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We propose and analyse randomized cubature formulae for the numerical integration of functions with respect to a given probability measure µ defined on a domain Γ Ď R d , in any dimension d. Each cubature formula is exact on a given finite-dimensional subspace V n Ă L 2 pΓ, µq of dimension n, and uses pointwise evaluations of the integrand function φ : Γ Ñ R at m ą n independent random points. These points are drawn from a suitable auxiliary probability measure that depends on V n . We show that, up to a logarithmic factor, a linear proportionality between m and n with dimension-independent constant ensures stability of the cubature formula with high probability. We also prove error estimates in probability and in expectation for any n ě 1 and m ą n, thus covering both preasymptotic and asymptotic regimes. Our analysis shows that the expected cubature error decays as a n{m times the L 2 pΓ, µq-best approximation error of φ in V n . On the one hand, for fixed n and m Ñ 8 our cubature formula can be seen as a variance reduction technique for a Monte Carlo estimator, and can lead to enormous variance reduction for smooth integrand functions and subspaces V n with spectral approximation properties. On the other hand, when n, m Ñ 8, our cubature becomes of high order with spectral convergence. As a further contribution, we analyse also another cubature whose expected error decays as a 1{m times the L 2 pΓ, µq-best approximation error of φ in V n , but with constants that can be larger in the preasymptotic regime. Finally we show that, under a more demanding (at least quadratic) proportionality between m and n, all the weights of the cubature are strictly positive with high probability.

As an example of application, we discuss the case where the domain Γ has the structure of Cartesian product, µ is a product measure on Γ and V n contains algebraic multivariate polynomials.

Introduction

Let Γ Ď R d be a Borel set, µ be a Borel probability measure on Γ absolutely continuous with respect to the Lebesgue measure λ, and denote with ρ :" dµ{dλ : Γ Ñ R its probability density. Given a function φ : Γ Ñ R in some smoothness class, we consider the problem of integrating φ with respect to µ over Γ:

Ipφq :"

ż Γ φpyqdµpyq " ż Γ φpyqρpyqdλpyq. (1) 
When the expression of φ or the geometric shape of the domain Γ are complicated, the exact calculation of Ipφq might be too difficult, or not be possible at all, for example if the function φ is not available in explicit form but can only be evaluated at any point y P Γ at a certain (possibly high) cost, so that the number of evaluations should be limited as much as possible. Hence one resorts to the numerical approximation of the integral [START_REF] Bayer | The proof of Tchakaloff 's theorem[END_REF], see e.g. [START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Stroud | Approximate Calculation of Multiple Integrals[END_REF], that is known as the problem of numerical quadrature when d " 1 or numerical cubature when d ě 2, and that can become a challenging task as d increases due to the curse of dimensionality. In any dimension d ě 1 and given an integer m ě 1, we consider the m-point quadrature/cubature formula I m pφq :"

m ÿ i"1 α i φpy i q, (2) 
where y 1 , . . . , y m P Γ are the nodes and α 1 , . . . , α m P R are the weights. The nodes and weights should be chosen such that

I m pφq « Ipφq. (3) 
One approach to develop quadrature/cubature formulae imposes that (2) be exact on some given finite-dimensional linear function space V n over Γ, where n :" dimpV n q. In principle one would like to have a formula that exactly integrates any function in V n , i.e. I m pvq " Ipvq, @ v P V n .

When d " 1 and V n is a polynomial space, the existence of such quadrature formulae has been first discussed in [START_REF] Christoffel | Sur une classe particulière de fonctions entières et de fractions continues[END_REF] with general ρ, extending earlier results in [START_REF] Gauss | Methodus nova integralium valores per approximationem inveniendi[END_REF] with ρ " 1. An example of quadrature is the Gauss-Hermite quadrature formula, that exactly integrates any univariate algebraic polynomial up to degree 2m´1 using m points, where integration is intended with respect to the Gaussian probability measure on R.

In general, quadrature/cubature formulae of the form (2) might not be provably stable to perturbations in the evaluations of φ at the nodes. Denoting with η i the perturbation of φpy i q, for the formula (2) it holds ˇˇˇˇm ÿ i"1 α i pφpy i q `ηi q ´m ÿ i"1 α i φpy i q ˇˇˇˇď max j"1,...,m

|η j | m ÿ i"1 |α i | . (4) 
As long as V n contains the functions that are constant over Γ, exactness of (2) over V n implies

m ÿ i"1 α i " 1. ( 5 
)
On the one hand, in presence of negative weights the summation of the |α i | in [START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations -application to parametric and stochastic elliptic PDEs[END_REF] can become larger than one, thus serving as an amplifying factor for the perturbations. On the other hand, if the weights are positive, ( 4) and [START_REF] Christoffel | Sur une classe particulière de fonctions entières et de fractions continues[END_REF] give ˇˇˇˇm ÿ

i"1 α i pφpy i q `ηi q ´m ÿ i"1 α i φpy i q ˇˇˇˇď max i"1,...,m

|η i |, (6) 
thus ensuring the stability of the formula (2) to perturbations.

In one dimension, the weights of Gaussian quadratures are strictly positive. In higher dimension, cubatures with positive weights are difficult to construct, above all in general domains or with general densities ρ. A remarkable result on the existence of stable quadrature/cubature formulae is the next theorem from [START_REF] Tchakaloff | Formules de cubature méchaniques à coefficients non négatifs[END_REF].

Theorem 1. Let Γ Ă R d be a compact set, and consider the integral (1) with ρ strictly positive over Γ. Given n real functions f 1 , . . . , f n that are continuous on Γ, linearly independent, and such that at least one is nonzero everywhere in Γ, there exists py i q m i"1 Ă Γ and nonnegative reals pα i q m i"1 with m ď n such that the formula (2) for (1) is exact on spantf 1 , . . . , f n u.

The result in Theorem 1 gives an upper bound for the number of nodes, and can be further generalized to unbounded domains, see e.g. [START_REF] Putinar | A note on Tchakaloff 's theorem[END_REF][START_REF] Bayer | The proof of Tchakaloff 's theorem[END_REF]. With classical spaces of algebraic polynomials over the hypercube Γ " r0, 1s d , there are known lower bounds on the number of nodes required by any cubature formula for exactness, e.g. in [START_REF] Stroud | Quadrature methods for functions of more than one variable[END_REF] and in [START_REF] Möller | Lower bounds for the number of nodes in cubature formulae[END_REF] for polynomial spaces supported on isotropic tensor product or total degree index sets. In such specific settings, it is possible to construct exact cubature formulae whose number of nodes matches those lower bounds, so-called minimal cubature formulae, see e.g. [START_REF] Cools | Constructing cubature formulae: the science behind the art[END_REF] for an overview. With more general spaces of algebraic polynomials, minimal cubature formulae are not known on a systematic basis. In low dimension d ď 3, heuristic numerical methods based on optimization as those proposed in [START_REF] Ryu | Extensions of Gauss quadrature via linear programming[END_REF] allow the direct construction of (almost) minimal cubature formulae. In high dimension it is difficult to find minimal cubature formulae, and it is difficult also to find cubature formulae whose number of nodes matches the upper bound in Theorem 1, above all with general polynomial spaces and with general domains. It is worth noticing that the proof of Theorem 1 from [START_REF] Tchakaloff | Formules de cubature méchaniques à coefficients non négatifs[END_REF] is not constructive, and finding the nodes and weights of such remarkable formulae remains an open problem.

We now briefly recall other approaches to multivariate integration from the literature, that use a cubature formula of the form [START_REF] Bungartz | Sparse grids[END_REF] with suitable choices for the nodes and weights. A first approach, that requires a product domain and a separable density ρ, has been developed starting from [START_REF] Smolyak | Quadrature and interpolation formulas for tensor products of certain classes of functions[END_REF], and nowadays goes under the name of Smolyak cubature or sparse grid quadrature/cubature, see e.g. [START_REF] Bungartz | Sparse grids[END_REF] and references therein. In general, a sparse grid cubature formula is exact on a chosen polynomial space, see for example those presented in [START_REF] Novak | Simple cubature formulas with high polynomial exactness[END_REF]. In low dimension and using polynomials with moderately high (total) degree, another type of (symmetric) cubature formulae has been presented in [START_REF] Mcnamee | Construction of fully symmetric numerical integration formulas[END_REF][START_REF] Genz | Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight[END_REF], and these cubatures become unstable as the degree of the polynomials increases.

Other approaches to multivariate integration are Monte Carlo and quasi-Monte Carlo methods, see [START_REF] Robert | Monte Carlo statistical methods[END_REF][START_REF] Dick | High-dimensional integration: the quasi-Monte Carlo way[END_REF] and references therein. These approaches do not impose exactness of the cubature formula on a given space. Both Monte Carlo and quasi-Monte Carlo methods share the same weights, that are equal to m ´1 with m being the number of nodes. The difference between the two methods is in the choice of the nodes. In the Monte Carlo method the nodes are realizations of independent and identically distributed copies of a random variable distributed as µ. In the quasi-Monte Carlo method the nodes are judiciously chosen according to specific deterministic rules, and a tensor product domain again is required. The notorious half-order convergence rate of the Monte Carlo method is immune to the curse of dimensionality. The convergence rate of quasi-Monte Carlo depends on the structure and smoothness of the integrand function, and on the low-discrepancy properties of the point set containing the nodes.

In the present article we develop cubature formulae of the form (2) that are exact on V n , for general domains Γ Ď R d provided an L 2 pΓ, µq orthonormal basis is available, and whose weights and nodes can be explicitly calculated. To pursue such an objective, we replace the integrand function by its weighted least-squares approximation onto V n . Our cubature formulae use randomized nodes, and their exactness on V n occurs with a quantified large probability. More precisely, see Theorem 3, if m is linearly proportional to n, up to a logarithmic factor, then the formula is exact on V n with large probability. This shows that exact cubature formulae can be constructed in the general setting of Theorem 1 with m of the order of n, albeit not necessarily with positive weights.

Given a function φ in some smoothness class, for the proposed cubatures we provide convergence estimates in probability and in expectation for the integration error |Ipφq ´Im pφq| [START_REF] Davis | Methods of numerical integration[END_REF] depending on m, n, and on the best approximation error of φ in V n in some norm. In particular, we show that the mean error satisfies an estimate of the type

Ep|Ipφq ´Im pφq|q À c n m inf vPVn }φ ´v} L 2 pΓ,µq `m´r , (8) 
provided m ln m Á p1 `rqn, where r ą 0 can be taken arbitrarily and all hidden constants do not depend on d. Similar estimates are proved for the mean squared error and in probability, and use recent results from [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] on the analysis of the stability and accuracy of weighted least-squares approximation methods.

The previous estimate shows that if n is kept fixed and m Ñ 8, the cubature formula has a Monte Carlo type convergence rate, however with a substantially reduced variance with respect to a standard Monte Carlo cubature formula, proportional to the L 2 pΓ, µq projection error of φ onto V n . In this respect, our cubature formula can be seen as a very efficient variance reduction technique in a Monte Carlo context.

Moreover, if both n, m Ñ 8, still under the condition m ln m Á n, then the mean cubature error is of the same order of the L 2 pΓ, µq-best approximation error and features a fast decay if the integrand function is smooth and the sequence of finite-dimensional spaces V n has good approximation properties. In this respect our cubature formula is of high order. We remark once more that all results and hidden constants do not depend on the dimension d.

As a further contribution, we construct another cubature formula for Ipφq consisting of I m pφq plus a Monte Carlo correction estimator. This cubature satisfies an error estimate like [START_REF] Dick | High-dimensional integration: the quasi-Monte Carlo way[END_REF] without the term ? n, but with different constants that can be larger in the preasymptotic regime. Such a result is stated in Theorem 5, and is made possible by using 2m nonidentically distributed nodes rather than m identically distributed nodes.

An often desirable property of the quadrature/cubature formula (2) concerns the positivity of all the weights, that ensures stability as shown in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF]. This property is not fulfilled by sparse grid cubature formulae, which may contain negative weights, unless tensor grids are used and the underlying quadrature has positive weights (e.g. Gaussian quadratures). In Theorem 6 we show that cubature formulae exact on V n and with strictly positive weights can be constructed, again in the same general setting of Theorem 1, but with m being at least quadratically proportional to n, up to a logarithmic factor. At present time we are not aware of the existence in the literature of stable cubature formulae in general domains which have simultaneously high-degree of exactness and strictly positive weights, and the present paper provides a first analysis of cubature formulae of this type.

Cubature formulae exact on a given space and with nodes being random variables have been earlier studied in [START_REF] Ermakov | Polynomial approximations and the Monte Carlo method[END_REF][START_REF] Ermakov | Die Monte-Carlo-Methode und verwandte Fragen[END_REF], but the weights are not necessarily positive. Error estimates for these stochastic cubature formulae can be found in [22, Lemma 1, page 69], which can be seen as a stochastic counterpart of Theorem 1. The stochastic cubatures from [START_REF] Ermakov | Polynomial approximations and the Monte Carlo method[END_REF][START_REF] Ermakov | Die Monte-Carlo-Methode und verwandte Fragen[END_REF] use n cubature nodes whose probability distribution contains determinants of n-by-n matrices. For this reason, the generation of the nodes of such cubatures becomes computationally intractable already for moderate values of n and d. Compared to [START_REF] Ermakov | Polynomial approximations and the Monte Carlo method[END_REF][START_REF] Ermakov | Die Monte-Carlo-Methode und verwandte Fragen[END_REF], the stochastic cubature developed in the present paper uses a different distribution of the nodes, that can be sampled way more efficiently. Under very mild requirements, for example if an L 2 pΓ, µq-orthonormal basis of V n is known in explicit form, efficient algorithms have been developed in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] for the generation of the nodes of our stochastic cubatures. If the elements of the orthonormal basis have product form, then the computational complexity of such algorithms for the generation of m nodes is provably linear in m and d.

More recently, a cubature formula based on least-squares approximants for periodic functions has been proposed in [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF], with different weights, different distribution of the nodes and a different error analysis. The cubature from [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF] has been later refined in [START_REF] Kämmerer | Worst-case recovery guarantees for least squares approximation using random samples[END_REF], also in the nonperiodic setting.

The outline of the article is the following: in Section 2 we recall some useful results on the analysis of discrete least squares. In Section 3 we present the cubature formulae, and provide conditions which ensure exactness and positive weights, together with convergence estimates. Section 4 addresses the case where V n is chosen as a multivariate polynomial space. The proofs are collected in Section 6. In Section 5 we draw some conclusions.

Discrete least-squares approximation

In this section we introduce the weighted discrete least-squares method with evaluations at random point sets, and recall the main results achieved in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] for the analysis of its stability and accuracy. Given a Borel probability measure µ on Γ, we introduce the L 2 pΓ, µq inner product

xf 1 , f 2 y :" ż Γ f 1 pyqf 2 pyqρpyqdλpyq, (9) 
and the norm }f } :" xf, f y 1{2 . We work under the following assumption.

Assumption 1. There exists an L 2 pΓ, µq orthonormal basis pψ j q jě1 , and this basis contains the constant function over Γ.

Using the orthonormal basis pψ j q jě1 we define the approximation space as

V n :" spantψ 1 , . . . , ψ n u, (10) 
and set n :" dimpV n q. Without loss of generality we suppose that ψ 1 " 1, and therefore ψ 1 P V n for any n ě 1, as stated in the next assumption.

Assumption 2. For any n ě 1 the space V n contains ψ 1 " 1.

For any given space V n we define the functions κ : Γ Ñ R and w : Γ Ñ R as κpyq :"

˜n ÿ i"1 |ψ i pyq| 2 ¸´1
and wpyq :" n κpyq,

whose denominators do not vanish thanks to Assumption 2. For any space V n and any n ě 1, Assumption 2 ensures the upper bound

wpyq ď n, y P Γ. ( 12 
)
The functions κ and w are strictly positive over Γ. Sharper lower bounds (uniformly over Γ) can be obtained by exploiting the structure of the space V n : for example with polynomial spaces such lower bounds are shown in Remark 9.

When V n is the space of algebraic polynomials of total degree n ´1, the function κ is known as the Christoffel function. Using such functions, we define on Γ the probability measure dσ :" w ´1dµ "

ř n i"1 |ψ i pyq| 2 n dµ " ř n i"1 |ψ i pyq| 2 n ρpyqdλ. (13) 
In general σ is not a product measure, even if µ is a product measure. Next, we introduce the weighted discrete inner product

xf 1 , f 2 y m :" 1 m m ÿ i"1 wpy i qf 1 py i qf 2 py i q, ( 14 
)
where the functions w, f 1 , f 2 are evaluated at m points y 1 , . . . , y m P Γ that are independent and identically distributed according to σ. The discrete inner product is associated with the discrete seminorm }f } m :" xf, f y 1{2 m for any f P L 2 pΓ, µq. In the forthcoming sections, the random points y 1 , . . . , y m P Γ play the role of nodes for the quadrature/cubature formula [START_REF] Bungartz | Sparse grids[END_REF].

For any function φ : Γ Ñ R, we define its L 2 pΓ, µq projection onto V n as Π n φ :" arg min

vPVn }v ´φ}. (15) 
In many applications we do not have an explicit expression of the function φ, and can only evaluate its value φpyq at a given parameter y P Γ. In such a situation, the projection (15) cannot be computed, since it would require the explicit knowledge of the function φ. Hence, one can resort to the discrete least-squares approximation of φ in V n , defined as Π m n φ :" arg min

vPVn }v ´φ} m , (16) 
where the minimization of the L 2 pΓ, µq norm has been replaced by the minimization of the discrete seminorm. Since the discrete seminorm uses pointwise evaluations of φ, throughout the paper we further assume that φpyq is well defined at any y P Γ. The expansion of Π m n φ over the orthonormal basis reads

Π m n φ " n ÿ j"1 β j ψ j , (17) 
with β :" pβ 1 , . . . , β n q J P R n being the vector of the coefficients in the above expansion. Denote with D the design matrix, whose elements are defined as D ij :" a wpy i qψ j py i q, i " 1, . . . , m, j " 1, . . . , n,

and define the Gramian matrix G as

G :" 1 m D J D.
Moreover, we denote the Hadamard product of two vectors p, q P R m as p d q :" pp 1 , . . . , p m q d pq 1 , . . . , q m q " pp 1 q 1 , . . . , p m q m q P R m , and use this product to define b :" ? wdΦ " p a wpy 1 qφpy 1 q, . . . , a wpy m qφpy m qq J , where Φ :" pφpy 1 q, . . . , φpy m qq J contains the evaluations of φ at the nodes py i q 1ďiďm .

The projection Π m n φ of φ in ( 16) can be computed by solving the linear system

Gβ " 1 m D J b. ( 19 
)
If the matrix G is nonsingular then the solution to the linear system ( 19) is

β " 1 m G ´1D J b, (20) 
thus defining a unique discrete least-squares approximation of φ through [START_REF] Mcnamee | Construction of fully symmetric numerical integration formulas[END_REF].

For any integer n ě 1, we say that a point set y 1 , . . . , y m P Γ with m ě n is unisolvent for a given space

V n if detpGq ‰ 0. (21) 
A unisolvent point set ensures that the operator Π m n is well defined and uniquely associated to the space V n . When m ă n the matrix G is rank deficient, and condition (21) cannot be fulfilled. Condition [START_REF] Möller | Lower bounds for the number of nodes in cubature formulae[END_REF] does not depend on the choice of the basis of V n : using any other basis p r ψ 1 , . . . , r ψ n q J " M pψ 1 , . . . , ψ n q J of V n related to the ψ 1 , . . . , ψ n by means of a suitable nonsingular matrix M yields detpM J GM q ‰ 0 ðñ detpGq ‰ 0. Given any matrix A P R mˆn , for any 1 ď p ď `8 we introduce the operator norm

~A~ p :" sup xPR n x‰0 }Ax} p }x} p ,
and define ~¨~:" ~¨~ 2 when p " 2. Condition [START_REF] Möller | Lower bounds for the number of nodes in cubature formulae[END_REF] does not take into account situations where G is nonsingular but still very ill-conditioned, which might occur even when m ě n. From a numerical standpoint, it is desirable that G is also well conditioned. A natural vehicle for quantifying the ill-conditioning of G is to look at how much it deviates from the identity matrix I with compatible size, ~G ´I~ď δ,

for some δ ą 0. When δ P p0, 1q condition ( 22) can be rewritten as the norm equivalence

p1 ´δq}v} 2 ď }v} 2 m ď p1 `δq}v} 2 , v P V n , (23) 
or as

1 ´δ ď ~G~ď 1 `δ. ( 24 
)
We now recall the main results achieved in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] concerning the analysis of the stability and accuracy of weighted discrete least-squares approximation with evaluations at random points. For any φ P L 2 pΓ, µq we define its best approximation error in the L 2 pΓ, µq norm as Given any δ P p0, 1q we define the quantity ξpδq :" p1 `δq ln p1 `δq ´δ ą 0,

that satisfies the upper and lower bounds in ( 92) and ( 93). Also recall the conditioned weighted least-squares estimator introduced in [6], defined as

r φ :" # Π m n φ, if ~G ´I~ă δ, 0,
otherwise.

Next we quote from [6, Corollary 1] the following result.

Theorem 2. In any dimension d, for any real r ą 0, any δ P p0, 1q and any n ě 1, if the m i.i.d. points y 1 , . . . , y m are drawn from σ defined in [START_REF] Heinrich | Random approximation in numerical analysis[END_REF] and

m ln m ě 1 `r ξpδq n, (26) 
then the following holds:

(i) the matrix G satisfies Pr p~G ´I~ď δq ą 1 ´2nm ´pr`1q ě 1 ´2m ´r ;

(ii) for all φ such that sup yPΓ a wpyq|φpyq| ă `8 the weighted least-squares estimator satisfies Pr ´}φ ´Πm n φ} ď ´1 `?2 ¯e8,w pφq ¯ą 1´2nm ´pr`1q ě 1´2m ´r ; (28) (iii) if φ P L 2 pΓ, µq then the conditioned estimator satisfies

E ´}φ ´r φ} 2 ¯ď p1 `εpmqq pe 2 pφqq 2 `2}φ} 2 m ´r , (29) 
where εpmq :" 4ξpδq p1 `rq ln m decreases monotonically to zero as m increases.

The bound [START_REF] Novak | Deterministic and stochastic error bounds in numerical analysis[END_REF] for G implies a bound of the same type for its inverse: for any δ P p0, 1q and m ě n it holds that

~G ´I~ď δ ùñ ~G´1 ´I~ď δ 1 ´δ , (30) 
since ~G´1 ´I~" ~G´1 pI ´Gq ~ď ~G´1 ~~G ´I~, and ( 22) also implies ~G~ď 1 `δ and ~G´1 ~ď p1 ´δq ´1. Another implication of ( 22) is that

~G ´I~ď δ ùñ condpGq ď 1 `δ 1 ´δ . ( 31 
)
As a corollary of Theorem 2, from [START_REF] Robert | Monte Carlo statistical methods[END_REF] together with (30) we have Corollary 1 item i), and since [START_REF] Novak | Deterministic and stochastic error bounds in numerical analysis[END_REF] implies G nonsingular we have Corollary 1 item ii).

Corollary 1. Under the same assumptions of Theorem 2, i)

Pr ˆ~G ´1 ´I~ď δ 1 ´δ ˙ą 1 ´2nm ´pr`1q ě 1 ´2m ´r ; (32) 
ii) the point set y 1 , . . . , y m is unisolvent for V n with probability larger than 1 ´2m ´r .

Sampling algorithms for the generation of the random point set y 1 , . . . , y m from ( 13) have been developed in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] when Γ is a Cartesian domain and µ is a product measure. The computational cost of these algorithms scales linearly with respect to the dimension d and to m.

Randomized high-order cubature formulae

In this section we construct cubature formulae of the form (2), to approximate the multivariate integral (1) of a smooth function φ : Γ Ñ R with respect to a given probability measure µ. The construction of such cubature formulae uses the discrete least-squares approximation ( 16) of the integrand function φ. As in the previous sections, y 1 , . . . , y m and α 1 , . . . , α m denote its nodes and weights, respectively. The first step in the development of our cubature formula consists in the evaluation φpy 1 q, . . . , φpy m q of the integrand function φ at the nodes y 1 , . . . , y m . The second step is the choice of the weights, ensuring exactness of the cubature formula on the given subspace, see the next Lemma 1. Let W be the matrix defined element-wise as W ii :" wpy i q for i " 1, . . . , m and W ij " 0 for i, j " 1, . . . , m with i ‰ j. We consider weights α " pα 1 , . . . , α m q J of the form α :" p a wpy 1 q, . . . ,

a wpy m qq J d 1 m DG ´1e 1 " 1 m W 1{2 DG ´1e 1 , (33) 
where e 1 :" p1, 0, . . . , 0q J P R n denotes the vector with all components except the first being equal to zero, and the first component being equal to one. The components of α are given by

α i :" 1 m ´W 1{2 DG ´1e 1 ¯i " 1 m a wpy i qD i G ´1e 1 , i " 1, . . . , m, (34) 
with D i :" a wpy i q pψ 1 py i q, . . . , ψ n py i qq .

In the next lemma we specify conditions on the nodes and weights such that the cubature ( 2) is exact on V n , see Section 6 for the proof.

Lemma 1. In any dimension d ě 1 and for any n ě 1, let m ě n nodes y 1 , . . . , y m P Γ be a unisolvent point set for the space V n . If the weights α 1 , . . . , α m are chosen as in [START_REF] Tchakaloff | Formules de cubature méchaniques à coefficients non négatifs[END_REF] then the formula (2) satisfies

I m pφq " IpΠ m n φq, for any φ P L 2 pΓ, µq, (35) 
and

I m pvq " Ipvq, for any v P V n . (36) 
Remark 1. The weights in equation ( 33) can be calculated as α " 1 m W 1{2 Dh, where h is the solution to the linear system Gh " e 1 . Note that, from Corollary 1, the matrix G is well conditioned w.h.p. under condition [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF].

For any n ě 1, the projection Π n φ of φ onto V n satisfies IpΠ n φq " Ipφq, φ P L 2 pΓ, µq,

whose proof is identical to the proof of (35). Using (36) together with (37) it follows that I m pΠ n φq " Ipφq, φ P L 2 pΓ, µq.

Set h n :" φ ´Πn φ, and define the vector g P R m whose components are given by g i " h n py i q for any i " 1, . . . , m. We can decompose the integration error of I m into two terms named S and B respectively:

I m pφq ´Ipφq " ż Γ pΠ m n φ ´Πn φq dµ " ż Γ Π m n pφ ´Πn φq dµ " 1 m e J 1 G ´1D J W 1{2 g (39) " 1 m e J 1 D J W 1{2 g `1 m e J 1 pG ´1 ´IqD J W 1{2 g (40) " 1 m m ÿ i"1 wpy i qh n py i q loooooooooomoooooooooon ":S `1 m m ÿ i"1 ´eJ 1 G ´1pI ´GqD J W 1{2 ¯i h n py i q looooooooooooooooooooooooomooooooooooooooooooooooooon ":B , (41) 
where the first equality uses (37) and ( 35), the second equality follows from properties of projection operators, the third equality uses (35) together with the definitions of I m and g. Notice that (37) implies

EpSq " E pwφq ´E pwΠ n φq " 0, (

but there is no reason for B to have zero mean, and in general

EpBq " EpI m pφqq ´Ipφq ‰ 0.

Usually B :" EpBq is called the bias of I m . By conditioning depending on the value of ~G ´I~, for any δ P p0, 1q we can define another cubature formula r I m pφq :"

# I m pφq, if ~G ´I~ă δ, 0, otherwise, (43) 
that uses the cubature formula I m pφq defined in (2) with weights [START_REF] Tchakaloff | Formules de cubature méchaniques à coefficients non négatifs[END_REF]. Notice that r I m pφq can also be written as a cubature formula of the form (2), with the same nodes as I m pφq but with weights given by α "

$ & % 1 m W 1{2 DG ´1e 1 , if ~G ´I~ă δ, p0, . . . , 0q J , otherwise. (44) 
A consequence of (35) is that r I m pφq " Ip r φq for any φ P L 2 pΓ, µq on both events t~G ´I~ă δu and t~G ´I~ě δu. However, (36) with I m pvq replaced by r I m pvq remains true only on the event t~G ´I~ă δu, because r I m pvq " 0 for any v P V n when t~G ´I~ě δu. On the event t~G ´I~ă δu, the integration error of r I m can be decomposed as

Ipφq ´r I m pφq " S `B, (45) 
where the terms S and B are the same that appear in (41). The bias of r I m is r B :" Ep r I m pφqq ´Ipφq. The expectation in the definitions of B and r B is over both events t~G ´I~ă δu and t~G ´I~ě δu. In contrast to B, for r B such an expectation is always finite. The term r B asymptotically vanishes as m Ñ `8, and the proof of this fact is postponed to the end of this section. However B and r B do not vanish, in general, when m is finite.

The next theorem quantifies the integration error of the formula (2) in probability, and the integration error of the formula (43) in expectation. Its proof is postponed to Section 6. Theorem 3. In any dimension d, for any real r ą 0 and any δ P p0, 1q, if the m i.i.d. points y 1 , . . . , y m are drawn from σ defined in (13) and condition [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF] holds true then: i) the cubature formula (2) with weights chosen as in (33) satisfies (35)- (36) with probability larger than 1 ´2m ´r ;

ii) for all φ such that sup y a wpyq|φpyq| ă `8, the integration error of the cubature formula (2) with weights (33) satisfies Pr ´|Ipφq ´Im pφq| ď p1 `?2qe 8,w pφq ¯ě 1 ´2m ´r ;

(46)

iii) for any φ P L 2 pΓ, µq the integration error of the cubature formula (43) satisfies

E ˆˇˇI pφq ´r I m pφq ˇˇ2 ˙ď p1 `εpmqq pe 2 pφqq 2 `2|Ipφq| 2 m ´r , (47) 
with εpmq as in Theorem 2, and also satisfies

E ´ˇˇI pφq ´r I m pφq ˇˇ¯ď c n m ˆ1 `εpm, nq 1 ´δ ˙e2 pφq `2|Ipφq|m ´r , (48) with εpm, nq :" a 4p1 `2rln nsq c n ´1 m ˆ1 `a4p1 `2rln nsq c n m ď p4 `8rln nsq c n ´1 m ˆ1 `c n m ˙.
Before closing the section, we compare our randomized cubature formulae with the Monte Carlo method and with Importance Sampling Monte Carlo, hereafter shortened to Importance Sampling. With all the three methods the integral Ipφq in (1) is approximated using a cubature formula I m pφq as in ( 2), but with different choices for the nodes and weights which amount to different estimates for the associated integration error [START_REF] Davis | Methods of numerical integration[END_REF].

With Monte Carlo the m nodes y 1 , . . . , y m are independent and identically distributed according to µ, and the weights α 1 , . . . , α m are all set equal to 1{m. The mean squared integration error of Monte Carlo is given by

E ´|Ipφq ´Im pφq| 2 ¯" Varpφq m . ( 49 
)
With Importance Sampling, the m nodes y 1 , . . . , y m are independent and can be chosen identically distributed according to σ, and the weights can be chosen as α i " wpy i q{m for i " 1, . . . , m. The corresponding mean squared integration error is given by

E ´|Ipφq ´Im pφq| 2 ¯" Varpwφq m . (50) 
In our cubature formula the m nodes y 1 , . . . , y m are independent and identically distributed from σ, and the weights are either chosen as in [START_REF] Tchakaloff | Formules de cubature méchaniques à coefficients non négatifs[END_REF] or as in (44). Concerning the error estimates, (47) proves convergence in expectation of |Ipφq ´r I m pφq| 2 and (46) proves a probabilistic estimate for the error |Ipφq ´Im pφq|.

Our cubature formula and Importance Sampling both rely on the change of measure [START_REF] Heinrich | Random approximation in numerical analysis[END_REF], that is determined by the choice of the function w. In the present paper we have chosen w as in [START_REF] Gauss | Methodus nova integralium valores per approximationem inveniendi[END_REF], but any other nonnegative function w : Γ Ñ R such that ş Γ w ´1 dµ " 1 could be used. In Importance Sampling, the choice of w should hopefully make the variance in (50) smaller than the variance in (49) of Monte Carlo. In our cubature formula, taking w as in [START_REF] Gauss | Methodus nova integralium valores per approximationem inveniendi[END_REF] ensures the stability of the projector Π m n as granted by Theorem 2. For any fixed n and any i " 1, . . . , m, the weights (34) of the randomized cubature formula converge almost surely to the weights of importance sampling as m Ñ `8. Before presenting the proof of this result, we introduce the following notation: for any m ě 1 consider the finite sequence py 1 , . . . , y m q Ă Γ and define the matrix D m P R mˆn , whose elements are D m ik :" a wpy i qψ k py i q, and

α i,m :" 1 m a wpy i qD m i pG m q ´1e 1 , G m :" 1 m pD m q J D m , i " 1, . . . , m,
where D m i is the ith row of D m . The weights defined above are the same as in [START_REF] Tropp | The expected norm of a sum of independent random matrices: an elementary approach, High-Dimensional Probability VII: The Cargese[END_REF], and the purpose of the new notation is solely to emphasize the dependence on m in the design matrix D and in the cubature weights.

Theorem 4. Let m satisfy (26) with some δ P p0, 1q, n ě 1, r ą 0. For any i P N the sequence of random variables pmα i,m q měmaxti,mu converges almost surely to wpy i q as m Ñ `8.

Proof. Fix ε P p0, 1q and any i P N. Take δ ε :" min # ε a wpy i q `ε , δ + and m ε that satisfies [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF] with δ ε , n and r. Of course m ε ě m. Define also the events

A i m :" t|mα i,m ´wpy i q| ą εu , m ě m.
Then for any m ě m ε we have with probability at least 1 ´2nm ´pr`1q that

|mα i,m ´wpy i q| " ˇˇawpyiqD m i `pG m q ´1 ´I˘e 1 ˇď a wpy i q}D m i } 2 ~pG m q ´1 ´I~}e 1 } 2 ď δ ε a nwpy i q 1 ´δε ď ε because }D m i } 2
2 " wpy i q ř n j"1 ψ j py i q 2 " n, and from ( 32)

~pG m q ´1 ´I~ď δ ε 1 ´δε
with probability at least 1´2nm ´pr`1q . As a consequence PrpA i m q ď 2nm ´pr`1q for any m ě m ε . Hence, using (92), we have that PrpA i m q `ÿ mąmε PrpA i m q ă `8

from Borel-Cantelli lemma mα i,m Ñ wpy i q as m Ñ `8 almost surely.

In the limit m Ñ `8, the matrix G tends almost surely to the n-by-n identity matrix, see e.g. [18, Theorem 1] for a proof. From the strong law of large number we have

1 m Φ J W 1{2 D mÑ`8 Ñ ˆżΓ wφψ 1 dσ, . . . , ż Γ wφψ n dσ ˙J , almost surely.
Both sequences of vectors Φ J W 1{2 D and G ´1e 1 converge almost surely. Their scalar product is a finite sum of products of real random variables that converge almost surely, and therefore we also have the following almost sure convergence

I m pφq " m ÿ i"1 α i φpy i q "Φ J α " 1 m Φ J W 1{2 DG ´1e 1 mÑ`8 Ñ ż Γ wpyqφpyq dσ (51) 
"Epwφq "Ipφq, φ P L 2 pΓ, µq.

Using (51), for any φ P L 2 pΓ, µq we have

Ep r I m pφqq ´Ipφq " r B mÑ`8 Ñ 0.
One can actually quantify more precisely the decay of r B w.r.t. m. Inspection of the proof of (48), more precisely using (75), (76) and the notation from there, shows that there exist positive constants

C 1 , C 2 such that | r B| ď ż t~G´I~ďδu |B| dµ m `żt~G´I~ąδu |B| dµ m ď n m C 1 `C2 ln n 1 ´δ e 2 pφq `2|Ipφq|m ´r .
Hence r B " Op1{mq showing that the bias term r B decays faster w.r.t. m than the mean integration error in (48).

The error estimate (47) shows that, if r is large enough, then the root mean squared error decays at least as fast as the squared best approximation error. However the rate of convergence of this estimate does not catch up with those of Monte Carlo (49) and Importance Sampling (50) due to the missing decay with respect to m. Here the error estimate (48) comes in handy since it recovers the same convergence rate of Monte Carlo and Importance Sampling with respect to m. The estimate (48) shows the main advantage of randomized cubatures over Monte Carlo and Importance Sampling: the decay of the error (48) is determined by the decay of the term m ´1{2 and the decay of the best approximation error, in contrast to (49) and (50) that only decay with respect to m at the same rate, i.e. m ´1{2 for the root mean squared error.

In Theorem 3 we have written the estimate (48) using the upper bound in Lemma 3, that relates to the best approximation error in L 2 pΓ, µq. The same estimate can be slightly improved using the equality (83), that relates to the weighted best approximation error of φ in L 2 pΓ, µq. Since w ´1 dµ in ( 13) is a probability measure and w satisfies [START_REF] Genz | Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight[END_REF], such an error can be sandwiched for any n ě 1 as For some polynomial approximation spaces, see the forthcoming Remark 9, lower bounds for w of the form (67) are available. Using such a lower bound and taking n " 1, the variance in the above formula connects with the variance of importance sampling (50).

}φ ´Πn φ} L 1 pΓ
In contrast to our cubature formulae, Importance Sampling and Monte Carlo are not exact cubature formulae on V n .

The more advantageous error estimate of randomized cubatures comes at the price of two additional computational tasks: the calculation of the cubature weights, that requires the solution of a linear system whose matrix G has size n ˆn, see Remark 1, and the generation of the random samples from σ n . The cost for solving the linear system does not depend on m and d, and the cost for assembling G scales linearly in m. The cost for the generation of the samples is provably linear with respect to d and m, when Γ is a product domain.

Remark 2 (Adaptive randomized cubatures for nested sequences of approximation spaces). The results in Theorem 3 are proven using identically distributed random samples, and apply to any given approximation space V n . The same result as Theorem 3 can be proven for another type of (nonidentically distributed) random samples, following the lines of the proof of [START_REF] Migliorati | Adaptive approximation by optimal weighted least squares methods[END_REF]Theorem 2]. These random samples allow the sequential construction of weighted least-squares estimators on any nested sequence of approximation spaces pV n k q kě1 with dimension n k :" dimpV n k q, using an overall number of samples that remains linearly proportional to n k , up to logarithmic terms. Using such a type of random samples and [19, Theorem 3], the whole analysis of randomized cubatures from this article carries over using nested sequences of approximation spaces rather than a single space. Remark 3. The error estimates (46), (47), (48), have been presented for realvalued functions, but they extend to complex-valued functions with essentially the same proofs by identifying R 2 and C.

Remark 4 (Median trick). For any k ě 1 odd, another estimator of Ipφq is I med m,k pφq :" med ´Im pφq p1q , . . . , I m pφq pkq ¯, the median of k i.i.d. copies of I m pφq. The following interesting observation for I med m,k pφq has been pointed out to us by one of the referees during the review of the paper. Combining (46) and [16, Proposition 2.2] with the interval rIpφq ṕ1 `?2qe 8,w pφq, Ipφq `p1 `?2qe 8,w pφqs, p θ " I m pφq, α " 2m ´r and 1 2 p4αp1 άqq k{2 ă 2 k´1 α k{2 gives Pr ´ˇI pφq ´Imed m,k pφq ˇˇď p1 `?2qe 8,w pφq ¯ě 1 ´2k´1 p2m ´r q k{2 , (52) again under condition [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF]. An interesting feature of (52) is that the confidence level can be made exponentially small in k: taking m :" r2 γ{r s with γ ą 3 such that (26) holds true (with the same n as in (46)) gives Pr ´ˇˇI pφq ´Imed r2 γ{r s,k pφq ˇˇď p1 `?2qe 8,w pφq ¯ě 1

´2 k 2 p3´γq´1 , (53) 
with the same best approximation error e 8,w pφq as in (46). The construction of I med m,k pφq requires km evaluations of φ instead of only m required for I m pφq.

Randomized cubatures with optimal asymptotic convergence rate

In this section we analyse another cubature formula, that is obtained by adding a correction term to the cubature r I m pφq defined in (43), using control variates [START_REF] Heinrich | Random approximation in numerical analysis[END_REF][START_REF] Novak | Some Results on the Complexity of Numerical Integration[END_REF]. Define two mutually independent sets of random samples: r y 1 , . . . , r y m iid from µ, and y 1 , . . . , y m iid from σ. We consider the following cubature formula, that uses the above 2m random samples as cubature nodes:

p I 2m pφq :" r I m pφq `1 m m ÿ i"1
pφ ´r φqpr y i q.

(54)

The nodes y 1 , . . . , y m , r y 1 , . . . , r y m are not identically distributed. The m random samples y 1 , . . . , y m are used to compute the weighted least-squares estimator r φ of φ and the cubature r I m pφq defined in (43), and then the m random samples r y 1 , . . . , r y m are used in the Monte Carlo estimator of φ ´r φ. By construction p I 2m pφq « Ipφq because

Ipφq ´Ip r φq « 1 m m ÿ i"1
pφ ´r φqpr y i q, and r I m pφq " Ip r φq for any φ P L 2 pΓ, µq, as a consequence of (35). The error of the cubature p I 2m pφq satisfies the following theorem, whose proof is postponed to Section 6. Theorem 5. In any dimension d, for any real r ą 0 and any δ P p0, 1q, if condition (26) holds true, and r y 1 , . . . , r y m are i.i.d. from µ, and y 1 , . . . , y m are i.i.d. from σ defined in (13), and r y 1 , . . . , r y m , y 1 , . . . , y m are mutually independent, then for any φ P L 2 pΓ, µq it holds that

E ˆˇˇI pφq ´p I 2m pφq ˇˇ2 ˙ď 1 m `p1 `εpmqq pe 2 pφqq 2 `2}φ} 2 m ´r ˘, (55) 
with εpmq as in Theorem 2.

From the estimate in (55), using Jensen inequality, we have that

Ep|Ipφq ´p I 2m pφq|q ď 1 ? m ´a1 `εpmqe 2 pφq `?2}φ}m ´r{2 ¯. (56) 
In (48) when using 2m points we can choose an approximation space of dimension n ˚such that 2m ln 2m ě p1 `rq ξpδq n ˚.

(57)

We compare now the estimate (48) for the cubature r I 2m pφq on V n ˚with 2m points and the estimate (56) for p I 2m pφqq on V n that also uses 2m points. Suppose that min vPVn }φ ´v} ď Cn ´s for some s, C ą 0. For any m ě 1, r ą 0 and φ P L 2 pΓ, µq, it holds that 2|Ipφq|p2mq ´r ď ? 2}φ}m ´pr`1q{2 . Both terms m ´pr`1q{2 and p2mq ´r always decay sufficiently fast for r large enough, i.e. r ě 2s ´1, and therefore, when comparing the convergence rates w.r.t. n of ( 56) and ( 48 On the one hand, this shows that the error estimate (56) has a better convergence rate w.r.t. n than (48) when n ě 2 2s , s ě 1 2 and r ě 2s ´1. On the other hand, the estimate (48) gives a better upper bound for the error when n falls in the preasymptotic range, in particular when s is large or r ă 2s ´1, and the bound has a better dependence on φ since the term |Ipφq| can be much smaller than }φ}.

The cubature (54) is exact on V n w.h.p., because the same holds for the cubature (43) from item i) of Theorem 3, as a consequence of φ ´r φ " 0 for any φ P V n w.h.p., and therefore φpr y i q " r φpr y i q for all i " 1, . . . , m.

Remark 5 (Convergence rates of stochastic cubatures). From (56), we obtain explicit convergence rates of the cubature p I 2m pφq, assuming an algebraic decay n ´s for some s ą 0 of the L 2 pΓ, µq best approximation error. For any r ą 0, n ě 1 and the smallest integer m satisfying [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF] and taking r " 2s the leading term is n ´s´1{2 pln nq ´1{2 up to a constant independent of m and n.

Remark 6 (Comparison with results from [START_REF] Novak | Deterministic and stochastic error bounds in numerical analysis[END_REF][START_REF] Heinrich | Random approximation in numerical analysis[END_REF] in Sobolev spaces ). Fundamental results on integration over Γ " r´1, 1s d with different classes of smooth functions are presented in [START_REF] Novak | Deterministic and stochastic error bounds in numerical analysis[END_REF][START_REF] Heinrich | Random approximation in numerical analysis[END_REF] and references therein, for Monte Carlo methods using m evaluations of the integrand function.

Our convergence estimate (56) is written using the L 2 best approximation error of φ in a finite-dimensional subspace. With Sobolev classes, estimating the best approximation error depending on the smoothness of the function φ gives convergence rates that essentially match the optimal rates from [START_REF] Novak | Deterministic and stochastic error bounds in numerical analysis[END_REF][START_REF] Heinrich | Random approximation in numerical analysis[END_REF]. For instance, if we consider Sobolev spaces H k pr0, 1s d q of functions with squareintegrable (weak) derivatives up to order k on the d-dimensional unit hypercube with Lebesgue measure, and a subspace V n for which the worst-case L 2 error sup }φ} H k ď1 e 2 pφq -n ´k d then we have

E ˆˇˇI pφq ´p I 2m pφq ˇˇ2 ˙1 2 À m ´1 2 pn ´k d `m´r 2 q À m ´1 2 ´k d pln mq k d ,
where we have proceeded as in Remark 5 to express n as a function of m. This rate agrees with the optimal convergence rate in Proposition 2-(ii) of [22, page 70], or with Theorem 5.3 of [START_REF] Heinrich | Random approximation in numerical analysis[END_REF], up to a logarithmic term. Similar considerations apply for integration of H k functions on bounded Lipschitz domains as long as standard piecewise polynomial spaces are used, that achieve a worst-case error e 2 -n ´k d (see [START_REF] Novak | Function spaces in lipschitz domains and optimal rates of convergence for sampling[END_REF][START_REF] Kunsch | Optimal confidence for monte carlo integration of smooth functions[END_REF]). The estimates (48) and (56) hold in any general domain Γ Ď R d . The corresponding cubatures are exact on the given subspace, and the calculation of their nodes and weights requires an L 2 -orthonormal basis in explicit form.

The rate in (48) is slower than (56) by a factor 1{2, and the corresponding cubature uses m instead of 2m nodes. The estimate (48) is similar to [22, Lemma 1, page 69], which also gives an estimate of the cubature error in terms of the L 2 best approximation error on a given subspace, using m nodes instead of n, with m and n as in [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF]. The additional logarithmic oversampling factor is required for the efficient generation of the cubature nodes, as described at the end of the introduction.

Randomized cubatures with strictly positive weights

In this section we construct cubature formulae of the form (2) with the weights [START_REF] Tchakaloff | Formules de cubature méchaniques à coefficients non négatifs[END_REF], enforcing the additional property that all the weights α 1 , . . . , α m are strictly positive. Define

w inf :" inf yPΓ wpyq ď min i"1,...,m wpy i q " n ˜max i"1,...,m n ÿ j"1 |ψ j py i q| 2 ¸´1 ,
which is independent of m and depends on V n . Of course w inf ď 1, because otherwise ş Γ w ´1 dµ ă 1 from ( 13), and this contradicts orthonormality of the basis.

More precisely we prove that, if m is sufficiently larger than n, then α i ě a wpy i qp2 a wpy i q ´?w inf q 2m ě wpy i q 2m for all i " 1, . . . , m with high probability. Strict positivity of wpyq for any y P Γ therefore implies that the weights α 1 , . . . , α m are all strictly positive. The next theorem establishes how much the cubature weights deviate from the weights of importance sampling in the nonasymptotic regime, when w inf ą 0. The proof of this theorem is postponed to Section 6. 

# ˇˇˇα i ´wpy i q m ˇˇˇď a w inf wpy i q 2m +¸ą 1 ´2m ´r ; (59) 
ii) the cubature formula (2) with weights (33) satisfies items i), ii) and iii) of Theorem 3 with εpmq replaced by εpmq "

4ξ ˆ?w inf 3 ? n ṗ1 `rq ln m ď 2 9p1 `rq ln m , (60) 
in (47), and with 1{p1 ´δq replaced by 3{p2 ´2δq in (48).

Remark 7. Since the following trivial inclusions between sets of random events hold true

m č i"1 # ˇˇˇα i ´wpy i q m ˇˇˇď a w inf wpy i q 2m + Ă m č i"1 " α i ě wpy i q 2m * Ă m č i"1 tα i ą 0u , from (59 
) the event in the above right-hand side holds true with an even larger probability than 1 ´2m ´r . Therefore, since from (59) all the weights α 1 , . . . , α m are sandwiched between two strictly positive bounds, they are just strictly positive with an even larger probability than 1 ´2m ´r .

It is worth to notice that the weights of the cubature (54) are not strictly positive. Using the expression of r φ, the cubature (54) can be written in the form (2) as

p I 2m pφq " m ÿ i"1
´αi φpr y i q `r α i φpy i q with nodes y 1 , . . . , y m , r y 1 , . . . , r y m and weights

α i :" 1 m , i " 1, . . . , m, r α i :" $ & % ´1 m ˆřn j"2 ˆ1 m ř m "1 ψ j pr y q ˙W 1{2 DG ´1e j ˙i , if ~G ´I~ď δ, 0, otherwise, i " 1, . . . , m.
From above, the weights r α i might be negative. Proceeding as in the proof of (59), one can obtain conditions on m ensuring that with large probability ř m i"1 |r α i | À log m, see Remark 10, which is a classical way to quantify the stability of a cubature in presence of negative weights.

Multivariate polynomial approximation spaces

In this section we assume that the domain Γ Ď R d has a Cartesian product structure, Γ :" ˆd q"1 Γ q ,

where Γ q Ď R are bounded or unbounded intervals. We further assume that dµ " b d q"1 dµ q , where each µ q is a probability measure on Γ q . For convenience we take Γ 1 " Γ q and µ 1 " µ q for any q " 2, . . . , d. Assume the existence of a family pϕ j q jě0 of univariate orthogonal polynomials complete and orthonormal in L 2 pΓ 1 , µ 1 q. For any ν P N d 0 we define the multivariate polynomials

ψ ν pyq :" d ź q"1
ϕ νq py pqq q, y " py p1q , . . . , y pdq q P Γ,

with y pqq being the qth coordinate of y. The set pψ ν q νPN d 0 is a complete orthonormal basis in L 2 pΓ, µq.

Consider any finite d-dimensional multi-index set Λ Ă N d 0 , and denote its cardinality by #pΛq. We denote the polynomial space P Λ " P Λ pΓq associated with Λ as P Λ :" span tψ ν : ν P Λu .

The result from the previous sections apply to the polynomial setting by taking V n " P Λ with n " #pΛq. A remarkable class of index sets are downward closed index sets.

Definition 1 (Downward closed multi-index set Λ). In any dimension d, a finite multi-index set Λ Ă N d 0 is downward closed, if

ν P Λ ùñ r ν ď ν, @ r ν P Λ,
where r ν ď ν is meant component-wise, i.e. r ν q ď ν q for any q " 1, . . . , d.

A relevant setting in which this type of index sets arises is Gaussian integration, where µ is the Gaussian measure on Γ " R d , and the ψ ν are tensorized Hermite polynomials. On the one hand, tensorization of univariate Gaussian quadratures becomes prohibitive as the dimension d increases, due to the exponential growth in d of the number of nodes. On the other hand, the use of downward closed sets allows one to tune the polynomial space and allocate only the most effective degrees of freedom, depending on the importance of each coordinate in the approximation of the target function.

Remark 8 (Inverse inequalities for polynomials supported on downward closed index sets). Given two integer parameters pθ 1 , θ 2 q P N 0 ˆN0 Y tp´1{2, ´1{2qu, let µ be the probability measure on Γ " r´1, 1s d defined as dµ " b d dJ with dJ :" Cp1 ´tq θ1 p1 `tq θ2 dλptq, t P r´1, 1s, and C s.t.

ż `1 ´1 dJptq " 1.
Consider the tensorized Jacobi polynomials pJ θ1,θ2 ν q νPN d 0 constructed by (62) when taking pϕ k q kě0 as the sequence of univariate Jacobi polynomials orthonormal in L 2 pr´1, 1s, dJq. The pJ θ1,θ2 ν q ν corresponds to tensorized Legendre polynomials when θ 1 " θ 2 " 0, and to tensorized Chebyshev polynomials when θ 1 " θ 2 " ´1 2 . Choosing the orthonormal basis pψ ν q ν as pJ θ1,θ2 ν q ν and given any downward closed index set Λ Ă N d 0 with cardinality equal to n, see Definition 1, define V n using (63) as the space generated by pJ θ1,θ2 ν q νPΛ . In the setting described above, the following inverse inequalities are proven in [START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations -application to parametric and stochastic elliptic PDEs[END_REF][START_REF] Migliorati | Multivariate Markov-type and Nikolskii-type inequalities for polynomials associated with downward closed multi-index sets[END_REF]: for all v P V n it holds that }v} L 8 ď n Bpθ1,θ2q }v},

where

Bpθ 1 , θ 2 q :" $ & % maxtθ 1 , θ 2 u `1, pθ 1 , θ 2 q P N 0 ˆN0 , ln 3 2 ln 2 , pθ 1 , θ 2 q " `´1 2 , ´1 2 ˘, (65) 
One step that leads to the proof of such inequalities, see [START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations -application to parametric and stochastic elliptic PDEs[END_REF][START_REF] Migliorati | Multivariate Markov-type and Nikolskii-type inequalities for polynomials associated with downward closed multi-index sets[END_REF], is the estimate

max yPΓ n ÿ k"1 |ψ k pyq| 2 ď n 2Bpθ1,θ2q . (66) 
Remark 9 (Lower bound on w for polynomial spaces). From a numerical standpoint, it is desirable that the weights are not only strictly positive but also bounded away from zero. When V n is a polynomial space on r´1, 1s d generated by the pJ θ1,θ2 ν q νPΛ with Λ downward closed, strictly positive lower bounds for the weights can be derived by using the estimate (66). Using (66) we obtain the following lower bound uniformly over Γ for w: wpyq ě n 1´2Bpθ1,θ2q , y P Γ, (67)

with θ 1 , θ 2 being the same parameters that appear in Remark 8.

The next result is a corollary of Theorem 6 in the particular case that V n is a polynomial space, and is obtained by using the lower and upper bounds (67) and ( 12).

Corollary 2. In any dimension d with Γ " r´1, 1s d , let µ be the Jacobi probability measure on Γ and V n be any downward closed polynomial space generated by tensorized Jacobi polynomials. For any real r ą 0 and n ě 1, if the m i.i.d. nodes y 1 , . . . , y m are drawn from σ defined in [START_REF] Heinrich | Random approximation in numerical analysis[END_REF] and m satisfies The next corollary contains a similar result as Corollary 2 but choosing w " 1, that corresponds to using standard least squares with random samples distributed as µ.

m ln m ě 3p1 `rq 4 lnp4{3q ´1 n 2Bpθ1,θ2q`1 , pθ 1 , θ 2 q P N 0 ˆN0 Y "ˆ´1 2 , ´1 2 ˙* , (68) then i 
Corollary 3. In any dimension d with Γ " r´1, 1s d , let µ be the Jacobi probability measure on Γ, and V n be any downward closed polynomial space generated by tensorized Jacobi polynomials. For any real r ą 0 and n ě 1, if the m i.i.d. nodes y 1 , . . . , y m are drawn from µ and m satisfies m ln m ě 3p1 `rq 4 lnp4{3q

´1 n 4Bpθ1,θ2q , pθ 1 , θ ´1 n s , with s " 2Bp0, 0q `1 " 3, in the Legendre case, and

2 q P N 0 ˆN0 Y "ˆ´1 2 , ´1 2 
s " 2B ˆ´1 2 , ´1 2 
˙`1 " ln 3 ln 2 `1 « 2.585, in the Chebyshev case.

Conclusions

In any domain Γ Ď R d with any dimension d P N, we have constructed randomized cubature formulae that are stable and exact on a given space V n on Γ with dimension n, under the assumption that an L 2 orthonormal basis of V n is available in explicit form. In Theorem 3 we have proven that the integration error of these cubature formulae satisfies convergence estimates in probability (46) and in expectation ( 47 As a further contribution we have constructed also a cubature formula that matches optimal rates from [START_REF] Novak | Deterministic and stochastic error bounds in numerical analysis[END_REF][START_REF] Heinrich | Random approximation in numerical analysis[END_REF] up to log terms in some settings like Sobolev spaces, but with error bounds that can be larger in the preasymptotic regime, see Theorem 5, Remark 5 and Remark 6.

A point that has not been addressed in the present article is the choice of the space V n . Such a choice depends indeed on the function φ, or on its smoothness class. In many applications, for example in the analysis of partial differential equations with parametric or stochastic data, a priori analyses provide good approximation spaces V n with proven convergence rates n ´s with s ą 0. Whenever this is not the case, one can resort to an adaptive construction of the approximation space, see Remark 2.

The results on randomized cubatures in this article have been presented using always m identically distributed random samples from σ for the construction of the weighted least-squares estimator of the integrand function, for both cubatures in Theorem 3 and Theorem 5. The cubature in Theorem 5 uses in addition m random samples from µ, but not for the construction of the weighted leastsquares estimator. The whole analysis in this paper applies tout court to other types of (nonidentically distributed) random samples from other distributions than σ, e.g. the distribution used in [START_REF] Migliorati | Adaptive approximation by optimal weighted least squares methods[END_REF]Theorem 2], and extends to the adaptive setting by exploiting recent advances on adaptive weighted least-squares estimators for approximating the integrand function.

Proofs and intermediate results

In this section we use the notation dµ m :" b m dµ.

Proof of Lemma 1. Proof of (35). On the one hand, using in sequence ψ 1 " 1, the orthogonality property of the basis functions and }ψ 1 } " 1, we have that

IpΠ m n φq " ż Γ Π m n φ dµ (70) " ż Γ n ÿ j"1 β j ψ j dµ "β 1 , (71) 
with β 1 being the coefficient associated to ψ 1 in the expansion [START_REF] Mcnamee | Construction of fully symmetric numerical integration formulas[END_REF].

On the other hand, the left-hand side in (35) is the cubature formula (2), that can be read (up to a multiplicative factor m ´1) as the scalar product in R m between the vector α containing the weights and the vector Φ containing the evaluations of the function φ at the nodes, and from (20) we have

I m pφq " 1 m α J Φ " 1 m `DG ´1e 1 ˘J b " 1 m e J 1 G ´1D J b " e J 1 β " β 1 , (72) 
that proves the equality (35). Proof of (36). We notice that, since Π m n is a projection on V n , then it holds Π m n v " v for any v P V n , and we obtain (36) from (35).

Proof of Theorem 3. The proof of i) is an immediate consequence of Lemma 1 and Corollary 1-ii). For proving ii), using point i) we bound the integration error as Then we use the upper bound (73) and proceeding as in the proof of ( 29) in [START_REF] Cohen | Migliorati: Optimal weighted least-squares methods[END_REF] we obtain

|Ipφq
ż ~G´I~ďδ |Ipφq ´Im pφq| 2 dµ m ď ż ~G´I~ďδ }φ´Π m n φ} 2 dµ m ď p1`εpmqqpe 2 pφqq 2 .
(74) The last term in the right-hand side of (47) is an upper bound for the integral on the event ~G ´I~ą δ, where r I m pφq is set to zero. Proof of iii) estimate (48). Splitting the expectation in (48) over the events t~G ´I~ď δu and t~G ´I~ą δu, using (43) and (39) we obtain

E ´ˇˇI pφq ´r I m pφq ˇˇ¯" ż ~G´I~ďδ ˇˇˇ1 m e J 1 G ´1D J W 1{2 g ˇˇˇd µ m looooooooooooooooooooooomooooooooooooooooooooooon ":A `ż~G´I~ąδ |Ipφq| dµ m loooooooooooomoooooooooooon ":B . (75) 
Term B can be controlled as

ż ~G´I~ąδ |Ipφq| dµ m ď 2|Ipφq|m ´r . (76) 
For term A, using (40), triangular inequality, the sub-multiplicative property of the operator norm, }G ´1} ď p1 ´δq ´1 and Cauchy-Schwarz inequality we obtain

A ď ż ~G´I~ďδ ˇˇˇ1 m e J 1 D J W 1{2 g ˇˇˇd µ m `ż~G´I~ďδ ˇˇˇ1 m e J 1 pG ´1 ´IqD J W 1{2 g ˇˇˇd µ m ď E ˆˇˇˇ1 m e J 1 D J W 1{2 g ˇˇˇ˙`ż ~G´I~ďδ ~G´1 ´I~› › › › 1 m D J W 1{2 g › › › › 2 dµ m ď ˜E ˜ˇˇˇ1 m e J 1 D J W 1{2 g ˇˇˇ2 ¸¸1{2 `1 1 ´δ ż ~G´I~ďδ ~G ´I~› › › › 1 m D J W 1{2 g › › › › 2 dµ m ď ˜E ˜ˇˇˇ1 m e J 1 D J W 1{2 g ˇˇˇ2 ¸¸1{2 `1 1 ´δ `E `~G ´I~2 ˘˘1{2 ˜E ˜› › › › 1 m D J W 1{2 g › › › › 2 2 ¸¸1{2 . (77) 
Using Lemmas 2, 3 and 4 to bound the expectations in (77) we obtain (48).

One of the results used in the proof of (48) is the following upper bound on the spectral norm of sum of independent random matrices, see for example [START_REF] Tropp | The expected norm of a sum of independent random matrices: an elementary approach, High-Dimensional Probability VII: The Cargese[END_REF]Theorem 4.1], that we rewrite here in the Hermitian case. We denote by 0 n the null n-by-n matrix.

Theorem 7. Consider a family pQ i q 1ďiďm of independent random matrices in R nˆn such that EpQ i q " 0 n for all i, and define Z "

ř m i"1 Q i . Then `Ep~Z~2q ˘1{2 ď a Cpnq~EpZ J Zq~1 {2 `Cpnq ˆE ˆmax i"1,...,m ~Qi ~2˙˙1 {2 , with Cpnq :" 4p1 `2rln nsq. Lemma 2. `E `~G ´I~2 ˘˘1{2 ď a 4p1 `2rln nsq c n ´1 m ˆ1 `a4p1 `2rln nsq c n m ˙. ( 78 
)
Proof. Using the random variable y distributed as σ, we introduce the n-by-n real random matrices X " Xpyq and Q " Qpyq, whose elements are defined as X pq pyq :" wpyq m ψ p pyqψ q pyq, Q pq pyq :" X pq pyq ´δpq m , p, q " 1, . . . , n.

By construction, EpXq " 1 m I and therefore EpQq " 0 n . Denote by pX i q 1ďiďm a family of m independent copies of X, and by pQ i q 1ďiďm a family of m independent copies of Q.

Using the independence of the random samples, the term T kpq can be rewritten as

T kpq " 1 m 2 E ˜˜m ÿ i"1
wpy i qψ p py i qψ k py i q ¸˜m ÿ j"1 wpy j qψ k py j qψ q py j q ¸" 1 m 2

¨E ¨m ÿ

i"1 wpy i qψ p py i qψ k py i q m ÿ j"1 j‰i wpy j qψ q py j qψ k py j q ‹ '`E ˜m ÿ

i"1 pwpy i qq 2 ψ p py i qψ q py i qpψ k py i qq 2 ¸‹ ', and using linearity of expectation, the definition of w and (80) we obtain

n ÿ k"1 T kpq " 1 m 2 ˜n ÿ k"1 pmδ pk pm ´1qδ qk q `nmδ pq ¸" m `n ´1 m δ pq .
Hence we have finally

EpZ J Zq " n ´1 m I, and 
~EpZ J Zq~" pn ´1q m . (82) 
We now apply Theorem 7 to the family of random matrices Q 1 , . . . , Q m , using the bounds (81) and (82), and finally obtain (78). Proof. Using the independence of the random samples

E ˜› › › › 1 m D J W 1{2 g › › › › 2 2
¸" 1 where at the last but one step we have used the definition of w, and at the last step we have used the orthogonality of g to ψ k for all k " 1, . . . , n. Proof of Theorem 6. Proof of i). For any i " 1, . . . , m, using the sub-multiplicative property of the operator norm we obtain that ˇˇˇα i ´wpy i q m ˇˇˇ" ˇˇˇˇa wpy i q m D i `G´1 ´I˘e

m
1 ˇˇˇˇď a wpy i q m }D i } 2 ~G´1 ´I~}e 1 } 2 . (86) 
Now we estimate each term in the right-hand side of (86). For the second term, the definitions of D in [START_REF] Migliorati | Tempone: Analysis of discrete L 2 projection on polynomial spaces with random evaluations[END_REF] and w in [START_REF] Gauss | Methodus nova integralium valores per approximationem inveniendi[END_REF] ensure that for any i " 1, . . . , m it holds }D i } 2 2 " wpy i q n ÿ j"1 ψ j py i q 2 " n.

For the third term, using [START_REF] Stroud | Approximate Calculation of Multiple Integrals[END_REF] 

and obtain condition (58). Condition (58) ensures that (88) holds with probability at least 1 ´2m ´r and simultaneously for all i " 1, . . . , m, that is the claim (59). Proof of ii). From (90), condition (58) requires more points than [START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF]. Hence any cubature formula whose nodes are drawn from [START_REF] Heinrich | Random approximation in numerical analysis[END_REF] and satisfy (58), yields an integration error which obeys the convergence estimates in Theorem 3 but with δ chosen as in (89). Using the upper bounds [START_REF] Genz | Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight[END_REF] and (92) one obtains (60) in (47). Since δ ď 1 3 for any n ě 1, (48) holds true replacing p1 ´δq ´1 by 3{2. since from the polarization identity and ψ 1 " 1 we have for any j ą 1 that

xψ j , ψ 1 y m " }ψ j `ψ1 } 2 m 2 ´}ψ j } 2 m 2 ´1 2 ď $ & % }ψ j } m ď ? 1 `δ, 1 `δ 2 }ψ j `1} 2 ´}ψ j } 2 m 2 ´1 2 " 1 `δ 2 p}ψ j } 2 `1q ´}ψ j } 2 m 2 ´1 2 ď 3δ 2 .
In (91), choosing δ depending on n and proceeding similarly as in the proof of (59), one can obtain conditions on m of the order n 4 ensuring ř m i"1 |r α i | ď C log m with large probability for some constant C. 

e 2

 2 pφq :" }φ ´Πn φ}" min vPVn }φ ´v}, and its weighted L 8 best approximation error as e 8,w pφq :" inf vPVn sup yPΓ a wpyq|φpyq ´vpyq|.

Theorem 6 .

 6 In any dimension d, for any real r ą 0 and any n ě 1, if the m i.i.d. nodes y 1 , . . . , y m are drawn from σ defined in (13) and m satisfies m ln m ě 3p1 `rqn 2 p4 lnp4{3q ´1qw inf (58) then i) the weights α 1 , . . . , α m given by (33) satisfy Pr ˜m č i"1

1

 1 ) the weights α 1 , . . . , α m given by (33) ´2m ´r .ii) the cubature formula (2) with weights (33) satisfies items i), ii) and iii) of Theorem 3 with εpmq replaced by εpmq " ln m , in (47), and with 1{p1 ´δq replaced by 3{p2 ´2δq in (48).

1 Dpe 2 pφqq 2 . 1 E pwpy i qgpy i qwpy j qgpy j qq " 1 m 2 m ÿ i" 1 E `pwpy i qgpy i qq 2 "pe 2 pφqq 2 ,

 121122 J W 1{2 g ˇˇˇ2 ¸ď n m Proof. Since from (42) Epwgq " 0, it holds that E and at the last step we have used[START_REF] Genz | Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight[END_REF].

Proof of Theorem 5 .¨ˇˇˇˇI pφ ´r φq ´1 m m ÿ i" 1 pφ ´r φqpr y i q ˇˇˇˇ2 '' ď 1 m

 511 Denote with E r y1,...,r ym the expectation over the random samples r y 1 , . . . , r y m . For given y 1 , . . . , y m , using the mutual independence between r y 1 , . . . , r y m and y 1 , . . . , y m it holds that pφ ´r φq,(84)where the conditional variance on the right-hand side is defined as Var r y"µ pφpr yq ´r φpr yqq :" E r y"µ ˆˇˇφ pr yq ´r φpr yq ´Er y"µ pφpr yq ´r φpr yqq ˇˇ2 ˙, using the following conditional expectation for the given y 1 , . . . , y m : E r y"µ pφpr yq ´r φpr yqq :" ż Γ pφpr yq ´r φpr yqq dµpr yq. For any given y 1 , . . . , y m , an upper bound for the variance is Var r y"µ pφpr yq ´r φpr yqq ď ż Γ pφpr yq ´r φpr yqq 2 dµpr yq " }φ ´r φ} 2 .(85)Using the law of total expectation, (84), the upper bound (85) and[START_REF] Ryu | Extensions of Gauss quadrature via linear programming[END_REF] we have that E r y 1 ,..., r ym y 1 ,...,ym ˆˇˇI pφq ´p I 2m pφq ˇˇ2 ˙"E r y 1 ,..., r ym y 1 ,...,ym ¨ˇˇˇˇI pφ ´r φq ´1 m ,...,ym ¨Er y1,...,r ym E y1,...,ym ´}φ ´r φ} 2 ď 1 m ˆp1 `εpmqq min vPVn }φ ´v} 2 `2}φ} 2 m ´r ˙.

Remark 10 .˙+¸ą 1 1 "

 1011 Under condition[START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF] for any δ P p0, 1q it holds that ´2m ´r . (91)The above is proven estimating each term in the definition of the r α i : the terms D, W 1{2 are estimated as in the proof of (59), }G ´1} ď p1 ´δq ´1, and the n ´1 discrete inner products satisfyPr ˜n č j"|xψ j , ψ 1 y m | ď min ˆ?1 `δ, 3δ2˙*¸ą 1 ´2m ´r ,

  φq} 2 ď }w ´1} L 8 pΓ,µq Varpwpφ´Π n φqq, φ P L 2 pΓ, µq, thanks to Varpwpφ ´Πn φqq " }wpφ ´Πn φq} 2 from (42).

	n ´1Varpwpφ´Π n φqq ď }	?	wpφ´Π n
	,µq ď } ?	wpφ ´Πn φq} ď	?	n}φ ´Πn φ}, φ P L 2 pΓ, µq,
	or as			

  ), we can focus only on the term containing the best approximation error. Denote (56) ď C (48) for any δ ď 1, n ě 1 and m ě 1. From (26) and (57) n ˚ă 2n, and if s ě 1 2 then n ą 2 2s ùñ C (48)

	C (56) :"	a 1 `εpmq and C (48) :" 1 ´δ , that satisfy C c `εpm, nq 1 n 2m pn ˚q´s ą C (48) c 2n 2m p2nq ´s ą	C (56) ? m	n ´s.

  , for any φ P L 2 pΓ, µq: e 2 pφq À n ´s ùñ E ´ˇˇI pφq ´p I 2m pφq ˇˇ¯À

	w.r.t. n as		
	1 ? m	´n´s `m´r{2 ¯À n ´s´1{2 pp1 `rq ln nq	´1{2 `n´r{2´1{2 pp1 `rq ln nq	´r{2´1{2
				1 ? m	´n´s `m´r{2	¯,
	where p I 2m pφq uses 2m evaluations of the function φ. The above convergence
	rate can be made explicit w.r.t. m as	
		1 ? m	´n´s `m´r{2 ¯À m ´s´1{2 pln mq s p1 `rq s `m´r{2´1{2 .
	Taking r " 2s yields the convergence rate m ´s´1{2 pln mq s up to a constant
	independent of m and n.	
	Since condition (26) implies m Á p1 `rqn ln n, it can also be rewritten

  in (47), and with 1{p1 ´δq replaced by 3{2 in (48).The exponent of n in condition (68) with weighted least squares is always smaller than that in condition (69) with standard least squares. In the Legendre and Chebyshev cases, Corollary 2 ensures positivity of the weights with large

	then						
	i) the weights α 1 , . . . , α m given by (33) satisfy
	Pr	˜m č i"1	"	1 2m	ď α i ď	3 2m	* ¸ą 1 ´2m ´r .
	ii) the cubature formula (2) with weights (33) satisfies items i), ii) and iii)
	of Theorem 3 with εpmq replaced by
	εpmq "	4ξ	ˆ1 3n Bpθ1,θ2q `rq ln m	ṗ1 ď 9n 2Bpθ1,θ2q p1 `rq ln m 2
	probability if						
				m ln m	ě	3p1 `rq 4 lnp4{3q
								˙* , (69)

  )-(48), under condition[START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF] on the required number of nodes. Such a condition imposes a number of nodes only linearly proportional to n, up to a logarithmic term, thus approaching the number of nodes in Tchakaloff's theorem (see Theorem 1), in the same general setting of arbitrary domain Γ and arbitrary dimension d. If the number of nodes satisfies the more demanding condition (58), where m is at least quadratically proportional to n up to a logarithmic term, then the proposed randomized cubature formulae have strictly positive weights with high probability. Both conditions[START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF] and (58) are immune to the curse of dimensionality: the required number of nodes only depends on n, and does not depend on the dimension d. The rate of convergence with respect to m for the error in (48) catches up with the convergence rate m ´1{2 of Monte Carlo, but the multiplicative constant in (48) can be much smaller thanks to the additional decay of the best approximation error in V n of φ. As a consequence, the proposed randomized cubatures provably outperform Monte Carlo whenever the best approximation error in V n of φ decays faster than n ´1{2 .

  ´Im pφq| " ˇˇˇż We start by splitting the expectation in (47) over the sets of events t~G ´I~ď δu and t~G ´I~ą δu. Since on the event t~G ´I~ď δu the cubature r I m pφq equals I m pφq, we obtain

		pφ ´Πm n φq dµ ˇˇď
		Γ		
		ż		
		|φ ´Πm n φ| dµ	
		Γ		
		ď}φ ´Πm n φ},		(73)
	and combining with (28) we obtain (46).		
	Proof of iii) estimate (47). E ˆˇˇI pφq ´r I m pφq ˇˇ2 ˙" ż	|Ipφq ´Im pφq| 2 dµ m	`ż~G´I~ąδ	ˇˇIpφq ´r I
	~G´I~ďδ			

m pφq ˇˇ2 dµ m .

  E pψ k py i qwpy i qgpy i qψ k py j qwpy j qgpy j qq E `pψ k py i qwpy i qgpy i qq 2 ˘`m ÿ i,j"1 i‰j E pψ k py i qwpy i qgpy i qψ k py j qwpy j qgpy j qq ‹ '

		2 E	¨n ÿ	˜m ÿ	D ik	wpy i qgpy i q a ¸2'
						k"1	i"1		
	"	1 m 2	n ÿ k"1	m ÿ i,j"1		
	"	1 m 2	n ÿ k"1	¨m ÿ i"1		
	"	1 m 2	m ÿ i"1	E ˜pwpy i qgpy i qq 2	n ÿ k"1	pψ k py i qq 2 ¸`mpm ´1q m 2	n k"1 ÿ	pE pψ k wgqq	2
	"	n m	ż Γ	g 2 dµ	`mpm ´1q m 2	n ÿ k"1 ˆżΓ	ψ k g dµ ˙2
	"	n m	pe 2 pφqq 2 ,		

  we have that, under condition[START_REF] Oettershagen | Construction of optimal cubature algorithms with applications to econometrics and uncertainty quantification[END_REF], with probability at least 1 ´2m ´r . For the fourth term }e 1 } 2 " 1. We now observe that the restriction of δ to the interval Þ Ñ δp1 ´δq ´1 on such an interval ensure that the left-hand side in (86) satisfies the following upper bound:The above implies that α i ą 0 uniformly for all i " 1, . . . , m.

	Since w inf ď 1, choosing				
			δ "	? w inf 3 ? n	ď	2 ?	? w inf n `?w inf	, n ě 1,	(89)
	and thanks to (93), we can enforce condition (26) as
	m ln m	ě	3p1 `rqn 2 p4 lnp4{3q ´1qw inf	"	p1 `rqn 3p4 lnp4{3q ´1qδ 2 ě	p1 `rqn ξpδq	,
					~G´1 ´I~ď	1	δ ´δ ,
			0 ă δ ď	2 ?	? w inf n `?w inf	, n ě 1,	(87)
	and strict monotonicity of δ ˇˇˇα i ´wpy i q m	ˇˇˇď	a wpy i q m	δ 1	? ´δ ď n	a wpy i qw inf 2m	.	(88)
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The matrix X i has rank one, and Q i has full rank. Nonetheless, we can compute an upper bound for ~Qi ~as follows:

and the trace has been rewritten using

and

The bound (79) holds uniformly for all i " 1, . . . , m, and therefore

Define Z :" ř m i"1 Q i " G ´I and let us compute EpZ J Zq. The components of the matrix Z can be written as Z pq " xψ p , ψ q y m ´δpq , and therefore

where at the last step we have used (80). Taking the expectation on both sides gives

Epxψ p , ψ k y m xψ k , ψ q y m q loooooooooooooomoooooooooooooon ":T kpq ´δpq .

Proof. Define U pδq :" δ 2 {2 and Dpδq :" U pδq ´ξpδq. The function Dpδq is continuously differentiable at any δ ě 0, and strictly increasing since dDpδq{dδ " δ ´lnp1 `δq ą 0 for any δ ą 0. Since Dp0q " 0, we have Dpδq ě 0 for any δ P r0, 1s, and hence (92). Lemma 6.

Proof. Define ω :" 3p4 lnp4{3q ´1q « 0.452, Lpδq :" ωδ 2 and Dpδq :" ξpδq Ĺpδq. The function Dpδq is twice continuously differentiable at any δ ě 0, dDpδq{dδ " lnp1 `δq ´2ωδ, and d 2 Dpδq{dδ 2 " p1 `δq ´1 ´2ω. Hence the function Dpδq is convex on r0, p2ωq ´1 ´1s, concave on rp2ωq ´1 ´1, 1{3s, and since Dp0q " dDp0q{dδ " Dp1{3q " 0 it is also nonnegative over r0, 1 3 s, that gives (93).