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Abstract8

A general framework is presented for evaluating stress triaxiality fields using five9

different configurations of Dirichlet boundary conditions. The latter ones were10

measured via stereocorrelation for a simple shear test on a thin sample where11

buckling was mitigated with an anti-buckling fixture. Friction and material pa-12

rameters displayed negligible influence on the stress triaxiality fields. Accounting13

for the anti-buckling fixtures provided the most realistic stress triaxiality fields,14

but was computationally demanding. Prescribing all out-of-plane displacements,15

noisier but trustworthy stress triaxiality fields were also obtained by using much16

less computational resources.17

Keywords: Buckling, Dirichlet boundary conditions, inverse problem, simple18

shear, stereocorrelation19

1. Introduction20

Thin sheets subjected to metal forming experience elastic springback after21

their deformation stages. Therefore, it is important to accurately predict reversible22

∗Corresponding author
Email address: zvonimir.tomicevic@fsb.hr (Zvonimir Tomičević) 1



deformations. Nowadays, the validity of forming processes is often controlled via1

Finite Element (FE) analyses that depend on how trustworthy material properties2

are. Furthermore, product optimization procedures are also governed numerically3

via FE approaches, thereby improving product design and subsequent manufac-4

turing stages to reduce material waste [1]. Experimental investigations need to be5

carried out to determine the material response under simple or complex loading6

regimes. For metal forming, shear is an especially important stress state [2, 3, 4].7

However, pure shear stress states cannot be easily achieved experimentally for8

sheets. As a result, mechanical tests considering simple shear are carried out on9

thin sheets instead.10

Material characterization during mechanical tests where complex loading11

regimes are employed call for advanced measurement methods. The develop-12

ment of digital imaging provided an opportunity for the emergence of full-field13

measurement techniques. Digital Image Correlation (DIC) [5, 6, 7, 8, 9, 10]14

stands out as the most widely employed full-field measurement method due to15

its versatility and straightforward use. Moreover, the development of global16

DIC [11, 12, 13, 14] formulated within an FE framework resulted in simple and17

seamless couplings between experiments and FE simulations. Robust identifi-18

cation methods were designed to utilize this opportunity for the calibration of19

material parameters.20

The resulting output of global DIC is nodal displacements from which strains21

are calculated. Although displacement and strain fields are readily available with22

DIC, stress fields cannot be directly measured. The stress fields may be used to23

evaluate stress triaxiality fields (written as the ratio between hydrostatic and von24

Mises equivalent stresses). Stress triaxiality plays an important role in damage and25
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fracture mechanics for predicting the type of failure (i.e., ductile or brittle [15, 16,1

17, 18, 19]). Combinations of DIC and X-ray diffraction (XRD) techniques may2

be used to measure both total and elastic strain fields [20, 21, 22, 23, 23]. The3

drawback is the required and expensive equipment, as well as the fact that the4

number of measurement points for XRD is generally limited, and as such, this5

method is not suited for industrial purposes.6

The focus may then shift to analytical and numerical routes instead of experi-7

mental investigations to evaluate stress fields. In recent years, several approaches8

were proposed to assess stress and stress triaxiality fields from DIC measure-9

ments. Réthoré [24] developed the so-called Mechanical Image Correlation (MIC)10

method for evaluating stress fields without assuming any constitutive law. A sim-11

ilar approach where no constitutive laws were defined was used by Dalémat et12

al. [25] where DIC was coupled with a Data Driven Identification algorithm (DDI)13

for evaluating stress fields. Musiał et al. [26] presented an original proposition for14

evaluating stress fields from DIC data for uniaxial and simple shear tests by con-15

sidering the measured displacement field gradient and a J2-plasticity model. The16

DIC based stress fields gave more accurate results with respect to FE analyses17

since they accounted for all inaccuracies during experiments. Andrade et al. [27]18

proposed a method to estimate the stress triaxiality fields from DIC strain fields19

for Von Mises’ and Hill’s models. Furthermore, Brosius et al. [28] developed20

a similar semi-analytical approach where the stress fields were determined from21

DIC data. Lindner et al. [29] used Integrated DIC to evaluate stress triaxiality22

fields of a notched titanium alloy sample. It was concluded that even for thin sam-23

ples, 3D meshes were required to analyze stress triaxiality fields. A similar 3D FE24

approach was used herein.25

3



Abushawashi et al. [30] developed a novel method for constitutive modeling in1

plane strain conditions. Using DIC data, the authors determined equivalent stress2

and strain fields to run numerical simulations. From the numerical results, the3

stress triaxiality fields were evaluated since they display great influence on metal4

ductility [31, 32, 33]. Brünig et al. [34] also combined DIC data with numerical5

simulations to analyze a biaxial experiment on an H-specimen [35, 36, 37] cov-6

ering a wide range of stress triaxialities and Lode parameters. Huang et al. [38]7

combined DIC results with computations to evaluate plastic strain and failure of8

Ti-6Al-4V alloys for specimens with different initial stress triaxialities. Wang et9

al. [39] coupled DIC data with FE runs to study Split Hopkinson Pressure Bar10

experiments. It was shown that the failure strain decreased with increasing stress11

triaxiality or strain rate. Peng et al. [40] coupled DIC with FE analyses to charac-12

terize the stress state of flat metal specimen with inclined notches to analyze the13

influence of stress triaxiality and Lode angle on failure modes. Pham et al. [41]14

developed a four-node quadrilateral plate element to analyze flexural and buckling15

responses of a functionally graded plate under different boundary conditions.16

Advanced FE-DIC enables for straightforward couplings of measured data17

with numerical simulations in inverse problems aiming for material parameter18

calibration [42, 43, 44]. Finite Element Model Updating (FEMU) [45, 46, 47, 48]19

stands out as the most widely used algorithm for such purposes. With FEMU, the20

calculated displacement fields and resultant forces are compared to the measured21

quantities to determine the sensitivity matrices, i.e., how the change in parameters22

affects them [49, 50, 51]. FEMU was employed for simple (e.g., uniaxial [52]) and23

more complex (e.g., biaxial [53]) mechanical tests. For identification purposes,24

the measured displacements were prescribed as Dirichlet boundary conditions on25
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the FE model. For thin samples, where plane stress states are expected, 2D DIC1

measurements may be sufficient. However, this approach may be limited when2

3D effects cannot be neglected. Réthoré et al. [54] proposed a framework where3

the 3D displacement fields measured with stereocorrelation were used in an inte-4

grated procedure. Wang et al. [55] also coupled measured 3D displacements with5

FEMU to describe plastic anisotropy in the so-called Erichsen bulge test.6

From the reviewed literature, it is concluded that very few studies combined7

DIC and FE simulations to assess stress triaxiality fields [56, 36, 57, 58]. One8

key question when coupling experimental and numerical tools is related to bound-9

ary conditions. Driving numerical simulations using DIC data for assessing stress10

triaxiality fields is the goal of this work. To be consistent with the experiment,11

measured displacements are utilized to drive FE analyses. For that purpose, a12

monotonic simple shear test was carried out with a Modified Arcan Fixture (MAF)13

on a 1 mm butterfly shaped specimen, which promoted uniform stress states in the14

gauge area, made of C60 steel. To measure the surface kinematics, a stereovi-15

sion setup was used to capture both in-plane and out-of-plane components. Since16

thin samples subjected to simple shear loading are susceptible to buckling [59],17

additional supports made of transparent Poly methyl methacrylate (PMMA) were18

utilized to prevent sample buckling [60, 61, 59, 62]. The experimental setup an-19

alyzed herein was developed by Zaplatić et al. [63] where thin butterfly samples20

were subjected to simple shear. The friction coefficient between the PMMA plates21

and the sample was calibrated numerically via FEMU. To study the effect of pre-22

scribed boundary conditions, five test cases were defined, which differed in the23

definition of the applied kinematics. For each test case, FEMU was carried out24

to determine the influence of boundary conditions on the calibrated material pa-25
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rameters. In-depth analyses of the corresponding stress triaxiality fields were con-1

ducted for each test case. Such experimental and numerical framework provides a2

unique approach for analyzing the influence of the prescribed Dirichlet boundary3

conditions on stress triaxiality fields since the FE simulations were directly driven4

by experimentally measured DIC data.5

2. Experimental protocol6

In this section, the entire experimental protocol involving the Modified Arcan7

Fixture and stereovision system are presented. The stereocorrelation results are8

then analyzed and discussed.9

The experiment presented herein was aimed at preventing buckling of thin10

sheet samples under simple shear loading. The mechanical test was carried out on11

a Modified Arcan Fixture (Figure 1), which enables for three loading regimes,12

namely, shear, tensile and combinations thereof. The MAF employs butterfly13

shaped samples with two V notches in the middle of the gauge section to pro-14

mote uniform strain distributions. The expected triaxiality levels in the gauge15

area (i.e., between the V notches) for the aforementioned loading regimes are 0,16

0.33 and 0.66, respectively [63]. The 1-mm thick butterfly sample made of high17

carbon C60 steel was subjected to simple shear (Figure 1). The experiment was18

performed on a uniaxial testing machine Messphysik Beta 50-5 in displacement19

control mode with a stroke rate of 1 mm/min. The standard force uncertainty γF20

of the load cell was equal to 10 N.21
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Experimental protocol

C1

C2

L1

L2
F

Messphysik Beta 50-5

Modified Arcan
fixture

Arcan
sample

Optical setup

Visible light
cameras (x2)

Light

Load FE based stereocorrelationFE model

Displacement and strain fields

Fig. 1: Experimental workflow with the experimental and optical setup consisting of two vertically

positioned visible light cameras (C1 and C2) and two light sources (L1 and L2). On the extracted

detail, the Region Of Interest (for stereocorrelation purposes) is depicted on the butterfly sample

with the positioned PMMA plates.

Since a thin sample was subjected to simple shear, buckling was expected to1

occur. In order to mitigate shear buckling, an anti-buckling fixture was designed,2

which was composed of two 10-mm thick (PMMA) plates. The use of PMMA for3

the material of the anti-buckling fixture was due to its transparency thus allow-4

ing optical measurement methods to be used. Similar setups were employed to5

minimize buckling and wrinkling of sub-millimeter thick sheets [60, 61, 59]. The6
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dimensions of the two PMMA plates (i.e., 70× 25 mm) were defined with respect1

to the observable area of the butterfly sample (Figure 1). The plates around both2

lateral surfaces were connected with a total of six M5 bolts, which were not tight-3

ened to reduce the influence of the anti-buckling fixture on the stress triaxiality4

fields. The material response in the Region Of Interest (ROI) was captured with5

the stereovision system detailed in Table 1. A total of 900 images was acquired by6

each camera, where the first ten image pairs corresponded to the unloaded state.7

Table 1: Hardware parameters of the stereo-system

Cameras Dalsa Falcon 4M60

Definition 2358× 1728 pixels (B/W images)

Color filter none

Gray Levels rendering 8 bits

Lens Titanar 50 mm

Aperture f/2.8

Field of view 3,996 mm2

Image scale ≈ 32 pixel/mm

Stereo-angle 25°

Stand-off distance 31.6 cm

Image acquisition rate 1 fps

Patterning technique B/W paints

Pattern feature size 15 px

The displacement and strain fields of the ROI were measured via FE-based8

stereocorrelation [64, 65, 66]. The employed software (EikoTwin DIC) consid-9
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ers a continuous description of the ROI discretized with triangular T3 finite ele-1

ments [67]. The aforementioned algorithm uses the known geometry of the sam-2

ple and setup, as observed from the reference images, for calibration purposes.3

Following the calibration step, shape corrections of the chosen ROI were per-4

formed by running a second series of spatial registrations in which out-of-plane5

corrections were allowed [65]. The stereocorrelation analysis parameters are re-6

ported in Table 2. The listed noise floor estimates were determined by calculating7

the mean temporal standard deviations of each nodal displacement and element8

strains from the registration of the ten reference image pairs.9

Table 2: Stereocorrelation analysis parameters

DIC software EikoTwin DIC

Image filtering none

Element length 1 mm

Shape functions linear (T3 elements)

Mesh see Figure 3

Matching criterion penalized sum of squared differences

Regularization length 5 mm

Displacement noise floor (x z y) 0.2 µm 0.1 µm 0.6 µm

Strain ε12 noise floor 7× 10−5

The global stress/strain response of the sample is shown in Figure 2. The en-10

gineering shear stress was calculated by dividing the measured force by the initial11

cross-sectional area S0 between the V notches (i.e., 21× 1 mm). The strain levels12

were evaluated by averaging the measured strains within the virtual gauge located13
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between the V notches of the DIC mesh (Figure 3(c)). The yield stress was ap-1

proximately equal to 248 MPa (for an offset strain of 0.4%). For the highest load2

level (i.e., 8.7 kN), the ultimate shear strength was equal to 417 MPa, and the cor-3

responding shear strain 48.7%. From the deformed sample, two distinct symmet-4

ric cracks were observed (Figure 2). The initial location of the cracks correlated5

with tensile stress areas (i.e., with expected stress triaxiality of 0.33). Slight buck-6

ling of the central region was also distinguished, especially where compressive7

stress states were expected (depicted by green rectangles in Figure 2).8

Fig. 2: Macroscopic shear stress/strain response. The green point indicates time step 340 (i.e.,

strain level of 44%). The analyses reported herein were carried out up to this point. On the

deformed sample, the locations of buckling onset are highlighted by red rectangles, which corre-

sponded to areas subjected to compression.

The carried out experiment with the anti-buckling fixture mostly resulted in9

negligible to small out-of-plane displacements. In Figure 3, out-of-plane displace-10

ment, residual and strain fields are reported for time step 340 before damage in-11

ception (Figure 2). The measured out-of-plane displacement field revealed a het-12

erogeneous distribution, which indicated a tendency toward buckling. The area13
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of increased displacements denoted by the blue rectangle corresponds to zones1

where negative triaxialities were expected (i.e., approximately −0.33, which in-2

dicates compressive stresses). The same area is not highlighted in the correlation3

residual map (Figure 3(b)), thus proving the trustworthiness of the measurements.4

Increased residuals were visible in the central part of the ROI (highlighted by5

the green rectangle). Due to the tendency toward buckling, minor wrinkling of6

the central part of the ROI occurred, which led to changes in brightness (i.e.,7

shadows). The strain map (Figure 3(c)) revealed that a single shear strain band8

developed between the V notches where the expected triaxiality was 0.9

(a) (b) (c)

Fig. 3: (a) Out-of-plane Displacement (expressed in mm), (b) gray level residual (in % of the

dynamic range of the reference images), and (c) ε12 strain fields for time step 340 (i.e., before

damage occurred). Positive displacements are oriented toward the reader. The blue box highlights

localized increases in out-of-plane displacements where limited buckling initiated. The green box

shows increased residuals where a slight change in brightness occurred. The cyan box depicts the

location and size of the virtual strain gauge. Negligible out-of-plane displacements were measured

and a uniform shear strain band developed.

3. Numerical protocol10

In this section, the entire numerical protocol is presented. First, the FE models11

of the sample and the PMMA plates is introduced. Second, the five analyzed test12
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3.1 Test cases

cases are defined. Last, the FEMU identification procedure is summarized. The1

numerical investigation presented herein dealt with the influence of the prescribed2

boundary conditions (BCs) on the predictions of the FE model, specifically the3

stress triaxiality fields. To evaluate the latter ones, the material parameters were4

calibrated via weighted Finite Element Model Updating (FEMU).5

In the present analyses, the numerical simulations were driven by experimen-6

tally measured displacements prescribed as Dirichlet BCs. The goal was to ana-7

lyze the influence of the BCs on the stress triaxiality fields. Yang et al. [68] in-8

troduced bifurcation analyses in FE simulations to analyze wrinkling of the mod-9

ified Yoshida buckling test (YBT). Even though the numerical analyses closely10

followed the experiments, the BCs on the gripped part could not describe slip11

between the specimen and the grips in a straight forward manner. Using DIC12

measured data, there is no need to model the grips. Chen et al. [69] analyzed the13

influence of a disturbance force on buckling of YBT specimens. The simulation14

of thin sheet buckling was challenging, and imperfections had to be introduced15

in the numerical model. In the present study, the imperfections were included16

through the measured BCs. No geometrical imperfections were added [70]. All17

the reported simulations were performed with the implicit version of Abaqus [71],18

and no advanced tools (e.g., arc length method or explicit schemes) were needed.19

3.1. Test cases20

Five distinct test cases (Figure 4) were defined for which the influence of BCs21

was evaluated on the stress triaxiality fields and sample buckling modeling (Ta-22

ble 3). For each studied case, the FE model of the sample was discretized with23

C3D8R elements.24
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3.1 Test cases

Table 3: Test cases with their boundary conditions

Test case Description

T1 Measured Ux and Uy displacements on stressed surfaces

and Uz displacements on the stressed edges of Surface 1 + PMMA plates (µ = 0.33) (Figure 4(a) and (b) - R and Y)

T2 Measured Ux and Uy displacements on stressed surfaces

and Uz displacements on the stressed edges of Surface 1 + PMMA plates (µ = 0.01)

T3 Measured Ux and Uy displacements on stressed surfaces (Figure 4(b) - R)

T4 T3 and Uz displacements on stressed edges (Figure 4(b) - R and Y)

T5 T3 and Uz displacements on Surface 1 (Figure 4(b) - R, Y and B)

In test case T1 (Figure 4(a)), the assembly of the butterfly sample and the1

PMMA plates was modeled with defined interactions between the two parts. The2

measured displacements were prescribed on the stressed surfaces of the sample3

mesh as Dirichlet BCs. Out of plane (z) displacements were prescribed only along4

the stressed edges of Surface 1 whose normal was along negative z. Conversely,5

pure (i.e., 2D) DIC displacements x and y were extruded through the thickness6

of the mesh (i.e., along the z direction Figure 4(b) - denoted in Red and Yellow7

color).8
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3.1 Test cases
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Fig. 4: (a) FE model with the PMMA plates. (b) Different sets of boundary conditions. Red (R)

- in-plane displacements (Ux, Uy) on entire surfaces, yellow (Y) - out-of-plane displacements Uz

on the edges and blue (B) - out-of-plane displacements Uz on the entire surface. (c) Detail of a

quarter of the FE model where six points and three surfaces are defined, which are used for further

analyses.

The second test case T2 was identical to T1 regarding the prescribed BCs1

and numerical model. However, the friction coefficient was set to µ = 0.01 to2

probe the influence of negligible friction on the numerical model. For test case3

T3, only 2D displacements (i.e., along x and y directions) were prescribed on the4

stressed surface (Figure 4(b) - denoted in Red color) as if they had been measured5

via 2D-DIC. This test case was not deemed eligible to simulate buckling as an6

idealized configuration was defined (i.e., no imperfections in terms of out-of-plane7

displacements were introduced).8
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3.1 Test cases

In test case T4, out-of-plane displacements were prescribed along the stressed1

edges of Surface 1, identical to T1 and T2, but the PMMA plates were not mod-2

eled (Figure 4(b) - denoted in Red and Yellow color). For the last test case3

(T5), the entire Surface 1 was further constrained with the measured out-of-plane-4

displacements (Figure 4(b) -denoted in Red, Yellow and Blue color). This choice5

was made due to the inaccurate description of buckling with case T4. To further6

probe the simulation validity regarding buckling, the out-of-plane displacements7

were prescribed on the entire surface. Each analysis performed herein was run8

for the first 340 time steps (i.e., until the shear strain reached ε12 = 0.44, see9

Figure 2).10

For the first two test cases, the interaction between the sample and the PMMA11

plates needed to be defined. General contact was introduced with Coulomb fric-12

tion [72], where two different friction coefficients were considered. The plates13

were discretized with C3D4 tetrahedra. In the mechanical test, they were con-14

nected with six bolts that were not tightened. The numerical model was simplified15

to avoid modeling bolt pretension. The bolts were replaced by a combination of16

kinematic couplings and connector elements (CONN3D2, type = beam). Kine-17

matic couplings were used to replace bolt heads on the surfaces around the holes18

(depicted by cyan lines in Figure 4(a)), whereas the connector elements repre-19

sented the bolt shank and thread. Connector elements were used to link the master20

nodes of the kinematic coupling, thereby ensuring stiff connections between the21

plates. To prevent rigid body motions of the plates, for a single master node, all22

displacements and rotations were disabled (red dot in Figure 4(a)). For all other23

master nodes, only out-of-plane displacements were disabled. Elastic properties24

(i.e., 3 GPa Young’s modulus and 0.3 Poisson’s ratio) were assigned to the PMMA25
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3.2 Parameter calibration

plates.1

3.2. Parameter calibration2

The extraction of stress triaxiality fields depends on material parameters.3

FEMU was employed as the identification procedure. To describe the nonlinear4

behavior, Armstrong-Frederick’s kinematic hardening model [73] was selected.5

The sought parameters were the yield stress σy, hardening modulus C, and nonlin-6

ear coefficient c. FEMU minimizes differences between experimentally measured7

and numerically calculated quantities. The minimization procedure iteratively up-8

dates the sought parameters by calculating Hessian matrices based on sensitivity9

fields [49, 74] (i.e., changes of each considered quantity for a small variation of10

the parameters). In the present cases, the differences between measured and com-11

puted displacement fields, as well as measured load and global reaction forces12

extracted from the numerical model were considered.13

If the minimization procedure were to take into account only measured dis-14

placement fields (i.e., FEMU-U), the cost function would be formulated as the15

sum of squared differences between measured {um} and computed {uc} nodal16

displacements17

χ2
u({p}) =

1

γ2
uNu

∥{um} − {uc}∥22 , (1)

where {p} is the column vector gathering all sought material parameters, γu the18

standard displacement uncertainty, and Nu the number of kinematic degrees of19

freedom [74]. When the only source of error is due to the measurement uncer-20

tainty, χu tends to 1. Therefore, any deviation from 1 implies model errors.21

FEMU may also be utilized to minimize the differences between the measured22

forces {Fm} and calculated reaction forces {Fc} (i.e., FEMU-F) extracted from23

16



the stressed edges of the FE model where Dirichlet BCs were prescribed1

χ2
F ({p}) =

1

γ2
FNF

∥{Fm} − {Fc}∥22 , (2)

where γF is the standard uncertainty of the load cell, and NF the number of load2

data.3

The identification procedure can be enhanced by combining the aforemen-4

tioned cost functions5

χ2
tot = (1− ω)χ2

u + ωχ2
F , (3)

where the factor ω weighs the contribution of each individual cost function. In6

this work, ω was set to 0.5 to give equal weight to both cost functions.7

4. Numerical results8

In this section, the numerical results for each test case are presented and com-9

pared. First, FEMU was carried out to determine the optimal set of material pa-10

rameters for each individual test case. For the identification procedure and further11

numerical analyses, the triangular T3 mesh used for stereocorrelation measure-12

ments (Figure 3) was converted into four-noded quadrilateral (Q4) elements. The13

2D Q4 mesh was then extruded to construct the 3D mesh composed of linear brick14

elements with reduced integration (C3D8R).15

4.1. FEMU identification results16

The calibrated material parameters, their initial value and converged cost func-17

tions are gathered in Table 4. The parameters calibrated for test case T1 were used18

as initial guess for the other cases. For each test case, the elastic parameters (i.e.,19

17



4.1 FEMU identification results

Young’s modulus E and Poisson’s ratio ν) were kept constant and set to 210 GPa1

and 0.25, respectively.2

Table 4: FEMU results for all test cases. The calibrated parameters of case T1 were used as initial

guess for all other test cases. Values of χU , χF and χtot are displayed for initial and converged

solutions. The standard parameter uncertainties (±) are also indicated.

Parameter σy, MPa C, MPa c
χU χF χtot

Initial Converged Initial Converged Initial Converged

T1 360± 15 3860± 640 12± 1.7 60 59.6 40.4 9.3 51.2 42.6

T2 380± 9 3920± 460 11± 1.7 59.4 59.5 43.9 10.5 52.5 42.7

T3 380± 9 3920± 460 11± 1.7 34 33 44.4 10.4 32 24.5

T4 380± 10 3910± 510 11± 2 69 71 47 10.5 59 51

T5 380± 13 3890± 660 11± 2.4 7.8 7 45.8 10.7 32.9 9

The calibration procedure yielded parameters that provided good agreement3

between the measured load and the global reaction forces. Each calibration re-4

sulted in lowered global residual χtot. For case T1, the calibrated yield stress σy5

and hardening coefficient C were the lowest, except for the nonlinear coefficient c,6

which was the highest of all test cases. Furthermore, the converged global residual7

χtot and the force residual χF were lower compared to test cases T2 and T4.8

The second test case T2 experienced an increase in yield stress σy by 6% and9

hardening coefficient C by 1%, whereas c was reduced by 7%. The global residual10

at convergence was only slightly higher than for T1. The displacement residuals11

for the initial parameters and at convergence displayed slightly lower values than12

their T1 counterpart. However, for T1 the force residuals were lower. Since fric-13

tion was negligible, higher values of σy and C were calibrated to compensate for14

the additional force due to friction [63].15

The third test case T3, where only in-plane measurements were prescribed,16
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4.1 FEMU identification results

yielded the second lowest global residual. This result was due to the lack of pre-1

scribed out-of-plane displacements that were affected by higher measurement un-2

certainties (Table 2). Furthermore, with this approach, buckling of the sample3

was not possible to simulate since no imperfections were considered. This ob-4

servation highlights the significance of enriching the FE model with measured5

out-of-plane displacements for buckling simulation. Although only in-plane mea-6

surements were prescribed, it was decided to include out-of-plane displacements7

in the calculation of χtot, which was significantly lower than for test cases T1 and8

T2. This observation shows that prescribing only in-plane measurements was not9

sufficient to describe any out-of-plane motion. This test case cannot be considered10

representative of the real experiment since it was idealized. The identified values11

of the sought parameters were essentially the same as for test case T2 since no12

friction was included in the numerical model.13

Even though the identification procedure converged, the global residual was14

the highest of all proposed FE modeling strategies for test case T4. Both displace-15

ment and force residuals for the first iteration and at convergence were greater than16

those for T1 and T2. Furthermore, the displacement residual experienced a slight17

increase at convergence due to higher out-of-plane displacements (i.e., buckling,18

which could not be accurately described). It was concluded that 3D measurements19

prescribed as Dirichlet BCs were sufficient to simulate buckling. However, due20

to the complexity of the material behavior, buckling for case T4 was not fully21

controlled (i.e., restricted by the PMMA plates). The deviation of the calculated22

out-of-plane displacements from the measured counterparts resulted in increased23

displacement residual χU . The initial and converged force residuals χF also dis-24

played higher values than the previous test cases, except for T2 where the same25
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level was reached.1

For the final test case T5, the measured out-of-plane displacements were pre-2

scribed over the entire Surface 1 to drive the numerical simulation toward limited3

buckling with Dirichlet BCs. The calculation of χU considered only stereocorrela-4

tion measurements. The lowest χtot was reached with this approach since out-of-5

plane displacements were accounted for and controlled. This last case resulted in6

approximately eight times lower displacement residuals than for T1. By constrain-7

ing the entire Surface 1, buckling could be triggered with stereocorrelation data.8

The drawback of this approach is the introduction of additional measurement un-9

certainties in the prescribed out-of-plane displacements (Table 2). An additional10

cost function regarding the reaction forces extracted from the constrained surface11

was defined in the FEMU algorithm. The goal was to minimize these reaction12

forces to be as close as possible to zero. The identification procedure yielded the13

highest value of σy compared to all other test cases, which increased by approx-14

imately 7%, whereas C changed only slightly from its initial value (i.e., 0.7%).15

The nonlinear coefficient c experienced the highest relative change (ca. 8%).16

The standard uncertainty of the calibrated parameters was also calculated to17

determine the influence of the prescribed Dirichlet BCs. For the yield stress σy, the18

highest uncertainty was reached for test cases T1 and T5, i.e., the more complex19

cases. The parameter uncertainties for the other three cases were similar. For20

test cases T1 and T5, the highest uncertainty for C was also observed, whereas21

for T2 and T3 they were similar. The highest uncertainty for c was obtained for22

case T5. From these results, it was concluded that the prescribed BCs had an23

influence on the calibrated material parameters. The most complex test cases T124

and T5 yielded the highest parameter uncertainties. For case T1, the cause was25
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4.1 FEMU identification results

friction, whereas for T5 it was due to the prescribed out-of-plane displacement on1

the entire measurement surface.2

To illustrate the effect of friction, a unique set of material parameters was3

selected (i.e., those of case T1, see Table 4) and computations were run with4

the five BCs. From each simulation, the reaction forces were extracted and are5

displayed in Figure 5(a). All test cases yielded lower reaction forces compared to6

T1. This trend was explained by the fact that all of them were frictionless (i.e.,7

for case T2 friction was approximately zero and for the other three it was not8

modeled). The influence of friction cannot be deemed negligible, which is further9

supported by the calibrated material parameters (Table 2). For the last four test10

cases, friction was neglected, and the FEMU procedure yielded higher values for11

σy and C compared to T1 to compensate for the absence of friction. This effect12

was especially apparent for the first two test cases T1 and T2 where the same13

numerical model was employed.14

Cases T1 and T2 were very close in terms of numerical model. Their reaction15

force differences were the lowest of all the reported differences (Figure 5(b)),16

which was further substantiated by the lowest mean. The highest differences were17

observed between cases T1 and T4. Overall, the root mean square differences18

were about 33 times the standard force uncertainty γF . These results highlight the19

consequence of not including friction in the identification procedure.20
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4.2 Stress triaxiality fields

(a) (b)

Fig. 5: (a) Comparison of global reaction forces extracted from the FE models for the material

parameters calibrated for case T1. (b) Differences in global reaction forces with respect to T1. The

mean reaction force differences were on average 33× higher than the standard force uncertainty γF

(i.e., χF ≈ 33). These results show the consequence of not including friction in the identification

procedure (i.e., lower reaction forces since the material parameters were not properly calibrated in

the absence of friction).

4.2. Stress triaxiality fields1

In the following, the influence of different BC prescriptions on stress triaxiality2

fields is studied, both surface-wise and node-wise (Figure 4(c)). Three surfaces3

were chosen to evaluate them, namely, the back Surface 1, middle Surface 2 and4

front Surface 3. Moreover, in total six nodes were chosen for the evaluation of5

the corresponding triaxialities. The three nodes in the middle (i.e, nodes 1, 26

and 3) of the FE model were chosen to asses the stress state in the gauge area7

(i.e, between the V notches) since the butterfly sample was designed to promote8

uniform stress states in the gauge region. The sample was subjected to simple9

shear, thus uniform shear stress states were expected (i.e., the stress triaxiality10

should vanish). Furthermore, three points were chosen in the root of the V notch11

(i.e, nodes 4, 5 and 6) to evaluate the stress state in that area. All test cases12
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4.2 Stress triaxiality fields

displayed similar distributions of stress triaxialities on the chosen sample planes1

(Figures 6-10). The locations of the initiated cracks in the sample (see inset of2

Figure 2) coincided with the areas of positive stress triaxialities (i.e., ≈ 0.33)3

where tensile stresses occurred.4

From the stress triaxiality fields shown in Figure 6 for test case T1, identical5

distributions are observed on all three surfaces. The stress triaxiality fields were6

generally divided into three main parts, namely, areas with positive (red) tensile,7

negative (blue) compressive, and approximately zero (green) shear parts. Small8

fluctuations in terms of increased stress triaxiality values occurred on the edges of9

the surfaces. This effect was attributed to the prescribed BCs, which introduced10

additional random fluctuations due to measurement uncertainties. Furthermore,11

no severe wrinkling was caused by sample buckling since it was prevented with12

this numerical model.13

(a) (b) (c)

Fig. 6: Stress triaxiality fields for time step 340 (test case T1), for the front surface (a), the mid-

thickness surface (b) and back surface (c). Almost identical fields are observed for the three

analyzed surfaces.
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4.2 Stress triaxiality fields

Test case T2 (Figure 7) displayed identical triaxiality distributions as T1 since1

the numerical model was the same, except for the value of the friction coefficient.2

As in the previous case, increased stress triaxiality levels were observed on the3

boundaries of the FE model where Dirichlet BCs were prescribed. The stress4

triaxiality in the middle of the gauge area was also close to zero. From the stress5

triaxiality fields, it was concluded that the influence of friction remained very6

limited.7

(a) (b) (c)

Fig. 7: Stress triaxiality fields for time step 340 (test case T2), for the front surface (a), the mid-

thickness surface (b) and back surface (c). Almost identical fields are observed for the three

analyzed surfaces.

Test case T3 differed from other ones as it was the only configuration where8

no out-of-plane displacements were prescribed to the FE model. No buckling de-9

veloped in the numerical simulations since they were idealized (i.e., there were no10

imperfections in terms of out-of-plane displacement). All three surfaces displayed11

identical stress triaxiality distributions. The stress triaxiality levels in the middle12

of the gauge area were close to zero (i.e., a shear stress state developed). Similar13
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4.2 Stress triaxiality fields

distributions of stress triaxialities were observed compared to cases T1 and T2,1

and the constrained edges of the FE model displayed lower fluctuations since no2

out-of-plane displacements were prescribed.3

(a) (b) (c)

Fig. 8: Stress triaxiality fields for time step 340 (test case T3), for the front surface (a), the mid-

thickness surface (b) and back surface (c). Almost identical fields are observed for the three

analyzed surfaces.

For test case T4, the fluctuations in the stress triaxiality fields on Surfaces 14

and 3 (Figure 9) were more marked. The middle Surface 2 was similar to the5

previous test cases and no significant fluctuations occurred. However, Surface 16

suffered from more important variations in the stress triaxiality field in the middle7

of the gauge section, where zero levels were expected. This effect was attributed8

to buckling, which was triggered by introducing out-of-plane displacements in the9

Dirichlet BCs. Even though buckling developed, it was not severe. Its influence10

on the stress triaxiality fields was not negligible since additional stresses were11

induced. From the stress triaxiality fields, the effect of limited buckling was seen.12

The gauge area on Surface 1 was subjected to tensile stresses, whereas the same13
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4.2 Stress triaxiality fields

area on Surface 3 was compressed. From this observation, it was concluded that1

buckling was oriented away from the reader.2

(a) (b) (c)

Fig. 9: Stress triaxiality fields for time step 340 (test case T4), for the front (a) and back (c)

surfaces where the influence of buckling is more pronounced than for the mid-thickness surface

(b).

Since the entire Surface 1 was constrained by the prescribed out-of-plane dis-3

placements, test case T5 was the most sensitive to measurement uncertainties.4

Triaxiality fluctuations were observed on all three surfaces in Figure 10, and as5

expected, Surface 1 was most affected. The stress triaxiality distribution on all6

three surfaces was still close to the previous cases. For test case T4, where buck-7

ling was also simulated, similar distributions of stress triaxialities in the gauge8

region were distinguished. The stress triaxiality values for the red areas ranged9

from 0.3 to approximately 0.5, which was similar to the levels obtained for cases10

T1 and T2. In the gauge area, they were higher than for T1. This trend was at-11

tributed to buckling inception since out-of-plane displacements were prescribed12

on Surface 1.13
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(a) (b) (c)

Fig. 10: Stress triaxiality fields for time step 340 (test case T5). For the front surface (a), the

influence of the measurement uncertainties is more important than for the back surface (c); for the

mid-thickness surface (b) it is minimal.

The stress triaxiality history for the six chosen nodes (Figure 4(c)) is plotted1

against the average shear strain calculated from the virtual gauge (Figure 3(c))2

and reported in Figure 11. From the analysis of the stress triaxiality fields, it3

was concluded that the gauge area was subjected to predominantly shear stresses4

(i.e., with stress triaxiality approximately equal to zero). The middle nodes 1, 25

and 3 (Figure 3(a)) for case T1 (Figure 11(a)) displayed small deviations through6

the thickness in the middle of the sample with an increase of the mean shear7

strain. However, the mean values for time step 300 were equal to 0.03 for all three8

nodes (Table 5). The second set of nodes (i.e., 4, 5 and 6) experienced notable9

fluctuations. However, their levels all converged toward 0.33 (i.e., tensile stress10

state) for the final time step.11
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4.2 Stress triaxiality fields

Table 5: Mean nodal stress triaxiality for each test case in the plastic regime (i.e., from time step

100 to 340)

Node 1 2 3 4 5 6

T1 0.01 0.02 0.03 0.20 0.19 0.20

T2 0.01 0.02 0.03 0.20 0.19 0.20

T3 0.02 0.02 0.02 0.20 0.19 0.20

T4 −0.01 0.02 0.06 0.20 0.20 0.25

T5 0.01 0.02 0.04 0.20 0.25 0.50

Test case T2 was essentially identical to T1 with regards to nodal stress tri-1

axiality history, thereby indicating negligible influence of friction on the stress2

triaxiality (Figure 11(b)). Furthermore, similarities were also observed for the3

mean levels (Table 5); for cases T1, T2 and T3, they were identical. Test case4

T3, where only in-plane displacements were prescribed on the stressed edges, did5

not exhibit any buckling, which was further illustrated by the indistinguishable6

stress triaxiality histories for nodes 1, 2 and 3 and 4 and 6 (Figure 11(c)). Node 57

displayed an identical history as cases T1 and T2.8

Test case T4, where the FE model was enriched with out-of-plane displace-9

ments, exhibited more pronounced buckling compared to the first two cases (Fig-10

ure 11(d)). Therefore, the previously commented trend for nodes 1,2 and 3 was no11

longer observed. A divergence of nodal stress triaxialities occurred (Figure 11(d)).12

This phenomenon was attributed to buckling since Surface 3 (Node 1) was sub-13

jected to compression and Surface 1 (Point 3) to tension according to the stress14

triaxiality fields (Figure 9). The middle point 2 displayed the same response as in15
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4.2 Stress triaxiality fields

previous test cases. Nodes 4 and 6 also experienced higher divergence compared1

to the other test cases. Nodes 2 and 5 located on the middle plane (i.e., Surface2

2) did not exhibit any dependence on buckling as the levels and histories were3

equivalent to case T1.4

(a) (b)

(c) (d)

(e)

Fig. 11: Nodal stress triaxiality history vs. mean shear strain (in the optical gauge) for test cases

T1 (a), T2 (b), T3 (c), T4 (d) and T5 (e). For the middle nodes 1,2 and 3, the trend is similar for

all cases, except T4 where buckling developed. For nodes 4, 5 and 6 the trend is similar for each

test case.
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4.2 Stress triaxiality fields

The introduction of measured out-of-plane displacements on Surface 1 re-1

sulted in noisier stress triaxialities (Figure 11(e)). Although all nodes were af-2

fected, nodes 3 and 6 suffered the most since they were located on the constrained3

surface, thus displaying higher sensitivity to measurement uncertainties. The in-4

fluence of the latter ones was also observed from the mean values of all nodes as5

they showed slight deviations from the previous test cases, especially for node 6,6

which was two times higher than for the other cases (Table 5).7

Figure 12 reports the mean stress triaxiality differences for Surface 2 with re-8

spect to test case T1 since for the chosen plane all cases displayed similar results.9

The mean stress triaxiality differences for test cases T2 and T4 showed similar10

trends. For the first one hundred images (in elasticity) the differences were in-11

significant, whereas in the plastic regime they were several orders of magnitude12

larger. Conversely, test cases T3 and T5 exhibited much larger differences than13

T2 and T4 in elasticity. However, T3 did not display any distinct change in the14

difference levels, whereas T5 showed a gradual decrease of the differences with15

increased load levels. This trend was attributed to a better description of sample16

buckling, thus better simulating the complex stress states in the material. Al-17

though additional measurement uncertainties were introduced in test case T5, no18

severe anomalies were observed. In plasticity, the mean differences for all test19

cases were of similar order of magnitude.20
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Fig. 12: Comparison of mean stress triaxiality differences for Surface 2 between all test cases with

respect to T1. Highest differences are reported in elasticity, whereas for plasticity the differences

are of similar orders of magnitude. Slightly higher differences are observed between test cases T1

and T4 thereby confirming that for the stress triaxiality fields it is necessary to use a 3D model.

5. Discussion1

In this section, the influence of the calibrated parameters on the stress triax-2

iality fields is studied for each test case. The converged solution for the stress3

triaxiality fields was subtracted to that for which a single parameter was changed4

by 1%. The standard differences per image are displayed for all three surfaces to5

study the influence of the considered parameter through the sample thickness.6

By observing the standard sensitivity to the yield stress σy (Figure 13), a sud-7

den increase to stress triaxiality differences occurred in the early stages of yielding8

as seen on the force curve. This trend was similar in all test cases. For cases T19

and T5, the increase was more pronounced than for the other ones. In the middle10

of the sample (i.e., Surface 2) the highest difference was observed for T1, whereas11

on Surface 3 it was for cases T5 and T1. This trend was attributed to the complex-12
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ity of the numerical models. After the initial stages of yielding, the calculated1

differences were lower and stable until the end of the numerical analysis.2

(a) (b)

(c)

Fig. 13: Standard sensitivity of stress triaxiality fields to σy for each test case for (a) Surface 1,

(b) Surface 2 and (c) Surface 3. A sudden increase in standard sensitivity occurred in the early

stages of yielding for each test case. These changes are negligible since they were two orders of

magnitude lower than the actual stress triaxiality levels.

The standard sensitivity of the stress triaxiality fields to parameter C (Fig-3

ure 14) was the highest in the early stages of hardening. In elasticity and early4

plasticity, they were negligible and after yielding they began to rise. After the5

maximum point, the values decreased and remained low until the end of the nu-6

merical simulations. For case T5, the highest level was reached for Surfaces 17

and 3. For Surface 2, all test cases displayed similar values. However, for Sur-8

faces 1 and 3, T4 was an outlier since toward the end of the simulation the stress9
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triaxiality differences did not follow the same trend as the other test cases.1

(a) (b)

(c)

Fig. 14: Standard sensitivity of stress triaxiality fields to parameter C for each test case for (a)

Surface 1, (b) Surface 2 and (c) Surface 3. The standard sensitivities were higher in early plasticity.

Such changes are negligible since they are approximately three orders of magnitude lower than the

actual stress triaxiality levels.

For all test cases, the change in parameter c (see Figure 15) displayed an influ-2

ence on the stress triaxiality differences at the very end of the numerical simula-3

tions (i.e., when approaching the ultimate load). In elasticity and early plasticity,4

the differences were negligible. During the early stages of hardening the influ-5

ence was more noticeable. Yet, it was still limited in comparison to later stages.6

On Surface 1, case T4 displayed much higher values than the other ones due to7

buckling initiation.8
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(a) (b)

(c)

Fig. 15: Standard sensitivity of stress triaxiality fields to parameter c for each test case for (a)

Surface 1, (b) Surface 2 and (c) Surface 3. The standard sensitivities are more pronounced at the

very end of the numerical simulations. These changes are negligible (three orders of magnitude

lower) compared to the actual triaxiality levels.

From Figures 13-15 it was concluded that the change in triaxiality fields re-1

mained very limited as the standard variations were of the order of 10−3. These2

differences were ten times lower than the parameter changes. It is worth noting3

that for Surface 2, for each parameter, the stress triaxiality differences were mini-4

mal and the curves for each test case were in good agreement. For the yield stress5

σy, the differences were higher in amplitude than for the hardening parameters C6

and c for each test case and surface.7

Table 6 gathers the mean sensitivities calculated from image 150 until the end8

of the analysis for each surface and test case observed in Figures 13-15. For Sur-9
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faces 1 and 3, larger fluctuations were observed, where T5 displayed the highest1

sensitivity to material parameter changes. Conversely, for Surface 2, the change2

of material parameters induced similar influences on the stress triaxiality changes3

for each test case. These values were two orders of magnitude lower than the4

parameter change (1%).5

Table 6: Mean standard sensitivities to parameter changes for the three considered surfaces

std(σy)× 10−4 std(C)× 10−4 std(c)× 10−4

S1 S2 S3 S1 S2 S3 S1 S2 S3

T1 3.9 3.1 4.4 4.2 3.1 4.2 4.3 3.5 4.2

T2 4.3 3.2 4.9 4.1 3.1 4.5 3.7 3.1 3.7

T3 3.1 3.4 3.1 3 3.2 3 2.9 3.1 2.9

T4 4.2 2.9 4.4 5.4 3 6.2 4.7 2.7 5.8

T5 6.7 3.2 5.8 6.2 3 5.3 6.1 3 4.4

Last, the comparison between all test cases is analyzed. Test case T5 was taken6

as reference and the stress triaxiality fields were subtracted to each previous test7

case only for Surface 1. This choice was made as measured out-of-plane displace-8

ments were prescribed on the aforementioned surface. Root mean square (RMS)9

differences were calculated and are displayed in Figure 16. It was observed that in10

elasticity, the RMS differences were about eight times higher than in the hardening11

stages of the sample (Figure 16(a)). In the semi-logarithmic plot (Figure 16(b))12

this trend becomes clearer. In elasticity, each type of BC had a strong influence on13

the stress triaxiality levels and distributions. As plasticity set in, the displacement14

levels became higher. Therefore, when comparing these computations, the results15
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in elasticity were discarded.1

(a) (b)

Fig. 16: Root mean square differences in stress triaxiality fields with respect to test case T5 for

Surface 1. (a) RMS difference vs. image number. (b) Semi-logarithmic plot of the previous dif-

ferences. The dashed vertical line depicts the beginning of the computations reported in Table 7.

The highest differences are for case T4 where buckling developed whereas for other cases they

remained of same order of magnitude.

In Table 7, the mean values of the RMS differences are gathered from image2

150 until the final one. It was observed that the lowest value was for T3. Since3

T1 and T2 were similar, except for the consideration of friction, the mean differ-4

ences were close. The highest difference was for case T4, where significant and5

unphysical buckling occurred. Although there was a visible influence of different6

BCs, they remained low.7

Table 7: Mean RMS differences in stress triaxiality fields with respect to T5 for Surface 1

Case RMS

T5-T1 0.0561

T5-T2 0.0563

T5-T3 0.0528

T5-T4 0.0768
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6. Conclusions and outlook1

In this study, an extensive analysis was carried out to evaluate the effect of2

different Dirichlet BCs on the evaluation stress triaxiality fields. The prescribed3

displacements were measured via FE-based stereocorrelation for a simple shear4

test on a 1 mm thick sample. To evaluate stress triaxiality fields, the constitutive5

equation and its parameters had to be identified. Armstrong-Frederick’s kinematic6

hardening model was selected and calibrated via weighted FEMU.7

First, the five investigated cases led to different sets of material parameters.8

Yet, negligible influence was evidenced on the stress triaxiality fields. A very fine9

calibration of the material response was thus not required in the studied test.10

Second, when modeling the anti-buckling fixture, the friction coefficient was11

considered as an additional parameter to be calibrated. Compared to the predic-12

tions with a very small value, the stress triaxiality fields were very close even13

though the calibrated material responses were different. Such simulations were14

very costly, therefore three other cases were also investigated.15

Third, by prescribing only in-plane displacements measured on the stressed16

surfaces of the FE model, limited wrinkling was not accounted for. Interestingly,17

the stress triaxiality fields were close to the previous estimates and constituted a18

first estimate if wrinkling had been fully prevented.19

Fourth, by also considering the out-of-plane displacements on the stressed20

edges of the sample, buckling was observed in the simulations. The resulting de-21

formed shape was not consistent with the measured one. Different stress triaxiality22

fields were observed and it was concluded that they were not physical.23

Fifth, prescribing all out-of-plane displacements as BCs on the sample surface,24
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limited buckling was accurately simulated. The drawback was the inclusion of ad-1

ditional measurement uncertainties through such BCs. As a result, the stress triax-2

iality fields were more fluctuating, yet close to the levels observed when modeling3

the anti-buckling fixture. This case provided, by construction, accurate deformed4

shapes in a less computationally demanding manner than the first one.5

The framework presented herein is not limited to the specific experiment6

where simple shear was applied to an Arcan sample. The procedure is generic7

and may also be applied to simpler or more complex experimental investigations8

and for other materials.9
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[22] Güner A, Zillmann B, Lampke T, Tekkaya AE (2014) In-situ Measure-18

ment of Loading Stresses with X-ray Diffraction for Yield Locus Determi-19

nation. Int J Automot Technol 15(2):303–316, 10.1007/s12239-014-0031-9,20

http://link.springer.com/article/10.1007/s12239-012-0027-221

[23] Voillot B, Lebrun JL, Billardon R, Hild F (2018) Validation of registration22

41



REFERENCES

techniques applied to XRD signals for stress evaluations in titanium alloys.1

Experimental Mechanics 58(8):1265–1280, 10.1007/s11340-018-0391-62
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[25] Dalémat M, Coret M, Leygue A, Verron E (2019) Measur-6

ing stress field without constitutive equation. Mech Mater 136,7

10.1016/j.mechmat.2019.1030878

[26] Musiał S, Nowak M, Maj M (2019) Stress field determination based on9

digital image correlation results. Arch Civ Mech Eng 19(4):1183–1193,10

10.1016/j.acme.2019.06.00711

[27] Andrade F, Conde S, Feucht M, Helbig M, Haufe A (2019) Estimation of12

Stress Triaxiality from optically measured Strain Fields. In: 12th European13

LS-DYNA Conference, 114
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[53] Tomičević Z, Kodvanj J, Hild F (2016) Characterization of the non-9

linear behavior of nodular graphite cast iron via inverse identifica-10

tion: Analysis of biaxial tests. Eur J Mech A/Solids 59:195–209,11

10.1016/j.euromechsol.2016.03.00612
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