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Given any domain X Ď R d and a probability measure ρ on X, we study the problem of approximating in L 2 pX, ρq a given function u : X Ñ R, using its noiseless pointwise evaluations at random samples. For any given linear space V Ă L 2 pX, ρq with dimension n, previous works have shown that stable and optimally converging Weighted Least-Squares (WLS) estimators can be constructed using m random samples distributed according to an auxiliary probability measure µ that depends on V , with m being linearly proportional to n up to a logarithmic term. As a first contribution, we present novel results on the stability and accuracy of WLS estimators with a given approximation space, using random samples that are more structured than those used in the previous analysis. As a second contribution, we study approximation by WLS estimators in the adaptive setting. For any sequence of nested spaces pV k q k Ă L 2 pX, ρq, we show that a sequence of WLS estimators of u, one for each space V k , can be sequentially constructed such that: i) the estimators remain provably stable with high probability and optimally converging in expectation, simultaneously for all iterations from one to k, and ii) the overall number of samples necessary to construct all the first k estimators remains linearly proportional to the dimension of V k , up to a logarithmic term. The overall number of samples takes into account all the samples generated to build all the estimators from iteration one to k. We propose two sampling algorithms that achieve this goal. The first one is a purely random algorithm that recycles most of the samples from the previous iterations. The second algorithm recycles all the samples from all the previous iterations. Such an achievement is made possible by crucially exploiting the structure of the random samples. Finally we apply the results from our analysis to develop numerical methods for the adaptive approximation of functions in high dimension.

Introduction

In recent years, the increasing computing power and availability of data have contributed to a huge growth in the complexity of the mathematical models. Dealing with such models often requires the approximation or integration of functions in high dimension, that can be a challenging task due to the curse of dimensionality. The present paper studies the problem of approximating a function u : X Ñ R that depends on a d-dimensional parameter x P X Ď R d , using the information coming from the evaluations of u at a set of selected samples x 1 , . . . , x m P X. Two classical approaches to such a problem are interpolation and least-squares methods, see e.g. [START_REF] Davis | Interpolation and approximation[END_REF][START_REF] Bungartz | Sparse grids[END_REF][START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF]. Here we turn our attention to least-squares methods, that are frequently used in applications for approximation, data-fitting, estimation and prediction. Other approaches to function approximation are compressive sensing, see [START_REF] Foucart | A Mathematical Introduction to Compressive Sensing[END_REF] and references therein, and neural networks, see e.g. [START_REF] Cybenko | Approximations by superpositions of sigmoidal functions[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF].

Previous convergence results for standard least-squares methods have been proposed in [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF], in expectation, and [START_REF] Migliorati | Analysis of discrete L 2 projection on polynomial spaces with random evaluations[END_REF], in probability. Weighted Least-Squares methods (hereafter WLS) have been previously studied in [START_REF] Doostan | Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression[END_REF][START_REF] Jakeman | A Christoffel function weighted least squares algorithm for collocation approximations[END_REF][START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF]. It has been proven in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] that stable and optimally converging WLS estimators can be constructed using judiciously distributed random samples, whose number is only linearly proportional to the dimension of the approximation space, up to a logarithmic term. The analysis holds in general approximation spaces, and the number of samples ensuring stability and optimality of the estimator does not depend on d. Such a result is recalled in Theorem 1. The analysis in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] considers both cases of noisy or noiseless evaluations of u. In this paper we confine to the case of noiseless evaluations, which is relevant whenever the function u can be evaluated at the selected samples with sufficiently high precision, e.g. up to machine epsilon. The case of noisy evaluations can be addressed using the same techniques as in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF][START_REF] Migliorati | Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points[END_REF].

The proof of Theorem 1, and more generally the analysis in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF], use results from [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF][START_REF] Tropp | User friendly tail bounds for sums of random matrices[END_REF] on tail bounds for sums of random matrices. An interesting feature of the bounds in [START_REF] Tropp | User friendly tail bounds for sums of random matrices[END_REF] is that the matrices need not be identically distributed. The analysis in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] does not take advantage of this property. One of the main goals of the present paper is to show how the use of this property paves the way towards novel results in the analysis of WLS methods for a given space (Theorem 2), and towards their application in an adaptive setting (Theorem 3). The proof of Theorem 2 builds on previous contributions [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF][START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF]. The overall skeleton of the proof is similar, but with some crucial differences that make use of the additional structure of the random samples.

The outline of the paper is the following: in Section 1.1 we describe and motivate our contributions. In Section 2 we recall some results from the analysis in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] on weighted least squares for a given space. Section 2.2 contains Theorem 2 and its proof. In Section 3 we apply Theorem 2 and Theorem 1 to the adaptive setting, with an arbitrary nested sequence pV k q k of approximation spaces. In Section 4 we present the sampling algorithms. Section 5 contains some numerical tests, together with an example of adaptive algorithm that uses sequences of nested polynomial spaces. Section 6 draws some conclusions. All the algorithms are collected in appendix.

Motivations and outline of the main results

Let X Ď R d be a Borel set, ρ be a Borel probability measure on X, pψ i q iě1 be a basis orthonormal in L 2 pX, ρq equipped with the inner product xf 1 , f 2 y " ş X f 1 pxq f 2 pxq dρ, and V :" spantψ 1 , . . . , ψ n u be the space obtained by retaining n terms of the basis. The least-squares method approximates the function u by computing its discrete L 2 projection onto a given space V , using pointwise evaluations of u at a set of m ě n distinct random samples x 1 , . . . , x m . The analysis in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF], whose main findings are resumed in the forthcoming Theorem 1, provides some results on the stability and convergence properties of such a discrete projection, and of other WLS estimators as well. In Theorem 1, independent and identically distributed random samples are drawn from the probability measure

dµ n " 1 n n ÿ j"1 dχ j ,
that is an additive mixture of the probability measures χ j defined as χ j pAq :" ż A |ψ j pxq| 2 dρ, for any Borel set A Ď X.

(1.1)

One sample from µ n can be generated by randomly choosing an index j uniformly in t1, . . . , nu and then drawing one sample from χ j . In general µ n is not a product measure, even if ρ is a product measure.

Another novel approach proposed in this paper uses a different type of random samples. Such an approach uses a set of independent random samples of the form x 1 , . . . , x m with m " τ n for a suitable integer τ , and such that for any j " 1, . . . , n, the samples x pj´1qτ `1, . . . , x jτ are distributed according to χ j . These samples are not identically distributed. On the upside, they are more structured than those used in Theorem 1, since the amount of samples coming from each component of the mixture is fixed. If τ " 1 then the n independent samples x 1 , . . . , x n are jointly drawn from px 1 , . . . , x n q " dγ n :" n ź j"1 |ψ j px j q| 2 dρ.

If τ ě 1 the draw of m " τ n independent samples x 1 , . . . , x m follows the probability measure dγ m :" b τ dγ n .

Denote with dµ m :" b m dµ n the probability measure for the draw of m i.i.d. samples from µ n . Given a fixed n, in the limit m " τ n Ñ 8 obtained by τ Ñ 8, the proportion of random samples of µ m coming from each χ j tends to 1{n by the strong law of large numbers, whereas the same proportion is exactly equal to 1{n by construction for the samples drawn from γ m . With any m the two probability measures µ m and γ m generate samples with different distributions. However, the block of n samples from γ n still mimics the samples from µ n . For example the sum of the expectation of the random samples is preserved,

px 1 , . . . , x n q " dγ n , x " dµ n ùñ n ÿ j"1 E `xj ˘" n ÿ j"1 ż X x j |ψ j px j q| 2 dρ " ż X x n ÿ j"1 |ψ j pxq| 2 dρ " nEpxq,
and this preservation plays a main role in our forthcoming analysis. All the measures appearing in this paper are also Borel probability measures, and sometimes for brevity we refer to them just as measures.

The first main result of this paper is Theorem 2. It proves the same guarantees as Theorem 1 for the stability and accuracy of WLS estimators with a given approximation space, but when the random samples from µ m are replaced with random samples from γ m . The second main result concerns the analysis of WLS estimators, when considering a sequence of nested approximation spaces pV k q kě1 , where V k :" spantψ 1 , . . . , ψ n k u and n k :" dimpV k q. In this adaptive setting, we compare the two approaches using random samples from γ m or µ m . In both cases, in Theorems 3 and 4, we prove that a sequence of estimators of u, one for each space V k , can be sequentially constructed such that: i) the estimators remain provably stable with high probability and optimally converging in expectation, simultaneously for all iterations from one to k, and ii) the overall number of samples necessary to construct all the first k estimators remains linearly proportional to the dimension of V k , up to a logarithmic term. As a further contribution we show that using the samples from γ m rather than from µ m provides the following advantages, that are relevant in the development of adaptive WLS methods.

• Structure of the random samples. When using γ m , the number of random samples coming from each component |ψ j pxq| 2 dρ of the mixture is precisely determined, and allows the development of adaptive algorithms that recycle all the samples from all the previous iterations. When using µ m it is not possible to recycle all the samples from the previous iterations with probability equal to one. Given two nested spaces V k´1 Ă V k and two positive integers τ k´1 ď τ k , at iteration k the probability measure γ m k of the m k " τ k n k samples can be decomposed as The probability measure dµ m k " b m k dµ n k cannot be decomposed as the product of two probability measures with one being µ m k´1 , because µ n k is not a product measure. It is however possible to leverage the structure of µ n k as an additive mixture of µ n k´1 and a suitable probability measure σ n k , and decompose µ m k as

dγ m k " b τ k n k ź j"1 |ψ j pxq| 2 dρ (1.
dµ m k " b m k ¨nk´1 n k dµn k´1 hkkkkkkkkkkkkikkkkkkkkkkkkj 1 n k´1 n k´1 ÿ j"1 |ψ j pxq| 2 dρ loooooooooooomoooooooooooon measure of the samples drawn from the old components of dµn k , perhaps recycled from step k ´1 `nk ´nk´1 n k dσn k hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj 1 n k ´nk´1 n k ÿ j"1`n k´1 |ψ j pxq| 2 dρ looooooooooooooooooomooooooooooooooooooon measure of the samples drawn from the new components of dµn k ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' . (1.3)
When drawing m k samples from µ n k , the amount of samples coming from one of the components of µ n k´1 is a binomial random variable with number of trials m k and rate of success n k´1 {n k for each trial. Whenever this random variable takes values less than m k´1 , that always occurs with some positive probability, it is not possible to recycle all the m k´1 samples from iteration k ´1.

• Variance reduction. Random mixture proportions induce extra variance in the generated samples.

As a consequence, random samples from γ m are more disciplined than random samples from µ m . This stabilization effect amplifies when using basis elements whose supports are more localized than globally supported orthogonal polynomials. More on this in Remark 6.

• Coarsening and extension to nonnested sequences of approximation spaces. When using the samples from γ m , thanks to the decomposition (1.2), it is possible to remove an element of the basis ψ j from the space V as well as its associated samples x pj´1qτ `1, . . . , x jτ from the whole set x 1 , . . . , x m of m " τ n samples, and at the same time recycle all the τ pn ´1q remaining samples for V ztψ j u. More generally, the use of γ m allows the development of efficient adaptive methods with arbitrary sequences of approximation spaces pV k q k , that probe any ψ j R V k chosen according to some criterion. The method then either retains ψ j as V k`1 " V k Y tψ j u or discards it depending on its contribution to the reduction of (an estimator of) the error from

V k to V k`1 .
Comparison with [START_REF] Arras | Sequential sampling for optimal weighted least squares approximations in hierarchical spaces[END_REF]. Section 4.2 presents an analysis of a sampling algorithm (Algorithm 2) that sequentially generates m random samples from µ m with an arbitrary nested sequence of approximation spaces pV k q k . In [START_REF] Arras | Sequential sampling for optimal weighted least squares approximations in hierarchical spaces[END_REF] a similar algorithm that uses µ m has been proposed and analysed.

Notation for product of measures. Let ρ 1 , ρ 2 be two Borel measures on X Ď R d with the Borel σ-algebra B " BpXq. The notation ρ 1 b ρ 2 denotes the product measure on X ˆX with the tensor product Borel σ-algebra B b B, that satisfies

ρ 1 b ρ 2 pA 1 ˆA2 q " ρ 1 pA 1 qρ 2 pA 2 q, for any A 1 , A 2 P B.
2 Optimal weighted least squares for a given approximation space

Previous results

Let X Ď R d be a Borel set, and ρ be a Borel probability measure on X. We define the L 2 pX, ρq inner product

xf 1 , f 2 y " ż X f 1 pxq f 2 pxq dρpxq (2.4)
associated with the norm }f } :" xf, f y 1{2 . Throughout the paper we denote by pψ i q iě1 an L 2 pX, ρq orthonormal basis. We define the linear space V :" spantψ 1 , . . . , ψ n u that contains n arbitrarily chosen elements of the basis, and denote with n :" dimpV q its dimension. We further assume that for any x P X there exists ψ j P V such that ψ j pxq ‰ 0.

(2.5)

This assumption is verified for example if the space V contains the functions that are constant over X. For any given V , we define the weight function w : X Ñ R as

wpxq :" n ř n i"1 |ψ i pxq| 2 , x P X, (2.6) 
whose denominator does not vanish under assumption (2.5). The function w is known as the Christoffel function, up to a renormalization, when V is the space of algebraic polynomials with prescribed total degree. Using w we define the probability measure dµ n :" w ´1dρ "

ř n i"1 |ψ i pxq| 2 n dρ, ( 2.7) 
which depends on the chosen approximation space V . Another inner product used in this paper is

xf 1 , f 2 y m :" 1 m m ÿ j"1 wpx j qf 1 px j qf 2 px j q, (2.8) 
where the functions w, f 1 , f 2 are evaluated at m samples x 1 , . . . , x m independent and identically distributed as µ n . This inner product is associated with the discrete seminorm }f } m :" xf, f y 1{2 m . The discrete inner product (2.8) mimics (2.4) due to (2.7). The exact L 2 projection on V of any function u P L 2 pX, ρq is defined as Π n u :" argmin vPV }u ´v}.

In practice such a projection cannot be computed out of very particular cases, motivating the interest towards the discrete least-squares approach. We define the weighted least-squares estimator u W of u as

u W :" Π m n u " argmin vPV }u ´v} m ,
that is obtained by applying the discrete projector Π m n on V to u. The estimator u W is associated to the solution of the linear system Ga " h, (2.9)

where the Gramian matrix G and the right-hand side h are defined element-wise as

G ij " xψ i , ψ j y m , h i " xu, ψ i y m , i, j " 1, . . . , n,
and a " pa 1 , . . . , a n q J is the vector containing the coefficients of u W " ř n i"1 a i ψ i expanded over the orthonormal basis. The linear system (2.9) always has at least one solution, which is unique when G is nonsingular. When G is singular we can define u W as the estimator associated to the unique minimal 2 -norm solution to (2.9). Moreover, we define the L 2 pX, ρq best approximation of u in V as Notice that Π n , Π m n , e n,2 and e n,8,w depend on the chosen space V , and not only on its dimension n. The identity matrix is denoted with I P R nˆn . The spectral norm of any matrix A P R nˆn is defined as ~A~:" sup }v} 2 "1 }Av} 2 , using the Euclidean inner product in R n and its associated norm. Another weighted least-squares estimator introduced in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] is the conditioned estimator: for all u such that } ? wu} L 8 ă `8.

u C :" # u W , if ~G ´I~ď
The above theorem can be rewritten for a chosen confidence level, by setting α " 2nm ´pr`1q and replacing the corresponding r in (2.12). For convenience we rewrite condition (2.12) with equality using the ceiling operator, since the number of samples is an integer and usually one wishes to minimize the number of samples m satisfying (2.12) for a given n. When the evaluations of the function u are noiseless, convergence estimates in probability with confidence level 1 ´α are immediate to obtain. If the evaluations of u are noisy, then convergence estimates in probability of the form (2.13) can still be obtained by using techniques from large deviations to estimate the additional terms due to the presence of the noise, as shown in [START_REF] Migliorati | Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points[END_REF] for standard least squares.

Novel results

The proof of Theorem 1, and more generally the analysis in [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF][START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF], use a result from [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF][START_REF] Tropp | User friendly tail bounds for sums of random matrices[END_REF] on tail bounds for sums of random matrices. We recall below this result from [20, Theorem 1.1], in a less general form that simplifies the presentation and still fits our purposes. If X 1 , . . . , X m are independent n ˆn random self-adjoint and positive semidefinite matrices satisfying λ max pX j q " ~Xj ~ď R almost surely and Ep ř m j"1 X j q " I then it holds Pr ˜λmin ˜m ÿ j"1

X j ¸ď 1 ´δ¸ď n ˆe´δ p1 ´δq 1´δ ˙1 R , δ P r0, 1s, (2.15) 
Pr ˜λmax ˜m ÿ j"1 

X j ¸ě 1 `δ¸ď n ˆeδ p1 `δq 1`δ ˙1 R , δ ě 0. ( 2 
˜ m ÿ j"1 X j ´I ą δ ¸ď 2n ˆeδ p1 `δq 1`δ ˙1 R . (2.17)
Finding a suitable value for R and taking δ " 1 2 leads to item (i) in Theorem 1, see [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] for the proof. One of the features of the bounds (2.15)-(2.16) is that the matrices X 1 , . . . , X m need not be identically distributed. This property has not been exploited in the analysis in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF]. The first contribution of this paper is the following Theorem 2, which states a similar result as Theorem 1, but using a different type of random samples that is very advantageous in itselft as well as for the forthcoming application to the adaptive setting. Proof. Proof of (i): the matrix G can be decomposed as G " ř n j"1 ř τ k"1 X jk where the X jk , j " 1, . . . , n, k " 1, . . . , τ , are mutually independent and, given any j " 1, . . . , n, the X j1 , . . . , X jτ are identically distributed copies of the rank-one random matrix Xpxq defined element-wise as

X pq pxq " 1 τ n wpxqψ p pxqψ q pxq, p, q " 1, . . . , n,
with x being a random variable distributed according to χ j . Notice that the X jk , j " 1, . . . , n, k " 1, . . . , τ , are not identically distributed. Anyway, using (2.6), it holds that for any p, q " 1, . . . , n,

EpG pq q "E ˜n ÿ j"1 τ ÿ k"1 X jk pq " τ ÿ k"1 n ÿ j"1 E `Xjk pq " τ ÿ k"1 n ÿ j"1 ż X 1 τ n wpxqψ p pxqψ q pxqψ j pxq 2 dρ " 1 n ż X wpxqψ p pxqψ q pxq n ÿ j"1 ψ j pxq 2 dρ " ż X ψ p pxqψ q pxqdρ "δ pq ,
and therefore EpGq " I. We then use (2.17) to obtain that if ~Xjk pxq~ď R almost surely for any j " 1, . . . , n and any k " 1, . . . , τ then for any δ P p0, 1q it holds Pr p~G ´I~ą δq ď 2n exp

´´c δ R ¯,
with c δ :" p1 `δq lnp1 `δq ´δ ą 0. We choose δ " 1 2 and obtain c 1 2 " θ as in (2.12). Since X jk has rank one and ~Xjk pxq~2 " trace `pX jk pxqq J X jk pxq ˘" ˜1 τ n wpxq

n ÿ "1 ψ pxq 2 ¸2 " 1 τ 2
for all j " 1, . . . , n, for all k " 1, . . . , τ and uniformly for all x P X, we can take R " 1{τ and obtain that, if m and n satisfy (2.18) then Pr ˆ~G ´I~ą 1 2 ˙ď 2ne ´θτ ď 2ne ´lnp2n{αq " α.

The overall structure of the proof of ii) follows [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF], with some differences due to the fact that here the samples x 1 , . . . , x m are not identically distributed. First we identify the underlying probability measure associated to these samples. The m " τ n samples x 1 , . . . , x m are all mutually independent, and are subdivided into τ blocks, where each block contains n random samples. More precisely, each block contains one random sample distributed as χ j , for j " 1, . . . , n. The probability measure of each block z " pz 1 , . . . , z n q is dγ n :" ś n j"1 |ψ j pz j q| 2 dρ, where each z j P X. The probability measure of τ blocks, with all the τ n random samples x 1 , . . . , x m , is dγ m :" b τ dγ n . Let Ω be the set of all possible draws from γ m , Ω `be the set of all draws such that

~G ´I~ď 1 2 ,
and Ω ´:" ΩzΩ `be its complement. Under the assumptions of Theorem 2, from (2.19) it holds that

PrpΩ ´q " ż Ω´d γ m ď α.
Denote g :" u ´Πn u. We consider the event ~G ´I~ď 1 2 , where it holds

}u ´uC } 2 " }u ´uW } 2 " }g} 2 `}Π m n g} 2 ,
since Π m n Π n u " Π n u and g is orthogonal to V . Denoting with pa 1 , . . . , a n q J the solution to the linear system Ga " b, and b " pxg, ψ k y m q k"1,...,n we have that

}u ´uC } 2 " e n,2 puq 2 `n ÿ k"1 |a k | 2 .
Since ~G ´I~ď 1 2 ùñ ~G~ě 1 2 ùñ ~G´1 ~ď 2, from the line above

}u ´uC } 2 ď e n,2 puq 2 `4 n ÿ k"1 |xg, ψ k y m | 2 .
In the event ~G ´I~ą 1 2 by the definition of u C in (2.11) we have }u ´uC } " }u}. Taking the expectation of }u ´uC } 2 w.r.t. γ m we obtain that

Ep}u ´uC } 2 q " ż Ω`} u ´uC } 2 dγ m `żΩ´} u ´uC } 2 dγ m ď ˜en,2 puq 2 `4 n ÿ k"1 Ep|xg, ψ k y m | 2 q ¸PrpΩ `q `}u} 2 PrpΩ ´q ďe n,2 puq 2 `4 n ÿ k"1 Ep|xg, ψ k y m | 2 q `α}u} 2 .
We now study the second term in the above expression, crucially exploiting the structure of the random samples and the fact that their expectations still pile up and simplify, despite the samples are not identically distributed:

n ÿ k"1 Ep|xg, ψ k y m | 2 q " n ÿ k"1 E ˜1 m 2 m ÿ i"1 m ÿ j"1 wpx i qwpx j qgpx i qgpx j qψ k px i qψ k px j q " 1 m 2 n ÿ k"1 m ÿ i"1 m ÿ j"1 E `wpx i qwpx j qgpx i qgpx j qψ k px i qψ k px j q " 1 m 2 ¨n ÿ k"1 m ÿ i"1 m ÿ j"1 j‰i E `wpx i qwpx j qgpx i qgpx j qψ k px i qψ k px j q loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon I `n ÿ k"1 m ÿ i"1 E ´`wpx i qgpx i qψ k px i q ˘2l oooooooooooooooooooomoooooooooooooooooooon II ‹ ‹ ‹ ‹ ‹ ' .
For term I: with any k " 1, . . . , n, using in sequence the independence of the samples, the structure of the samples and the definition of w we obtain

I " m ÿ i"1 m ÿ j"1 j‰i E `wpx i qgpx i qψ k px i q ˘E `wpx j qgpx j qψ k px j q " m ÿ i"1 E `wpx i qgpx i qψ k px i q ˘m ÿ j"1 j‰i E `wpx j qgpx j qψ k px j q " m ÿ i"1 E `wpx i qgpx i qψ k px i q ˘˜m ÿ j"1 E `wpx j qgpx j qψ k px j q ˘´E `wpx i qgpx i qψ k px i q ˘" m ÿ i"1 E `wpx i qgpx i qψ k px i q ˘˜τ ÿ "1 n ÿ j"1 ż X wpxqgpxqψ k pxqψ j pxq 2 dρ ´E `wpx i qgpx i qψ k px i q ˘" m ÿ i"1 E `wpx i qgpx i qψ k px i q ˘˜τ ÿ "1 ż X wpxqgpxqψ k pxq n ÿ j"1 ψ j pxq 2 dρ ´E `wpx i qgpx i qψ k px i q ˘" m ÿ i"1 E `wpx i qgpx i qψ k px i q ˘¨τ n ż X gpxqψ k pxqdρ loooooooomoooooooon "0 ´E `wpx i qgpx i qψ k px i q ˘‹ ‹ ' " ´m ÿ i"1 `E `wpx i qgpx i qψ k px i q ˘˘2 ă 0,
where xg, ψ k y " 0 for all k " 1, . . . , n because g is orthogonal to V . For term II, again exploiting the structure of the samples and the definition of w it holds

II " m ÿ i"1 E ˜wpx i q 2 gpx i q 2 n ÿ k"1 ψ k px i q 2 "n m ÿ i"1 E `wpx i qgpx i q 2 "n τ ÿ j"1 n ÿ k"1 ż X wpxqgpxq 2 ψ k pxq 2 dρ "n τ ÿ j"1 ż X wpxqgpxq 2 n ÿ k"1 ψ k pxq 2 dρ "n 2 τ ż X gpxq 2 dρ "n 2 τ }g} 2 .
Putting the pieces together, replacing m " τ n in term II and neglecting the nonpositive contribution of term I, we obtain

Ep}u ´uC } 2 q ď ˆ1 `4n m ˙en,2 puq 2 `α}u} 2 .
Since n{m " τ ´1 ď θ{ lnp2n{αq we finally obtain (2.20). The proof of iii) uses i) and then proceeds in the same way as for the proof of iii) in Theorem 1 from [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF]. From the definition of the spectral norm Since v is arbitrary we obtain the thesis.

~G ´I~ď 1 2 ðñ 1 2 }v} 2 ď }v} 2 m ď 3 2 }v} 2 , v P V,
The next Corollary 2 extends Theorem 2 to any m (not necessarily an integer multiple of n) satisfying (2.14). For any (fixed) τ " 0, . . . tm{nu, the set of m random samples in Corollary 2 is obtained by merging m ´τ n random samples distributed as µ n and τ random samples from χ j for all j " 1, . . . , n. When m is an integer multiple of n and τ " tm{nu, Corollary 2 gives Theorem 2 as a particular case. When τ " 0, all the random samples in Corollary 2 are distributed as µ n , like in Corollary 1.

Corollary 2. For any α P p0, 1q, any integers n ě 1, m ě n and τ " 0, . . . , tm{nu, if m satisfies (2.14) and x 1 , . . . , x m is a set of independent random samples such that for any j " 1, . . . , n the x pj´1qτ `1, . . . , x jτ are identically distributed according to χ j defined in (1.1), and the x nτ `1, . . . , x m are identically distributed as µ n , then items i), ii) and iii) of Theorem 2 hold true.

Proof. We proceed as in the proof of Theorem 2 but using the decomposition G " ř n j"1 ř τ k"1 X jk `řm "nτ `1 X , where all the X jk and X are mutually independent, and given any j " 1, . . . , n, the X j1 , . . . , X jτ are identically distributed copies of the rank-one random matrix Xpxq defined element-wise as X pq pxq " 1 m wpxqψ p pxqψ q pxq, p, q " 1, . . . , n, with x being a random variable distributed according to χ j , and the X are identically distributed copies of Xpxq but with x being a random variable distributed according to µ n . For any p, q " 1, . . . , n, τ " 0, . . . , tm{nu,

EpG pq q " τ ÿ k"1 n ÿ j"1 E `Xjk pq ˘`m ÿ "nτ `1 E `X pq " τ ÿ k"1 n ÿ j"1 ż X 1 m wpxqψ p pxqψ q pxqψ j pxq 2 dρ `m ÿ "nτ `1 ż X 1 m wpxqψ p pxqψ q pxq ř n j"1 ψ j pxq 2 n dρ " nτ m ż X ψ p pxqψ q pxqdρ `m ´nτ m ż X ψ p pxqψ q pxqdρ " δ pq .
When τ " 0 (m is an integer multiple of n and τ " tm{nu), the leftmost (rightmost) sum in the first equation above is empty. Since ~Xjk pxq~" ~X pxq~" n m for all j " 1, . . . , n, for all k " 1, . . . , τ , for all " nτ `1, . . . , m and uniformly for all x P X, we can take R " n{m and obtain that if m and n satisfy (2.14) then (2.19) holds true.

For the proof of (2.20), we proceed as in the proof of Theorem 2 with two differences. When bounding term I, we split the random samples as

m ÿ j"1 Epwpx j qgpx j qψ k px j qq " τ ÿ "1 n ÿ j"1 ż X wpxqgpxqψ k pxqψ j pxq 2 dρ `m ÿ "nτ `1 ż X wpxqgpxqψ k pxq ř n j"1 ψ j pxq 2 n dρ "nτ ż X gpxqψ k pxqdρ `pm ´nτ q ż X gpxqψ k pxqdρ " 0,
and this term again vanishes due to the orthogonality of g to ψ k . For term II, splitting again the random samples we obtain

n ÿ k"1 m ÿ j"1 E ´`wpx j qgpx j qψ k px j q ˘2¯" m ÿ j"1 E ˜wpx j q 2 gpx j q 2 n ÿ k"1 ψ k px j q 2 ¸" n m ÿ j"1 E `wpxqgpxq 2 "n τ ÿ "1 n ÿ j"1 ż X wpxqgpxq 2 ψ j pxq 2 dρ `n m ÿ "nτ `1 ż X wpxqgpxq 2 ř n k"1 ψ k pxq 2 n dρ "n 2 τ }g} 2 `npm ´nτ q}g} 2 " nm}g} 2 .
The proof of the last item is the same as the corresponding proof in Theorem 2, but using (2.19) with the random samples of Corollary 2.

Adaptive approximation with a nested sequence of spaces

We now apply the results for a given approximation space from the previous section to an arbitrary sequence of nested spaces pV k q kě1 Ă L 2 pX, ρq, with V k :" spantψ 1 , . . . , ψ n k u and n k :" dimpV k q. Theorem 1 and Theorem 2 provide two different approaches to build the set of random samples for a given approximation space, and each one of them can be applied to the adaptive setting. Since the samples are adapted to the space, the underlying challenge is how to recycle as much as possible the samples associated to spaces from the previous iterations, in order to keep the overall number of generated samples from iteration one to k of the same order as dimpV k q, i.e. the same scaling as in the results for an individual approximation space.

First we briefly discuss the approach using Theorem 2. This theorem prescribes the precise number of random samples coming from each component of the mixture (2.7) associated to the space. When the spaces are nested, this trivially allows one to recycle all the samples from all the previous iterations, just by adding the missing samples to the previous ones, as shown in (1.2). The concrete procedure and the related Algorithm 1 are explained in Section 4.1.

The approach using Theorem 1 is not as simple and effective as the previous one. Without recycling the samples from the previous iterations, the naïve sequential application of Theorem 1 to each space V 1 , . . . , V t would require the generation of an overall number of samples equal to ř t k"1 m k , with m k samples drawn from each µ n k . However, despite µ n k changes at each iteration k, it is possible to recycle most, but not all, of the samples from the previous iterations by leveraging the additive structure of µ n k as in (1.3). This procedure is described in Section 4.2 together with Algorithm 2.

The next results are obtained by applying Theorem 2 (respectively Theorem 1) individually for each space V k and using a union bound, with the random samples produced by Algorithm 1 (respectively Algorithm 2). Here I k P R n k ˆnk denotes the identity matrix. For any s ą 1, ζpsq denotes the Riemann zeta function. The best approximation error (2.10) of u on the space V k is denoted by e n k ,2 puq, and u k C denotes the estimator (2.11) on V k . Theorem 3. Let α P p0, 1q, s ą 1 be real numbers and t ě 1 be an integer. Given any nested sequence of spaces

V 1 Ă . . . Ă V t Ă L 2 pX, ρq with dimensions n 1 ă . . . ă n t , if m k " τ k n k , τ k :" R θ ´1 ln ˆζpsq n s`1 k α ˙V , k " 1, . . . , t, (3.21) then (i) Pr ˜t č k"1 " ~Gk ´Ik ~ď 1 2 * ¸ě 1 ´α,
where G k P R n k ˆnk is defined element wise as

pG k q pq " m ´1 k m k ÿ j"1 ψ p `xj ˘ψq `xj ˘,
and x 1 , . . . , x mt is a set of m t independent random samples such that for any k " 1, . . . , t and for any j " 1, . . . , n k the samples x pj´1qτ k `1, . . . , x jτ k are distributed according to χ j . The set x 1 , . . . , x mt can be generated by Algorithm 1.

(ii) If u P L 2 pX, ρq then for any k " 1, . . . , t the estimator u k C satisfies,

Ep}u ´uk C } 2 q ď ˆ1 `4θ lnpζpsqn s`1 k {αq ˙en k ,2 puq 2 `α}u} 2 .
Proof. Proof of (i). From Lemma 2, for any k " 1, . . . , t Algorithm 1 with τ k as in (3.21) generates a set x 1 , . . . , x m k of m k random samples with the required properties. By construction, these random samples satisfy the assumptions of Theorem 2, and are used to compute the matrix G k . For any k " 1, . . . , t, using Theorem 2 individually for each

G k with α k " α ζpsq n s k , gives t ÿ k"1 Pr ˆ"~G k ´Ik ~ą 1 2 *˙ď t ÿ k"1 α k ď α ζpsq t ÿ k"1 1 k s ď α ζpsq ÿ kě1 1 k s " α,
where the second inequality follows from strict monotonicity of pn k q kě1 and n 1 ě 1, that implies n k ě k.

Using De Morgan's law and a probability union bound for the matrices G 1 , . . . , G t it holds that Pr ˜t č

k"1 " ~Gk ´Ik ~ď 1 2 * ¸ě 1 ´t ÿ k"1
Pr ˆ"~G k ´Ik ~ą 1 2

*˙ě 1 ´α.

The proof of (ii) trivially follows from Theorem 2, since α k ď α for any k " 1, . . . , t.

Theorem 4. Let α P p0, 1q, s ą 1 be real numbers and t ě 1 be an integer. Given any nested sequence of spaces

V 1 Ă . . . Ă V t Ă L 2 pX, ρq with dimensions n 1 ă . . . ă n t , if m k " R n k θ ln ˆζpsq n s`1 k α ˙V , k " 1, . . . , t, (3.22) then (i) Pr ˜t č k"1 " ~Gk ´Ik ~ď 1 2 * ¸ě 1 ´α,
where G k P R n k ˆnk is defined element wise as 

pG k q pq " m ´1 k m k ÿ j"
m k ď mk ď m k `nk ´1 ď m k p1 ` k q ´1, (3.24) 
where k :" θ ˆlog

2n s`1 k ζpsq α ˙´1 ! 1.
Proof. For any n k ě 1 it holds Remark 3. For any integer t ě 1 and reals α P p0, 1q, s ą 1, the result in Theorem 3 can be sharpened by using m t random samples x 1 , . . . , x mt such that, with the same τ k as in (3.21),

m k " R n k θ ´1 log 2n s`1 k ζpsq α V ď n k R θ ´1 log 2n s`1 k ζpsq α V " mk ă n k ˆθ´1 log 2n s`1 k ζpsq α `1˙.
• for any k " 1, . . . , t ´1 and for any j " 1, . . . , n k the x pj´1qτ k `1, . . . , x jτ k are distributed according to χ j ,

• at iteration t, for any j " 1, . . . , n t the samples x pj´1qτt´1`1 , . . . , x jτt´1 are distributed according to χ j , and the samples x ntτt´1`1 , . . . , x mt are distributed according to µ nt .

For any k " 1, . . . , t ´1 the set x 1 , . . . , x m k can be incrementally constructed using (1.2). For the construction of x 1 , . . . , x mt at the last iteration t: we recycle all the m t´1 " n t´1 τ t´1 samples from iteration t ´1, then we add pn t ´nt´1 qτ t´1 new samples, i.e. τ t´1 samples from χ j for all j " n t´1 `1, . . . , n t , and then add the remaining m t ´nt τ t´1 samples from µ nt . Using the random samples x 1 , . . . , x mt , in the proof of Theorem 3 we can apply Theorem 2 at the first t ´1 iterations, and then at iteration t apply Corollary 2 with n " n t , m " m t , τ " τ t´1 . This proves the same conclusions of Theorem 3 under the same condition (3.21) on m k for k " 1, . . . , t ´1, but with the slightly better condition (3.22) on m t , because m t need not be an integer multiple of n t . Remark 4. Remark 3 can be used to develop adaptive algorithms that recycle all the samples from all the previous iterations, and that use a number of samples m t given by (3.22) at the last iteration t. Such adaptive algorithms need to detect in advance which is last iteration, in contrast to algorithms developed using Theorem 3 where this information is not needed.

Sampling algorithms

In the following we present two sequential algorithms that generate the random samples required by Theorem 3 or Theorem 4 at any iteration say t, while recyclying the samples from the previous iterations k " 1, . . . , t ´1. The algorithms are described in appendix, using the convention that a loop for i " start to end on the variable say i is not executed if end ă start.

Deterministic sequential sampling

This section presents Algorithm 1, that can be used to produce the random samples required by Theorem 3 using the decomposition (1.2). By construction, Algorithm 1 recycles all the samples from all the previous iterations. At any iteration t ě 1 the algorithm stores the m t " τ t n t random samples in a n t ˆτt matrix. All the elements of this matrix are modified only once as the algorithm runs from iteration one to t. The algorithm works with any nondecreasing positive integer sequence pτ k q kě1 . Lemma 2. Let pV k q kě1 be any sequence of nested spaces with dimension n k " dimpV k q, and pτ k q kě1 be a positive nondecreasing integer sequence. For any t ě 2, Algorithm 1 generates a set of m t " τ t n t random samples x 1 , . . . , x mt with the property that for any k " 1, . . . , t and for any j " 1, . . . , n k the samples x pj´1qτ k `1, . . . , x jτ k are distributed according to χ j . Proof. At any iteration k " 1, . . . , t Algorithm 1 produces the matrix tx j , j " 1, . . . , n k , " 1, . . . , τ k u that contains the τ k n k " m k random samples, by modifying only the elements tx j , j " 1, . . . , n k´1 , " 1 τk´1 , . . . , τ k u and tx j , j " 1 `nk´1 , . . . , n k , " 1, . . . , τ k u. By construction, for any j " 1, . . . , n k , the jth row of this matrix contains τ k samples distributed as χ j . This matrix is recasted into a column vector by means of a transposition composed with a vectorization, that piles up its rows into the vector px 1 , . . . , x m k q J . When ρ is a product measure on X, random samples from all the χ j appearing in Algorithm 1 can be efficiently drawn by using the algorithms proposed in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF], i.e. inverse transform sampling or rejection sampling. The computational cost required by these algorithms scales linearly with respect to d and to the desired number of samples.

Random sequential sampling

This section presents Algorithm 2, that can be used to produce the random samples required by Theorem 4, and uses the decomposition (1.3). For any k ě 2, a standard algorithm for generating m k random samples from µ n k uses a binomial random variable B k " Bin pm k , pn k ´nk´1 q{n k q to determine the proportion of samples coming from σ n k . The first parameter of B k is the number of trials, and the second parameter is the probability of success for each trial, that is given by the coefficient multiplying dσ n k in (1.3). For any k ‰ k 1 , B k and B k 1 are mutually independent. The amount of samples associated to µ n k´1 is equal to m k ´Bk . These are the samples that the algorithm can recycle from the previous iterations, whenever necessary. For any t ě 1, the algorithm that generates random samples from µ n1 , . . . , µ nt in a sequential manner is described in Algorithm 2. Efficient algorithms have been proposed in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] for drawing samples from all the probability measures µ n k and σ n k appearing in Algorithm 2. The next lemma quantifies more precisely how many unrecycled samples cumulate after say t iterations. Lemma 3. For any t ě 1, Algorithm 2 generates a set of m t random samples x 1 , . . . , x mt with the property that x 1 , . . . , x m k are distributed according to µ n k , for any k " 1, . . . , t. The overall number of samples generated by Algorithm 2 at iteration t is

mt :" m 1 `t ÿ k"2 pB k `maxtm k ´Bk ´mk´1 , 0uq . (4.25)
Proof. The properties of the random samples are ensured by construction. We now proove (4.25). When t " 1 the sum is empty and the formula holds true. Suppose then t ě 2. The proof uses induction on k. At iteration k " 2, m k´1 samples from µ n k´1 are available, which verifies the induction hypothesis. Proof of the induction step: for any k ě 2, supposing that m k´1 samples from µ n k´1 are available at iteration k ´1, the number of recycled samples from iteration k ´1 is minpm k ´Bk , m k´1 q. Then the algorithm adds maxpm k ´Bk ´mk´1 , 0q new samples from µ n k´1 . Afterwards m k ´maxpm k ´Bk ´mk´1 , 0q ´minpm k ´Bk , m k´1 q new samples are added from σ n k . At the end of iteration k, the algorithm produces a set containing m k random samples from µ n k , and throws away m k´1 ´minpm k ´Bk , m k´1 q samples that were drawn at iteration k ´1 from µ n k´1 . Summation of each contribution of new samples at any iteration k from 2 to t gives (4.25).

The number of unrecycled samples after t iterations is mt ´mt . As a sum of nonnegative random variables, this number can only increase as the algorithm runs, which represents the major disadvantage of Algorithm 2, and of any other purely random sequential algorithm. Since m k ě m k´1 and B k ě 0 for all k ě 2, from (4.25) we have the upper bound mt ď m t `Ut , where U t is the random variable defined as

U t :" t ÿ k"2 B k , ( 4.26) 
that gives an upper bound for the number of unrecycled samples. Its mean and variance are given by

EpU t q " t ÿ k"2 EpB k q " t ÿ k"2 m k n k ´nk´1 n k , VarpU t q " t ÿ k"2 VarpB k q " t ÿ k"2 m k n k ´nk´1 n k n k´1 n k . ( 4 

.27)

The above expressions for the mean and variance of U t hold true for any condition between m k and n k , not necessarily of the form (3.22). When (3.22) is fulfilled we have the following upper bounds.

Lemma 4. For any strictly increasing sequence pn k q kě1 , for any t ě 2, s ą 1 and α P p0, 1q, if m k and n k satisfy condition (3.22) for all k " 1, . . . , t then VarpU t q ă EpU t q ď m t `nt ´m1 .

Proof.

EpU t q " t ÿ k"2 m k n k ´nk´1 n k ď t ÿ k"2 pn k ´nk´1 q R θ ´1 ln ˆζpsq n s`1 k α ˙V ď t ÿ k"2 n k R θ ´1 ln ˆζpsq n s`1 k α ˙V ´nk´1 S θ ´1 ln ˜ζpsq n s`1 k´1 α ¸W "n t R θ ´1 ln ˆζpsq n s`1 t α ˙V ´n1 R θ ´1 ln ˆζpsq n s`1 1 α ˙V ďm t `nt ´m1 .
The inequality for VarpU t q follows from (4.27) and strict monotonicity of the sequence pn k q k .

Remark 5. Here we show that the random variable U t concentrates like a Gaussian random variable with mean and variance given by (4.27). The central limit theorem for a binomial random variable B " Binpm, pq with number of trials m and success probability p states that

lim mÑ8 Pr ˜B ´mp a mpp1 ´pq ď b ¸"Φ pbq , b P R,
where Φ is the cumulative distribution function of the standard Gaussian distribution. This justifies the wellknown Gaussian approximation of B when m is sufficiently large. This approximation is very accurate already when mp ě 5 and mp1 ´pq ě 5. In our settings, when m k and n k satisfy (3.22) for some α P p0, 1q and s ą 1, the parameters of the binomial random variables B k overwhelmingly verify the above conditions for any k " 2, . . . , t, since

m k pn k ´nk´1 q n k ě θ ´1 ln ˆζpsq n s`1 k α ˙pn k ´nk´1 q ě θ ´1 ln ˆζpsq n s`1 k α ˙" 5, (4.28 
)

m k n k´1 n k " θ ´1 ln ˆζpsq n s`1 k α ˙nk´1 " 5, (4.29) 
and θ ´1 « 9.242. Using the Gaussian approximation of the binomial distribution, each B k behaves like a Gaussian r.v. with the same mean and variance. A finite linear combination of independent Gaussian random variables is a Gaussian random variable. Hence the r.v. U t behaves like a Gaussian r.v. with mean and variance as in (4.27).

Comparison of the sampling algorithms

The main properties of Algorithm 1 and Algorithm 2 are resumed below. At any iteration say t:

• Algorithm 1 generates m t " τ t n t independent random samples with τ t being any positive integer, and such that τ t of these random samples are drawn from χ j , for any j " 1, . . . , n t . This algorithm recycles all the samples generated at all the previous iterations k " 1, . . . , t ´1.

• Algorithm 2 generates m t independent random samples from µ nt . This algorithm recycles most of the samples generated at all the previous iterations k " 1, . . . , t ´1. If (3.22) holds true at any iteration, then the number of unrecycled samples at iteration t is upper bounded by the random variable (4.26) with mean p1 `θqm t and variance p1 `θqm t , that exhibits Gaussian concentration.

• During the execution, Algorithm 1 modifies each element of the output set x 1 , . . . , x mt only once, in contrast to Algorithm 2 that can modify the same element several times, when discarding previously generated random samples.

• Algorithm 1 and Algorithm 2 use any sequence of nested spaces pV k q k .

• The weighted least-squares estimators constructed with the random samples generated by both Algorithm 1 and Algorithm 2 share the same theoretical guarantees, see Theorem 3 and Theorem 4.

• In practice Algorithm 1 outperforms Algorithm 2 in all our numerical tests, recycling all the samples from all the previous iterations, and producing on average more stable Gramian matrices. Remark 6. When using random samples from γ m rather than from µ m , the benefits of variance reduction increase with more localized basis than orthogonal polynomials, like wavelets. The structure of the random samples from γ m ensures that for any element of the basis ψ j P V at least one sample is contained in supppψ j q. If this is not the case then the Gramian matrix is singular, because the discrete inner product of two functions is equal to zero when none of the samples is contained in the intersection of their supports.

Numerical methods for adaptive (polynomial) approximation

The results presented in Theorems 3 and 4 hold for any nested sequence pV k q k of general approximation spaces, in any dimension d. Two families of spaces that are suitable for approximation in arbitrary dimension d are polynomial spaces and wavelet spaces. In this paper we confine to polynomial spaces. Even with this restriction, adaptive numerical methods in such a general context are still quite a large subject. Our focus in the present paper is on a more specific type of adaptive methods, in the spirit of orthogonal matching pursuit, and on the line of the greedy algorithms described in [START_REF] Devore | Some remarks on greedy algorithms[END_REF].

The spaces V k can be adaptively chosen from one iteration to the other, as long as the sequence remains nested. Without additional information on the function that we would like to approximate, the infinite number of elements in the basis prevents the development of a concrete strategy for performing the adaptive selection. Such additional information is available in the form of decay of the coefficients, for example, for some PDEs with parametric or stochastic coefficients, whose solution is provably well-approximated by so-called downward closed polynomial spaces. See [START_REF] Cohen | Approximation of high-dimensional parametric PDEs[END_REF] and references therein for an introduction to the topic. The definition of downward closed polynomial spaces is postponed to (5.32). In the remaining of this section we assume that the function u can be well approximated by a nested sequence of downward closed polynomial approximation spaces.

(5.30)

As a relevant example that motivates our interest in the above setting, for PDEs with lognormal diffusion coefficients it was shown by the author in [8, Lemma 2.4] that suitable polynomial spaces yielding provable convergence rates are actually downward closed. After (5.30) we restrict our analysis to nested sequences pV k q k of polynomial spaces satisfying the additional constraint of being downward closed. At iteration k, given V k´1 , an ideal (local) optimal criterion for performing the adaptive selection is to choose V k Ą V k´1 as the space that delivers the smallest error among all possible downward closed spaces with prescribed dimension, for example n k " 1 `nk´1 . Since d is finite, the number of all possible choices for V k is also finite. In reality the exact error }u ´Πn k u} is not available, and the adaptive selection has to rely on the error }u ´uk C } that is a random variable. Here the error estimates from Theorems 3 and 4 come in handy because they ensure that }u´u k C } 2 is less than twice }u´Π n k u} 2 in expectation. Even if the exact error was available, the adaptive selection using the local optimal criterion does not ensure optimality of the selected spaces at the following iterations, and for this reason it is referred to as a greedy adaptive selection.

Before moving to the description of the adaptive algorithm, we briefly introduce some definitions that are useful to describe the polynomial setting. Hereafter we assume that X " ˆd i"1 I i is the Cartesian product of intervals I i Ă R, and that dρ " b d i"1 dρ i where each ρ i is a probability measure defined on I i . This setting ensures the existence of a product basis orthonormal in L 2 pX, ρq that we now introduce. To simplify the presentation and notation, we further suppose that I :" I j and ρ :" ρ j for any j, and denote with pT j q jě1 the univariate family of orthogonal polynomials, orthonormal in L 2 pI, ρq. Let Λ Ă F :" N d 0 be a multi-index set enumerated according to an ordering relation, for example the lexicographical ordering. Using Λ we define ψ ν pxq :"

d ź i"1
T νi px i q, ν " pν 1 , . . . , ν d q P Λ, x " px 1 , . . . , x d q P X, (5.31) and relate the orthonormal basis pψ i q iě1 from the previous sections to the above orthonormal basis as ψ i " ψ ν i for any i " 1, . . . , #pΛq, where ν i is the ith element of Λ according to the lexicographical ordering, and #pΛq denotes the cardinality of Λ. The space associated to Λ is defined as V Λ :" span tψ ν : ν P Λu. A set Λ Ă F is downward closed if ν P Λ and ν 1 ď ν ùñ ν 1 P Λ, (5.32) where the ordering ν 1 ď ν is intended in the lexicographical sense. We say that the space V Λ is downward closed if the supporting index set Λ is downward closed. For any Λ Ă F downward closed we define its margin MpΛq as MpΛq :" tν P F : ν R Λ ^Dj P t1, . . . , du : ν ´ej P Λu , where e j P F is the multi-index with all components equal to zero, except the jth component that is equal to one. The reduced margin RpΛq of Λ is defined as RpΛq :" tν P F : ν R Λ ^@j P t1, . . . , du, ν j ‰ 0 ùñ ν ´ej P Λu Ď MpΛq.

If Λ is downward closed then Λ Y tνu is downward closed for any ν P RpΛq.

Finally we choose the space V k from the previous sections as V k " V Λ k for any k by means of a nested sequence pΛ k q k Ă F of downward closed multi-index sets. For any k ě 1, #pΛ k q " dimpV k q " n k equals the dimension of V k .

An adaptive OMP algorithm

In this section we describe an adaptive algorithm using optimal weighted least squares, starting from the algorithm proposed in [START_REF] Migliorati | Adaptive polynomial approximation by means of random discrete least squares[END_REF] for standard least squares and inspired by orthogonal matching pursuit. The algorithm builds a sequence of nested spaces V Λ1 Ă . . . Ă V Λt performing at each iteration an adaptive greedy selection of the indices identifying the elements of the basis. The adaptive construction of the index sets uses ideas that were originally proposed in [START_REF] Gerstner | Dimension-adaptive tensor-product quadrature[END_REF] for developing adaptive sparse grids quadratures. The greedy selection of the indices uses a marking strategy known as bulk chasing.

The adaptive algorithm works with downward closed index sets. Given any Λ downward closed, a nonnegative function e : RpΛq Ñ R and a parameter β P p0, 1s, we define the procedure BULK :" BULKpRpΛq, e, βq that computes a set F Ď RpΛq of minimal positive cardinality such that ÿ νPF epνq ě β ÿ νPRpΛq epνq.

(5.33)

Denote with a ν the coefficient associated to ψ ν in the expansion u " ř νPF a ν ψ ν . For any ν P RpΛq, the function epνq is chosen as an estimator for |a ν | 2 . The adaptive algorithm is described in Algorithm 3. At any iteration k of the algorithm, m k random samples are generated by using Algorithm 1, with m k satisfying (3.21) as a function of n k " #pΛ k q, for a given choice of the parameters α and s. The m k random samples are used to compute the weighted least-squares estimator u k C on V Λ k . For convenience in Algorithm 3 the operations performed by Algorithm 1 have been merged with those for the adaptive selection of the space. In Algorithm 3 the χ ν correspond to χ j with ψ j " ψ ν . An estimator for |a ν | 2 proposed in [START_REF] Migliorati | Adaptive polynomial approximation by means of random discrete least squares[END_REF] that uses only the information available at iteration k ´1 is e k´1 pνq :" ˇˇxu ´uk´1

C , ψ ν y m k´1 ˇˇ2 , ν P RpΛ k´1 q, (5.34)

where the discrete inner product uses the evaluations of the function u at the same m k´1 samples that have been used to compute u k´1 C at iteration k ´1. The estimator (5.34) uses the residual r k´1 :" u ´uk´1

C

and is cheap to compute: it requires only the product of a vector with a matrix.

A safeguard mechanism prevents Algorithm 3 from getting stuck into indices associated to null coefficients in the expansion of u k C . Given a positive integer k sg , once every k sg iterations the algorithm adds to Λ k the most ancient multi-index from RpΛ k´1 qzF . In the numerical tests reported in the next section, such a mechanism was never activated, and the algorithm was always able to identify the best n k -term index sets of the given function at any iteration k.

Algorithm 3 can be modified by relaxing (3.21) to a less demanding condition between m k and n k at each iteration k. For example, the random samples can be added until a stability condition of the form ~Gk ´Ik ~ď ξ is met, for some given threshold ξ ą 1{2. This provides a fully adaptive algorithm as described in Algorithm 4, that however, in contrast to Algorithm 3, does not come with the theoretical guarantees of Theorem 3.

Testing the sampling algorithms

This section presents some numerical tests of the sampling algorithms that generate the random samples, comparing Algorithm 1 and Algorithm 2. At the very end, our implementation of both algorithms uses inverse transform sampling as described in [7, Section 5.2] for drawing samples from all the χ j .

A natural vehicle to quantify the quality of the generated samples is the deviation of the matrix G k from the identity, i.e. ~Gk ´Ik ~. Since ~Gk ´Ik ~ď 1 2 ùñ condpG k q :" ~G´1 k ~~G k ~ď 3, our tests show the condition number, that is a more meaningful quantity when solving a linear system.

From the point of view of the stability and convergence properties of the weighted least-squares estimators, the random samples generated by both algorithms come with the same theoretical guarantees. But, in contrast to Algorithm 2, Algorithm 1 recycles all the samples from the previous iterations. This is the main reason to Our first tests illustrate the benefits of variance reduction, using spaces V k of univariate Hermite polynomials pH j q jě0 with degree from 0 to k ´1. More precisely, the sequence pH j q jě0 contains univariate Hermite polynomials orthonormalised as ş R H i ptqH j ptq dg " δ ij , where dg :" p2πq ´1{2 e ´t2 {2 dt. Denote with E i « EpcondpG k qq and S 2 i « VarpcondpG k qq the sample mean and sample variance estimators of the random variable condpG k q with G k constructed using the random samples generated by Algorithm i P t1, 2u. Figure 1-left shows the comparison of E i and E i `Si between the two algorithms, with m k " rθ ´1sn k . Both estimators confirm that Algorithm 1 produces random samples whose Gramian matrix is better conditioned than Algorithm 2. The same trend persists when choosing other scalings like m k " p3 `nk qn k , see Figure 1-center and Figure 1-right. The difference between the two algorithms is expected to amplify when using more localized basis, with Algorithm 2 producing much more ill-conditioned Gramian matrices as the ratio m k {n k decreases.

From now on the focus is on Algorithm 1. For all the tests in the remaining part of this section we choose m k as in (3.21) with α " 0.1 and s " 2. The value of α is chosen fairly large on purpose to check, in practice, how sharp the stability constraint (3.21) is. In the first test, we choose ρ " b d dg as the d-dimensional probabilistic Gaussian measure on X " R d , and V k as the spaces of tensorized Hermite polynomials, obtained from (5.31) by taking T j " H j , j ě 0. The Gaussian case poses several challenges: as shown in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF], standard least-squares estimators with Hermite polynomials typically fail due to the ill-conditioning of the Gramian matrix. Since the ill-conditioning arises with high-degree polynomials, we choose fairly low-dimensional tests to begin with, such that very high-degree polynomials can be tested, e.g. degrees beyond 100. With d " 1 the results are shown in Figure 2-left, and with d " 4 in Figure 2-right. The condition number of G k stays well below the threshold equal to 3 during all the simulations, which contain, respectively, 10 4 and 10 3 realizations of the sequence pcondpG k qq kě1 with random samples generated by Algorithm 1. At any iteration k, the index set Λ k Ą Λ k´1 that defines the space V k " V Λ k is generated by adding to Λ k´1 a random number of indices randomly chosen from RpΛ k´1 q. This procedure generates nested sequences of downward closed index sets, see Figure 3-right for an example of such a set. With other families of orthogonal polynomials the results are very similar. For example, with d " 4, the results in Figure 3-left with the d-dimensional uniform probabilistic measure on X " r´1, 1s d and Legendre polynomials are analogous to those obtained in Figure 2-right with the Gaussian measure and Hermite polynomials. 

Testing the adaptive algorithm

For the numerical tests of Algorithm 3 we choose ρ as the uniform measure over X " r´1, 1s d and V k as the spaces of tensorized Legendre polynomials obtained by first defining the sequence pL j q jě0 of univariate Legendre polynomials orthonormalised as ş `1 ´1 L i ptqL j ptq dt 2 " δ ij and then taking T j " L j in (5.31). As an illustrative example, consider the following function that satisfies assumption (5.30) The error estimators are denoted with }u ´uk C } CV,2 , }u ´uk C } CV,8 , although these are not norms over the functional space. The parameter of the marking strategy is set to β " 0.5, and Λ 1 " tp0, . . . , 0q J u. Figure 4-left shows the results for the errors (5.36) obtained when approximating the function (5.35) with Algorithm 3 and using the random samples generated by Algorithm 1. At each iteration k the number of samples m k as a function of n k satisfies (3.21) with α " 0.1 and s " 2. Figure 4-right shows the condition number of G k at iteration k, that stays below two at all the iterations. Figure 5-left shows that at each iteration k the adaptive algorithm catches the coefficients in the best n k -term set. The coefficients in Figure 5-left have not been sorted, and they appear in the same order in which their corresponding elements of the basis were included in the approximation space by the adaptive selection procedure. After 35 iterations the algorithm has adaptively constructed a sequence Λ 1 , . . . , Λ 35 of index sets. The set Λ 35 contains about 10 3 indices, and its associated space V Λ35 provides an approximation error of the order 10 ´7 on average. Figure 5 shows some sections of Λ 35 . All the d coordinates in Λ 35 are active, i.e. @i P t1, . . . , du, Dν P Λ : ν j ą 0.

The condition number in Figure 4-right actually decreases w.r.t. k, showing that condition (3.21) could be relaxed while still preserving the stability of the discrete projection, and yielding faster convergence rates w.r.t. m k than those in Figure 4-left. 

Conclusions

We have advanced one step further the analysis of optimal weighted least-squares estimators for a given general d-dimensional approximation space. The main novelty concerns the structure of the random samples, that follow a distribution with product form. The results have immediate applications to the adaptive setting with a nested sequence of approximation spaces, and point out new promising directions for the development of adaptive numerical methods for high-dimensional approximation using polynomial or wavelet spaces. Our analysis indicates that efficient adaptive methods can also be developed for general sequences of nonnecessarily nested spaces. This topic will be investigated in the future.
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 2 puq :" min vPV }u ´v} " }u ´Πn u}, (2.10) and the weighted L 8 pX, ρq best approximation of u as e n,8,w puq :" inf vPV sup yPX a wpyq|upyq ´vpyq|.
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 3 right shows an example of (the section of the first and second coordinates of) an index set Λ k obtained in the simulation of Figure2-right at iteration k " 500. This set contains products of univariate Hermite polynomials with degree over 110 in the first coordinate and up to 59 in the second coordinate, and degree up to 25 and 9 in the remaining third and fourth coordinates not displayed in the figure.
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 23 Figure 2: Left: condition number condpG k q at iteration k with n k " k and m k as in (2.18), d " 1, Gaussian measure, Hermite polynomials, s " 2, α " 0.1. Black lines are 10 4 realizations of the sequence pcondpG k qq kě1 with random samples from Algorithm 1. The red line is their sample mean. Right: condition number condpG k q at iteration k with n k " k and m k as in (2.18), d " 4, Gaussian measure, Hermite polynomials, s " 2, α " 0.1. Black lines are 10 3 realizations of the sequence pcondpG k qq kě1 with random samples from Algorithm 1. The red line is their sample mean.
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 4 Figure 4: Left: 10 2 realizations of the errors }u´u k C } CV,2 and }u´u k C } CV,8 versus m k obtained with Algorithm 3 and the random samples generated by Algorithm 1. Right: 10 2 realizations of condpG k q versus k, for the same simulation on the left.
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 5 Figure 5: Left: first 10 3 coefficients of the estimator u k C " ř j a j ψ j obtained at iteration k " 35 with the index set Λ 35 , for one realization among those shown in Figure 4. Right: some sections of the index set corresponding to the coefficients displayed on the left.

  if u P L 2 pX, ρq then the estimator u C satisfies Ep}u ´uC } 2 q ď p1 `εpmqqe n,2 puq 2 `2}u} 2 m ´r ,

	(ii) where εpmq :"	4 θr lnpmq Ñ 0 as m Ñ `8, and θ r as in (2.12);
	(iii) with probability larger than 1 ´2m ´r , the estimator u W satisfies
					}u ´uW } ď p1 `?2qe n,8,w puq,	(2.13)
					0,		otherwise.	1 2 ,	(2.11)
	One of the main results from [7] is the following theorem, see [7, Theorem 2.1 and Corollary 2.2].
	Theorem 1. For any real r ą 0, if the integers m and n are such that the condition
		n θ r ď	m ln m	, with θ r :" θ ´1p1 `rq, θ :"	3 lnp3{2q 2	´1	« 0.108,	(2.12)
	is fulfilled, and x 1 , . . . , x m are independent and identically distributed random samples from µ n , then the fol-
	lowing holds:						
	(i) the matrix G satisfies the tail bound		
				Pr	" ~G ´I~ą	1 2	*	ď 2nm ´pr`1q ď 2m ´r ;

Theorem 2 .

 2 For any α P p0, 1q and any integer n ě 1, if

	m " τ n,	with τ :"	R	θ ´1 ln	ˆ2n α	˙V , θ as in (2.12),	(2.18)
		Pr	"	~G ´I~ą	1 2	*	ď α;	(2.19)
	Ep}u ´uC } 2 q ď ˆ1	`4θ lnp2n{αq	˙en,2 puq 2 `α}u} 2 ;	(2.20)

and x 1 , . . . , x nτ is a set of independent random samples such that for any j " 1, . . . , n the samples x pj´1qτ `1, . . . , x jτ are identically distributed according to χ j defined in (1.1) then the following holds:

(i) the matrix G satisfies the tail bound (ii) if u P L 2 pX, ρq then the estimator u C satisfies, (iii) with probability larger than 1 ´α, the estimator u W satisfies }u ´uW } ď p1 `?2qe n,8,w puq, for all u such that } ? wu} L 8 ă `8.

  Proof. From Lemma 3, Algorithm 2 generates a set x 1 , . . . , x mt of m t random samples with the required properties. The rest of the proof of item (i) and (ii) follows the proof of Theorem 3, but applying Corollary 1 individually to each G k , rather than Theorem 2. Condition (3.21) ensures that m k is an integer multiple of n k for any k ě 1. This condition requires a number of points m k only slightly larger than condition(3.22) for the same values of n k , s and α (the proof is postponed to the forthcoming Lemma 1). However, to compare the effective number of samples used in Theorem 3 and Theorem 4 one cannot just compare (3.21) and (3.22), because (3.22) neglects the random samples that have not been recycled from all the previous iterations. This issue is discussed in Remark 1.For convenience in Remark 1, Lemma 1 and Remark 2 we denote with mk the number of points required by condition (3.21), and with m k the number of points required by(3.22), for the same values of n k , s and α. For any t ě 1, in Theorem 3 (Theorem 4) the set x 1 , . . . , x mt (x 1 , . . . , x mt ) of random samples can be generated by Algorithm 1 (Algorithm 2). In Theorem 4, the generation of the m t random samples requires Algorithm 2 to produce an overall number mt of random samples, with mt being the random variable defined in (4.25). Among the mt random samples (not necessarily distributed as µ nt ) only m t are retained, and the remaining mt ´mt are discarded. Condition(3.22) does not take into account the mt ´mt discarded samples. As a consequence, when comparing the effective number of samples required in Theorem 3 and Theorem 4, one should compare mt with mt , and not mt with m t . More precisely, using the upper bound mt ď m t `Ut with U t defined in (4.26), Lemma 4, the last inequality in (3.24) and Remark 5, it can be shown that mt is upper bounded by a random variable with mean p2 `θqm t and variance p1 `θqm t that exhibits Gaussian concentration.

	Ep}u ´uk C } 2 q ď ˆ1	`4θ lnpζpsqn s`1 k {αq	˙en k ,2 puq 2 `α}u} 2 .	(3.23)
	Remark 1.			
		ψ p	`xj ˘ψq	`xj ˘,
		1		

and x 1 , . . . , x mt is a set of m t independent random samples such that for any k " 1, . . . , t the x 1 , . . . , x m k are distributed according to µ n k . The set x 1 , . . . , x mt can be generated by Algorithm 2 using an overall number of random samples given by the random variable mt in (4.25).

(ii) If u P L 2 pX, ρq then for any k " 1, . . . , t the estimator u k C satisfies, It can be shown that mt ´mt remains small with large probability, if m k satisfies (3.22) for all k " 1, . . . , t.

Lemma 1. For any k ě 1 it holds that

  The first inequality above proves the first inequality in(3.24). The rightmost strict inequality above and (3.22) prove the second (large) inequality in(3.24). The last inequality in (3.24) is obtained by using once again (3.22) together with properties of the ceiling operator. Notice that θ « 0.108. The small number mk ´mk ă n k of additional samples required by (3.21) contribute to further improve the stability of u W . This slight surplus of samples is completely negligible from a fully adaptive point of view, where at each iteration k conditions (3.21) or (3.22) are not necessarily fulfilled, but, more simply, new random samples are just added to the previous ones until a certain stability criterion is met, for example until ~Gk ´Ik ~ď ξ k or condpG k q ď ξ k for some threshold ξ k eventually depending on k.

	Remark 2.

  Figure 1: Left: estimators E i and E i `Si of the sequence of random variables pcondpG k qq kě1 at iteration k " 1, . . . , 50 with n k " k and m k " rθ ´1sn k . Hermite polynomials. d " 1. The estimators use 10 4 realizations of the sequence pcondpG k qq kě1 . Center: estimators E i and E i `Si of the sequence of random variables pcondpG k qq kě1 at iteration k " 1, . . . , 55 with n k " k and m k " p3 `nk qn k . Hermite polynomials. d " 1. The estimators use 10 3 realizations of the sequence pcondpG k qq kě1 . Right: same simulation as center but showing E 2 ´E1 .prefer Algorithm 1 over Algorithm 2. Another reason to choose Algorithm 1 is that it produces more stable Gramian matrices on average, since the sample variance of the generated samples is lower.
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  , CV of 10 6 cross-validation points uniformly distributed over X is chosen once and for all, and the approximation error }u ´uk C } is estimated as

	upxq " ˜1	`1 2d	d i"1 ÿ	q i x i	¸´1	,	x P X,	(5.35)
	with d " 16 and q i " 10 d´1 . A set X }u ´uk ´3pi´1q C } « }u ´uk C } CV,2 :" d 1 #pX CV q	ÿ xPX CV	|upxq ´uk C pxq| 2 ď }u ´uk C } CV,8 :" max xPX CV	|upxq ´uk C pxq|. (5.36)

A Algorithms

Algorithm 1 Deterministic sequential sampling INPUT: t, dρ, pτ k q t k"1 , pn k q t k"1 , pψjq n t j"1 OUTPUT: x 1 , . . . , x m t s.t. x pj´1qτ k `1, . . . , x jτ k i.i.d. " χj, j " 1, . . . , n k , k " 1, . . . , t. for j " 1 to n1 do for " 1 to τ1 do Sample x j from χj end for end for px 1 , . . . , x m 1 q J Ð Vec ˜ˆ`x j ˘j"1,...,n