
HAL Id: hal-03950393
https://hal.science/hal-03950393v1

Submitted on 21 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Assessment of NTRU Against Non-Profiled
SCA

Luk Bettale, Julien Eynard, Simon Montoya, Guénaël Renault, Rémi Strullu

To cite this version:
Luk Bettale, Julien Eynard, Simon Montoya, Guénaël Renault, Rémi Strullu. Security Assessment of
NTRU Against Non-Profiled SCA. CARDIS 2022 - 21st Smart Card Research and Advanced Appli-
cation Conference, Nov 2022, Birmingham, United Kingdom. pp.248-268, �10.1007/978-3-031-25319-
5_13�. �hal-03950393�

https://hal.science/hal-03950393v1
https://hal.archives-ouvertes.fr

Security Assessment of NTRU Against
Non-Profiled SCA

Luk Bettale1, Julien Eynard2[0000−0002−1118−1383], Simon Montoya1,3, Guénaël
Renault2,3[0000−0002−7050−9975], Rémi Strullu2

1Crypto and Security Lab IDEMIA Courbevoie, France.
Email: firstname.lastname@idemia.com

2ANSSI Paris, France.
Email: firstname.lastname@ssi.gouv.fr

3LIX, INRIA, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France.
Email: firstname.lastname@lix.polytechnique.fr

Abstract. NTRU was first introduced by J. Hoffstein, J. Pipher and
J.H Silverman in 1998. Its security, efficiency and compactness proper-
ties have been carefully studied for more than two decades. A key en-
capsulation mechanism (KEM) version was even submitted to the NIST
standardization competition and made it to the final round. Even though
it has not been chosen to be a new standard, NTRU remains a relevant,
practical and trustful post-quantum cryptographic primitive.

In this paper, we investigate the side-channel resistance of the NTRU
Decrypt procedure. In contrast with previous works about side-channel
analysis on NTRU, we consider a weak attacker model and we focus on an
implementation that incorporates some side-channel countermeasures.
The attacker is assumed to be unable to mount powerful attacks by
using templates or by forging malicious ciphertexts for instance. In this
context, we show how a non-profiled side-channel analysis can be done
against a core operation of NTRU decryption. Despite the considered
countermeasures and the weak attacker model, our experiments show
that the secret key can be fully retrieved with a few tens of traces.

Keywords: Non-profiled SCA · NTRU · Post-Quantum Cryptography

1 Introduction

The emergence of a quantum computer with the capacity to run Shor’s algo-
rithm [29] is a threat to classic cryptography. This threat has led the scientific
community to investigate further the field of cryptographic primitives which are
resistant against such computers: post-quantum cryptography. A quantum com-
puter could break widely used asymmetric cryptosystems such as RSA or elliptic
curve cryptography. In order to keep communications secure in the future, some
national agencies have started to study proposals for new algorithms (e.g. [8, 2])
and have conducted standardization processes for quantum safe algorithms (e.g.
[25, 9]). One of them was started in 2016 by the National Institute of Standards

2 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

and Technology (NIST) in the form of a competition [25]. It was seemingly the
most attended and followed standardization process by the post-quantum cryp-
tography community until the results were announced on July 5th, 2022.

Among the candidates of the final round, two key encapsulation mechanisms,
named NTRU [10] (finalist) and NTRU Prime [4] (alternate finalist), are based
on the same mathematical problem that was first introduced in the definition
of the original NTRU cryptosystem [20]. In particular, these versions of NTRU
are improvements of the original cryptosystem. Even though they were not se-
lected to be part of the next standards, their efficiency, compactness, security
make them relevant to be considered for quantum-resistant cryptographic ap-
plications. Moreover, the interest of NTRU-based cryptosystems is confirmed
by real life experiments. In 2019, Google and Cloudflare jointly initiated an
experiment, named CECPQ2 [16, 11] that integrates the NTRU finalist key-
exchange algorithm into TLS 1.3. Afterwards, Bernstein et al. optimized the
NTRU Prime key-exchange algorithm in [5] and used it in TLS 1.3 in order to
speed-up CECPQ2 protocol.

This kind of cryptographic primitive can be considered for embedded imple-
mentations within devices that are limited in terms of CPU frequency, RAM
quantity. These kinds of device are naturally threatened by side-channels at-
tacks. In order to protect the implementations against those kind of attacks, the
NIST asked the competitors to provide constant-time implementations. How-
ever, this countermeasure only protects against timing attacks [22]. Therefore,
this protection is not enough against other side-channel attacks (see e.g. [7, 23]).
The overhead required for additional security depends on the subroutines and
parameters used within a cryptosystem. The present work provides new results
about the security of NTRU like implementations against side-channel attacks.

Previous works & motivations

The previous works on the side-channel analysis of NTRU-based schemes were
done in different contexts.

In [21], the authors apply several power analysis attacks on various implemen-
tations of NTRU Prime. The side-channel analysis focus on the polynomial mul-
tiplication during the decryption. These attacks are applied to the NTRU Prime
reference implementation, an optimized implementation using SIMD instructions
and some implementations using classic countermeasures such as masking. In all
these cases, the attacker retrieves the whole secret key. To do so, a powerful
attacker model is assumed as he is able to profile the targeted embedded device
by using a fully controllable similar open device. In [30], the authors present a
single-trace side-channel attack against several lattice-based KEMs. This attack
aims to retrieve the ephemeral session key exchanged during the encapsulation
routine on not secured implementations. Whereas the NTRU implementation is
not directly attacked, the authors give a methodology to apply the attack to it.
In [28], the authors combine malicious forged ciphertexts and side-channel anal-
ysis in order to retrieve the secret key in the NTRU decapsulation routine. The
NTRU cryptosystem is IND-CCA secure which means that it is protected against

Security Assessment of NTRU Against Non-Profiled SCA 3

chosen ciphertext attacks. However, this protection is ensured by a verification
done after the whole computation. Therefore, an attacker using side-channel
analysis can learn information about these computations and can deduce infor-
mation about the secret key. Here again, the targeted implementation is not
secured against side-channel attacks. Moreover, the attacker can choose the in-
put ciphertext. Even when the secret is masked, side-channel analysis combined
with forged ciphertexts are still devastating (see attack [18] for such an attack
on Kyber, another finalist to the NIST PQC competition). In [3], the authors
mount a side-channel attack against the NTRU round 3 implementation, which
is not claimed to be secured against SCA. The targeted operation is the re-
duction modulo 3 applied to secret polynomials. By using information leakage
during this modular reduction, the attacker can retrieve approximately 75% of
the secret polynomial. Eventually, the whole key is found by using some lattice
reduction techniques. To conclude their work, the authors suggest a more secure
modular reduction algorithm that significantly reduces the side-channel leakage.

All these works have paved the way for good practice about secure imple-
mentations. Even if they are applied to different contexts, these attacks mainly
focus on non-secure implementations and/or suppose that the attacker is power-
ful enough to profile the target power consumption/electromagnetic radiations.
The purpose of the present work is to go further with the side-channel analysis of
NTRU by studying the relevance of some classic side-channel countermeasures
(tested on the NTRU reference implementation) against weak attackers.

Being able to assess the security provided by lightweight side-channel coun-
termeasures is crucial for constrained devices. Indeed, implementing secure post-
quantum algorithms on constrained devices such as smart cards is already a
particularly arduous challenge [17]. Since the development of countermeasures
can be resource consuming in many ways (development time, extra energy or
entropy consumption within the device, etc), the designer needs to fine-tune the
set of side-channel countermeasures according to the considered attacker model.
The present work aims to help with this by challenging the efficiency of some
classic lightweight side-channel protections against a basic, weak attacker model.
To do so, we make use of some classic non-profiled side-channel analysis tech-
niques (clustering) that have already been shown useful to attack embedded
implementations of classic asymmetric cryptography (e.g. see [19]).

Our contributions.

Our work explores how a weak attacker model can still be threatening for embed-
ded implementations that incorporate low-cost SCA countermeasures. Finding a
good balance between performance and effectiveness of SCA countermeasures is
crucial for developers. For instance, the rotation-shuffle technique considered in
this work is a typical example of a dedicated countermeasure that relies on the
intrinsic algebraic structures of NTRU in order to limit the development time,
performance and entropy costs.

4 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

Attacker model and Device Under Test. As explained above, we assume that the
attacker is weak in a sense that he cannot profile the device under test (DUT). In
other words, he cannot perform any supervised attack. The attacker has access
to the DUT that implements NTRU. Moreover, he knows the algorithms and
the arithmetic that are implemented. He can only probe physical signals of a
limited number of Decrypt executions. Also, he knows that the implementation
integrates two classic countermeasures. The first one consists in the implemen-
tation of a blind decryption, by masking the ciphertext, in order to prevent the
possibility of a chosen ciphertext attack. The second one is a rotation of the
secret polynomial in order to randomize the operation order at each execution
of the Decrypt algorithm. To simulate an experimental situation, the DUT is
a STM32F407 discovery board with CPU running at the maximal frequency
of 168MHz. The side-channel leakage used by the attacker is electromagnetic
radiations (EM).

Sketch of the attack. Considering this attacker model, we perform a non-profiled
side-channel attack on NTRU. The attack is performed during the first polyno-
mial multiplication within the Decrypt algorithm and aims at retrieving a secret
polynomial f . The secret coefficients belong to {0, 1, q − 1}, where q is a power
of 2. The attack is performed in two steps: 1) finding the secret key rotations by
locating the q− 1 coefficients; 2) distinguishing between the 0 and 1 coefficients.
The first step is done by using a clustering algorithm in order to identify the
coefficients with value q − 1. We use the property that these coefficients have a
high Hamming weight. Afterwards, we perform dot products on the clustering
results in order to retrieve the rotation indices. The second step uses another
property in order to distinguish between 0’s and 1’s. We use the fact that a
0 coefficient does not change the value of the accumulator during the polyno-
mial multiplication. In practice, it might mean that the CPU handles identical
data and instructions during a part of two consecutive coefficient products (this
phenomenon is called a collision).

Results. We provide a complete analysis of this side-channel attack against
NTRU descapsulation. In particular, we present algorithms to make our ap-
proach fully reproducible. It is done in a realistic scenario with a protected im-
plementation running on a non restricted (in terms of frequency) microcontroller.
The attacker model is particularly weak (no profiling, no ciphertext forging). It
is therefore representative of the kind of threat model that the developers must
consider when designing secure embedded implementations. Despite lightweight
SCA countermeasures that are wanted to be efficient (performance-wise) yet ef-
fective against weak attackers, the attack succeeds in 45 EM traces in average.
To succeed, the attack exploits the particular structures of NTRU that we will
exhibit later on (key distribution, polynomial arithmetic).

Organization

Section 2 introduces the NTRU Decrypt algorithm. The targeted polynomial
multiplication algorithm is presented as well as the implemented countermea-

Security Assessment of NTRU Against Non-Profiled SCA 5

sures that are supposed to protect (to a certain extent) this polynomial multi-
plication against side-channel analysis. Finally, section 3 contains the details of
the attack and provides the results of the experiments.

2 NTRU Description and Implemented Countermeasures

In this section, we present the NTRU Decrypt algorithm that we evaluate against
side-channel attacks in Section 3. We first introduce notations and then describe
the reference implementation of NTRU Decrypt with a focus on the targeted
operation. Finally, we describe the implemented countermeasures that we take
into account in our analysis.

2.1 NTRU Algorithm and notations

Notations. For any integer q ≥ 1, we note Zq = Z/(q). For three integers p, q, n ≥
1, we define Rq and Sp the following two polynomial rings: Rq = Zq[x]/(φ1φn)
(with φ1φn = xn − 1) and Sp = Zp[x]/(φn) (with φn = 1 + x+ . . .+ xn−1). An
element in Rq (resp. Sp) is a polynomial of degree at most n − 1 (resp. n − 2)
with coefficients in Zq (resp. Zp). For any polynomial f , we denote by f [i] or fi
the coefficient associated with the monomial xi.

NTRU finalist of NIST competition. NTRU [10] is a Key Encapsulation Mech-
anism (KEM) based on the NTRU problem which is often assimilated to a
lattice-based one. The first version of NTRU was presented in 1996 in [20]. Over
the years, several variants of the NTRU cryptosystem were proposed in order to
improve the original one. The series of improvements finally led to the variants
submitted to the NIST competition. The implementation supporting the appli-
cation to the NIST competition is used as a reference for our work. The NTRU
submission contains 3 routines: KeyGen, Encrypt and Decrypt. These routines
can differ slightly depending on the security parameters and the chosen configu-
ration (HRSS or HPS). However, these small differences do not change the overall
structure of the algorithms. As the other ideal lattice KEM proposed in the NIST
call, the NTRU submission performs polynomial arithmetic. The polynomials are
defined over Rq or Sp with n ∈ {509, 677, 701, 821}, q ∈ {2048, 4096, 8192} and
p = 3 depending on the security level.

Decrypt routine. In this work, we focus on retrieving some information about
the long term secret polynomials. These secret data are used in the subroutines
KeyGen and Decrypt. However, the KeyGen subroutine is generally run only once
in the life cycle of an embedded device. That is not the case for the Decrypt

subroutine. Moreover, KeyGen can be done during the production in factory,
therefore preventing a possible side-channel attack during the secret key gener-
ation. For these reasons, the present attack focuses on a side-channel analysis
on Decrypt. Alg. 1 describes Decrypt as presented in the reference specifica-
tion [10]. The secret key is made of (f, fp, hq) where f, fp are secret polynomials

6 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

Algorithm 1 Decrypt((f, fp, hq),c)

Require: (secret) keys: f, fp, hq, ciphertext: c
1: if c 6≡ 0 (mod(q, φ1)) return (0, 0, 1)
2: a← (c · f) mod (q, φ1φn)
3: m← (a · fp) mod (3, φn)
4: m′ ← Lift(m)
5: r ← ((c−m′) · hq) mod (q, φn)
6: if (r,m) ∈ Lr × Lm return (r,m, 0)
7: else return (0, 0, 1)

and hq is the inverse of the public polynomial. The Lift operation depends on
the NTRU variant (HPS or HRSS). As it is not important for the attack, we
omit its definition.

2.2 Targeted algorithmic setting and operation

Algorithm 2 poly Rq mul(c, f)

Require: c, f , where deg(c) = deg(f) = n− 1
Ensure: a = c× f mod (xn − 1)
1: for k = 0 to n− 1 do
2: a[k]← 0
3: for i = 1 to n− k − 1 do a[k]← a[k] + c[k + i]× f [n− i]
4: for i = 0 to k do a[k]← a[k] + c[k − i]× f [i]

5: return a

In order to demonstrate the efficiency of our attack and without loss of gen-
erality, we choose the following setting: n = 509, q = 211 (ntruhps2048509
configuration). The results of the present attack can be straightforwardly gen-
eralized to any other setting. The side-channel analysis performed in this article
targets the first polynomial multiplication at line 2 of Algorithm 1. This choice
is motivated by the fact that this operation is performed on a secret polyno-
mial. Therefore, this polynomial multiplication is highly sensitive and requires
a thorough study of its potential sources of leakage. Algorithm 1 describes the
decryption algorithm at a high level but our attack is performed against the
reference implementation. Thus, we need to detail more precisely how the sensi-
tive operations are defined in the source code. The same attack mounted against
another implementation should therefore be adapted to its specificities.

The polynomial multiplication a ← (c · f) mod (q, φ1φn) is done using the
function poly Rq mul(c, f) which is described in Algorithm 2. In the reference C
implementation, the inputs are uint16 t arrays that represent polynomials and
where each element corresponds to a coefficient. The modular reduction modulo
q is not performed in this algorithm, but later on the final result.

Security Assessment of NTRU Against Non-Profiled SCA 7

2.3 Countermeasures

Let’s recall that our attacker model implies that only non-profiled side-channel
analysis is possible. Some countermeasures are integrated within the NTRU
implementation as explained in this section. The reference implementation of
NTRU does not claim to be secure against side-channel attacks. As mentioned
previously, in order to investigate more thoroughly the vulnerability to side-
channel analysis, our objective is to evaluate a more secure implementation, yet
still efficient (a typical designer’s constraint). In such a case, the considered at-
tacker is not as powerful as in the previous works. Hereafter, we propose two
countermeasures targeting such an attacker.

– The poly Rq mul algorithm is protected with a shuffling countermeasure
which aims to randomize the order of the secret coefficients at every iteration.

– Blind decryption by masking the input ciphertext so as to prevent chosen
ciphertext attacks.

These countermeasures do not modify the functions and the arithmetic of the
reference implementation. All in all, the attack considers executions of the fol-
lowing operation:

poly Rq mul (c1,Rotate (f (x) , r))

where r (resp. c1) is uniformly sampled in [0, n−1] (resp. Rq) at each decryption,
without access to their value. Rotate and c1 are defined below.

Polynomial Rotation as an Efficient Shuffling. Randomizing the secret coeffi-
cients’ order is one way to secure an implementation against side-channel at-
tacks. However, this countermeasure can be costly in terms of required entropy
and may need to modify the high level polynomial arithmetic. To completely
randomize a polynomial, it requires at least n random numbers (n− 1 being the
polynomial degree) when using Knuth’s algorithm. Moreover, some optimiza-
tion of polynomial multiplication such as Karatsuba or Toom-Cook algorithms
cannot be applied with a random order of the coefficients. One cheaper alterna-
tive consists in rotating the coefficients of the secret polynomials. The rotation
ensures a kind of randomization at the cost of one random generation per poly-
nomial and without modifying the polynomial arithmetic. More precisely, let
f(x) = f0 + f1x+ . . .+ fn−1x

n−1 be a secret polynomial, then:

Rotate(f(x), r) =fn−r + . . .+ fn−1x
r−1 + f0x

r + . . .+ fn−r−1x
n−1

By considering that the underlying algebraic structure of NTRU is Z[x]/(xn−1),
this countermeasure is just a multiplication of f by xr. The rotation is done
prior to the execution of poly Rq mul algorithm and it is refreshed at each call
to Decrypt. The implementation of poly Rq mul does not require modification
to be applied to rotated polynomials.

8 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

Blind Decryption. Chosen ciphertext attacks combined with side-channel attacks
are devastating (e.g. [28, 18]). The ciphertext shape is generally chosen in order
to amplify the side-channel leakages during a computation with the secret key.
In order to avoid these attacks, we mask the ciphertext at the beginning of
the Decrypt algorithm. As a result, the ciphertext c is split into two random
variables (aka shares) c1 and c2 such that c = c1 + c2 mod q. Afterwards, we
compute a1 ← (c1 · f) mod (q, φ1φn), a2 ← (c2 · f) mod (q, φ1φn) and we
obtain a = (c · f) mod (q, φ1φn) = a1 + a2 mod q. Even if the attacker forges
a malicious ciphertext, the secret polynomial is multiplied to random/unknown
shares. Let’s also recall that, as shown in [18], lattice based cryptosystems could
be attacked with chosen ciphertexts even if their secret key is masked. Thus,
it is a necessity to mask the ciphertext. This masking operation could require
as much entropy as masking the secret key f but it does not introduce new
potential critical sources of leakage and it can be implemented with less effort.

3 Side-Channel Analysis

In the following section, we target NTRU HPS with parameters n = 509 and
q = 211 = 2048. This attack can be directly applied to any other parameter set.
The dataset and scripts are available at github.com/ANSSI-FR/scantru.git.

3.1 Target

We focus our analysis on the blind decryption. In particular, the masked cipher-
text countermeasure provides the attacker only with side-channel leakages of the
multiplication of the secret f by a random value1.

Thus, we target the rotation countermeasure applied to the product c × f
within the decryption routine (see Alg. 2). This polynomial product is imple-
mented with a classic convolution product. Beside the rotation countermeasure
which consists in shuffling the secret f through a multiplication with a random
monomial xr, the for loops at lines 3 and 5 of Alg. 2 might also be starting at
a random index without having to change the attack. In order to defeat these
kinds of countermeasures, we focus on some specific operations. More precisely,
we consider the following targeted instructions: the first iteration of the outer-
most for loop (line 1 of Alg. 2).

For the sake of simplicity, we shall be referring to the coefficients q−1 = 211−1
of f as −1. For the experiment, we generated the following data:

- 200 random keys in (Z3[x]) /(x509 − 1) with coefficients in {−1, 0, 1};
- 100 random ciphertexts in (Z211 [x]) /(x509 − 1) for each key.

1 If the computation of the multiplications by the two shares are done sequentially,
the attacker might obtain twice more leakages per decryption, therefore reducing
the required number of attack traces. Since we assume a weak attacker model, we
consider only one multiplication per trace in our experiments.

Security Assessment of NTRU Against Non-Profiled SCA 9

Then, we got 100 EM traces of the targeted instructions for each key. Let’s note
that the knowledge of the ciphertexts is not necessary to mount the attack, in
accordance with our attacker model (impossible ciphertext forgery).

3.2 Setup and pre-processing

The original implementation comes from the reference package of NTRU [10].
We have added a rotation function of the secret polynomial. This feature does
not change the arithmetic used in the reference implementation. The attacked
operation is implemented within the KEM decapsulation. In order to ease the
acquisitions and post-processing, a trigger is placed at the beginning of the
product cf . In a more realistic attack setup, let’s note that the patterns of the
polynomial product could be identified and used to start the acquisition.The
DUT is a STM32F407 discovery board with clock settings that are tuned for the
CPU to run at the maximal frequency, that is 168MHz. The implementation was
compiled with -O3 optimization flag. We stress that this optimization flag does
not impact the countermeasures that are considered here (coefficient rotation
and random ciphertext). The acquisitions of electromagnetic radiations (EM)
are made with an EM probe Langer and a Lecroy Waverunner oscilloscope at
20Gs/s and 2GHz of bandwidth. Each trace contains approximately 700, 000
samples and captures a period of time that lasts ∼ 35µs (corresponding to the
first iteration of the for loop at line 1 of Alg. 2).s

Fig. 1: Details of EM traces of targeted instructions. Red ellipsis point to first
(left) and last (right) peaks to be discarded.

A code analysis shows that the targeted instructions are parted in two for

loops. Given f and c, we expect the EM peaks to be related to the following
products: (loop 1) c1 · f(508+r), c2 · f(507+r), . . . , c508 · f(1+r), (loop 2) c0 · fr.

Figure 1 shows the beginning and the end of the attacked operations. We can
notice that the first and last peaks appear to be quite different than the others,
but similar to each other. Since these differences might affect the clustering
results, they are discarded. The rotation countermeasure allows the attacker to
remove some outliers (e.g. difformed peaks) because with several traces it is
possible to get EM peaks for each coefficient anyway.

10 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

To summarize, the recorded peaks correspond to the iterations i = 2 to
i = n − 1 of the for loop at line 3 of Alg. 2. Even though there is almost no
jitter, a more accurate alignment is realized by using the Pearson correlation.

The assembly code corresponding to the acquired EM peaks is shown in Fig.
2. This code can be obtained from the open source implementation. It can help
the attacker to mount the attack, even though it is not mandatory.

. L3 :
ldrh fp , [r5] , #2 @ load ing c i
ldrh r4 , [r9 , #−2]! @ load ing f j
smlabb r3 , r4 , fp , r3 @ rk <− rk+c i * f j
uxth r3 , r3 @ 16 to 32 b i t copy
cmp r5 , r10 @ loop counter check
s t rh r3 , [r0] @ s t o r e in r
bne . L3 @ loop back i f not done

Fig. 2: Assembly code of targeted first inner for loop of Alg. 2

3.3 Defeating the rotation countermeasure

The rotation countermeasure may be defeated if we find a way to (partially)
identify the EM peaks that correspond to the processing of coefficients −1 of
the secret key f . The reason why these coefficients are expected to help us
through our attack comes from the following remark and hypothesis.

- Remark: The coefficients −1 = q − 1 mod q, with q = 211 in the attacked
setup, are encoded with Hamming weight (HW) equal to 11, whereas coef-
ficients 0 (resp. 1) are encoded with HW zero (resp. HW one).

- Hypothesis: The target device leaks in Hamming weight.

Henceforth, the strategy to defeat the countermeasure consists in identifying the
time samples where the HW of the coefficients leaks in EM, allowing a partial
recovery of the coefficients −1. These partial recoveries, for every trace, might
be enough to shift them back in a synchronized position. When analyzing the
code in figure 2, we expect this leakage to happen during the ldrh instruction
that loads the coefficient of secret polynomial f for instance.

Non-profiled leakage assessment From previous remarks we expect to be
able to distinguish −1 from 0 and 1 more easily than 0 from 1. Let’s note that,
since q is a power of two, if the coefficients −1 are encoded in two’s complement
using the CPU register size (for instance 232−1 in a 32-bit architecture, or 216−1
when using a type such as uint16 t), then they are encoded with a maximal
Hamming weight (HW). This would reinforce the assumed leakage property and
would be therefore strongly in favor of the attack strategy we develop. In our
experiments, we choose q = 211. Other possible settings correspond to q = 212

and q = 213. Thus, we stress that our attack might even be more efficient in such
settings due to a higher Hamming weight for the −1 coefficients.

Security Assessment of NTRU Against Non-Profiled SCA 11

k-means clustering. A clustering algorithm is an unsupervised machine learning
technique which groups data into a given number of sets according to a given
similarity metric. With a k-means clustering [24], the metric is the Euclidean
distance to the centroids (means of the clusters), and the variance gives a measure
of the spread of the clusters.

It is possible to explore different clustering techniques, such as fuzzy [15] or
hierarchical clustering [26], and to investigate their impact on the efficiency of
the attack. However, the k-means algorithm is sufficient for our purpose. An
advantage of this technique is that it scales up well on the size of the dataset.
Practically, a k-means algorithm, where k is the chosen number of clusters, is
fed with (parts of) the EM peak traces of all the 507 coefficients of each rotated
f at the same time. It gathers the traces in k different sets, each one of them
being associated with a so-called label that lies in the set {0, 1, . . . , k − 1}. In
order to identify the leakage, we perform a k-means clustering [27] at every time
sample and gather the results. We expect that, where the leakage appears to be,
the peaks corresponding to −1 will be gathered in one cluster and the peaks for
0 and 1 will be grouped in a second cluster. The credibility of this hypothesis
can be first assessed by using the elbow method.

Elbow method to determine an optimal number of clusters k. The elbow heuristic
allows to determine an optimal number of clusters. The goal is to detect the
number of clusters from which an overfitting phenomenon might start.

The metric used for this heuristic is called distortion which is the overall sum
of the distances between the samples and the center of their own clusters. Thus,
it is a measure of how spread the clusters are. A large decrease of the distortion
means that adding an extra cluster allows to significantly decrease the overall
variance (distance from the elements to their cluster centers). Whenever the
distortion starts decreasing less, it means that adding an extra cluster becomes
not as relevant when attempting to decrease the overall variance. This heuristic
is tested for each time sample2. Since all the results suggest that 2 clusters is
always an optimal choice, we carry on with the adopted strategy.

Non-profiled leakage assessment. In total, 15×507 peaks are used for this leakage
assessment (i.e. the first 15 traces from one key). We use a classical metric
in clustering which is the Davies-Bouldin index (DBI) [14]. This metric gives
an insight of the compactness of the clusters respectively to their respective
distance. For two clusters C0 and C1 that form a partition of the data, it can be
expressed as follows:

DBI =
δ0 + δ1

2 · d(µ0, µ1)
∈ [0,+∞)

where δj =| Cj |−1 ·
∑

x∈Cj d(x, µj) is the average distance of the cluster points to

the centroid µj (e.g. d is Euclidean distance), also known as cluster diameter. It
measures the ratio between the cluster sizes and the distance between the cluster
centroids. A lower DBI is preferred since it indicates more distinct clusters.

2 www.scikit-yb.org/en/latest/api/cluster/elbow.html for the python module.

12 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

In order to gain higher confidence in the selection of points of interest, we
combine DBI with another metric in order to gather more clues about the best
area to select. Since the k-means clustering where k = 2 is assumed to be able
to distinguish quite well between −1 and 0/1 coefficients, we can expect that
one cluster to be roughly twice bigger than the other one (since each coefficient
is chosen uniformly randomly in [−1, 0, 1]). We then use the following metric
(cluster size ratio), that we expect to be as close to zero as possible:

CSR =

∣∣∣∣ size of smallest cluster

size of biggest cluster
− 1

2

∣∣∣∣ ∈ [0, 1

2

]

Fig. 3: Non-profiled leakage assessment, with area of interest (in red), performed
on the collection of EM peaks of all the targeted coefficients. Top: DBI (the lower,
the better). Middle: CSR (the lower, the better). Bottom: SNR with true labels
(can only be performed when knowing the keys).

To sum up, a combination of DBI and CSR is used in order to detect points
of interest without the knowledge of the true labels (i.e. coefficient values).
In practice, our heuristic is as follows. First of all, for each time sample, we
perform one clustering per time sample (with 2 clusters as suggested by the
elbow heuristic) on all the extracted EM peaks. From the clustering labels, we
calculate the corresponding DBI and CSR metrics. Second of all, we select areas
combining expected metric values (low DBI and CSR). The results are displayed
in Figure 3 (top and middle). One area is highlighted by the expected metrics
behaviors. It combines both low DBI and low CSR. The area delimited by the red
surface is chosen in order to mount the first phase of the attack. To demonstrate
the validity of such approach, the figure 3 (bottom) shows the true Signal-to-
Noise ratio SNR and the selected area of interest (between red dotted lines).
The SNR is a classical metric in SCA. It requires to know the true labels to
calculate it. In our case, it basically measures how bigger is the signal carried by
the coefficient values (0, 1, -1) comparatively to the noise in the EM signal. Its
formula is given by: SNR = Vf (EL(L | f)) /Ef (VL(L | f)) where L is the random
variable that represents the EM signal, and f is the variable that corresponds to
the processed coefficients of f .

Security Assessment of NTRU Against Non-Profiled SCA 13

Let’s notice that the figure 3 (bottom) also shows why a single trace SPA
attack such as the one described in [1] is not possible. With a SNR lower than
1, it is difficult to distinguish the −1’s with high confidence in a single trace.
Even though the average EM activity is clearly different when processing a −1
rather than 0 or 1, the impact of the signal variance (noise) must be decreased
by averaging enough traces to reveal which coefficients are equal to −1.

Retrieving random rotations by targeting the −1’s

Clustering the traces and padding the vectors of labels. A k-means clustering
with k = 2 is performed on the area of interest selected during the leakage
assessment. For instance, labels 1 are assigned to the smallest cluster that should
correspond to the coefficients −1, and 0 to the other cluster. For each trace, the
corresponding vector of labels can be padded with 0’s to compensate peaks that
would have been discarded during the attack. As shown in Figure 1, the first
and last peaks are not kept for all the traces. Therefore, all the vectors of labels
are padded with two 0’s.

(a) Dot product = 1

(b) Dot product = 3

Fig. 4: Dot product of clustering labels for two traces (top and bottom). Bottom:
labels for a reference trace (fixed). Top: labels of a trace to be re-aligned to the
ref. trace; they are rotated to find the best candidate (i.e. largest dot product
result). Red squares: coefficients −1, blue squares: coefficients in {0, 1}. More
vivid colors: clustering labels 1, light tone colors: labels 0.

Aligning vectors of labels and retrieving rotation indices. For each rotated key,
we use the partially/erroneously recovered patterns of −1 coefficients provided
by the clustering in order to find the secret rotation indices.

The strategy is to use the labels to re-align the traces. As shown in Figure 4,
it is usually possible to find the rotation index between two traces. This index is
expected to match with the rotation index of the vector of labels which provides
the largest dot product with a reference vector of labels.

The tool used to re-align the shifted coefficients is a dot product (other tools
like L1 distance were tried out without noticeable difference). This approach
might be sensitive to the labels/trace used as a reference. The reference trace
was chosen as one that minimizes the CSR metric (i.e. with a ratio (number of
coeff. −1):(number of coeff. 0/1) being close to the expected ratio 1 : 2). If the
results are not satisfying, i.e. too many traces are required to recover the key,

14 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

we can simply choose another reference trace, randomly permute the data and
try again. Each vector of labels is then compared to these reference vector. If
they share of a big pattern, it can be detected with a peak when calculating
the cyclical convolutions between the vectors of labels. In such case, we assume
that it is likely that the two traces have been correctly aligned. Figures 5 display
the differences between a trace for which we find the rotation index with high
confidence, and one for which it is uncertain. The abscissa of the sharp peak
points to the plausible rotation index to correctly re-align the two traces. When
the scenario of Fig. 5 (right) comes up, we discard the corresponding labels/peak
traces for the rest of the attack since it is most likely to add some noise in case
the rotation index is not found.

Fig. 5: Synchronizing two traces with (noisy) clustering labels. Left: a sharp peak
= right re-alignment. Right: no sharp peak = uncertainty (trace discarded).

During the attack, this strategy allows to retrieve 100% of the rotation indices
on the kept traces. Moreover, less than 10% of the traces were discarded during
this process. Eventually, the kept traces are re-aligned with the reference trace
which itself contains a random rotation. At the very end of the attack, this global
rotation will be found with a simple brute force search.

Algorithm 3 Heuristic to locate the −1’s and re-align the traces

1: Leakage assessment to identify an area of interest
2: k-means with k = 2 on this area of each EM peak
3: Pick a reference vector of labels vref

4: Pad vectors of labels with 0’s to match size n = 509
5: for each vector of labels do
6: Search for rotation providing a match with vref

7: If no good match, discard the labels/trace for the rest of the attack

8: Apply majority vote to the aligned labels
9: return the assumed indices I−1 of coefficients −1, and I01 := [0, n) \ I−1 the

assumed indices of coefficients 0 and 1

Majority vote. Once most of the rotations are found, we can resynchronize the
EM peaks and associate them to the right coefficient indices. Eventually, a ma-
jority vote is used on the synchronized labels to determine the right labels, i.e.
which one of the following sets the key coefficients belong to: {−1} or {0, 1}.

Security Assessment of NTRU Against Non-Profiled SCA 15

When the true keys are known, it is possible to check out the efficiency of
this strategy. With around 20 traces, it is possible to retrieve almost 100% of
the −1 coefficients. Eventually, we get a set of indices I−1 which is assumed to
correspond with the locations of coefficients −1. By complementarity, the indices
I01 = [0, n) \ I−1 are those assumed to match with the locations of coefficients
0 and 1. The whole heuristic is summarized in Alg. 3.

3.4 Last phase of the attack: discriminating between 0 and 1

Initial (unsuccessful) tactics: clustering The initial strategy was to carry
on with the clustering approach. Hopefully, it would be possible to distinguish
between 0 and 1 by exploiting the same time window even though it is expected
to require more traces in this case (because of close HW values). A clustering
associated to a majority vote was then performed on the same area of interest.
As expected with this approach, it was not possible to retrieve the keys with the
given number of traces. The differences on the EM peaks between coefficients
equal to 0 and 1 are too small for the attack to succeed in less than 100 traces.
With known keys, this fact can be confirmed by analyzing the SNR between the
true values. Figure 3 (bottom) shows that the SNR between classes 0 and 1 is
around ten times smaller than the one between −1 and 0 or between −1 and 1.
With several hundred of traces such approach might succeed. However, another
approach is chosen in order to identify the coefficients 0 with less traces.

Changing tactics: finding collisions. If we perform a clustering on the EM
peaks then the discrimination between 0 and 1 coefficients is more difficult. Nev-
ertheless, we use the following crucial remark in order to identify more quickly
the coefficients equal to 0.

- Remark: when processing a coefficient fi = 0, the accumulator (r3 reg. in
fig. 2) remains unchanged: acc← acc + 0 · c509−i = acc.

- Hypothesis: some parts of the EM peak (corresponding to the instructions
uxth and strh in Fig. 2) should be similar to the preceding peak when
corresponding to a coefficient 0, and differently when corresponding to a
coefficient 1 or −1. This is called a collision between two consecutive peaks.

In other words, when processing a coefficient 0, we expect the difference in EM
activity between the corresponding peak and the previous one to be quite low at
a certain point in time. In such case, the difference is expected to be low since
the same instructions (uxth and strh) and data (r3) are processed by the CPU.

Leakage assessment. In order to use the previous remarks, we perform a non-
profiled leakage assessment by using a k-means clustering with k = 2 at every
time sample on the difference of a peak and its predecessor for the whole set
of EM traces. The Davies-Bouldin metric was used unsuccessfully. This may be
explained by the fact that the cluster corresponding to a coefficient −1/1 might
be of bigger variance/diameter (the value contained in r3 register between two

16 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

consecutive peaks varying randomly, while it is not the case for a 0 coefficient).
Overall, we combine two metrics in order to identify an area of interest:

- CSR metric (the smaller, the better): we expect one cluster for the 0’s (small-
est cluster C0), and another one for the −1/1’s (biggest cluster C1).

- Distance between the centroids ‖E(C1) − E(C0)‖ (the higher, the better):
since we expect the EM difference to be noticeably higher in average when
processing −1/1, we target areas with very distant centroids.

Figure 6 shows the result. We can notice that it is possible to target areas that
combine low CSR and high distance between centroids. Moreover, these areas of
interest are located in the second part of the peaks. It means that they should
indeed correspond to the targeted instruction uxth and strh in Fig. 2.

Fig. 6: Non-profiled Leakage assessment with area of interest (in red). Top: dis-
tance of centroids (the higher, the better). Middle: CSR (the lower, the better).
Bottom: SNR with true labels (can only be performed when knowing the keys).

Classification heuristic based on L1-distance of consecutive EM peaks. The cho-
sen heuristic (see Alg. 4) that allows to label the targeted coefficients (i.e. the
ones assumed to be either 0 or 1 at this point) is simple. All the couples of
traces corresponding to an EM peak, supposedly corresponding to 0 or 1 thanks
to previous clustering, and its predecessor are gathered. In order to combine
several time samples, we consider the L1-distances (sum of absolute difference)
between these couples of peaks over the area of interest. Indeed, we do not want
the differences from each time sample to compensate each other. Then, for each
targeted coefficient, we average all the obtained distances. Other distances were
tested without giving better results. Eventually, the classification is based on
the absolute difference in EM activity. The L1-distance (on the selected area of
interest) between two consecutive peaks will be smaller, in average, when the
processed coefficient is 0. Hence, the heuristic simply consists in comparing the
distances to the global average of all the calculated distances. If the average for
one coefficient is lower than this global average, then it is assumed to be 0, oth-
erwise it is labeled as 1. Let’s note that one might run a k-means clustering over

Security Assessment of NTRU Against Non-Profiled SCA 17

the selected area of interest (the norm of the centroids would indicate the right
labeling: 0 for the smallest centroid, 1 for the largest one). Even though it was
tested, it did not improve the classification comparatively to the simple heuris-
tic described in algorithm 4. Another method would consist in finding collisions
through high correlation coefficients between consecutive peaks around the area
of interest (see e.g. [31] for such kind of approach in a power analysis context).
Given the low SNR, this approach did not allow us to retrieve the 0’s.

One final remark about the attack phase is that we needed, for the attack to
succeed, to consider the L1-distance on the area of interest whereas the leakage
assessment was performing well on the raw difference at each time sample. When
running the attack on the average of the raw differences, it was not possible to
retrieve the keys. By calculating some SNRs, we can notice that it is actually the
absolute difference that makes the 0’s leaking more (see Figure 6 (bottom) for
the detailed SNR). Surprisingly, the SNR for the raw difference enables a better
discrimination of the −1’s. Even though the overall heuristic works, this shows
the limitations of the non-profiled leakage assessment which remains a difficult
task in such non-profiled SCA.

Finally, the Algorithm 4 summarizes the heuristic for this phase of the attack.

Algorithm 4 Heuristic to distinguish 0’s from 1’s

Require: nt attack traces with N EM peaks each, a set of indices I01 for coefficients
supposedly in {0, 1}

1: Leakage assessment to identify an area of interest A
2: for each key coefficient fi with i ∈ I01 do
3: {(p(i)

j1−1,p
(i)
j1

), . . . , (p
(i)
jni
−1,p

(i)
jni

)} collection of the EM peaks corresponding to

fi and their predecessors
4: mi ← Eh∈[1,ni]{dist|A(p

(i)
jh−1,p

(i)
jh

)} average of the (L1-)distances on the area
of interest A

5: m← E({mi | i ∈ I01})
6: for each key coefficient fi do
7: Classification criteria: if mi ≤ m then fi ← 0 else fi ← 1 # based on hyp. that

smaller difference in EM activity corresponds to coeff 0

8: return the assumed locations I0 and I1 of coefficients 0 and 1 respectively

3.5 Summary of attack and results

Alg. 5 sums up the attack. The traces are processed with sets of traces of in-
creasing size. Among the 200 keys, the average and standard deviation of the
number of traces to retrieve all the coefficients with no error are resp. µ ∼ 45
and σ ∼ 10, with a min. of 23 and a max. of 69. Fig. 7 (left) shows the average
number of retrieved coefficients given the size of the attack trace set.

Residual entropy. As we might find the rotation indices up to a global rotation
index (the one from the first reference trace) thanks to the first clustering, log2(n)
bits of entropy remain. By assuming that for the final key we retrieve only n−x
coefficients, the residual entropy of the final brute-force correction is bounded by

18 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

the following formula (searching from 1 to x errors; one erroneous coefficient can
be replaced by 2 values): log2(n) +

∑x
i=1

(
n
i

)
2i. If x becomes too large, using a

lattice approach could be more efficient (see [13]). Fig. 7 (right) shows that with
less than 20 traces, the security of the implementation drops below 100 bits.

Algorithm 5 Non-profiled side-channel attack on NTRU

Require: attack traces
1: Pre-processing traces (peak selection, alignment)
2: Apply Alg. 3 to get I−1 and I01, supposedly being the locations (up to a global

rotation) of key coefficients −1 and 0/1 respectively
3: Apply Alg. 4 with I01 and corresponding traces to get I0 and I1, supposedly being

the locations (up to the same global rotation) of key coefficients 0 and 1 respectively
4: Build (rotated) candidate out of indices I−1, I0 and I1
5: Brute force search for last global rotation and potential remaining few incorrect

coefficients

Fig. 7: Results on 200 keys: average ± 1 standard deviation. Left: percentage of
coefficients retrieved. Right: residual entropy (in bits) for brute force correction.

Last remarks. We stress that it should be possible to improve the results by
tuning the heuristics better. For instance, shuffling the set of traces can lead
to different, sometimes better, results. Moreover, the clustering outliers were
not treated as such. An outlier is an element that lies unusually farther to the
centroid of its own cluster than the majority of the elements. These outliers
might potentially be mislabeled, therefore adding noise in the results of majority
votes when trying to locate the −1. Let’s also notice that, since the absolute
difference in EM activity between consecutive peaks leaks less than the value of
the coefficients themselves (see Fig. 3 (bottom) vs Fig. 6 (bottom)), it wouldn’t
be more advantageous to use the 0’s to find the rotation indices.

Yet the heuristic is perfectible, it was possible to show that such a non profiled
side-channel attack against a implementation of NTRU which embeds some low-
cost countermeasures works well with pretty few traces against a realistic setup.

4 Conclusion

In this paper, we show how a non-profiled side-channel analysis can defeat a
somewhat secure (secret key rotation) NTRU Decrypt algorithm. In particular,

Security Assessment of NTRU Against Non-Profiled SCA 19

we assume a weak attacker model which cannot profile the targeted device nor
use any chosen ciphertext. Despite this restrictive environment, we show that the
number of required traces to recover the key is so low that it makes our attack
practical. NTRU (and its alternate NTRUPrime) was a finalist of the NIST
PQC competition, mostly because of its efficiency and well studied theoretical
security. Our work shows that it might be challenging to design countermeasures,
even against weak attackers, without noticeably impacting the efficiency of the
primitive. Masking the secret key might be a solution but it would decrease the
intrinsic efficiency and increase the RAM consumption by at least a factor 2 [12,
6]. The security overhead and the requirement of additional security can be scaled
down by reusing contemporary secure co-processors to improve the polynomial
arithmetic, or by developing new PQC specific secure hardware accelerators.

More generally, we believe the academic community and the cryptography
industry will be able to provide innovative solutions in order to make embedded
post-quantum cryptographic implementations both secure and efficient.

References

1. An, S., Kim, S., Jin, S., Kim, H., Kim, H.: Single Trace Side Channel Analysis on
NTRU Implementation. Applied Sciences 8(11) (2018)

2. ANSSI: Technical position paper - ANSSI views on the Post-Quantum Cryptogra-
phy transition (2022)

3. Askeland, A., Rønjom, S.: A Side-Channel Assisted Attack on NTRU. Presented
at the Third PQC Standardization Conference and published in IACR Cryptol.
ePrint Arch. (2021)

4. Bernstein, D.J., Brumley, B.B., Chen, M.S., Chuengsatiansup, C., Lange, T.,
Marotzke, A., Peng, B.Y., Tuveri, N., van Vredendaal, C., Yang, B.Y.: NTRU
Prime (2021)

5. Bernstein, D.J., Brumley, B.B., Chen, M., Tuveri, N.: OpenSSLNTRU: Faster post-
quantum TLS key exchange. IACR Cryptol. ePrint Arch. p. 826 (2021), to appear
in USENIX 2022

6. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: First- and higher-order implementations. Cryptology ePrint Archive, Report
2021/483 (2021)

7. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leak-
age Model. In: Cryptographic Hardware and Embedded Systems - CHES 2004.
vol. 3156, pp. 16–29. Springer (2004)

8. BSI: Migration zu Post-Quanten-Kryptografie - Handlungsempfehlungen des BSI
(2020)

9. CACR: National Cryptographic Algorithm Design Competition (2018), available
at https://www.cacrnet.org.cn/site/content/838.html

10. Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., M.Schank, J.,
Schwabe, P., Whyte, W., Zhang, Z.: NTRU (2021)

11. Cloudflare: The TLS Post-Quantum Experiment (2019)

12. Coron, J.S., Gérard, F., Montoya, S., Zeitoun, R.: High-order polynomial com-
parison and masking lattice-based encryption. Cryptology ePrint Archive, Report
2021/1615 (2021)

20 L. Bettale, J. Eynard, S. Montoya, G. Renault, R. Strullu

13. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
Attacks and concrete security estimation. In: Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference. vol. 12171, pp. 329–358.
Springer (2020)

14. Davies, D. L. and Bouldin, D. W.: A Cluster Separation Measure. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence PAMI-1(2), 224–227 (1979)

15. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. Journal of Cybernetics 3(3), 32–57 (1973)

16. Google: The Chromium Projects – The Chromium Projects (2019)
17. Greuet, A.: Smartcard and Post-Quantum Crypto (2021), available at https://

csrc.nist.gov/Presentations/2021/smartcard-and-post-quantum-crypto
18. Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S., Schamberger, T., Streit,

S., Strieder, E., van Vredendaal, C.: Chosen Ciphertext k-Trace Attacks on Masked
CCA2 Secure Kyber. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 88–
113 (2021)

19. Heyszl, J., Ibing, A., Mangard, S., Santis, F.D., Sigl, G.: Clustering Algorithms
for Non-profiled Single-Execution Attacks on Exponentiations. In: Francillon, A.,
Rohatgi, P. (eds.) Smart Card Research and Advanced Applications - 12th In-
ternational Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013.
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8419, pp. 79–93.
Springer (2013). https://doi.org/10.1007/978-3-319-08302-5“˙6

20. Hoffstein, J., Pipher, J., Silverman, J.: NTRU: A ring-based public key cryptosys-
tem. ANTS 1998 1423 (1998)

21. Huang, W., Chen, J., Yang, B.: Power Analysis on NTRU Prime. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020(1), 123–151 (2020)

22. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Advances in Cryptology - CRYPTO ’96. vol. 1109, pp.
104–113. Springer (1996)

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryp-
tology - CRYPTO ’99. vol. 1666, pp. 388–397. Springer (1999)

24. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, 1,
281-297 (1967). (1967)

25. Moody, D.: Post-Quantum Cryptography NIST’s Plan for the Future (2016)
26. Nielsen, F.: Hierarchical Clustering, pp. 195–211 (02 2016)
27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

28. Ravi, P., Ezerman, M.F., Bhasin, S., Chattopadhyay, A., Roy, S.S.: Will You Cross
the Threshold for Me? Generic Side-Channel Assisted Chosen-Ciphertext Attacks
on NTRU-based KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1),
722–761 (2022)

29. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (Oct
1997)

30. Sim, B.Y., Kwon, J., Lee, J., Kim, I.J., Lee, T., Han, J., Yoon, H., Cho, J., Han,
D.G.: Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs.
Cryptology ePrint Archive, Report 2020/992 (2020)

31. Zheng, X., Wang, A., Wei, W.: First-order collision attack on protected NTRU
cryptosystem. Microprocessors and Microsystems 37(6), 601–609 (2013)

