicitly integrated in time.

Appendix C. Standing wave in pure liquid590

The inviscid Euler equations, in a spherically symmetric framework, are written as

1

ρlc2l

∂pl
∂t

= − 1

r2
(ulr

2)

∂r
, (C.1)

ρl
∂ul

∂t
= −∂pl

∂r
. (C.2)

The boundary conditions are

ul(r = 0, t) = 0, (C.3)
pl(r = R∞, t) = pl,∞ +∆p∞ sin (ωt) , (C.4)

where p∞ is the atmospheric pressure, ∆p∞ the driving amplitude and ω the frequency of the
acoustic signal. The standing wave solution is [57, 65],

ul(r, t) =
∆p∞
ρlcl

1

sin (kR∞)

R∞

r

[
cos (kr)− sin (kr)

kr

]
× cos (ωt) , (C.5)

pl(r, t) = pl,∞ +∆p∞
1

sin (kR∞)

R∞

r
sin (kr)× sin (ωt) , (C.6)
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where k = ω/cl is the wavenumber. The amplitude of the standing pressure wave at the centre
of the flask thus is

pl(r = 0)− pl,∞
∆p∞

=
Pa

∆p∞
=

kR∞

sin (kR∞)
. (C.7)

We test the capability of our code to produce the correct amplitude of a standing pressure wave595

at r = 0. The frequency of the driving signal is set to f = 10000 Hz, and its amplitude to
∆p∞ = 1 atm. Equation C.4 is set as a Dirichlet boundary condition at r = R∞. Simulations
are performed for multiple values of R∞. Figure C.14 shows a perfect agreement between
equation C.7 and our code. The theory predicts resonance for 2fR∞/cl = 1 which is also
observed in our simulations.600
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