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ABSTRACT:
In this study, we investigated the effect of specific noise realizations on the discrimination of two consonants, /b/ and

/d/. For this purpose, we collected data from twelve participants, who listened to /aba/ or /ada/ embedded in one of

three background noises. All noises had the same long-term spectrum but differed in the amount of random envelope

fluctuations. The data were analyzed on a trial-by-trial basis using the reverse-correlation method. The results

revealed that it is possible to predict the categorical responses with better-than-chance accuracy purely based on the

spectro-temporal distribution of the random envelope fluctuations of the corresponding noises, without taking into

account the actual targets or the signal-to-noise ratios used in the trials. The effect of the noise fluctuations explained

on average 8.1% of the participants’ responses in white noise, a proportion that increased up to 13.3% for noises

with a larger amount of fluctuations. The estimated time-frequency weights revealed that the measured effect origi-

nated from confusions between noise fluctuations and relevant acoustic cues from the target sounds. Similar conclu-

sions were obtained from simulations using an artificial listener. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

Studies of speech-in-noise perception often rely on

speech reception thresholds (SRTs) as a measure of speech

intelligibility. An SRT is defined as the signal-to-noise

ratio (SNR) at which a specific phoneme, word, or sentence

score is achieved for a specific set of speech sounds [e.g.,

Plomp and Mimpen (1979)]. SRTs are typically obtained

from many trials, obtaining an efficient overall estimate of

speech intelligibility in different background noise condi-

tions [e.g., Francart et al. (2011) and Stone et al. (2011)].

Following the rationale from some existing studies

(J€urgens and Brand, 2009; Zaar and Dau, 2015), we will

refer to this classical approach as providing a macroscopic

view on speech perception performance. The term macro-

scopic refers to the fact that speech intelligibility can be

efficiently characterized based on long-term characteristics

of the masking sounds. Complementary to these overall

insights, a microscopic view on speech perception is

obtained from approaches where intelligibility is assessed

on a trial-by-trial basis. A microscopic approach investi-

gates the response variability that must be, to some extent,

related to the “external variability” due to the randomness

in the noise stimuli (Green, 1964). For the purposes of this

study, specific noise realizations having the same long-

term characteristics will be referred to as noise tokens. In

this sense, a macroscopic estimate of speech intelligibility

will be influenced by an “overall effect” of noise, whereas

a microscopic estimate will be related to a “token-specific

effect” of noise.

Macroscopic estimates of intelligibility can be inter-

preted in terms of energetic masking and modulation mask-

ing. The concept of energetic masking refers to a masking

effect that occurs when the target sound and the (undesired)

masker overlap in a set of frequency bands (French and

Steinberg, 1947). In such cases, the weakest elements in the

speech sounds become less audible when the SNR is

decreased, until the sounds are no longer detected [see, e.g.,

Li et al. (2010), their Fig. 1]. The concept of modulation

masking is similar to energetic masking but operates in the

temporal modulation domain. Here, the long-term property

that determines the amount of masking is the amplitude of

noise envelope fluctuations within each of the analyzed fre-

quency bands. Random envelope fluctuations have been

shown to be detrimental to listening performance. As stated

by Drullman (1995), they induce a “sorting problem” because

the weak elements in the signal are likely to be confused with

irrelevant fluctuations from the masker. Importantly, this phe-

nomenon is present even for steady-state masking noise, such

as white noise or speech-shaped noise, due to the intrinsic

random envelope fluctuations present in the masker signal

(Dau et al., 1999). Modulation masking appears to be directly

related to the amount of envelope fluctuations in the signal

relative to the fluctuations in the noise (Dubbelboer and

Houtgast, 2008; Jørgensen and Dau, 2011), although studies

investigating modulation masking in speech-in-noise percep-

tion do not agree on the strength of this effect (Drullman,

1995; Dubbelboer and Houtgast, 2007; Noordhoek anda)Email: leo.varnet@ens.psl.eu
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Drullman, 1997; Stone et al., 2011; Stone et al., 2012). In

summary, the overall impact of noise on intelligibility using

the concepts of energetic and modulation masking is deter-

mined by long-term statistics of the noise masker, based on

either band-level energy or the amplitude of random fluctua-

tions, respectively. A macroscopic approach provides an effi-

cient way to measure the impact of energetic and/or

modulation masking on speech intelligibility, for example by

comparing the SRT or the mean intelligibility scores between

noise maskers with different long-term characteristics, mea-

sured across a large number of noise tokens [e.g., Francart

et al. (2011) and Stone et al. (2011)].

However, speech intelligibility performance estimated

from multiple trials may obscure information about how indi-

vidual tokens are perceived [see, e.g., Singh and Allen (2012)

and Zaar and Dau (2015)]. In a more general context, psycho-

acousticians have long been aware of the existence of a

token-specific effect of noise, even if the noise tokens have

the same long-term statistical properties. The studies by

Pfafflin and Mathews (1966) and Pfafflin (1968) using frozen

(reproducible) noise, showed that the trial-by-trial perfor-

mance in a tone-in-noise detection task varies significantly

over masker waveforms. In a series of two seminal studies on

tone-in-noise detection, Ahumada and colleagues (1971,

1975) related the acoustic characteristics of the individual

noise tokens to the corresponding responses of the partici-

pants. They used a multiple regression analysis to predict

the trial-by-trial decision based on spectro-temporal repre-

sentations of the noise tokens alone. The observed patterns

of weights suggested that their subjects’ decisions were

partly related to the exact configuration of the noise token.

In particular, the presence of noise energy in the spectro-

temporal region of the signal led to an increase in signal-

present responses. Conversely, noise tokens with more

energy in the regions preceding the signal and surrounding

it in frequency yielded more signal-absent responses.

Following a similar approach, Varnet and Lorenzi (2022)

showed that the exact temporal distribution of random

envelope fluctuations in a trial has a systematic influence

on the detection of an amplitude-modulated target. More

specifically, these fluctuations can bias the participant’s

response towards perceiving a 4-Hz modulation (or not)

depending on the token-specific configuration.

In speech perception, however, demonstrations of the

token-specific effect of noise are more seldom. One example

is provided by Zaar and Dau (2015), who performed a trial-

by-trial analysis using a fixed set of frozen noise tokens.

Their participants had to identify consonant-vowel words

embedded in white noise at six SNRs. The authors were par-

ticularly interested in assessing the effect of various sources

of variability in the task. They found that a 100-ms temporal

shift of the masking noise waveform could induce a signifi-

cant perceptual effect, that was well above the assessed

within-listener variability. Thus, a given speech utterance

was found to be either more or less robust, eliciting a differ-

ent pattern of confusions, depending on whether the utter-

ance was presented along one specific noise token or its

time-shifted version [see also Cooke (2009)]. In their inter-

pretation of this finding, Zaar and Dau (2015) noted that

“[…] the common assumption in various previous studies of

an invariance of consonant perception across steady-state

noise realizations cannot be supported by the present study.

In fact, the results obtained here suggest that the interaction

between a given speech token and the spectro-temporal

details of the “steady-state” masking noise waveform matter

in the context of microscopic consonant perception. When

analyzing responses obtained with individual speech tokens,

averaging responses across noise realizations thus appears

problematic” (p. 1263). This conclusion is supported by the

results in two of our previous studies on phoneme discrimi-

nation in white noise (Varnet et al., 2013; Varnet et al.,
2015). Similar to the method adopted by Ahumada et al.
(1975), the microscopic approach used in these studies was

based on a trial-by-trial statistical analysis that relates the

random envelope fluctuations of the noise with the corre-

sponding response of the listener. The outcome of this anal-

ysis is a time-frequency (T-F) matrix of perceptual weights,

named auditory classification image (ACI), which highlights

the T-F regions of the stimulus where an increase in random

envelope fluctuations induces a systematic bias in the listen-

er’s phonetic decision. The measured ACIs revealed a sig-

nificant pattern of weights, therefore confirming the role of

the token-specific effect of noise on phoneme perception.

The above set of findings based on microscopic

approaches (frozen noise or ACI) suggests that the overall

effect of noise on speech perception must be further comple-

mented by the assessment of a token-specific effect.

However, the strength of this effect remains a debated ques-

tion. For example, R�egnier and Allen (2008) measured the

variance caused by the masker in an auditory representation

of the phoneme /t/ embedded in white and speech-shaped

noises, concluding that—at least for this noise-robust pho-

neme—the SNR range in which noise and speech informa-

tion interacted was in fact very limited and that different

noise tokens should not significantly impact phonetic judge-

ments. Contrary to these conclusions, Zaar and Dau (2015)

estimated a significant effect of the variability in the back-

ground noises on their listeners’ decisions, although this

effect was found to be smaller than the effect induced by the

variability in the speech sounds. Support for these

FIG. 1. (Color online) T-F representations of the two targets used in the exper-

iment, /aba/ and /ada/. The time and frequency resolutions are the same as

those used for the analysis (see Sec. II E 3 a). Lighter regions indicate higher

amplitudes in a logarithmic scale. The white traces indicate the fundamental

frequency ( f0) and formant trajectories (F1–F4).
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observations can also be found in the preliminary study by

Cooke (2009), who estimated a small effect of noise on

word confusions, finding consistent confusions in 7% of the

noisy speech stimuli for a majority of his participants.

The present study investigates the token-specific effect

of random envelope fluctuations introduced by noise1 on the

perception of speech acoustic cues in a consonant-in-noise

discrimination task using nonsense words of the structure

vowel-consonant-vowel. More specifically, the task is tested

using an /aba/ and an /ada/ utterance presented in three types

of background noises. All noises have the same flat long-

term averaged spectrum but differ in the amount of random

envelope fluctuations: A Gaussian white noise, a noise with

a band limited modulation spectrum, or a noise with ran-

domly imposed bursts of energy. The overall effect of noise

on the participants’ performance is quantified based on the

SNR required to successfully discriminate the target sounds

with a 70.7% correct response rate. Additionally, the token-

specific effect of noise on performance is quantified by

means of an analysis of the exact trial-by-trial random enve-

lope fluctuations that is inherent to the reverse-correlation

method used to derive ACIs.

In this context, our working hypotheses (H1–H4) are as

follows:

H1: Using the derived ACIs and the specific set of noise

tokens used during the experiments, we can predict the

response (“aba” or “ada”) of each participant with an accu-

racy that is significantly above chance. The prediction perfor-

mance metrics will provide us with a measure of the strength

of the token-specific effect in this speech-in-noise task.

H2: Noise conditions differing only with respect to their

modulation content will induce a different token-specific

effect. More specifically, for a given overall performance

level, noises with a larger amount of random envelope fluc-

tuations will yield a higher ACI prediction performance.

H3: The ACIs will be globally similar for all individuals

and conditions. Not only the token-specific effect should be

measurable in each listener, but it should impact the same

cues for every participant, as the individual listening strate-

gies should be globally similar.

H4: Noises with a larger amount of random envelope fluc-

tuations should yield better predictions when ACIs are

derived using simulated responses from an artificial lis-

tener. This hypothesis can be seen as a way to jointly test

H1–H3 based on a decision strategy that integrates signal-

driven (bottom-up) cues as an ideal observer would do. In

other words, the artificial listener is used as a baseline for

performance (Green and Swets, 1966).

All hypotheses (H1–H4) were preregistered before data

collection (Osses and Varnet, 2022c).

II. MATERIALS AND METHODS

All stimuli and procedures were preregistered (Osses

and Varnet, 2024) and can be reproduced with the fastACI

toolbox (Osses and Varnet, 2023), which in the following

we refer to as “the toolbox.”

A. Stimuli

1. Target sounds

We used two male speech utterances from speaker

S43M taken from the OLLO speech corpus (Meyer et al.,
2010) (/aba/: S43M_L007_V6_M1_N2.wav; /ada/:

S43M_L001_V6_M1_N1.wav). We preprocessed these

speech samples to align the time position of the vowel-

consonant transitions, to equalize their energy per syllable,

and to have the same waveform duration (Osses et al.,
2022a). The stored sounds have a duration of 0.86 s, a sam-

pling frequency fs of 16 kHz, and an overall level of 65 dB

sound pressure level (SPL). The time-frequency (T-F) repre-

sentation of the stored sounds is presented in Fig. 1, together

with their fundamental-frequency ( f0) and formant (F1–F4)

trajectories.

2. Background noises

Three types of background noise conditions were tested.

These conditions were chosen to include a stationary noise

condition using white noises and two additional noises with

stronger envelope fluctuations below 35 Hz, that correspond

to non-stationary noise conditions. To increase the low-

frequency fluctuations in the envelope domain, we designed

an algorithm to generate a white noise with superimposed

Gaussian bumps and an algorithm to generate noises with

limited modulation power spectrum (MPS). We abbreviate

these two types of noises as bump and MPS noises, respec-

tively. The noises were generated at an fs of 16 kHz with a

duration of 0.86 s and an overall level of 65 dB SPL. The

noises were subsequently gated on and off with 75-ms

raised-cosine ramps before being stored on disk.

The acoustic characteristics of the noises are shown in

Fig. 2 and the algorithm details are given in the next para-

graphs. For each noise we show the T-F representation of

one arbitrarily chosen noise realization [Fig. 2(a)], fol-

lowed by an acoustic analysis of the noises derived from

1000 noise realizations [Figs. 2(b) and 2(c)] using (1)

critical-band levels within 1 equivalent rectangular band-

width (ERB) for bands centered between 87 Hz (or 3

ERBN) and 7819 Hz (or 33 ERBN) in Fig. 2(b) and (2)

assessing the broadband envelope spectrum obtained from

the absolute value of the Hilbert envelope in Fig. 2(c), ref-

erenced to their mean (DC) value, equal to 66.2 dB for all

noises [0 dB re. max in Fig. 2(c)].

The generated white noises had a spectrum level of

26 dB/Hz with an effective bandwidth between 0 and

8000 Hz, resulting in critical-band levels between 40.7 dB

and 56.2 dB [Fig. 2(b)]. The envelope spectrum [Fig. 2(c)]

was approximately constant with a median amplitude of

–44 dB re. max, although a theoretical monotonic decrease

up to fs=2 is expected (Dau et al., 1999). This decrease is

not visible due to the 0–60 Hz limit of the abscissa.
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The bump noises were generated using an algorithm

similar to that described by Varnet et al. (2019). Each noise

token was generated starting from a Gaussian noise to which

bumps were superimposed. The bumps are regions of excita-

tion that have a Gaussian shape defined by a temporal width

of rt¼ 0.02 s and a spectral width of rf¼ 0.5 ERB, ampli-

fied by up to 10 dB. The time and frequency locations of the

bumps were randomly spread across the entire duration of

the initial Gaussian noise and through the whole T-F space,

i.e., between 80 and 7158 Hz (i.e., 1 ERBN below 8000 Hz).

Each waveform contained 30 newly drawn Gaussian bumps.

The generated bump noises had critical-band levels between

40.5 and 55.8 dB [Fig. 2(b)]. The envelope spectrum

[Fig. 2(c)] had a triangular shape going from an amplitude

of –34.8 dB re. max at fmod ¼ 3 Hz down to –42.7 dB

re. max at fmod ¼ 31:1 Hz with an approximately constant

spectrum thereafter (median amplitude of –42.5 dB re. max).

Finally, the MPS noises were generated by limiting

their spectrum in the modulation frequency domain using a

set of temporal and spectral rate cut-off frequencies. We

chose a temporal cut-off of 35 Hz and a spectral cut-off of

10 cycles/Hz, based on the study by Elliott and Theunissen

(2009) and some pilot tests. The MPS bandwidth was lim-

ited using the phase reconstruction approach from the

PhaseRet toolbox (Prů�sa, 2017). Inspired by Venezia et al.
(2016), we first generated a white noise that is multiplied in

the MPS domain by a low-pass envelope with the desired

characteristics defined by the temporal and spectral cut-off

frequencies. The MPS-limited representation was then con-

verted back to a time-domain waveform and stored on disk.

The generated MPS noises had band levels between 38.1

and 56.0 dB [Fig. 2(b)]. The envelope spectrum [Fig. 2(c)]

had a constant value of –39.9 dB re. max starting after the

mean (DC) component at 0 Hz and up to about 35 Hz, an

amplitude that decreases to a constant value of –43.2 dB re.

max thereafter.

In summary, all noises originate from white noises with

or without emphasized envelope fluctuations, sharing nearly

the same long-term spectral content [Fig. 2(b)]. However,

the noises have a different amount and distribution of ran-

dom envelope fluctuations in the modulation-frequency

domain [Fig. 2(c)]. White noises have low envelope fluctua-

tions, MPS noises have rectangular-shaped low-pass enve-

lope fluctuations (cut-off fmod¼ 35 Hz), and bump noises

have triangular-shaped low-pass envelope fluctuations (for

fmod <31.1 Hz).

For each participant a new set of 4000 noises with a

level of 65 dB SPL was generated, resulting in 36 sets of

noises (12 participants� 3 noise conditions). The simulated

participant, the artificial listener (Sec. II D), was tested on

the same 36 sets of experimental noises. All noise wave-

forms were stored and can either be retrieved from Zenodo

(Osses and Varnet, 2022b) or be reconstructed using the

toolbox (see supplementary material Sec. II).

3. Noisy trials

The target sounds were first adjusted in level, depending

on the trial SNR, and were then arithmetically added to the

corresponding noise, following the staircase rule detailed

later in this section. Before the trial was administered to the

listeners, an additional but small variation in the total pre-

sentation level (level roving) between –2.5 andþ2.5 dB

(continuous range, uniform distribution) was applied to

partly discourage the use of loudness cues during the experi-

ment. For the simulations using the artificial listener that

were run with all 36 noise data sets, the same order of trials

and level roving were applied as used for each participant.

B. Apparatus and procedure

The experiments were conducted in one of the two

doubled-walled soundproof booths located at our group facili-

ties (LSP, ENS Paris). The experiment utilized a within-subject

design. In each trial, the nonsense words /aba/ or /ada/ were pre-

sented diotically via Sennheiser HD 650 circumaural head-

phones (Sennheiser, Wedemark, Germany) in one of three

background noises. The task of the participant was to indicate

whether they heard “aba” or “ada” by pressing “1” or “2” on

the computer keyboard, respectively.

FIG. 2. (Color online) Summary of the acoustic characteristics of white

(left), bump (middle), and MPS noises (right). (a) T-F representation of one

arbitrarily chosen noise representation shown as magnitudes in dB. (b)

Critical-band levels within 1-ERB wide filters. (c) Envelope spectrum refer-

enced to the mean (DC) value. More details are given in the text. In panels

(b) and (c), the gray curves indicate the percentiles 25 and 75 of the corre-

sponding estimate.
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1. Experimental protocol

The participants completed 4000 trials using each noise

type (total of 12 000 trials), organized in thirty test blocks of

400 trials. A block contained approximately 200 trials of

each target sound and its evaluation took between 12 and

15 min. The order of the test blocks was pseudo-randomized

with the only constraint that the three noise conditions were

presented in permuted order in the first three blocks.

Subsequently, all blocks were randomly assigned. Each par-

ticipant required five or six two-hours sessions to complete

the experiment.

For each test block only one type of noise was evalu-

ated and one independent adaptive track was measured:

After a correct or incorrect response, the level of the target

word in the subsequent trial was decreased or increased,

respectively, following a one-up one-down weighted adapta-

tion rule (Kaernbach, 1991). We used up- and down-steps in

a ratio of 2.41 to 1 that lead to a target a score 70.7%

according to Kaernbach (1991), his Eq. (1). Participants

received feedback on the correctness of the trial.

Furthermore, they were explicitly instructed to minimize

their response bias as much as possible with a warning mes-

sage displayed on screen when the response ratio was higher

than 60% or lower than 40%.

For each trial, we stored the participant’s response, the

corresponding SNR, the target actually presented, and the

exact waveform of the noise. After completing each block,

participants were encouraged to take a short break.

2. Training session

Before the first test block, the participants completed a

short training to make sure that they correctly understood

the task. This training session was similar to the main exper-

iment except that participants were able to repeat the noisy

speech stimuli or to listen to /aba/ or /ada/ samples in

silence. The training results were excluded from any further

analysis.

C. Participants

Twelve participants (S01–S12) aged between 22 and

43 years old (4 females, 8 males) took part in our study, with

eight of them being native French speakers. The participants

were volunteers with self-reported normal hearing. Average

audiometric thresholds and other details about the partici-

pants are given in supplementary material Sec. I. The partic-

ipants provided their written informed consent prior to the

data collection and were paid for their contribution.

The total number of N¼ 12 participants exceeds the

preregistered number of participants (N¼ 10). By the time

we completed the data collection for N¼ 10, twelve partici-

pants had been recruited, and we therefore decided not to

interrupt the data collection for the last two subjects (S06,

S12). The results reported in this study are based on all

twelve participants. The same analysis using the preregis-

tered sample size can be found in supplementary material

Sec. III B and yielded very similar results.

D. Simulated participant: The artificial listener

In addition to the experimental data collection, we

used an auditory model to simulate the performance of an

average normal-hearing listener who uses a fixed decision

criterion to compare sounds. This “artificial listener”

assesses the internal representations of each sound using

signal-driven (bottom-up) information based on a modula-

tion-filter-bank approach (Dau et al., 1997). The internal

representations were subsequently compared using a (top-

down) decision back-end based on template matching, with

two stored templates, one for each target sound (Osses and

Kohlrausch, 2021). The artificial listener was treated as an

additional participant, meaning that its results were sub-

jected to the same data analysis as applied to the experi-

mental data.

The auditory model is composed of a front-end and a

back-end processing using default parameters in our tool-

box. In short, the front-end processing is very similar to the

model described by Osses and Kohlrausch (2021), except

that the middle-ear module is implemented as a linear phase

filter and that the modulation filter bank uses a Q factor of 1.

The two templates were derived at a supra-threshold SNR of

–6 dB where each target was embedded and subsequently

averaged across 100 newly generated white noise realiza-

tions. The exact supra-threshold SNR and the number of

averaged realizations were arbitrary choices.2 This fixed

white-noise template was used for the simulations in all

three noise conditions. The trial-by-trial decision was based

on a template-matching where a decision bias was intro-

duced to allow the model to balance the number of “aba”

and “ada” choices (Osses and Varnet, 2021). All details

about the model configuration and the decision scheme can

be found in the supplementary material Sec. IV.

E. Data analysis

The experimental data collection resulted in 36 stair-

cases for twelve participants in the three noise conditions

and 36 staircases for the simulations with the artificial lis-

tener. In this section we describe the analyses that were

applied to the experimental trials to obtain the direct behav-

ioral results and to derive the individual ACIs.

1. Preregistered data exclusion criteria

For a more efficient data processing, the ACI method

requires a minimization of response biases. Next to the

explicit instruction to balance “aba” and “ada” choices (Sec.

II B 1), we preregistered two criteria for trial exclusion.

The first criterion is related to the exclusion of all

starting trials of each test block before reaching the fourth

turning point or reversal. Those trials correspond to the

so-called approaching phase of the staircase procedure,

where the adjustable parameter, the SNR, is considered to

be at a supra-threshold level with a percentage correct that

is well above the target 70.7%. The fourth reversal was con-

sidered to be the starting point of the measuring phase of the

staircase.
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The second criterion is an explicit control of the balance

between “aba” and “ada” responses in our dataset. During

the data processing, the responses of the target sound that

obtained more preferences were sorted in increasing SNR.

Subsequently the trials with most extreme values (minima

or maxima) were discarded until the same number of “aba”-

“ada” preferences was achieved. In other words, if a partici-

pant indicated “aba” 53% of the times and “ada” 47% of the

times, the trial exclusion was applied to the “aba” trials.

2. Measures of behavioral performance

The listeners’ performance in the different noise condi-

tions was assessed using a number of measures derived from

the trial SNRs. The percentage of correct responses and SNR

thresholds were obtained for each block of 400 trials, after data

exclusion (Sec. II E 1). Then, the rate of correct responses in /

aba/-trials and in /ada/-trials were expressed in histograms

using SNR bins of 1 dB. Note that these values correspond to

the rate of hit and correct rejection if we arbitrarily identify /

ada/- and /aba/-trials as target-present and target-absent trials,

respectively. Finally, using the same 1-dB wide bins, the classi-

cal discriminability index (d0) and criterion (c) metrics were

obtained from the hit, false alarm, correct rejection, and miss

rates (Harvey, 2004) as a function of SNR.

The behavioral measures d0, c, and the block-by-block

SNR threshold were tested for a group-level effect using a

mixed analysis of variance (ANOVA) with two fixed fac-

tors, block number and noise condition. Participants were

treated as a random effect, meaning that differences in base-

line performance for individual listeners were taken into

account. This analysis was run to test for learning effects. A

second mixed ANOVA with two fixed factors, SNR and

noise condition, was run to confirm the effect of SNR on d0.
Similarly, a mixed ANOVA was also run on the criterion c.

3. Auditory classification images (ACIs)

a. Time-frequency (T-F) representations. Following

the same rationale as in previous studies, the ACIs were

derived and interpreted in a T-F space (Osses and Varnet,

2021; Varnet et al., 2013; Varnet et al., 2015). Here, we chose

to use a Gammatone-based representation rather than a spec-

trogram. The 0.86-s long monaural noises were decomposed

into 64 bands equally spaced in the ERB-number (ERBN)

scale (Glasberg and Moore, 1990) between 45.8 Hz (1.69

ERBN) and 8000 Hz (33.19 ERBN), spaced at 0.5 ERB. The

filters had a width of 1 ERB, resulting in a 50% overlap. The

64 band-passed signals were then low-pass filtered using a

Butterworth filter (fcut-off¼ 770 Hz, fifth order), which roughly

simulates the inner-hair-cell envelope extraction processing

[see, e.g., Osses et al. (2022b), their Sec. 2.4]. Finally, one

estimate every 0.01 s (amplitude mean) was obtained for each

of the frequency bands along the time dimension resulting in a

final T-F noise representation stored in a 86-by-64 matrix. We

denote the T-F representation of the noise presented to partici-

pant k in trial i as N
k;i

, while Nk;i refers to the vectorization of

this matrix. In the following, we use the same formalism to

refer to the ACI in its matrix form (ACI, 86-by-64) or vector

form (ACI, 5504-by-1).

b. Generalized linear model. The core principle of the

ACI approach is to assess how the random envelope fluctua-

tions in the stimulus (N
k;i

) affect the behavioral response of

the participant (denoted rk;i) on a trial-by-trial basis. For this

purpose, we relied on a stimulus-response transformation

based on a generalized linear model (GLM) to produce a

T-F matrix of decision weights (Varnet et al., 2013; Varnet

et al., 2015). As the objective of our study was to isolate the

effect of random envelope fluctuations on phoneme percep-

tion, the GLM did not include any complementary predictor

like the target actually presented or the SNR. We define the

vectorized ACI for participant k, ACIk, such that

Pðrk;i ¼ ‘‘aba
;;Þ ¼ UðNT

k;i � ACIk þ ckÞ; (1)

where Pðrk;i ¼ ‘‘aba
;;Þ ¼ 1� Pðrk;i ¼ ‘‘aba

;;Þ is the pre-

dicted probability of choosing “aba” and UðxÞ stands for the

sigmoid function UðxÞ ¼ 1=ð1þ e�xÞ. Equation (1) relates

the specific content of the noise in trial i to the response

given by the participant, with ACIk and ck being the GLM

parameters that need to be fitted to each participant’s data.

The ACIk in Eq. (1) is expressed as a vector of perceptual

weights, with each element corresponding to one T-F point

of the noise representation Nk;i. Therefore, they are more

easily interpreted as a matrix ACI
k

that has the same size as

the N
k;i

matrix. The parameter ck corresponds to the fitted

intercept value that indicates the overall bias of the partici-

pant towards one response or the other.

c. Sparseness prior in a Gaussian pyramid basis. An

ACI is typically composed of many non-zero weights.

However, these weights are often grouped into positive or

negative clusters matching the location of acoustic cues in

the targets, while the rest of the T-F space is close to zero.

Therefore, a more compact way of describing an ACI would

be as a linear combination of Gaussian-shaped elements

centered at different T-F locations, such as the ones shown

in Fig. 3. Here, formulating the problem in a space where

ACIs can be expressed with a limited number of coefficients

allows us to enforce “sparse” solutions, that is, ACIs that are

non-zero only in a few localized T-F regions.

The Gaussian pyramid consists of four successive levels

(1 to 4) corresponding to decreasing T-F resolutions. Each

level is composed of Gaussian elements of the same width

(standard deviation¼ 1, 2, 3, or 4 bins, respectively) and

spaced every 1, 2, 3, or 4 bins. This means that the first level is

not subsampled in contrast to the gradually more subsampled

levels 2 to 4.3 The coefficients of the Gaussian elements from

all four levels are normalized to have a norm equal to 1, vec-

torized, and stored into a single matrix B. An ACI is then

expressed as a linear combination of Gaussian elements,

ACIk ¼ B � b
k
; (2)
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which represents a change of basis that relates the coordi-

nates of the ACI in the new multi-resolution Gaussian-

pyramid space (b
k
), to its coordinates in the T-F space. By

replacing ACIk in Eq. (1) we obtain

Pðrk;i ¼ ‘‘aba
;;Þ ¼ UðNT

k;i � B � bk
þ ckÞ: (3)

Instead of estimating the ACI directly in the T-F space,

using Eq. (1), we actually estimated the b
k

coefficients of

Eq. (3). Although Eqs. (1) and (3) are mathematically equiv-

alent, the latter allows the prior assumption about the sim-

plicity of the ACI to be expressed by looking for as few

non-zero b
k

coefficients as possible (Mineault et al., 2009).

In statistical terms, this is achieved by penalizing the classic

maximum-likelihood estimator with a L1-regularized (lasso)

regression approach, which enforces sparse solutions. The

weight and bias for each participant (b
k

and ck) were fitted

individually with a lasso regression, then transformed back

into the T-F space using Eq. (2) to obtain the final ACI
k
.

Following the standard lasso procedure, the hyperparameter

k that controls the strength of the regularization was selected

to minimize the deviance through a 10-fold cross-validation

approach. We tested twenty plausible k values logarithmi-

cally spaced between 1.1� 10�3 and 0.1, with larger values

enforcing more sparse candidates, as shown in supplemen-

tary material Fig. 7 [see also Varnet et al. (2015), their

Fig. 2]. The choice of this range of values ensured that the

lowest amount of regularization was low enough to produce

a very noisy ACI, while the highest amount of regularization

was high enough to produce a flat ACI. A flat or “null” ACI,

only contains weights that are equal to zero, meaning that an

ACI prediction is only defined by the bias ck. This

statistical-fitting procedure is the same as we have used in

our latest studies (Osses and Varnet, 2021, 2022a).

4. Out-of-sample prediction

a. Performance metrics. Following the standard hyper-

perameter selection procedure for GLMs [e.g., Mineault

et al. (2009), Varnet et al. (2015), and Wood (2017)], the

out-of-sample predictive performance of the fitted ACIs was

assessed during the 10-fold cross-validation using the cross-

validated deviance. To allow a direct comparison between

different ACIs, that differ in the exact number of test trials

due to the criteria for trial exclusion (see Sec. II E 1), we

report the cross-validated deviance per trial (CVDt).

We adopted a second complementary metric that we

defined as prediction accuracy (PA). PA is a “noisier” but

more intuitive measure of prediction performance that is

assessed as the coincidence between predicted and actual

responses. PA relates the predicted and actual responses,

expressing “aba” (or “ada”) predictions when /aba/ (or /ada/)

was actually chosen by the participant. Assuming that a proba-

bility P equal to or above 0.5 in Eq. (1) [or Eq. (3)] would be

related to a predicted choice of “aba,” the PA metric can be

formalized as

PAi ¼
1 if Pðrk;i ¼ ‘‘aba

;;j=aba=presentedÞ � 0:5;

1 if Pðrk;i ¼ ‘‘aba
;;j=ada=presentedÞ < 0:5;

0 otherwise:

8><
>:

(4)

This metric was averaged across trials and expressed as

a percentage. The metric can adopt values between chance

(�50%) and 100%.

To facilitate the interpretation of the previous perfor-

mance metrics, we define the deviance-per-trial benefit

DCVDt and the percent accuracy benefit DPA as the differ-

ence between prediction performance using the optimal ACI

[Eq. (3)] and that of the corresponding null ACI. For DPA

we further scaled the metric by 1=ð1� PAnull). This way,

PA values that can range between �50% and 100% are

mapped to DPA values between 0% and 100%.

Given that lower DCVDt values indicate better predic-

tions, for individual evaluations we provide one-sided 95%

confidence intervals, obtained as 1.64 times the standard

error of the mean (SEM), reporting a significant benefit if

the confidence interval is below zero. For the group evalua-

tion, mean DCVDt values across folds were obtained for

each participant and the significance was assessed at the

group level following a similar criterion.

With the DPA metric, the benefit of using the optimal

ACI with respect to the null ACI is expected to increase. As

a reference, we show performance boundaries at 2.6% or

4.78% for evaluations using all experimental trials or incor-

rect trials only, respectively.4

For the purposes of this study, the metrics of prediction

accuracy are not only a way to validate ACIs, but they also

provide a proxy for the size of the token-specific effect on

phoneme perception with better values when more of the

participant confusions are due to random envelope fluctua-

tions. Strictly speaking, the predictability gives us a lower

boundary of the token-specific effect, as responses that are

correctly predicted using a model that by design is only

based on random envelope fluctuations—as it is the case

here for the T-F representations transformed using the fitted

GLMs—must be caused by those random envelope

FIG. 3. (Color online) Illustrative example of a nine Gaussian basis element

used in the pyramid decomposition represented in a T-F space, as used for

the ACIs. Thanks to the multi-resolution matrices of the decomposition

method, narrower and wider cues can be extracted from the input noise

matrix Sk;i. Two stereotypical basis elements are indicated by the blue lines.
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fluctuations. On the contrary, incorrect predictions could

either be due to token-specific effects that are not accounted

for in our GLM approach, such as interactions between sep-

arate T-F regions or effects where non-linear processes are

involved, or to other causes. For these reasons, we also

report the performance metrics only using data from incor-

rect trials. In this case, the metrics are labeled as DCVDt,inc

and DPAinc, respectively.

b. Cross-predictions. The selected performance metrics

measure the ability of the ACI, fitted on a subset of the partici-

pant’s data, to predict unseen data from the same participant in

the same condition. Complementary to these “auto-

predictions,” we also derived “cross-predictions,” where the

fitted ACI was evaluated on a test set extracted from a different

participant or a different condition. We assessed two types of

cross-predictions: (1) within participant but between conditions

and (2) between participants but within conditions. While the

auto-predictions were used to assess the goodness-of-fit of

the obtained ACIs, the cross-predictions were used to evaluate

the similarity between listening strategies across participants or

across maskers. To test the significance of the cross-

predictions, two ACIs were considered as “similar” if we could

exchange them and reach a significantly better-than-chance

prediction accuracy, i.e., with newly obtained DCVDt being

significant according to the criteria defined above. We also

report the correlation across ACIs, but this complementary

analysis is only presented in supplementary material Sec. III.

III. RESULTS

For each participant, the experimental data collection

was completed across different days, mostly requiring five

two-hour sessions. All the recruited participants (N¼ 12)

were able to complete the task, although participant S10

showed highly variable results with scores that were clearly

below the group average.

A. Measures of behavioral performance

In the course of the experiment, the level of the speech tar-

get (/aba/ or /ada/) was adapted using a one-up one-down

weighted adaptation rule that targeted a 70.7% of correct

responses (see Sec. II B 1). In practice, after excluding the

approaching phase of the staircases (see Sec. II E 1), the exact

percentage of correct responses averaged across noise conditions

and test blocks ranged between 71.0% (S10) and 71.6% (S03),

with session-by-session scores between 69.5% and 74.2%.

To provide an overview of the participants’ performance,

the obtained SNR thresholds as a function of test block are

shown in Fig. 4. In this figure, we show the overall perfor-

mance (averaged across participants) for white- (blue), bump-

(red), and MPS-noise conditions (green). Additionally, the

SNRs for each participant were averaged per block for each

noise condition obtaining twelve gray traces, also shown in

Fig. 4. The thresholds of participants S04 and S10 are shown

in solid lines and correspond to the (overall) best and worst

performing participants in the task, respectively. The SNR

evolution given by the gray traces suggests that there was a

small learning effect during the course of the experiment, with

slightly better (lower) thresholds in the last test blocks. This

small learning effect was confirmed by our first ANOVA,

with factors masker and test block (see Sec. II E 2). Both fac-

tors were found to have a significant effect on the obtained

SNR thresholds with F(2,345)¼ 15.87, p< 0.001 and

F(1,345)¼ 36.63, p < 0.001, respectively. A post hoc analysis

revealed that the effect of masker type was in fact due to a dif-

ference in the bump-noise condition compared to the other

two, while SNR thresholds for white noise and MPS noise

were not significantly different.

In order to measure the effect of speech level on perfor-

mance, trial-by-trial responses were converted to mean scores,

d0, and criterion values (c) as a function of SNR. These metrics

are shown in Fig. 5. We then ran the two other ANOVAs (Sec.

II E 2). For these tests we only used the data for the SNR bins

centered between –16 and –12 dB, where data for all participants

in all conditions had been obtained. The ANOVAs supported a

FIG. 4. (Color online) Mean SNR

thresholds for the group in blocks of

400 trials for each of the three masker

conditions. We show the individual

thresholds for the twelve participants

averaged across conditions (gray

dashed lines), emphasizing the overall

thresholds of the participants with low-

est and highest values (thick gray con-

tinuous lines). The error bars indicate

one standard error of the mean (SEM).
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significant effect of the factors masker and SNR on d0 [masker:

F(2,165)¼ 10.39, p< 0.001; SNR: F(1,165)¼ 1017.65, p
< 0.001], while only the factor SNR had a significant effect on

criterion [masker: Fð2; 165Þ ¼ 1:75; p ¼ 0:178; SNR:

Fð1; 165Þ ¼ 9:77; p ¼ 0:002]. According to a post hoc test, the

effect of masker type on d0 was due to a difference in the white-

noise condition compared to the other two.

B. ACIs

The ACIs that were derived from the collected data are

shown in Fig. 6 using white, bump, and MPS noise maskers.

Panels (A)–(F) contain the individual ACIs, while a group

average is shown in the bottom-most panels [Fig. 6(g)–6(i)].

Overall, the individual ACIs bear some similarities, although

for two participants (S09 and S10) the hyperparameter selec-

tion in white noise did not yield a minimum, resulting in a

null ACI (dashed pink boxes in Fig. 6). Large weights were

found at t � 0:3 s, the time of the onset of the second syllable,

which are more clearly visible in the group ACIs. More spe-

cifically, we found a clear pattern of positive (red) and nega-

tive (blue) weights matching the location of the F1 and F2

onsets of the /aba/ and /ada/ sounds. Additionally, in a subset

of ACIs, weak but consistent perceptual weights were also

found around the time of the first-syllable F2 offset (e.g., in

the ACIs of S03, all conditions at t � 0:25 s), or near the

release burst of the plosive consonant at around 8 kHz (e.g.,

ACI of S07, white-noise condition at t � 0:6 s).

The group ACIs were obtained as the arithmetic aver-

age of all non-normalized individual ACIs for white

[Fig. 6(g)], bump [Fig. 6(h)], and MPS noises [Fig. 6(i)] and

are only shown for visualization purposes. In these panels

we superimposed the f0 and formant trajectories of /aba/ and

/ada/. The group ACIs were not normalized to emphasize

the fact that the (blue and red) weights have different limits

for the different noises.

C. Out-of-sample prediction accuracy

Auto-predictions at the individual level: The out-of-

sample metrics of prediction accuracy, DCVDt and DPA, at

the individual and group level are shown in Fig. 7, where

the metrics for the individual ACIs are shown as open or

gray diamond markers.

The results based on DCVDt [Fig. 7(a)] show that 27

ACIs out of 36 yielded predictions that were significantly

higher than chance. Those significant estimates are marked in

gray in Fig. 7(a). From the remaining nine non-significant

ACIs, two corresponded to the conditions where a null

ACI was obtained (dashed pink boxes in Fig. 6), which,

by definition, are related to performance metrics equal to zero.

For the analysis of incorrect trials, the results are

shown in Figs. 7(b) and 7(d) for DCVDt,inc and DPAinc,

respectively. Although the improvement in DCVDt,inc was

rather small [compare Fig. 7(b) with 7(a)], there was a sys-

tematic improvement of DPAinc values [compare Fig. 7(d)

with 7(a)].

Auto-predictions at the group level: At the group

level, white noise yielded a smaller prediction performance

compared to the bump and MPS noise conditions with DCVDt

values of �0:657� 10�2; �1:490� 10�2, and �1:207

�10�2 [filled maskers in Fig. 7(a)] and DPA values of 8.1%,

13.3%, and 11.8%, respectively [filled maskers in Fig. 7(c)].

Additionally, a significant effect was found for the factor

“masker” in a mixed ANOVA on DCVDt [Fð2; 22Þ ¼ 7:73,

p¼ 0.003].

FIG. 5. (Color online) Percentage of

correct responses for (a) /aba/ and (b) /

ada/ trials, (c) discriminability index

d0, and (d) criterion, as a function of 1-

dB wide SNR bins. These metrics were

obtained using the group data. Error

bars indicate 1 SEM.
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When restricting the test set to incorrect trials only [Figs.

7(b), and 7(d)], the prediction accuracy was found to be sys-

tematically higher: From the participants’ incorrect answers a

larger proportion of these errors is explained using the ACIs

in bump- (DCVDt,inc¼�3:390� 10�2; DPAinc¼ 18.5%) and

MPS-noise conditions (DCVDt,inc¼�2:920� 10�2; DPAinc

¼ 17.1%) compared to the white-noise condition (DCVDt,inc

¼�1:485� 10�2; DPAinc¼ 11.3%). These group benefits

are indicated by filled markers in Fig. 7(d) and are all signifi-

cantly above chance.

Cross-predictions between participants: The proce-

dure to obtain cross-predictions between participants (see

Sec. II E 4 b) resulted in three 12-by-12 matrices of cross-

prediction values when the data of one participant in one

noise condition was predicted using the ACI from another

participant in the same condition. The obtained DPA values

are shown in Figs. 8(a)–8(c) and ranged between –1.4% and

19.5%. The main diagonal of these matrices correspond to

the same auto-prediction values that are shown as open dia-

mond markers in Fig. 7(c). As expected, the DPA values

were overall lower (or overall higher using DCVDt) than the

auto-prediction values, with on-diagonal averages of 8.1%,

13.3%, and 11.8% for white-, bump-, and MPS-noise condi-

tions, respectively, and corresponding off diagonal averages

of 4.7%, 6.0%, and 5.9%. The significance analysis based

on CVDt (only shown in supplementary material Fig. 3,

after excluding the predictions marked by red arrows,

redrawn in Fig. 8) revealed that 42 (out of 66), 67 (out of

132), and 57 (out of 99) cross-predictions led to a perfor-

mance that was significantly above chance for white-,

bump-, and MPS-noise conditions, respectively. Those

cross-predictions are enclosed in pink dashed boxes in sup-

plementary material Fig. 3 and are redrawn in Fig. 8. With

this significance analysis, we can identify the ACIs that bet-

ter predict the data or the data that are better predicted by

other ACIs, by looking at the vertical or horizontal direction

FIG. 6. (Color online) Top panels: ACIs for the 12 participants using (a), (d) white; (b), (e) bump; and (c), (f) MPS noises. For comparison purposes, the

weights in each ACI are normalized to their maximum absolute value. The values in gray in the top right corner of each ACI indicate the corresponding

mean SNR threshold expressed in dB. The dashed pink boxes indicate the two ACIs that only contain zero weights. Bottom-most panels (g)–(i): mean ACI

across all participants, in each condition. The formant trajectories for /aba/ (red solid lines) and /ada/ (blue dotted lines) are superimposed.
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of the corresponding matrix, respectively. For instance, the

ACI from S11 in Fig. 8(c) produced significant predictions

using the data of two participants (S01, S05, vertical direc-

tion) and the ACI from S05 produced significant predictions

using the data of all participants except one (S11). In the

cross-prediction of data using other ACIs, the data from S09

for white noise was significantly predicted only using the

ACI from S08 [Fig. 8(a), horizontal direction], while the

data from S05 in the bump and MPS noise conditions [Figs.

8(b) and 8(c)], were significantly predicted using eight (of

11) other ACIs.

Cross-predictions between noises: The procedure to

obtain cross-predictions between noises but within partici-

pant (see Sec. II E 4 b) resulted in twelve individual 3-by-3

matrices, that are shown in supplementary material Fig.

4(A). We focus on the cross-predictions averaged across

participants and using DPA, which we present in Fig. 9(a).

The global results show that the auto (within-noise) predic-

tions of the main diagonals gave overall DPA values of

8.1%, 13.3%, and 11.8% for the white, bump, and MPS

noises [the same group values as in Fig. 7(c)] that decreased

to (at most) 5.0%, 5.2%, and 5.9%, respectively, when using

an ACI to estimate the collected data between noises (com-

pare the elements of Fig. 9 in the vertical direction). Along

the horizontal direction, i.e., when exchanged ACIs are used

to predict the data within noise condition, the auto-

predictions decreased to (at most) 5.2%, 5.0%, and 6.2%,

respectively.

D. Simulations

Simulations were obtained from an artificial listener

(Sec. II D and supplementary material Sec. IV), using the

same experimental set of noises from participants S01 to

S12 and the same methods outlined earlier to derive ACIs.

To distinguish the ACIs from the artificial listener from

those of the participants, we refer to the first ones as simu-

lated ACIs. The simulated ACIs derived from the wave-

forms of participants S01–S03 are shown in Fig. 10. The

remaining simulated ACIs, are shown in supplementary

material Fig. 6.

The simulated ACIs have more clusters of cues, com-

pared to the experimental ACIs (Fig. 6). These clusters

seem to be independent of the specific set of noises and are

mainly located below 3000 Hz, and between t ¼ 0.1 and

0.5 s. All simulated ACIs have large weights in the F1 and

F2 regions at t � 0:3 s.

To quantify the similarity between simulated ACIs we

assessed the cross-predictions across “participants,” i.e.,

within noise sets of the same condition. These cross-

predictions, using DPA, are shown in Figs. 8(d)–8(f). The

obtained DPA values were much higher than for the experi-

mental ACIs [panels (a)–(c)], ranging between 33.0% and

43.4% and were always significant. The significant cross-

predictions are enclosed by dashed pink boxes and are

superimposed to all matrix elements in Figs. 8(d)–8(f)].

The DPA cross-predictions derived from exchanging sim-

ulated ACIs across noise conditions for the group are shown in

Fig. 9(b). Similar results were found within simulated individu-

als, as can be found in supplementary material Fig. 4, where

all cross-predictions were significantly above chance.

Based on the cross-prediction values averaged across

data sets in Fig. 9(b), the auto-predictions were 36.0%,

37.6%, 43.4% in the white-, bump-, and MPS-noise condi-

tions, respectively. The high values of the cross-predictions

in the off diagonal, that differ by no more than 4.4% with

FIG. 7. (Color online) Metrics of performance benefit, DCVDt (top panels) and DPA (bottom panels), for each of the obtained ACIs, from left to right for

participants S01 to S12 (open or gray diamonds). The filled circle markers indicate the group average for the corresponding condition. Left (a), (c) and right

(b), (d) panels indicate the analysis using all trials or the incorrect trials only, respectively. In all cases, the error bars indicate 61.64 SEM and the gray

markers in panel (a) indicate those estimates that were found to be significant, based on the boundaries at 0 (dashed line).
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respect to the on-diagonal values of Fig. 9(b), again, support

the similarity among the obtained simulated ACIs.

IV. DISCUSSION

The objective of our study was to measure the token-

specific effect of noise on the phonetic discrimination

between /aba/ and /ada/. For this purpose, we predicted the

listeners’ judgements using a microscopic (trial-by-trial)

approach, the reverse-correlation method. The results

allowed us to derive both macroscopic metrics of speech

intelligibility and a microscopic characterization of the par-

ticipants’ listening strategies by means of the time-

frequency information in the ACIs.

We start this section by contextualizing the general per-

formance results (Sec. IV A). We then focus on the interpre-

tation of the microscopic ACI analysis to estimate the size

of the token-specific effect of noise in our task, going

through each of our study hypotheses (Secs. IV B–IV F). We

conclude this section by indicating the limitations of the

adopted approach (Sec. IV G).

A. General performance in the task

The behavioral performance for each participant aver-

aged across conditions was very similar, although there

were participants with lower or higher overall perfor-

mance, as indicated by the vertical shift of gray traces in

Fig. 4 and as also seen in the SNR thresholds reported in

Fig. 6, that ranged between –15.7 and –10.3 dB. When

expressing the same data as a function of SNR we observed

that, first of all and as expected, the difficulty of the task

increased for lower SNRs. More precisely, the percent cor-

rect rates for /aba/ [Fig. 5(a)] and /ada/ trials [Fig. 5(b)]

decreased from about 90% (for SNRs >� 10 dB) to

chance level (for SNRs <� 17 dB). This strong effect of

SNR was also visible using the discriminability index d0

[Fig. 5(c)] and the criterion c [Fig. 5(d)]. The d0 values

were lower for bump and MPS noises than for white noises

at any SNR. Given that all three noise types have approxi-

mately the same long-term spectrum [Fig. 2(b)] and thus

should produce a similar energetic masking effect, the low-

ered discriminability—that leads to an increased number of

incorrect answers—can be attributed to the additional ran-

dom fluctuations between 0 and 30 Hz in the bump and

MPS noises [Fig. 2(d), middle and right panels]. Another

observation that can be inferred from the lowered discrimi-

nability of bump and MPS noises is that there was a mar-

ginal, if any, effect of listening in the dips (Cooke, 2006).

In fact, a significant effect of this phenomenon should have

resulted in better performance for more modulated

maskers, an effect that we did not observe. In Fig. 5(d), we

observed a bias towards “ada” answers for SNRs below

–15 dB, where the criterion values c were higher than 0, in

contrast to the nearly constant c values for the SNR bins

centered at or above –15 dB.

FIG. 8. (Color online) (a)–(c) Between-subject cross-

prediction matrices for the three conditions using DPA,

expressed as corrected-for-chance percentages. The

main diagonals are enclosed in colored squares and cor-

respond to the same auto-prediction values as in Fig.

7(c). The pink dashed boxes indicate the ACIs from the

abscissa that are able to predict significantly above

chance the data of the participant indicated in the ordi-

nate. For this analysis, we only used the ACIs that led

to significant auto-predictions [red arrows, related to the

gray markers in Fig. 7(a)]. For details, see the text and

supplementary material Fig. 3. (d)–(f) Same cross-

prediction analysis but using the simulation data. In this

case, all cross-predictions led to significant predictions.

Note the different (higher) range of DPA values with

respect to the top panels.

FIG. 9. (Color online) Between-noise cross-predictions using DPA values

averaged across (a) participants or (b) simulated participants. The off diago-

nal values were overall lower than the within-noise predictions. See text for

further details.
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B. ACIs and token-specific effect

The trial-by-trial (microscopic) analysis based on

reverse correlation resulted in a total of 36 ACIs (Fig. 6),

that characterized the listening strategy of the twelve partici-

pants in each background noise condition. In terms of pre-

diction performance, the obtained ACIs were able to predict

the categorical response in each trial (“aba” or “ada”) with a

better-than-chance accuracy using 27 (out of 36) ACIs

[Fig. 7(a), open diamond]. Additionally, the group results

were significantly above chance [Fig. 7(a), filled circles],

indicating that the exact within-trial noise configuration had

a significant influence on the participants’ responses or, in

other words, that the three types of noises elicited a measur-

able token-specific effect. This effect was measured to be on

average DPA ¼ 11% across all participants and conditions

and ranged between 4.9% and 19.6% for the individual

results [open diamonds in Fig. 7, diagonals in Figs.

8(a)–8(c)]. These results agreed with our preregistered

expectations about the significance of ACI-based predic-

tions and the size of their effect. Given that the GLM-fitted

ACIs only relied on the T-F distribution of random

noise envelope fluctuations, without using any explicit

information from the targets, these results are supportive of

Hypothesis H1 (Sec. I).

The idea that different noise tokens produce a different

amount of masking is not new. This has been shown in the

context of, e.g., tone-in-noise detection (Ahumada and

Lovell, 1971; Pfafflin, 1968), AM-in-noise detection

(Varnet and Lorenzi, 2022), but also in psycholinguistic

tasks (Varnet et al., 2013; Zaar and Dau, 2015). Using fro-

zen noise, Zaar and Dau (2015) demonstrated that two par-

ticular white-noise tokens elicited different confusion

patterns. They showed that, when presented with one spe-

cific frozen noise token at SNRs below 0 dB, the sound /gi/

was confused with /di/ or /bi/, but when the same sound was

presented with a different frozen-noise token, /gi/ was

robustly perceived for SNRs down to –15 dB.

A further exploration of the participants’ ACIs indicates

that the random noise envelope fluctuations that can trigger

a token-specific effect are concentrated in small but non-

uniformly distributed T-F regions. These regions overlap

with the position of acoustic cues in the target sounds, as

emphasized in Figs. 6(g)–6(i). For example, the presence of

a burst of energy in the random envelope fluctuations in the

vicinity of the F2 onset will induce a response bias in favor

of “aba” or “ada” depending on whether its spectral position

matches the F2 onset frequency of /aba/ (1298 Hz) or /ada/

(1722 Hz). Similarly, subtle differences in the random enve-

lope fluctuations in the region of the F1 onset, the F2 offset

in the initial syllable, as well as in the plosive burst, located

in the high-frequency region at the consonant onset, affected

the listeners’ responses in a systematic way. The importance

and relative weights of F2-transition cues and burst cues in

the perception of voiced plosive consonants has already

been discussed in length elsewhere [e.g., Delattre et al.
(1955) and Ohde and Stevens (1983)] in particular in the

presence of background noise [e.g., Alwan et al. (2011) and

Li et al. (2010)]. References to a possible role of F1 transi-

tions are more seldom (Alwan et al., 2011; Delattre et al.,
1955) but this cue was already found in our previous ACI

studies (Varnet, 2015; Varnet et al., 2015).

As noted above, there seems to be a correspondence

between the T-F regions from Fig. 6, where the presence of

random envelope fluctuations was particularly detrimental

to the listener, and the acoustic cues from the targets.

Arguably, this token-specific effect of noise can be seen as

the counterpart of the modulation masking effect described

in Sec. I, as in both cases random envelope fluctuations

induce confusions to the listeners, or a “sorting problem”

using Drullman’s words. For the modulation masking effect,

weak elements of the speech targets are confused with non-

relevant noise envelope fluctuations. For the token-specific

effect of noise, in contrast, it is the large random noise enve-

lope fluctuations that are confused with relevant elements of

the targets if the corresponding T-F locations overlap,

affecting the listeners’ phonetic decisions. This is reminis-

cent of the conflicting cues that have been reported from the

detailed analyses of phoneme confusions (Li and Allen,

2011; R�egnier and Allen, 2008; Singh and Allen, 2012).

These studies showed that some speech utterances present

incidental acoustic cues that can be confused with character-

istic cues of other phonemes, making the targets prone to

confusions. In the case of our experiment, the conflicting

cues are induced by the background noises.

C. Token-specific effect in white noise

To estimate the token-specific effect of noise and

dissociate it from the overall effect, we used the metrics of

out-of-sample prediction accuracy (Sec. II E 4 a) applied to

the obtained ACIs. More specifically, we used the prediction

accuracy (DPA) to measure the size of the effect and the

FIG. 10. (Color online) ACIs derived from the simulations using the artifi-

cial listener for (a) white, (b) bump, and (c) MPS noises using the set of

noises from participants S01–S03 (top to bottom rows). The values in gray

indicate the corresponding mean simulated SNR threshold expressed in dB.

The ACIs derived from simulations for the remaining set of noises

(S04–S12) are shown in supplementary material Fig. 6.
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cross-validated deviance per trial (DCVDt) to test its signifi-

cance. Both metrics were compared to a null ACI, where the

weights associated with the T-F noise distributions are set to

zero, producing “aba”-“ada” predictions at the participant’s

chance level.

The contribution of the token-specific effect to the over-

all effect in white noise was small but significantly above

chance for 6 of the 12 participants [Fig. 7(a), blue open

markers], with an auto-prediction benefit DPA of 8.1% at

the group level [Fig. 7(c), blue filled marker]. This estimate

considers trials where conflicting cues misled the partici-

pants, as well as trials where the cues reinforced their cor-

rect answers. If we restrict this analysis to incorrect trials

only, the auto-prediction benefit was significant for 7 partici-

pants [Fig. 7(b), blue open markers] with an increased bene-

fit of DPAinc¼ 11.3% at the group level [Fig. 7(d), blue

filled marker]. This small effect agreed with our preregis-

tered expectations (hypothesis H1) and with the relatively

small token-specific effect of noise or “noise-induced

effect” reported by Zaar and Dau (2015). Zaar and Dau

compared different sources of variability in the recognition

of consonant-vowel words presented at different SNRs. In

their analysis of source-induced variability they found that

the variability in the background noises induced a significant

perceptual effect, but that the effect was smaller than the

variability in the speech sounds, between- and within-

talkers. These observations are in line with our ACI results,

although the analysis of Zaar and Dau of within-participant

variability was based on confusion matrices that are not

directly comparable to our test conditions.

D. Token-specific effect in more fluctuating noises

The /aba/-/ada/ discrimination using “white-noise-like”

bump and MPS noises with emphasized envelope fluctuations,

was included to investigate a potential increase in the token-

specific noise effect, as they were supposed to mask more effi-

ciently the relevant elements of the speech targets. This is

related to our preregistered hypothesis H2 (Sec. I). H2 is sup-

ported by the out-of-sample performance results, where DPA

increased from 8.1% for white noises to 13.3% and 11.8% in

the bump- and MPS-noise conditions, respectively [Fig. 7(c),

filled markers] and from DPAinc¼ 11.3% to 18.5% and 17.0%

for the corresponding analysis with incorrect trials only

[Fig. 7(d), filled markers]. At the individual level, all (12 of

12) ACIs produced a significant prediction in the bump-noise

condition and 9 of 12 ACIs did so in the MPS-noise condition

[Fig. 7(a), red and green open markers]. In other words, with

respect to the white noises, bump and MPS noises did not only

lead to an increased modulation masking effect as a conse-

quence of their strong envelope fluctuations below 30 Hz

[Fig. 2(d)], but they also led to an increased token-specific

effect, with respect to the white-noise condition.

E. Between-subject variability

Due to the nature of our experimental task, that used two

vowel-consonant-vowel utterances (/aba/ and /ada/) presented

without semantic context, we expected that the ACI method

should have resulted in globally similar listening strategies for

all our participants. This was related to our preregistered

hypothesis H3 (Sec. I). However, in contrast to this expectation,

we obtained very heterogeneous ACIs [Figs. 6(a)–6(f)]. We

assumed that two ACIs were globally similar when they could

predict data significantly above chance when they were

exchanged with each other. The results of this analysis were

presented in Figs. 8(a)–8(c), where significant cross-predictions

using a specific ACI (shown along the abscissa) to predict the

participants’ data (shown along the ordinate) are enclosed in

dashed pink boxes. This analysis revealed that only 42, 67, and

57 (out of 132) cross-predictions led to a performance that was

significantly above chance in the white-, bump-, and MPS-

noise conditions, respectively. This low number of significant

cross-predictions seems to be enough evidence to reject H3.

When analyzing the heterogeneity of the obtained ACIs

[Figs. 6(a)–6(f)] we did not find a direct link between the par-

ticipants’ overall performance or any other information about

them (e.g., language background, age, or audiometric thresh-

olds) and the exact distribution of obtained T-F cues. For

instance, the very good performing participants S04 and S08,

who reached SNR thresholds below –15 dB showed significant

cross-predictions in all conditions, although the participants

differ in their linguistic background. In another example, the

bump ACIs from S03 and S10 produced significant cross-

predictions despite the difference in overall SNR threshold of

3.2 dB during the experiments, while we did not find a signifi-

cant similarity in their strategy for the other two noise types.

Differences in listening strategies were also reported by

Singh and Allen (2012), who observed a non-negligible

between-subject variability in the perception of noisy /b/ and /

d/ sounds compared to, e.g., /t/ and /g/. They related this find-

ing to the observation that /b/ and /d/ involve multiple cues

(Alwan et al., 2011; Dorman et al., 1977) unlike /t/ and /g/

which have an identifiable single feature that makes them noise

robust (Li et al., 2010). Similarly, for our task, the redundancy

of available cues noted in Sec. IV B may have enabled our par-

ticipants to use different listening strategies, as supported by

visual inspection of the obtained individual ACIs (Fig. 6). The

most logical explanation for such “disparity” in the use of cues

may be due to the diversity of listeners’ linguistic backgrounds

[e.g., Pallier et al. (1997)], however, this contrasts with results

of other studies where cue disparities have also been found in

participants with a common linguistic background (Clayards,

2018; Singh and Allen, 2012; Zaar and Dau, 2015). Finally,

another simple argument could be that the experimental hetero-

geneity was a side effect of using only two utterances, provid-

ing participants with the possibility to focus on more acoustical

than phonetic aspects. In any of the cases, further studies are

required to investigate the origin of the inter-individual vari-

ability observed in the ACIs.

F. Artificial listener

In this study, the artificial listener was used as a base-

line for human performance, under the assumption that
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measurable changes in auditory-model responses due to

changes in the signals—here, using different noise

maskers—reflect an effect that might be observable by

human listeners (Green and Swets, 1966). More concretely,

the artificial listener was used to confirm that (1) a higher

out-of-sample prediction is reached for more fluctuating

noises (bump and MPS noises) with respect to the steady-

state white noises and (2) the specific set of generated noises

of the same type does not influence significantly the

obtained ACIs. This last point is important because the algo-

rithms for the noise generation were developed and adjusted

to particularly influence the modulation frequency content

below about 30 Hz and we wanted to confirm that these

manipulations do not bias a specific set of responses in the

“objective” auditory model decision. At the same time, we

expected that the decisions of the artificial listener should

elicit a measurable token-specific effect due to the trial-by-

trial (microscopic) nature of the template-matching

approach.

The results of the simulations were presented in the bot-

tom panels of Figs. 8–9 (out-of-sample metrics), Fig. 10 and

supplementary material Fig. 6 (obtained simulated ACIs).

All the obtained simulated ACIs produced a measurable

token-specific effect of noise with predictions significantly

above chance. The token-specific effect using DPA, aver-

aged across the 12 data sets, was estimated to be 36.0%,

37.6%, and 43.4% for white, bump, and MPS noises, respec-

tively. These results confirm that a reliable token-specific

effect can be measured using the artificial listener and that a

mild but systematic increase in DPA was observed for the

bump and MPS noises with respect to the white noises, in

support of hypothesis H4 (Sec. I). Furthermore, the signifi-

cance analysis showed that all auto-and cross-predictions

produced significant out-of-sample metrics [see the pink

dashed squares in Fig. 8(d)–8(f)], supporting the state-

ment—also contained in H4—that the specific set of noises

did not influence the estimation of simulated ACIs. Despite

this support to H4, we observed that the simulated ACIs

contain many more T-F cues than the experimental ACIs,

suggesting that the underlying strategies between “this” arti-

ficial listener and the participants are differently weighted

and that, on average, less T-F cues were used by the

participants.

G. Limitations of the approach

The prediction performance of our ACI approach

was used to quantify the token-specific effect of noise on an

/aba/-/ada/ discrimination, using a single pair of utterances.

For this quantification, we assumed that the participants’

responses could be predicted purely based on the random

envelope fluctuations of the noises that were used to mask

the target sounds. Under this strict assumption, we believe

that the reported performance metrics represent only a lower

bound of the actual token-specific effect because:

(1) We considered the envelope of noise-alone waveforms

instead of the envelope of the noisy speech sounds. We

assumed this to ensure that the estimated token-specific

effect came from the noise maskers and not from the

speech targets themselves. Nevertheless, given that

envelope extraction is a highly nonlinear process, this

assumption implies that the effect of spurious modula-

tions arising from speech-noise interactions

(Dubbelboer and Houtgast, 2008; Stone et al., 2011) is

negligible.

(2) The transformation of noise waveforms into T-F repre-

sentations—the inputs to the GLM—is based on a set of

linear cochlear filters followed by a simplified envelope

extraction (e.g., Osses et al., 2022b), ignoring the poten-

tial influence of more central stages of auditory process-

ing on the estimated token-specific effect. In this study,

we decided to keep the T-F transformation as simple as

possible.

(3) Following a similar principle of simplicity as in the T-F

transformation, the GLM approach we used as a statisti-

cal model back-end to relate noise (T-F) representations

with the participants’ responses did not consider interac-

tions between GLM predictors. It is possible, however,

that listeners make their decisions based on a non-linear

combination of cues.

Another limitation of the present study stems from the

use of one single pair of speech utterances. Therefore, one

may wonder whether the present results can generalize to

other productions of the same logatomes, or to other pho-

netic contrasts. Some data collected by our group suggest

that this is indeed the case. This important aspect will be

discussed in a further work.

V. CONCLUSIONS

In this study, we conducted a microscopic (ACI) analy-

sis of participants’ responses in an /aba/-/ada/ discrimination

task, using three different white-noise-like and contextless

maskers. We demonstrated that:

(1) The detailed noise structure has a measurable effect on a

phoneme-in-noise discrimination task. A particular

noise token can bias the participants’ choice towards

one alternative or the other depending on its exact time-

frequency (T-F) content. This phenomenon arises from

the confusion of random envelope fluctuations in the

noise with relevant acoustic cues from the targets.

(2) At low SNRs (��14 dB), this effect accounts for at

least 8.1% of the participants’ responses in white noise

(or 11.3% of the errors). When considering other

maskers that have larger amounts of random envelope

fluctuations, this percentage increased to 13.3%

(or 18.5% of errors) and 11.8% (or 17.1% of errors) for

the bump and MPS noises, respectively.

(3) Substantially similar results were obtained using an

auditory model that is based on a microscopic template-

matching approach. The model was used to simulate the

same /aba/-/ada/ discrimination task as our study partici-

pants. In this case, the token-specific effect of noise was
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estimated to be between 33.0% and 43.4% of the correct

responses. This means that, as expected, the model

employed a more efficient and consistent decision strat-

egy, relying on more T-F cues than our participants.

(4) Contrary to hypothesis H3 (Sec. I), we observed a large

variability in listening strategies, both between partici-

pants and between masker types. A close investigation

of the results revealed that, although the primary F2 cue

is seen in almost every individual ACI, the weights

attributed to secondary acoustic cues appear to differ

between participants.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed information

about (1) the study participants, (2) how to reproduce Figs.

1–10, and (3) replicate our experimental paradigm with

human or artificial listeners.
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1Noise maskers are known to degrade target sounds in terms of temporal

fine structure [e.g., Drullman (1995)] and temporal envelope. In the pre-

sent paper we focus on degradations due to temporal envelope informa-

tion, which are typically assumed to have a larger impact on speech

perception [e.g., Dubbelboer and Houtgast (2007) and Shannon et al.
(1995)].

2Although the choices of the exact supra-threshold SNR and the number of

averaged realizations used during the template derivation were arbitrary

choices, we checked that they did not significantly affect the simulation

results (shown later in Fig. 10). We include a short discussion about these

simulation choices in the supplementary material.
3We tested different sets of Gaussian-pyramid parameters, exploring the

required number of levels and the inclusion of level 0 (i.e., the inclusion

of the original N
k;i

matrix). The specific configuration of the pyramid did

not seem to affect critically the overall shape of the resulting ACIs.
4To get an indication of the level of DPA that can be attributed to chance

only, we assumed that the predictions in each set of 4000 noises follow a

binomial distribution �Bð4000; 0:5Þ, i.e., we assumed that the success of

the prediction is determined by chance with Pðri ¼ ‘‘aba
;;Þ ¼ 0:5.

Considering the one-sided 95% confidence interval, PA needs to be equal

to or greater than 51.3% (or DPA � 2:6%, after correcting for guessing).

This boundary is increased to 52.39% (DPA � 4:78%) for the analysis of

incorrect trials, where only 29.3% of the trials are used [Bð1172; 0:5Þ].

This “significance test” should only be considered as referential because

(1) due to data exclusion, the number of trials is reduced by �10%, so

4000 and 1172 are not the exact numbers that should be used in the bino-

mial approximation and (2) the probability of successful prediction by

chance deviates slightly from 0.5 depending on the exact ratio of “aba”

and “ada” responses in the participant data. To avoid unnecessary con-

founds, we refrained from including the exact number of trials and chance

levels, and we just presented the estimated chance boundary as a visual

aid in Fig.7.
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