
HAL Id: hal-03950348
https://hal.science/hal-03950348v1

Submitted on 21 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stable high-order randomized cubature formulae in
arbitrary dimension

Giovanni Migliorati, Fabio Nobile

To cite this version:
Giovanni Migliorati, Fabio Nobile. Stable high-order randomized cubature formulae in arbitrary di-
mension. Journal of Approximation Theory, 2022, 275, pp.105706. �hal-03950348�

https://hal.science/hal-03950348v1
https://hal.archives-ouvertes.fr


Stable high-order randomized cubature formulae in
arbitrary dimension

Giovanni Miglioratia, Fabio Nobileb

aLaboratoire Jacques-Louis Lions, Sorbonne Université, Paris, France
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Abstract

We propose and analyse randomized cubature formulae for the numerical inte-
gration of functions with respect to a given probability measure µ defined on
a domain Γ Ď Rd, in any dimension d. Each cubature formula is exact on a
given finite-dimensional subspace Vn Ă L2pΓ, µq of dimension n, and uses point-
wise evaluations of the integrand function φ : Γ Ñ R at m ą n independent
random points. These points are drawn from a suitable auxiliary probability
measure that depends on Vn. We show that, up to a logarithmic factor, a linear
proportionality between m and n with dimension-independent constant ensures
stability of the cubature formula with high probability. We also prove error
estimates in probability and in expectation for any n ě 1 and m ą n, thus cov-
ering both preasymptotic and asymptotic regimes. Our analysis shows that the
expected cubature error decays as

a

n{m times the L2pΓ, µq-best approximation
error of φ in Vn. On the one hand, for fixed n and mÑ8 our cubature formula
can be seen as a variance reduction technique for a Monte Carlo estimator, and
can lead to enormous variance reduction for smooth integrand functions and
subspaces Vn with spectral approximation properties. On the other hand, when
n,m Ñ 8, our cubature becomes of high order with spectral convergence. As
a further contribution, we analyse also another cubature whose expected error
decays as

a

1{m times the L2pΓ, µq-best approximation error of φ in Vn, but
with constants that can be larger in the preasymptotic regime. Finally we show
that, under a more demanding (at least quadratic) proportionality between m
and n, all the weights of the cubature are strictly positive with high probability.
As an example of application, we discuss the case where the domain Γ has the
structure of Cartesian product, µ is a product measure on Γ and Vn contains
algebraic multivariate polynomials.
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1. Introduction

Let Γ Ď Rd be a Borel set, µ be a Borel probability measure on Γ absolutely
continuous with respect to the Lebesgue measure λ, and denote with ρ :“
dµ{dλ : Γ Ñ R its probability density. Given a function φ : Γ Ñ R in some
smoothness class, we consider the problem of integrating φ with respect to µ
over Γ:

Ipφq :“

ż

Γ

φpyqdµpyq “

ż

Γ

φpyqρpyqdλpyq. (1)

When the expression of φ or the geometric shape of the domain Γ are com-
plicated, the exact calculation of Ipφq might be too difficult, or not be possible
at all, for example if the function φ is not available in explicit form but can only
be evaluated at any point y P Γ at a certain (possibly high) cost, so that the
number of evaluations should be limited as much as possible. Hence one resorts
to the numerical approximation of the integral (1), see e.g. [7, 32], that is known
as the problem of numerical quadrature when d “ 1 or numerical cubature when
d ě 2, and that can become a challenging task as d increases due to the curse of
dimensionality. In any dimension d ě 1 and given an integer m ě 1, we consider
the m-point quadrature/cubature formula

Impφq :“
m
ÿ

i“1

αiφpyiq, (2)

where y1, . . . , ym P Γ are the nodes and α1, . . . , αm P R are the weights. The
nodes and weights should be chosen such that

Impφq « Ipφq. (3)

One approach to develop quadrature/cubature formulae imposes that (2) be
exact on some given finite-dimensional linear function space Vn over Γ, where
n :“ dimpVnq. In principle one would like to have a formula that exactly inte-
grates any function in Vn, i.e.

Impvq “ Ipvq, @ v P Vn.

When d “ 1 and Vn is a polynomial space, the existence of such quadrature
formulae has been first discussed in [5] with general ρ, extending earlier results
in [11] with ρ ” 1. An example of quadrature is the Gauss-Hermite quadrature
formula, that exactly integrates any univariate algebraic polynomial up to degree
2m´1 usingm points, where integration is intended with respect to the Gaussian
probability measure on R.

In general, quadrature/cubature formulae of the form (2) might not be prov-
ably stable to perturbations in the evaluations of φ at the nodes. Denoting with
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ηi the perturbation of φpyiq, for the formula (2) it holds

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

αipφpyiq ` ηiq ´
m
ÿ

i“1

αiφpyiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
j“1,...,m

|ηj |
m
ÿ

i“1

|αi| . (4)

As long as Vn contains the functions that are constant over Γ, exactness of (2)
over Vn implies

m
ÿ

i“1

αi “ 1. (5)

On the one hand, in presence of negative weights the summation of the |αi| in
(4) can become larger than one, thus serving as an amplifying factor for the
perturbations. On the other hand, if the weights are positive, (4) and (5) give

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

αipφpyiq ` ηiq ´
m
ÿ

i“1

αiφpyiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
i“1,...,m

|ηi|, (6)

thus ensuring the stability of the formula (2) to perturbations.
In one dimension, the weights of Gaussian quadratures are strictly positive.

In higher dimension, cubatures with positive weights are difficult to construct,
above all in general domains or with general densities ρ. A remarkable result on
the existence of stable quadrature/cubature formulae is the next theorem from
[33].

Theorem 1. Let Γ Ă Rd be a compact set, and consider the integral (1) with
ρ strictly positive over Γ. Given n real functions f1, . . . , fn that are continuous
on Γ, linearly independent, and such that at least one is nonzero everywhere in
Γ, there exists pyiq

m
i“1 Ă Γ and nonnegative reals pαiq

m
i“1 with m ď n such that

the formula (2) for (1) is exact on spantf1, . . . , fnu.

The result in Theorem 1 gives an upper bound for the number of nodes, and
can be further generalized to unbounded domains, see e.g. [28, 1]. With classical
spaces of algebraic polynomials over the hypercube Γ “ r0, 1sd, there are known
lower bounds on the number of nodes required by any cubature formula for
exactness, e.g. in [31] and in [21] for polynomial spaces supported on isotropic
tensor product or total degree index sets. In such specific settings, it is possi-
ble to construct exact cubature formulae whose number of nodes matches those
lower bounds, so-called minimal cubature formulae, see e.g. [3] for an overview.
With more general spaces of algebraic polynomials, minimal cubature formulae
are not known on a systematic basis. In low dimension d ď 3, heuristic numer-
ical methods based on optimization as those proposed in [29] allow the direct
construction of (almost) minimal cubature formulae. In high dimension it is
difficult to find minimal cubature formulae, and it is difficult also to find cuba-
ture formulae whose number of nodes matches the upper bound in Theorem 1,
above all with general polynomial spaces and with general domains. It is worth
noticing that the proof of Theorem 1 from [33] is not constructive, and finding
the nodes and weights of such remarkable formulae remains an open problem.
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We now briefly recall other approaches to multivariate integration from the
literature, that use a cubature formula of the form (2) with suitable choices for
the nodes and weights. A first approach, that requires a product domain and a
separable density ρ, has been developed starting from [30], and nowadays goes
under the name of Smolyak cubature or sparse grid quadrature/cubature, see
e.g. [2] and references therein. In general, a sparse grid cubature formula is
exact on a chosen polynomial space, see for example those presented in [24].
In low dimension and using polynomials with moderately high (total) degree,
another type of (symmetric) cubature formulae has been presented in [17, 12],
and these cubatures become unstable as the degree of the polynomials increases.

Other approaches to multivariate integration are Monte Carlo and quasi-
Monte Carlo methods, see [27, 8] and references therein. These approaches do
not impose exactness of the cubature formula on a given space. Both Monte
Carlo and quasi-Monte Carlo methods share the same weights, that are equal
to m´1 with m being the number of nodes. The difference between the two
methods is in the choice of the nodes. In the Monte Carlo method the nodes
are realizations of independent and identically distributed copies of a random
variable distributed as µ. In the quasi-Monte Carlo method the nodes are ju-
diciously chosen according to specific deterministic rules, and a tensor product
domain again is required. The notorious half-order convergence rate of the
Monte Carlo method is immune to the curse of dimensionality. The conver-
gence rate of quasi-Monte Carlo depends on the structure and smoothness of
the integrand function, and on the low-discrepancy properties of the point set
containing the nodes.

In the present article we develop cubature formulae of the form (2) that are
exact on Vn, for general domains Γ Ď Rd provided an L2pΓ, µq orthonormal
basis is available, and whose weights and nodes can be explicitly calculated.
To pursue such an objective, we replace the integrand function by its weighted
least-squares approximation onto Vn. Our cubature formulae use randomized
nodes, and their exactness on Vn occurs with a quantified large probability. More
precisely, see Theorem 3, if m is linearly proportional to n, up to a logarithmic
factor, then the formula is exact on Vn with large probability. This shows that
exact cubature formulae can be constructed in the general setting of Theorem 1
with m of the order of n, albeit not necessarily with positive weights.

Given a function φ in some smoothness class, for the proposed cubatures we
provide convergence estimates in probability and in expectation for the integra-
tion error

|Ipφq ´ Impφq| (7)

depending on m, n, and on the best approximation error of φ in Vn in some
norm. In particular, we show that the mean error satisfies an estimate of the
type

Ep|Ipφq ´ Impφq|q À
c

n

m
inf
vPVn

}φ´ v}L2pΓ,µq `m
´r, (8)

provided m
lnm Á p1 ` rqn, where r ą 0 can be taken arbitrarily and all hidden

constants do not depend on d. Similar estimates are proved for the mean squared
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error and in probability, and use recent results from [6] on the analysis of the
stability and accuracy of weighted least-squares approximation methods.

The previous estimate shows that if n is kept fixed and mÑ8, the cubature
formula has a Monte Carlo type convergence rate, however with a substantially
reduced variance with respect to a standard Monte Carlo cubature formula,
proportional to the L2pΓ, µq projection error of φ onto Vn. In this respect, our
cubature formula can be seen as a very efficient variance reduction technique in
a Monte Carlo context.

Moreover, if both n,m Ñ 8, still under the condition m
lnm Á n, then the

mean cubature error is of the same order of the L2pΓ, µq-best approximation
error and features a fast decay if the integrand function is smooth and the
sequence of finite-dimensional spaces Vn has good approximation properties. In
this respect our cubature formula is of high order. We remark once more that
all results and hidden constants do not depend on the dimension d.

As a further contribution, we construct another cubature formula for Ipφq
consisting of Impφq plus a Monte Carlo correction estimator. This cubature
satisfies an error estimate like (8) without the term

?
n, but with different

constants that can be larger in the preasymptotic regime. Such a result is stated
in Theorem 5, and is made possible by using 2m nonidentically distributed nodes
rather than m identically distributed nodes.

An often desirable property of the quadrature/cubature formula (2) concerns
the positivity of all the weights, that ensures stability as shown in (6). This
property is not fulfilled by sparse grid cubature formulae, which may contain
negative weights, unless tensor grids are used and the underlying quadrature
has positive weights (e.g. Gaussian quadratures). In Theorem 6 we show that
cubature formulae exact on Vn and with strictly positive weights can be con-
structed, again in the same general setting of Theorem 1, but with m being at
least quadratically proportional to n, up to a logarithmic factor. At present
time we are not aware of the existence in the literature of stable cubature for-
mulae in general domains which have simultaneously high-degree of exactness
and strictly positive weights, and the present paper provides a first analysis of
cubature formulae of this type.

Cubature formulae exact on a given space and with nodes being random
variables have been earlier studied in [9, 10], but the weights are not necessarily
positive. Error estimates for these stochastic cubature formulae can be found
in [22, Lemma 1, page 69], which can be seen as a stochastic counterpart of
Theorem 1. The stochastic cubatures from [9, 10] use n cubature nodes whose
probability distribution contains determinants of n-by-n matrices. For this rea-
son, the generation of the nodes of such cubatures becomes computationally
intractable already for moderate values of n and d. Compared to [9, 10], the
stochastic cubature developed in the present paper uses a different distribu-
tion of the nodes, that can be sampled way more efficiently. Under very mild
requirements, for example if an L2pΓ, µq-orthonormal basis of Vn is known in
explicit form, efficient algorithms have been developed in [6] for the generation
of the nodes of our stochastic cubatures. If the elements of the orthonormal
basis have product form, then the computational complexity of such algorithms
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for the generation of m nodes is provably linear in m and d.
More recently, a cubature formula based on least-squares approximants for

periodic functions has been proposed in [26], with different weights, different
distribution of the nodes and a different error analysis. The cubature from [26]
has been later refined in [14], also in the nonperiodic setting.

The outline of the article is the following: in Section 2 we recall some useful
results on the analysis of discrete least squares. In Section 3 we present the
cubature formulae, and provide conditions which ensure exactness and positive
weights, together with convergence estimates. Section 4 addresses the case
where Vn is chosen as a multivariate polynomial space. The proofs are collected
in Section 6. In Section 5 we draw some conclusions.

2. Discrete least-squares approximation

In this section we introduce the weighted discrete least-squares method with
evaluations at random point sets, and recall the main results achieved in [6] for
the analysis of its stability and accuracy. Given a Borel probability measure µ
on Γ, we introduce the L2pΓ, µq inner product

xf1, f2y :“

ż

Γ

f1pyqf2pyqρpyqdλpyq, (9)

and the norm }f} :“ xf, fy1{2. We work under the following assumption.

Assumption 1. There exists an L2pΓ, µq orthonormal basis pψjqjě1, and this
basis contains the constant function over Γ.

Using the orthonormal basis pψjqjě1 we define the approximation space as

Vn :“ spantψ1, . . . , ψnu, (10)

and set n :“ dimpVnq. Without loss of generality we suppose that ψ1 ” 1, and
therefore ψ1 P Vn for any n ě 1, as stated in the next assumption.

Assumption 2. For any n ě 1 the space Vn contains ψ1 ” 1.

For any given space Vn we define the functions κ : Γ Ñ R and w : Γ Ñ R as

κpyq :“

˜

n
ÿ

i“1

|ψipyq|
2

¸´1

and wpyq :“ nκpyq, (11)

whose denominators do not vanish thanks to Assumption 2. For any space Vn
and any n ě 1, Assumption 2 ensures the upper bound

wpyq ď n, y P Γ. (12)

The functions κ and w are strictly positive over Γ. Sharper lower bounds (uni-
formly over Γ) can be obtained by exploiting the structure of the space Vn: for
example with polynomial spaces such lower bounds are shown in Remark 9.
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When Vn is the space of algebraic polynomials of total degree n ´ 1, the
function κ is known as the Christoffel function. Using such functions, we define
on Γ the probability measure

dσ :“ w´1dµ “

řn
i“1 |ψipyq|

2

n
dµ “

řn
i“1 |ψipyq|

2

n
ρpyqdλ. (13)

In general σ is not a product measure, even if µ is a product measure. Next,
we introduce the weighted discrete inner product

xf1, f2ym :“
1

m

m
ÿ

i“1

wpyiqf1pyiqf2pyiq, (14)

where the functions w, f1, f2 are evaluated at m points y1, . . . , ym P Γ that
are independent and identically distributed according to σ. The discrete inner

product is associated with the discrete seminorm }f}m :“ xf, fy
1{2
m for any

f P L2pΓ, µq. In the forthcoming sections, the random points y1, . . . , ym P Γ
play the role of nodes for the quadrature/cubature formula (2).

For any function φ : Γ Ñ R, we define its L2pΓ, µq projection onto Vn as

Πnφ :“ arg min
vPVn

}v ´ φ}. (15)

In many applications we do not have an explicit expression of the function
φ, and can only evaluate its value φpyq at a given parameter y P Γ. In such a
situation, the projection (15) cannot be computed, since it would require the
explicit knowledge of the function φ. Hence, one can resort to the discrete
least-squares approximation of φ in Vn, defined as

Πm
n φ :“ arg min

vPVn

}v ´ φ}m, (16)

where the minimization of the L2pΓ, µq norm has been replaced by the mini-
mization of the discrete seminorm. Since the discrete seminorm uses pointwise
evaluations of φ, throughout the paper we further assume that φpyq is well
defined at any y P Γ. The expansion of Πm

n φ over the orthonormal basis reads

Πm
n φ “

n
ÿ

j“1

βjψj , (17)

with β :“ pβ1, . . . , βnq
J P Rn being the vector of the coefficients in the above

expansion. Denote with D the design matrix, whose elements are defined as

Dij :“
a

wpyiqψjpyiq, i “ 1, . . . ,m, j “ 1, . . . , n, (18)

and define the Gramian matrix G as

G :“
1

m
DJD.
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Moreover, we denote the Hadamard product of two vectors p, q P Rm as

pd q :“ pp1, . . . , pmq d pq1, . . . , qmq “ pp1q1, . . . , pmqmq P Rm,

and use this product to define b :“
?
wdΦ “ p

a

wpy1qφpy1q, . . . ,
a

wpymqφpymqq
J,

where Φ :“ pφpy1q, . . . , φpymqq
J contains the evaluations of φ at the nodes

pyiq1ďiďm.
The projection Πm

n φ of φ in (16) can be computed by solving the linear
system

Gβ “
1

m
DJb. (19)

If the matrix G is nonsingular then the solution to the linear system (19) is

β “
1

m
G´1DJb, (20)

thus defining a unique discrete least-squares approximation of φ through (17).
For any integer n ě 1, we say that a point set y1, . . . , ym P Γ with m ě n is
unisolvent for a given space Vn if

detpGq ‰ 0. (21)

A unisolvent point set ensures that the operator Πm
n is well defined and uniquely

associated to the space Vn. When m ă n the matrix G is rank deficient, and
condition (21) cannot be fulfilled. Condition (21) does not depend on the choice

of the basis of Vn: using any other basis p rψ1, . . . , rψnq
J “M pψ1, . . . , ψnq

J of Vn
related to the ψ1, . . . , ψn by means of a suitable nonsingular matrix M yields
detpMJGMq ‰ 0 ðñ detpGq ‰ 0. Given any matrix A P Rmˆn, for any
1 ď p ď `8 we introduce the operator norm

~A~`p :“ sup
xPRn
x‰0

}Ax}`p
}x}`p

,

and define ~¨~ :“ ~¨~`2 when p “ 2. Condition (21) does not take into account
situations where G is nonsingular but still very ill-conditioned, which might
occur even when m ě n. From a numerical standpoint, it is desirable that G is
also well conditioned. A natural vehicle for quantifying the ill-conditioning of
G is to look at how much it deviates from the identity matrix I with compatible
size,

~G´ I~ ď δ, (22)

for some δ ą 0. When δ P p0, 1q condition (22) can be rewritten as the norm
equivalence

p1´ δq}v}2 ď }v}2m ď p1` δq}v}
2, v P Vn, (23)

or as
1´ δ ď ~G~ ď 1` δ. (24)
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We now recall the main results achieved in [6] concerning the analysis of the
stability and accuracy of weighted discrete least-squares approximation with
evaluations at random points. For any φ P L2pΓ, µq we define its best approxi-
mation error in the L2pΓ, µq norm as

e2pφq :“ }φ´Πnφ}“ min
vPVn

}φ´ v},

and its weighted L8 best approximation error as

e8,wpφq :“ inf
vPVn

sup
yPΓ

a

wpyq|φpyq ´ vpyq|.

Given any δ P p0, 1q we define the quantity

ξpδq :“ p1` δq ln p1` δq ´ δ ą 0, (25)

that satisfies the upper and lower bounds in (92) and (93).
Also recall the conditioned weighted least-squares estimator introduced in

[6], defined as

rφ :“

#

Πm
n φ, if ~G´ I~ ă δ,

0, otherwise.

Next we quote from [6, Corollary 1] the following result.

Theorem 2. In any dimension d, for any real r ą 0, any δ P p0, 1q and any
n ě 1, if the m i.i.d. points y1, . . . , ym are drawn from σ defined in (13) and

m

lnm
ě

1` r

ξpδq
n, (26)

then the following holds:

(i) the matrix G satisfies

Pr p~G´ I~ ď δq ą 1´ 2nm´pr`1q ě 1´ 2m´r; (27)

(ii) for all φ such that supyPΓ
a

wpyq|φpyq| ă `8 the weighted least-squares
estimator satisfies

Pr
´

}φ´Πm
n φ} ď

´

1`
?

2
¯

e8,wpφq
¯

ą 1´2nm´pr`1q ě 1´2m´r; (28)

(iii) if φ P L2pΓ, µq then the conditioned estimator satisfies

E
´

}φ´ rφ}2
¯

ď p1` εpmqq pe2pφqq
2 ` 2}φ}2m´r, (29)

where

εpmq :“
4ξpδq

p1` rq lnm
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decreases monotonically to zero as m increases.

The bound (22) for G implies a bound of the same type for its inverse: for
any δ P p0, 1q and m ě n it holds that

~G´ I~ ď δ ùñ ~G´1 ´ I~ ď
δ

1´ δ
, (30)

since
~G´1 ´ I~ “ ~G´1 pI´Gq ~ ď ~G´1~ ~G ´ I~,

and (22) also implies ~G~ ď 1`δ and ~G´1~ ď p1´δq´1. Another implication
of (22) is that

~G´ I~ ď δ ùñ condpGq ď
1` δ

1´ δ
. (31)

As a corollary of Theorem 2, from (27) together with (30) we have Corollary 1
item i), and since (22) implies G nonsingular we have Corollary 1 item ii).

Corollary 1. Under the same assumptions of Theorem 2,

i)

Pr

ˆ

~G´1 ´ I~ ď
δ

1´ δ

˙

ą 1´ 2nm´pr`1q ě 1´ 2m´r; (32)

ii) the point set y1, . . . , ym is unisolvent for Vn with probability larger than
1´ 2m´r.

Sampling algorithms for the generation of the random point set y1, . . . , ym
from (13) have been developed in [6] when Γ is a Cartesian domain and µ is
a product measure. The computational cost of these algorithms scales linearly
with respect to the dimension d and to m.

3. Randomized high-order cubature formulae

In this section we construct cubature formulae of the form (2), to approximate
the multivariate integral (1) of a smooth function φ : Γ Ñ R with respect to a
given probability measure µ. The construction of such cubature formulae uses
the discrete least-squares approximation (16) of the integrand function φ. As in
the previous sections, y1, . . . , ym and α1, . . . , αm denote its nodes and weights,
respectively. The first step in the development of our cubature formula consists
in the evaluation φpy1q, . . . , φpymq of the integrand function φ at the nodes
y1, . . . , ym. The second step is the choice of the weights, ensuring exactness of
the cubature formula on the given subspace, see the next Lemma 1. Let W be
the matrix defined element-wise as Wii :“ wpyiq for i “ 1, . . . ,m and Wij “ 0
for i, j “ 1, . . . ,m with i ‰ j. We consider weights α “ pα1, . . . , αmq

J of the
form

α :“ p
a

wpy1q, . . . ,
a

wpymqq
J d

1

m
DG´1e1 “

1

m
W 1{2DG´1e1, (33)
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where e1 :“ p1, 0, . . . , 0qJ P Rn denotes the vector with all components except
the first being equal to zero, and the first component being equal to one. The
components of α are given by

αi :“
1

m

´

W 1{2DG´1e1

¯

i
“

1

m

a

wpyiqDiG
´1e1, i “ 1, . . . ,m, (34)

with
Di :“

a

wpyiq pψ1pyiq, . . . , ψnpyiqq .

In the next lemma we specify conditions on the nodes and weights such that
the cubature (2) is exact on Vn, see Section 6 for the proof.

Lemma 1. In any dimension d ě 1 and for any n ě 1, let m ě n nodes
y1, . . . , ym P Γ be a unisolvent point set for the space Vn. If the weights α1, . . . , αm
are chosen as in (33) then the formula (2) satisfies

Impφq “ IpΠm
n φq, for any φ P L2pΓ, µq, (35)

and
Impvq “ Ipvq, for any v P Vn. (36)

Remark 1. The weights in equation (33) can be calculated as α “ 1
mW

1{2Dh,
where h is the solution to the linear system Gh “ e1. Note that, from Corol-
lary 1, the matrix G is well conditioned w.h.p. under condition (26).

For any n ě 1, the projection Πnφ of φ onto Vn satisfies

IpΠnφq “ Ipφq, φ P L2pΓ, µq, (37)

whose proof is identical to the proof of (35). Using (36) together with (37) it
follows that

ImpΠnφq “ Ipφq, φ P L2pΓ, µq. (38)

Set hn :“ φ ´ Πnφ, and define the vector g P Rm whose components are given
by gi “ hnpyiq for any i “ 1, . . . ,m. We can decompose the integration error of
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Im into two terms named S and B respectively:

Impφq ´ Ipφq “

ż

Γ

pΠm
n φ´Πnφq dµ

“

ż

Γ

Πm
n pφ´Πnφq dµ

“
1

m
eJ1 G

´1DJW 1{2g (39)

“
1

m
eJ1 D

JW 1{2g `
1

m
eJ1 pG

´1 ´ IqDJW 1{2g (40)

“
1

m

m
ÿ

i“1

wpyiqhnpyiq

loooooooooomoooooooooon

“:S

`
1

m

m
ÿ

i“1

´

eJ1 G
´1pI´GqDJW 1{2

¯

i
hnpyiq

looooooooooooooooooooooooomooooooooooooooooooooooooon

“:B

,

(41)

where the first equality uses (37) and (35), the second equality follows from
properties of projection operators, the third equality uses (35) together with
the definitions of Im and g. Notice that (37) implies

EpSq “ E pwφq ´ E pwΠnφq “ 0, (42)

but there is no reason for B to have zero mean, and in general

EpBq “ EpImpφqq ´ Ipφq ‰ 0.

Usually B :“ EpBq is called the bias of Im.
By conditioning depending on the value of ~G´ I~, for any δ P p0, 1q we can

define another cubature formula

rImpφq :“

#

Impφq, if ~G´ I~ ă δ,

0, otherwise,
(43)

that uses the cubature formula Impφq defined in (2) with weights (33). Notice

that rImpφq can also be written as a cubature formula of the form (2), with the
same nodes as Impφq but with weights given by

α “

$

&

%

1

m
W 1{2DG´1e1, if ~G´ I~ ă δ,

p0, . . . , 0qJ, otherwise.
(44)

A consequence of (35) is that rImpφq “ Iprφq for any φ P L2pΓ, µq on both
events t~G ´ I~ ă δu and t~G ´ I~ ě δu. However, (36) with Impvq replaced

by rImpvq remains true only on the event t~G´ I~ ă δu, because rImpvq “ 0 for
any v P Vn when t~G ´ I~ ě δu. On the event t~G ´ I~ ă δu, the integration

12



error of rIm can be decomposed as

Ipφq ´ rImpφq “ S `B, (45)

where the terms S and B are the same that appear in (41). The bias of rIm is
rB :“ EprImpφqq ´ Ipφq. The expectation in the definitions of B and rB is over

both events t~G´ I~ ă δu and t~G´ I~ ě δu. In contrast to B, for rB such an

expectation is always finite. The term rB asymptotically vanishes as m Ñ `8,
and the proof of this fact is postponed to the end of this section. However B
and rB do not vanish, in general, when m is finite.

The next theorem quantifies the integration error of the formula (2) in prob-
ability, and the integration error of the formula (43) in expectation. Its proof is
postponed to Section 6.

Theorem 3. In any dimension d, for any real r ą 0 and any δ P p0, 1q, if the
m i.i.d. points y1, . . . , ym are drawn from σ defined in (13) and condition (26)
holds true then:

i) the cubature formula (2) with weights chosen as in (33) satisfies (35)–(36)
with probability larger than 1´ 2m´r;

ii) for all φ such that supy
a

wpyq|φpyq| ă `8, the integration error of the
cubature formula (2) with weights (33) satisfies

Pr
´

|Ipφq ´ Impφq| ď p1`
?

2qe8,wpφq
¯

ě 1´ 2m´r; (46)

iii) for any φ P L2pΓ, µq the integration error of the cubature formula (43)
satisfies

E
ˆ

ˇ

ˇ

ˇ
Ipφq ´ rImpφq

ˇ

ˇ

ˇ

2
˙

ď p1` εpmqq pe2pφqq
2 ` 2|Ipφq|2m´r, (47)

with εpmq as in Theorem 2, and also satisfies

E
´ˇ

ˇ

ˇ
Ipφq ´ rImpφq

ˇ

ˇ

ˇ

¯

ď

c

n

m

ˆ

1`
εpm,nq

1´ δ

˙

e2pφq ` 2|Ipφq|m´r, (48)

with

εpm,nq :“
a

4p1` 2rlnnsq

c

n´ 1

m

ˆ

1`
a

4p1` 2rlnnsq

c

n

m

˙

ďp4` 8rlnnsq

c

n´ 1

m

ˆ

1`

c

n

m

˙

.

Before closing the section, we compare our randomized cubature formulae
with the Monte Carlo method and with Importance Sampling Monte Carlo,
hereafter shortened to Importance Sampling. With all the three methods the
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integral Ipφq in (1) is approximated using a cubature formula Impφq as in (2),
but with different choices for the nodes and weights which amount to different
estimates for the associated integration error (7).

With Monte Carlo the m nodes y1, . . . , ym are independent and identically
distributed according to µ, and the weights α1, . . . , αm are all set equal to 1{m.
The mean squared integration error of Monte Carlo is given by

E
´

|Ipφq ´ Impφq|
2
¯

“
Varpφq

m
. (49)

With Importance Sampling, the m nodes y1, . . . , ym are independent and
can be chosen identically distributed according to σ, and the weights can be
chosen as αi “ wpyiq{m for i “ 1, . . . ,m. The corresponding mean squared
integration error is given by

E
´

|Ipφq ´ Impφq|
2
¯

“
Varpwφq

m
. (50)

In our cubature formula the m nodes y1, . . . , ym are independent and iden-
tically distributed from σ, and the weights are either chosen as in (33) or as
in (44). Concerning the error estimates, (47) proves convergence in expecta-

tion of |Ipφq ´ rImpφq|
2 and (46) proves a probabilistic estimate for the error

|Ipφq ´ Impφq|.
Our cubature formula and Importance Sampling both rely on the change

of measure (13), that is determined by the choice of the function w. In the
present paper we have chosen w as in (11), but any other nonnegative function
w : Γ Ñ R such that

ş

Γ
w´1 dµ “ 1 could be used. In Importance Sampling, the

choice of w should hopefully make the variance in (50) smaller than the variance
in (49) of Monte Carlo. In our cubature formula, taking w as in (11) ensures
the stability of the projector Πm

n as granted by Theorem 2.
For any fixed n and any i “ 1, . . . ,m, the weights (34) of the randomized

cubature formula converge almost surely to the weights of importance sampling
as m Ñ `8. Before presenting the proof of this result, we introduce the
following notation: for any m ě 1 consider the finite sequence py1, . . . , ymq Ă Γ
and define the matrix Dm P Rmˆn, whose elements are Dm

ik :“
a

wpyiqψkpyiq,
and

αi,m :“
1

m

a

wpyiqD
m
i pG

mq´1e1, Gm :“
1

m
pDmqJDm, i “ 1, . . . ,m,

where Dm
i is the ith row of Dm. The weights defined above are the same as in

(34), and the purpose of the new notation is solely to emphasize the dependence
on m in the design matrix D and in the cubature weights.

Theorem 4. Let m satisfy (26) with some δ P p0, 1q, n ě 1, r ą 0. For any
i P N the sequence of random variables pmαi,mqměmaxti,mu converges almost
surely to wpyiq as mÑ `8.
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Proof. Fix ε P p0, 1q and any i P N. Take δε :“ min

#

ε
a

wpyiq ` ε
, δ

+

and mε

that satisfies (26) with δε, n and r. Of course mε ě m. Define also the events

Aim :“ t|mαi,m ´ wpyiq| ą εu , m ě m.

Then for any m ě mε we have with probability at least 1´ 2nm´pr`1q that

|mαi,m ´ wpyiq| “
ˇ

ˇ

ˇ

a

wpyiqD
m
i

`

pGmq´1 ´ I
˘

e1

ˇ

ˇ

ˇ

ď
a

wpyiq}D
m
i }`2 ~pG

mq´1 ´ I~ }e1}`2 ď
δε
a

nwpyiq

1´ δε
ď ε

because }Dm
i }

2
`2
“ wpyiq

řn
j“1 ψjpyiq

2 “ n, and from (32)

~pGmq´1 ´ I~ ď
δε

1´ δε

with probability at least 1´2nm´pr`1q. As a consequence PrpAimq ď 2nm´pr`1q

for any m ě mε. Hence, using (92), we have that

ÿ

mąmε

PrpAimq ď2n´rp1` rq´pr`1q
ÿ

mąmε

ˆ

ξpδεq

lnm

˙r`1

ď2n´r
ˆ

δ2
ε

2p1` rq

˙r`1
ÿ

kě0

2´2kpr`1q

“2n´r
ˆ

δ2
ε

2p1` rq

˙r`1
1

22pr`1q ´ 1
ă `8,

and since

ÿ

měm

PrpAimq “
mε
ÿ

m“m

PrpAimq `
ÿ

mąmε

PrpAimq ă `8

from Borel-Cantelli lemma mαi,m Ñ wpyiq as mÑ `8 almost surely.

In the limit m Ñ `8, the matrix G tends almost surely to the n-by-n
identity matrix, see e.g. [18, Theorem 1] for a proof. From the strong law of
large number we have

1

m
ΦJW 1{2D

mÑ`8
Ñ

ˆ
ż

Γ

wφψ1 dσ, . . . ,

ż

Γ

wφψn dσ

˙J

, almost surely.

Both sequences of vectors ΦJW 1{2D and G´1e1 converge almost surely. Their
scalar product is a finite sum of products of real random variables that converge
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almost surely, and therefore we also have the following almost sure convergence

Impφq “
m
ÿ

i“1

αi φpyiq

“ΦJα “
1

m
ΦJW 1{2DG´1e1

mÑ`8
Ñ

ż

Γ

wpyqφpyq dσ (51)

“Epwφq
“Ipφq, φ P L2pΓ, µq.

Using (51), for any φ P L2pΓ, µq we have

EprImpφqq ´ Ipφq “ rB mÑ`8
Ñ 0.

One can actually quantify more precisely the decay of rB w.r.t. m. Inspection of
the proof of (48), more precisely using (75), (76) and the notation from there,
shows that there exist positive constants C1, C2 such that

|rB| ď
ż

t~G´I~ďδu
|B| dµm `

ż

t~G´I~ąδu
|B| dµm ď

n

m

C1 ` C2 lnn

1´ δ
e2pφq ` 2|Ipφq|m´r.

Hence rB “ Op1{mq showing that the bias term rB decays faster w.r.t. m than
the mean integration error in (48).

The error estimate (47) shows that, if r is large enough, then the root mean
squared error decays at least as fast as the squared best approximation error.
However the rate of convergence of this estimate does not catch up with those of
Monte Carlo (49) and Importance Sampling (50) due to the missing decay with
respect to m. Here the error estimate (48) comes in handy since it recovers the
same convergence rate of Monte Carlo and Importance Sampling with respect to
m. The estimate (48) shows the main advantage of randomized cubatures over
Monte Carlo and Importance Sampling: the decay of the error (48) is determined
by the decay of the term m´1{2 and the decay of the best approximation error,
in contrast to (49) and (50) that only decay with respect to m at the same rate,
i.e. m´1{2 for the root mean squared error.

In Theorem 3 we have written the estimate (48) using the upper bound in
Lemma 3, that relates to the best approximation error in L2pΓ, µq. The same
estimate can be slightly improved using the equality (83), that relates to the
weighted best approximation error of φ in L2pΓ, µq. Since w´1 dµ in (13) is a
probability measure and w satisfies (12), such an error can be sandwiched for
any n ě 1 as

}φ´Πnφ}L1pΓ,µq ď }
?
wpφ´Πnφq} ď

?
n}φ´Πnφ}, φ P L2pΓ, µq,

or as
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n´1Varpwpφ´Πnφqq ď }
?
wpφ´Πnφq}

2 ď }w´1}L8pΓ,µqVarpwpφ´Πnφqq, φ P L2pΓ, µq,

thanks to Varpwpφ´Πnφqq “ }wpφ´Πnφq}
2 from (42).

For some polynomial approximation spaces, see the forthcoming Remark 9,
lower bounds for w of the form (67) are available. Using such a lower bound
and taking n “ 1, the variance in the above formula connects with the variance
of importance sampling (50).

In contrast to our cubature formulae, Importance Sampling and Monte Carlo
are not exact cubature formulae on Vn.

The more advantageous error estimate of randomized cubatures comes at
the price of two additional computational tasks: the calculation of the cubature
weights, that requires the solution of a linear system whose matrix G has size
nˆ n, see Remark 1, and the generation of the random samples from σn. The
cost for solving the linear system does not depend on m and d, and the cost for
assembling G scales linearly in m. The cost for the generation of the samples is
provably linear with respect to d and m, when Γ is a product domain.

Remark 2 (Adaptive randomized cubatures for nested sequences of approxima-
tion spaces). The results in Theorem 3 are proven using identically distributed
random samples, and apply to any given approximation space Vn. The same re-
sult as Theorem 3 can be proven for another type of (nonidentically distributed)
random samples, following the lines of the proof of [19, Theorem 2]. These
random samples allow the sequential construction of weighted least-squares esti-
mators on any nested sequence of approximation spaces pVnkqkě1 with dimension
nk :“ dimpVnkq, using an overall number of samples that remains linearly pro-
portional to nk, up to logarithmic terms. Using such a type of random samples
and [19, Theorem 3], the whole analysis of randomized cubatures from this ar-
ticle carries over using nested sequences of approximation spaces rather than a
single space.

Remark 3. The error estimates (46), (47), (48), have been presented for real-
valued functions, but they extend to complex-valued functions with essentially
the same proofs by identifying R2 and C.

Remark 4 (Median trick). For any k ě 1 odd, another estimator of Ipφq is

Imed
m,k pφq :“ med

´

Impφq
p1q, . . . , Impφq

pkq
¯

,

the median of k i.i.d. copies of Impφq. The following interesting observation for
Imed
m,k pφq has been pointed out to us by one of the referees during the review of

the paper. Combining (46) and [16, Proposition 2.2] with the interval rIpφq ´

p1`
?

2qe8,wpφq, Ipφq`p1`
?

2qe8,wpφqs, pθ` “ I`mpφq, α “ 2m´r and 1
2 p4αp1´

αqqk{2 ă 2k´1αk{2 gives

Pr
´

ˇ

ˇIpφq ´ Imed
m,k pφq

ˇ

ˇ ď p1`
?

2qe8,wpφq
¯

ě 1´ 2k´1p2m´rqk{2, (52)

17



again under condition (26). An interesting feature of (52) is that the confidence
level can be made exponentially small in k: taking m :“ r2γ{rs with γ ą 3 such
that (26) holds true (with the same n as in (46)) gives

Pr
´ˇ

ˇ

ˇ
Ipφq ´ Imed

r2γ{rs,kpφq
ˇ

ˇ

ˇ
ď p1`

?
2qe8,wpφq

¯

ě 1´ 2
k
2 p3´γq´1, (53)

with the same best approximation error e8,wpφq as in (46). The construction
of Imed

m,k pφq requires km evaluations of φ instead of only m required for Impφq.

3.1. Randomized cubatures with optimal asymptotic convergence rate

In this section we analyse another cubature formula, that is obtained by adding
a correction term to the cubature rImpφq defined in (43), using control variates
[13, 23]. Define two mutually independent sets of random samples: ry1, . . . , rym iid
from µ, and y1, . . . , ym iid from σ. We consider the following cubature formula,
that uses the above 2m random samples as cubature nodes:

pI2mpφq :“ rImpφq `
1

m

m
ÿ

i“1

pφ´ rφqpryiq. (54)

The nodes y1, . . . , ym, ry1, . . . , rym are not identically distributed. The m ran-
dom samples y1, . . . , ym are used to compute the weighted least-squares esti-
mator rφ of φ and the cubature rImpφq defined in (43), and then the m random

samples ry1, . . . , rym are used in the Monte Carlo estimator of φ ´ rφ. By con-
struction pI2mpφq « Ipφq because

Ipφq ´ Iprφq «
1

m

m
ÿ

i“1

pφ´ rφqpryiq,

and rImpφq “ Iprφq for any φ P L2pΓ, µq, as a consequence of (35). The error of

the cubature pI2mpφq satisfies the following theorem, whose proof is postponed
to Section 6.

Theorem 5. In any dimension d, for any real r ą 0 and any δ P p0, 1q, if
condition (26) holds true, and ry1, . . . , rym are i.i.d. from µ, and y1, . . . , ym are
i.i.d. from σ defined in (13), and ry1, . . . , rym, y1, . . . , ym are mutually indepen-
dent, then for any φ P L2pΓ, µq it holds that

E
ˆ

ˇ

ˇ

ˇ
Ipφq ´ pI2mpφq

ˇ

ˇ

ˇ

2
˙

ď
1

m

`

p1` εpmqq pe2pφqq
2 ` 2}φ}2m´r

˘

, (55)

with εpmq as in Theorem 2.

From the estimate in (55), using Jensen inequality, we have that

Ep|Ipφq ´ pI2mpφq|q ď
1
?
m

´

a

1` εpmqe2pφq `
?

2}φ}m´r{2
¯

. (56)
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In (48) when using 2m points we can choose an approximation space of dimen-
sion n˚ such that

2m

ln 2m
ě
p1` rq

ξpδq
n˚. (57)

We compare now the estimate (48) for the cubature rI2mpφq on Vn˚ with 2m

points and the estimate (56) for pI2mpφqq on Vn that also uses 2m points. Suppose
that minvPVn }φ´ v} ď Cn´s for some s, C ą 0. For any m ě 1, r ą 0 and φ P
L2pΓ, µq, it holds that 2|Ipφq|p2mq´r ď

?
2}φ}m´pr`1q{2. Both terms m´pr`1q{2

and p2mq´r always decay sufficiently fast for r large enough, i.e. r ě 2s ´ 1,
and therefore, when comparing the convergence rates w.r.t. n of (56) and (48),
we can focus only on the term containing the best approximation error. Denote

C(56) :“
a

1` εpmq and C(48) :“ 1`
εpm,nq

1´ δ
, that satisfy C(56) ď C(48) for any

δ ď 1, n ě 1 and m ě 1. From (26) and (57) n˚ ă 2n, and if s ě 1
2 then

n ą 22s ùñ C(48)

c

n˚

2m
pn˚q´s ą C(48)

c

2n

2m
p2nq´s ą

C(56)
?
m
n´s.

On the one hand, this shows that the error estimate (56) has a better con-
vergence rate w.r.t. n than (48) when n ě 22s, s ě 1

2 and r ě 2s ´ 1. On the
other hand, the estimate (48) gives a better upper bound for the error when n
falls in the preasymptotic range, in particular when s is large or r ă 2s ´ 1,
and the bound has a better dependence on φ since the term |Ipφq| can be much
smaller than }φ}.

The cubature (54) is exact on Vn w.h.p., because the same holds for the

cubature (43) from item i) of Theorem 3, as a consequence of φ´ rφ ” 0 for any

φ P Vn w.h.p., and therefore φpryiq “ rφpryiq for all i “ 1, . . . ,m.

Remark 5 (Convergence rates of stochastic cubatures). From (56), we obtain

explicit convergence rates of the cubature pI2mpφq, assuming an algebraic decay
n´s for some s ą 0 of the L2pΓ, µq best approximation error. For any r ą 0,
n ě 1 and the smallest integer m satisfying (26), for any φ P L2pΓ, µq:

e2pφq À n´s ùñ E
´
ˇ

ˇ

ˇ
Ipφq ´ pI2mpφq

ˇ

ˇ

ˇ

¯

À
1
?
m

´

n´s `m´r{2
¯

,

where pI2mpφq uses 2m evaluations of the function φ. The above convergence
rate can be made explicit w.r.t. m as

1
?
m

´

n´s `m´r{2
¯

À m´s´1{2plnmqsp1` rqs `m´r{2´1{2.

Taking r “ 2s yields the convergence rate m´s´1{2plnmqs up to a constant
independent of m and n.

Since condition (26) implies m Á p1 ` rqn lnn, it can also be rewritten
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w.r.t. n as

1
?
m

´

n´s `m´r{2
¯

À n´s´1{2 pp1` rq lnnq
´1{2

`n´r{2´1{2 pp1` rq lnnq
´r{2´1{2

and taking r “ 2s the leading term is n´s´1{2plnnq´1{2 up to a constant inde-
pendent of m and n.

Remark 6 (Comparison with results from [22, 13] in Sobolev spaces ). Funda-
mental results on integration over Γ “ r´1, 1sd with different classes of smooth
functions are presented in [22, 13] and references therein, for Monte Carlo meth-
ods using m evaluations of the integrand function.

Our convergence estimate (56) is written using the L2 best approximation
error of φ in a finite-dimensional subspace. With Sobolev classes, estimating
the best approximation error depending on the smoothness of the function φ
gives convergence rates that essentially match the optimal rates from [22, 13].
For instance, if we consider Sobolev spaces Hkpr0, 1sdq of functions with square-
integrable (weak) derivatives up to order k on the d-dimensional unit hypercube
with Lebesgue measure, and a subspace Vn for which the worst-case L2 error
sup}φ}

Hk
ď1 e2pφq — n´

k
d then we have

E
ˆ

ˇ

ˇ

ˇ
Ipφq ´ pI2mpφq

ˇ

ˇ

ˇ

2
˙

1
2

À m´
1
2 pn´

k
d `m´

r
2 q À m´

1
2´

k
d plnmq

k
d ,

where we have proceeded as in Remark 5 to express n as a function of m. This
rate agrees with the optimal convergence rate in Proposition 2-(ii) of [22, page
70], or with Theorem 5.3 of [13], up to a logarithmic term. Similar consider-
ations apply for integration of Hk functions on bounded Lipschitz domains as
long as standard piecewise polynomial spaces are used, that achieve a worst-case
error e2 — n´

k
d (see [25, 15]).

The estimates (48) and (56) hold in any general domain Γ Ď Rd. The
corresponding cubatures are exact on the given subspace, and the calculation of
their nodes and weights requires an L2-orthonormal basis in explicit form.

The rate in (48) is slower than (56) by a factor 1{2, and the corresponding
cubature uses m instead of 2m nodes. The estimate (48) is similar to [22,
Lemma 1, page 69], which also gives an estimate of the cubature error in terms
of the L2 best approximation error on a given subspace, using m nodes instead
of n, with m and n as in (26). The additional logarithmic oversampling factor
is required for the efficient generation of the cubature nodes, as described at the
end of the introduction.

3.2. Randomized cubatures with strictly positive weights

In this section we construct cubature formulae of the form (2) with the weights
(33), enforcing the additional property that all the weights α1, . . . , αm are
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strictly positive. Define

winf :“ inf
yPΓ

wpyq ď min
i“1,...,m

wpyiq “ n

˜

max
i“1,...,m

n
ÿ

j“1

|ψjpyiq|
2

¸´1

,

which is independent of m and depends on Vn. Of course winf ď 1, because
otherwise

ş

Γ
w´1 dµ ă 1 from (13), and this contradicts orthonormality of the

basis.
More precisely we prove that, if m is sufficiently larger than n, then

αi ě

a

wpyiqp2
a

wpyiq ´
?
winfq

2m
ě
wpyiq

2m

for all i “ 1, . . . ,m with high probability. Strict positivity of wpyq for any y P Γ
therefore implies that the weights α1, . . . , αm are all strictly positive. The next
theorem establishes how much the cubature weights deviate from the weights of
importance sampling in the nonasymptotic regime, when winf ą 0. The proof
of this theorem is postponed to Section 6.

Theorem 6. In any dimension d, for any real r ą 0 and any n ě 1, if the m
i.i.d. nodes y1, . . . , ym are drawn from σ defined in (13) and m satisfies

m

lnm
ě

3p1` rqn2

p4 lnp4{3q ´ 1qwinf
(58)

then

i) the weights α1, . . . , αm given by (33) satisfy

Pr

˜

m
č

i“1

#

ˇ

ˇ

ˇ

ˇ

αi ´
wpyiq

m

ˇ

ˇ

ˇ

ˇ

ď

a

winf wpyiq

2m

+¸

ą 1´ 2m´r; (59)

ii) the cubature formula (2) with weights (33) satisfies items i), ii) and iii)
of Theorem 3 with εpmq replaced by

εpmq “

4ξ

ˆ?
winf

3
?
n

˙

p1` rq lnm
ď

2

9p1` rq lnm
, (60)

in (47), and with 1{p1´ δq replaced by 3{p2´ 2δq in (48).

Remark 7. Since the following trivial inclusions between sets of random events
hold true

m
č

i“1

#

ˇ

ˇ

ˇ

ˇ

αi ´
wpyiq

m

ˇ

ˇ

ˇ

ˇ

ď

a

winf wpyiq

2m

+

Ă

m
č

i“1

"

αi ě
wpyiq

2m

*

Ă

m
č

i“1

tαi ą 0u ,
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from (59) the event in the above right-hand side holds true with an even larger
probability than 1´2m´r. Therefore, since from (59) all the weights α1, . . . , αm
are sandwiched between two strictly positive bounds, they are just strictly positive
with an even larger probability than 1´ 2m´r.

It is worth to notice that the weights of the cubature (54) are not strictly

positive. Using the expression of rφ, the cubature (54) can be written in the
form (2) as

pI2mpφq “
m
ÿ

i“1

´

αiφpryiq ` rαiφpyiq
¯

with nodes y1, . . . , ym, ry1, . . . , rym and weights

αi :“
1

m
, i “ 1, . . . ,m,

rαi :“

$

&

%

´
1

m

ˆ

řn
j“2

ˆ

1

m

řm
`“1 ψjpry`q

˙

W 1{2DG´1ej

˙

i

, if ~G´ I~ ď δ,

0, otherwise,

i “ 1, . . . ,m.

From above, the weights rαi might be negative. Proceeding as in the proof
of (59), one can obtain conditions on m ensuring that with large probability
řm
i“1 |rαi| À logm, see Remark 10, which is a classical way to quantify the

stability of a cubature in presence of negative weights.

4. Multivariate polynomial approximation spaces

In this section we assume that the domain Γ Ď Rd has a Cartesian product
structure,

Γ :“ ˆdq“1Γq, (61)

where Γq Ď R are bounded or unbounded intervals. We further assume that
dµ “ bdq“1dµq, where each µq is a probability measure on Γq. For convenience
we take Γ1 “ Γq and µ1 “ µq for any q “ 2, . . . , d. Assume the existence of a
family pϕjqjě0 of univariate orthogonal polynomials complete and orthonormal
in L2pΓ1, µ1q. For any ν P Nd0 we define the multivariate polynomials

ψνpyq :“
d
ź

q“1

ϕνq py
pqqq, y “ pyp1q, . . . , ypdqq P Γ, (62)

with ypqq being the qth coordinate of y. The set pψνqνPNd0 is a complete or-

thonormal basis in L2pΓ, µq.
Consider any finite d-dimensional multi-index set Λ Ă Nd0, and denote its

cardinality by #pΛq. We denote the polynomial space PΛ “ PΛpΓq associated
with Λ as

PΛ :“ span tψν : ν P Λu . (63)
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The result from the previous sections apply to the polynomial setting by taking
Vn “ PΛ with n “ #pΛq. A remarkable class of index sets are downward closed
index sets.

Definition 1 (Downward closed multi-index set Λ). In any dimension d, a
finite multi-index set Λ Ă Nd0 is downward closed, if

ν P Λ ùñ rν ď ν, @ rν P Λ,

where rν ď ν is meant component-wise, i.e. rνq ď νq for any q “ 1, . . . , d.

A relevant setting in which this type of index sets arises is Gaussian inte-
gration, where µ is the Gaussian measure on Γ “ Rd, and the ψν are tensorized
Hermite polynomials. On the one hand, tensorization of univariate Gaussian
quadratures becomes prohibitive as the dimension d increases, due to the ex-
ponential growth in d of the number of nodes. On the other hand, the use
of downward closed sets allows one to tune the polynomial space and allocate
only the most effective degrees of freedom, depending on the importance of each
coordinate in the approximation of the target function.

Remark 8 (Inverse inequalities for polynomials supported on downward closed
index sets). Given two integer parameters pθ1, θ2q P N0 ˆ N0 Y tp´1{2,´1{2qu,
let µ be the probability measure on Γ “ r´1, 1sd defined as dµ “ bddJ with

dJ :“ Cp1´ tqθ1p1` tqθ2 dλptq, t P r´1, 1s, and C s.t.

ż `1

´1

dJptq “ 1.

Consider the tensorized Jacobi polynomials pJθ1,θ2ν qνPNd0 constructed by (62)

when taking pϕkqkě0 as the sequence of univariate Jacobi polynomials orthonor-
mal in L2pr´1, 1s, dJq. The pJθ1,θ2ν qν corresponds to tensorized Legendre poly-
nomials when θ1 “ θ2 “ 0, and to tensorized Chebyshev polynomials when
θ1 “ θ2 “ ´ 1

2 . Choosing the orthonormal basis pψνqν as pJθ1,θ2ν qν and given
any downward closed index set Λ Ă Nd0 with cardinality equal to n, see Defini-
tion 1, define Vn using (63) as the space generated by pJθ1,θ2ν qνPΛ. In the setting
described above, the following inverse inequalities are proven in [4, 20]: for all
v P Vn it holds that

}v}L8 ď nBpθ1,θ2q}v}, (64)

where

Bpθ1, θ2q :“

$

&

%

maxtθ1, θ2u ` 1, pθ1, θ2q P N0 ˆ N0,
ln 3

2 ln 2
, pθ1, θ2q “

`

´ 1
2 ,´

1
2

˘

,
(65)

One step that leads to the proof of such inequalities, see [4, 20], is the estimate

max
yPΓ

n
ÿ

k“1

|ψkpyq|
2 ď n2Bpθ1,θ2q. (66)
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Remark 9 (Lower bound on w for polynomial spaces). From a numerical
standpoint, it is desirable that the weights are not only strictly positive but also
bounded away from zero. When Vn is a polynomial space on r´1, 1sd generated
by the pJθ1,θ2ν qνPΛ with Λ downward closed, strictly positive lower bounds for the
weights can be derived by using the estimate (66). Using (66) we obtain the
following lower bound uniformly over Γ for w:

wpyq ě n1´2Bpθ1,θ2q, y P Γ, (67)

with θ1, θ2 being the same parameters that appear in Remark 8.

The next result is a corollary of Theorem 6 in the particular case that Vn is
a polynomial space, and is obtained by using the lower and upper bounds (67)
and (12).

Corollary 2. In any dimension d with Γ “ r´1, 1sd, let µ be the Jacobi proba-
bility measure on Γ and Vn be any downward closed polynomial space generated
by tensorized Jacobi polynomials. For any real r ą 0 and n ě 1, if the m
i.i.d. nodes y1, . . . , ym are drawn from σ defined in (13) and m satisfies

m

lnm
ě

3p1` rq

4 lnp4{3q ´ 1
n2Bpθ1,θ2q`1, pθ1, θ2q P N0 ˆ N0 Y

"ˆ

´
1

2
,´

1

2

˙*

, (68)

then

i) the weights α1, . . . , αm given by (33) satisfy

Pr

˜

m
č

i“1

"

1

2mnBpθ1,θ2q
ď αi ď

3
?
n

2m

*

¸

ą 1´ 2m´r.

ii) the cubature formula (2) with weights (33) satisfies items i), ii) and iii)
of Theorem 3 with εpmq replaced by

εpmq “

4ξ

ˆ?
winf

3
?
n

˙

p1` rq lnm
ď

2

9p1` rq lnm
,

in (47), and with 1{p1´ δq replaced by 3{p2´ 2δq in (48).

The next corollary contains a similar result as Corollary 2 but choosing
w ” 1, that corresponds to using standard least squares with random samples
distributed as µ.

Corollary 3. In any dimension d with Γ “ r´1, 1sd, let µ be the Jacobi proba-
bility measure on Γ, and Vn be any downward closed polynomial space generated
by tensorized Jacobi polynomials. For any real r ą 0 and n ě 1, if the m
i.i.d. nodes y1, . . . , ym are drawn from µ and m satisfies

m

lnm
ě

3p1` rq

4 lnp4{3q ´ 1
n4Bpθ1,θ2q, pθ1, θ2q P N0 ˆ N0 Y

"ˆ

´
1

2
,´

1

2

˙*

, (69)
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then

i) the weights α1, . . . , αm given by (33) satisfy

Pr

˜

m
č

i“1

"

1

2m
ď αi ď

3

2m

*

¸

ą 1´ 2m´r.

ii) the cubature formula (2) with weights (33) satisfies items i), ii) and iii)
of Theorem 3 with εpmq replaced by

εpmq “

4ξ

ˆ

1

3nBpθ1,θ2q

˙

p1` rq lnm
ď

2

9n2Bpθ1,θ2qp1` rq lnm

in (47), and with 1{p1´ δq replaced by 3{2 in (48).

The exponent of n in condition (68) with weighted least squares is always
smaller than that in condition (69) with standard least squares. In the Legendre
and Chebyshev cases, Corollary 2 ensures positivity of the weights with large
probability if

m

lnm
ě

3p1` rq

4 lnp4{3q ´ 1
ns,

with

s “ 2Bp0, 0q ` 1 “ 3, in the Legendre case, and

s “ 2B

ˆ

´
1

2
,´

1

2

˙

` 1 “
ln 3

ln 2
` 1 « 2.585, in the Chebyshev case.

5. Conclusions

In any domain Γ Ď Rd with any dimension d P N, we have constructed ran-
domized cubature formulae that are stable and exact on a given space Vn on Γ
with dimension n, under the assumption that an L2 orthonormal basis of Vn is
available in explicit form. In Theorem 3 we have proven that the integration
error of these cubature formulae satisfies convergence estimates in probability
(46) and in expectation (47)–(48), under condition (26) on the required number
of nodes. Such a condition imposes a number of nodes only linearly propor-
tional to n, up to a logarithmic term, thus approaching the number of nodes in
Tchakaloff’s theorem (see Theorem 1), in the same general setting of arbitrary
domain Γ and arbitrary dimension d. If the number of nodes satisfies the more
demanding condition (58), where m is at least quadratically proportional to n
up to a logarithmic term, then the proposed randomized cubature formulae have
strictly positive weights with high probability. Both conditions (26) and (58)
are immune to the curse of dimensionality: the required number of nodes only
depends on n, and does not depend on the dimension d. The rate of conver-
gence with respect to m for the error in (48) catches up with the convergence
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rate m´1{2 of Monte Carlo, but the multiplicative constant in (48) can be much
smaller thanks to the additional decay of the best approximation error in Vn of
φ. As a consequence, the proposed randomized cubatures provably outperform
Monte Carlo whenever the best approximation error in Vn of φ decays faster
than n´1{2.

As a further contribution we have constructed also a cubature formula that
matches optimal rates from [22, 13] up to log terms in some settings like Sobolev
spaces, but with error bounds that can be larger in the preasymptotic regime,
see Theorem 5, Remark 5 and Remark 6.

A point that has not been addressed in the present article is the choice of the
space Vn. Such a choice depends indeed on the function φ, or on its smoothness
class. In many applications, for example in the analysis of partial differential
equations with parametric or stochastic data, a priori analyses provide good
approximation spaces Vn with proven convergence rates n´s with s ą 0. When-
ever this is not the case, one can resort to an adaptive construction of the
approximation space, see Remark 2.

The results on randomized cubatures in this article have been presented us-
ing always m identically distributed random samples from σ for the construction
of the weighted least-squares estimator of the integrand function, for both cuba-
tures in Theorem 3 and Theorem 5. The cubature in Theorem 5 uses in addition
m random samples from µ, but not for the construction of the weighted least-
squares estimator. The whole analysis in this paper applies tout court to other
types of (nonidentically distributed) random samples from other distributions
than σ, e.g. the distribution used in [19, Theorem 2], and extends to the adap-
tive setting by exploiting recent advances on adaptive weighted least-squares
estimators for approximating the integrand function.

6. Proofs and intermediate results

In this section we use the notation dµm :“ bmdµ.

Proof of Lemma 1. Proof of (35). On the one hand, using in sequence ψ1 ” 1,
the orthogonality property of the basis functions and }ψ1} “ 1, we have that

IpΠm
n φq “

ż

Γ

Πm
n φdµ (70)

“

ż

Γ

n
ÿ

j“1

βjψj dµ

“β1, (71)

with β1 being the coefficient associated to ψ1 in the expansion (17).
On the other hand, the left-hand side in (35) is the cubature formula (2),

that can be read (up to a multiplicative factor m´1) as the scalar product in
Rm between the vector α containing the weights and the vector Φ containing
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the evaluations of the function φ at the nodes, and from (20) we have

Impφq “
1

m
αJΦ “

1

m

`

DG´1e1

˘J
b “

1

m
eJ1 G

´1DJb “ eJ1 β “ β1, (72)

that proves the equality (35).
Proof of (36). We notice that, since Πm

n is a projection on Vn, then it holds
Πm
n v ” v for any v P Vn, and we obtain (36) from (35).

Proof of Theorem 3. The proof of i) is an immediate consequence of Lemma 1
and Corollary 1-ii).

For proving ii), using point i) we bound the integration error as

|Ipφq ´ Impφq| “

ˇ

ˇ

ˇ

ˇ

ż

Γ

pφ´Πm
n φq dµ

ˇ

ˇ

ˇ

ˇ

ď

ż

Γ

|φ´Πm
n φ| dµ

ď}φ´Πm
n φ}, (73)

and combining with (28) we obtain (46).
Proof of iii) estimate (47). We start by splitting the expectation in (47)

over the sets of events t~G ´ I~ ď δu and t~G ´ I~ ą δu. Since on the event

t~G´ I~ ď δu the cubature rImpφq equals Impφq, we obtain

E
ˆ

ˇ

ˇ

ˇ
Ipφq ´ rImpφq

ˇ

ˇ

ˇ

2
˙

“

ż

~G´I~ďδ
|Ipφq ´ Impφq|

2
dµm`

ż

~G´I~ąδ

ˇ

ˇ

ˇ
Ipφq ´ rImpφq

ˇ

ˇ

ˇ

2

dµm.

Then we use the upper bound (73) and proceeding as in the proof of (29) in [6]
we obtain
ż

~G´I~ďδ
|Ipφq ´ Impφq|

2
dµm ď

ż

~G´I~ďδ
}φ´Πm

n φ}
2 dµm ď p1`εpmqqpe2pφqq

2.

(74)
The last term in the right-hand side of (47) is an upper bound for the integral

on the event ~G´ I~ ą δ, where rImpφq is set to zero.
Proof of iii) estimate (48). Splitting the expectation in (48) over the events

t~G´ I~ ď δu and t~G´ I~ ą δu, using (43) and (39) we obtain

E
´ˇ

ˇ

ˇ
Ipφq ´ rImpφq

ˇ

ˇ

ˇ

¯

“

ż

~G´I~ďδ

ˇ

ˇ

ˇ

ˇ

1

m
eJ1 G

´1DJW 1{2g

ˇ

ˇ

ˇ

ˇ

dµm
looooooooooooooooooooooomooooooooooooooooooooooon

“:A

`

ż

~G´I~ąδ
|Ipφq| dµm

loooooooooooomoooooooooooon

“:B

.

(75)

Term B can be controlled as
ż

~G´I~ąδ
|Ipφq| dµm ď 2|Ipφq|m´r. (76)
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For term A, using (40), triangular inequality, the sub-multiplicative property
of the operator norm, }G´1} ď p1 ´ δq´1 and Cauchy-Schwarz inequality we
obtain

A ď

ż

~G´I~ďδ

ˇ

ˇ

ˇ

ˇ

1

m
eJ1 D

JW 1{2g

ˇ

ˇ

ˇ

ˇ

dµm `

ż

~G´I~ďδ

ˇ

ˇ

ˇ

ˇ

1

m
eJ1 pG

´1 ´ IqDJW 1{2g

ˇ

ˇ

ˇ

ˇ

dµm

ď E
ˆ
ˇ

ˇ

ˇ

ˇ

1

m
eJ1 D

JW 1{2g

ˇ

ˇ

ˇ

ˇ

˙

`

ż

~G´I~ďδ
~G´1 ´ I~

›

›

›

›

1

m
DJW 1{2g

›

›

›

›

`2

dµm

ď

˜

E

˜

ˇ

ˇ

ˇ

ˇ

1

m
eJ1 D

JW 1{2g

ˇ

ˇ

ˇ

ˇ

2
¸¸1{2

`
1

1´ δ

ż

~G´I~ďδ
~G´ I~

›

›

›

›

1

m
DJW 1{2g

›

›

›

›

`2

dµm

ď

˜

E

˜

ˇ

ˇ

ˇ

ˇ

1

m
eJ1 D

JW 1{2g

ˇ

ˇ

ˇ

ˇ

2
¸¸1{2

`
1

1´ δ

`

E
`

~G´ I~2
˘˘1{2

˜

E

˜

›

›

›

›

1

m
DJW 1{2g

›

›

›

›

2

`2

¸¸1{2

.

(77)

Using Lemmas 2, 3 and 4 to bound the expectations in (77) we obtain (48).

One of the results used in the proof of (48) is the following upper bound on
the spectral norm of sum of independent random matrices, see for example [34,
Theorem 4.1], that we rewrite here in the Hermitian case. We denote by 0n the
null n-by-n matrix.

Theorem 7. Consider a family pQiq1ďiďm of independent random matrices in
Rnˆn such that EpQiq “ 0n for all i, and define Z “

řm
i“1Q

i. Then

`

Ep~Z~2q
˘1{2

ď
a

Cpnq~EpZJZq~1{2 ` Cpnq

ˆ

E
ˆ

max
i“1,...,m

~Qi~2

˙˙1{2

,

with
Cpnq :“ 4p1` 2rlnnsq.

Lemma 2.

`

E
`

~G´ I~2
˘˘1{2

ď
a

4p1` 2rlnnsq

c

n´ 1

m

ˆ

1`
a

4p1` 2rlnnsq

c

n

m

˙

.

(78)

Proof. Using the random variable y distributed as σ, we introduce the n-by-n
real random matrices X “ Xpyq and Q “ Qpyq, whose elements are defined as

Xpqpyq :“
wpyq

m
ψppyqψqpyq, Qpqpyq :“ Xpqpyq ´

δpq
m
, p, q “ 1, . . . , n.

By construction, EpXq “ 1
m I and therefore EpQq “ 0n. Denote by pXiq1ďiďm

a family of m independent copies of X, and by pQiq1ďiďm a family of m inde-
pendent copies of Q.
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The matrix Xi has rank one, and Qi has full rank. Nonetheless, we can
compute an upper bound for ~Qi~ as follows:

~Qi~2 ď ~Qi~2
F

“ trace
`

pQiqJQi
˘

“ trace
`

pXi ´m´1IqJpXi ´m´1Iq
˘

“

n
ÿ

p“1

˜

n
ÿ

q“1

Xi
pqX

i
qp ´

2Xi
pp

m
`
δpp
m2

¸

“

n
ÿ

p“1

n
ÿ

q“1

`

Xi
pq

˘2
´

2

m

n
ÿ

p“1

Xi
pp `

n

m2

“
|wpyiq|

2

m2

n
ÿ

p“1

n
ÿ

q“1

|ψppyiq|
2|ψqpyiq|

2 ´
2wpyiq

m2

n
ÿ

p“1

|ψppyiq|
2 `

n

m2

“
n pn´ 1q

m2
, (79)

and the trace has been rewritten using

`

pXi ´m´1IqJpXi ´m´1Iq
˘

pq
“

n
ÿ

j“1

pXi
pj´m

´1δpjqpX
i
jq´m

´1δjqq “
n
ÿ

j“1

Xi
pjX

i
jq´

2

m
Xi
pq`

δpq
m2

,

and
n
ÿ

j“1

δpj “ δpp,
n
ÿ

j“1

δpjδjq “ δpq. (80)

The bound (79) holds uniformly for all i “ 1, . . . ,m, and therefore

E
ˆ

max
i“1,...,m

~Qi~2

˙

ď
n pn´ 1q

m2
. (81)

Define Z :“
řm
i“1Q

i “ G´ I and let us compute EpZJZq. The components
of the matrix Z can be written as Zpq “ xψp, ψqym ´ δpq, and therefore

pZJZqpq “
n
ÿ

k“1

pxψp, ψkym ´ δpkq pxψk, ψqym ´ δkqq

“

n
ÿ

k“1

xψp, ψkymxψk, ψqym ´ 2xψp, ψqym ` δpq,

where at the last step we have used (80). Taking the expectation on both sides
gives

EppZJZqpqq “
n
ÿ

k“1

Epxψp, ψkymxψk, ψqymq
loooooooooooooomoooooooooooooon

“:Tkpq

´δpq.
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Using the independence of the random samples, the term Tkpq can be rewritten
as

Tkpq “
1

m2
E

˜˜

m
ÿ

i“1

wpyiqψppyiqψkpyiq

¸˜

m
ÿ

j“1

wpyjqψkpyjqψqpyjq

¸¸

“
1

m2

¨

˚

˝

E

¨

˚

˝

m
ÿ

i“1

wpyiqψppyiqψkpyiq
m
ÿ

j“1
j‰i

wpyjqψqpyjqψkpyjq

˛

‹

‚

` E

˜

m
ÿ

i“1

pwpyiqq
2ψppyiqψqpyiqpψkpyiqq

2

¸

˛

‹

‚

,

and using linearity of expectation, the definition of w and (80) we obtain

n
ÿ

k“1

Tkpq “
1

m2

˜

n
ÿ

k“1

pmδpkpm´ 1qδqkq ` nmδpq

¸

“
m` n´ 1

m
δpq.

Hence we have finally

EpZJZq “
n´ 1

m
I,

and

~EpZJZq~ “
pn´ 1q

m
. (82)

We now apply Theorem 7 to the family of random matrices Q1, . . . , Qm,
using the bounds (81) and (82), and finally obtain (78).

Lemma 3.

E

˜

ˇ

ˇ

ˇ

ˇ

1

m
eJ1 D

JW 1{2g

ˇ

ˇ

ˇ

ˇ

2
¸

ď
n

m
pe2pφqq

2.

Proof. Since from (42) Epwgq “ 0, it holds that

E

˜

ˇ

ˇ

ˇ

ˇ

1

m
eJ1 D

JW 1{2g

ˇ

ˇ

ˇ

ˇ

2
¸

“E

¨

˝

˜

1

m

m
ÿ

i“1

wpyiqgpyiq

¸2
˛

‚

“
1

m2

m
ÿ

i,j“1

E pwpyiqgpyiqwpyjqgpyjqq

“
1

m2

m
ÿ

i“1

E
`

pwpyiqgpyiqq
2
˘

“
1

m

ż

Γ

wpyqpφpyq ´Πnφpyqq
2 dµ (83)

ď
n

m
pe2pφqq

2,

and at the last step we have used (12).
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Lemma 4.

E

˜

›

›

›

›

1

m
DJW 1{2g

›

›

›

›

2

`2

¸

“
n

m
pe2pφqq

2.

Proof. Using the independence of the random samples

E

˜

›

›

›

›

1

m
DJW 1{2g

›

›

›

›

2

`2

¸

“
1

m2
E

¨

˝

n
ÿ

k“1

˜

m
ÿ

i“1

Dik

a

wpyiqgpyiq

¸2
˛

‚

“
1

m2

n
ÿ

k“1

m
ÿ

i,j“1

E pψkpyiqwpyiqgpyiqψkpyjqwpyjqgpyjqq

“
1

m2

n
ÿ

k“1

¨

˚

˝

m
ÿ

i“1

E
`

pψkpyiqwpyiqgpyiqq
2
˘

`

m
ÿ

i,j“1
i‰j

E pψkpyiqwpyiqgpyiqψkpyjqwpyjqgpyjqq

˛

‹

‚

“
1

m2

m
ÿ

i“1

E

˜

pwpyiqgpyiqq
2

n
ÿ

k“1

pψkpyiqq
2

¸

`
mpm´ 1q

m2

n
ÿ

k“1

pE pψkwgqq2

“
n

m

ż

Γ

g2 dµ`
mpm´ 1q

m2

n
ÿ

k“1

ˆ
ż

Γ

ψkg dµ

˙2

“
n

m
pe2pφqq

2,

where at the last but one step we have used the definition of w, and at the last
step we have used the orthogonality of g to ψk for all k “ 1, . . . , n.

Proof of Theorem 5. Denote with E
ry1,...,rym the expectation over the random

samples ry1, . . . , rym. For given y1, . . . , ym, using the mutual independence be-
tween ry1, . . . , rym and y1, . . . , ym it holds that

E
ry1,...,rym

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

Ipφ´ rφq ´
1

m

m
ÿ

i“1

pφ´ rφqpryiq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚“
1

m
Var

ry„µpφ´ rφq, (84)

where the conditional variance on the right-hand side is defined as

Var
ry„µpφpryq ´ rφpryqq :“ E

ry„µ

ˆ

ˇ

ˇ

ˇ
φpryq ´ rφpryq ´ E

ry„µpφpryq ´ rφpryqq
ˇ

ˇ

ˇ

2
˙

,

using the following conditional expectation for the given y1, . . . , ym:

E
ry„µpφpryq ´ rφpryqq :“

ż

Γ

pφpryq ´ rφpryqq dµpryq.

For any given y1, . . . , ym, an upper bound for the variance is

Var
ry„µpφpryq ´ rφpryqq ď

ż

Γ

pφpryq ´ rφpryqq2 dµpryq “ }φ´ rφ}2. (85)
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Using the law of total expectation, (84), the upper bound (85) and (29) we have
that

E
ry1,..., rym
y1,...,ym

ˆ

ˇ

ˇ

ˇ
Ipφq ´ pI2mpφq

ˇ

ˇ

ˇ

2
˙

“E
ry1,..., rym
y1,...,ym

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

Ipφ´ rφq ´
1

m

m
ÿ

i“1

pφ´ rφqpryiq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

“Ey1,...,ym

¨

˝E
ry1,...,rym

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

Ipφ´ rφq ´
1

m

m
ÿ

i“1

pφ´ rφqpryiq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

˛

‚

ď
1

m
Ey1,...,ym

´

}φ´ rφ}2
¯

ď
1

m

ˆ

p1` εpmqqmin
vPVn

}φ´ v}2 ` 2}φ}2m´r
˙

.

Proof of Theorem 6. Proof of i). For any i “ 1, . . . ,m, using the sub-multiplicative
property of the operator norm we obtain that

ˇ

ˇ

ˇ

ˇ

αi ´
wpyiq

m

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

a

wpyiq

m
Di

`

G´1 ´ I
˘

e1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

a

wpyiq

m
}Di}`2 ~G

´1 ´ I~ }e1}`2 .

(86)

Now we estimate each term in the right-hand side of (86). For the second term,
the definitions of D in (18) and w in (11) ensure that for any i “ 1, . . . ,m it
holds

}Di}
2
`2 “ wpyiq

n
ÿ

j“1

ψjpyiq
2 “ n.

For the third term, using (32) we have that, under condition (26),

~G´1 ´ I~ ď
δ

1´ δ
,

with probability at least 1 ´ 2m´r. For the fourth term }e1}`2 “ 1. We now
observe that the restriction of δ to the interval

0 ă δ ď

?
winf

2
?
n`

?
winf

, n ě 1, (87)

and strict monotonicity of δ ÞÑ δp1 ´ δq´1 on such an interval ensure that the
left-hand side in (86) satisfies the following upper bound:

ˇ

ˇ

ˇ

ˇ

αi ´
wpyiq

m

ˇ

ˇ

ˇ

ˇ

ď

a

wpyiq

m

δ
?
n

1´ δ
ď

a

wpyiqwinf

2m
. (88)

The above implies that αi ą 0 uniformly for all i “ 1, . . . ,m.
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Since winf ď 1, choosing

δ “

?
winf

3
?
n
ď

?
winf

2
?
n`

?
winf

, n ě 1, (89)

and thanks to (93), we can enforce condition (26) as

m

lnm
ě

3p1` rqn2

p4 lnp4{3q ´ 1qwinf
“

p1` rqn

3p4 lnp4{3q ´ 1qδ2
ě
p1` rqn

ξpδq
, (90)

and obtain condition (58). Condition (58) ensures that (88) holds with prob-
ability at least 1 ´ 2m´r and simultaneously for all i “ 1, . . . ,m, that is the
claim (59).

Proof of ii). From (90), condition (58) requires more points than (26). Hence
any cubature formula whose nodes are drawn from (13) and satisfy (58), yields
an integration error which obeys the convergence estimates in Theorem 3 but
with δ chosen as in (89). Using the upper bounds (12) and (92) one obtains
(60) in (47). Since δ ď 1

3 for any n ě 1, (48) holds true replacing p1´ δq´1 by
3{2.

Remark 10. Under condition (26) for any δ P p0, 1q it holds that

Pr

˜

m
č

i“1

#

|rαi| ď
pn´ 1q

?
n

p1´ δq

a

wpyiq

m
min

ˆ

?
1` δ,

3δ

2

˙

+¸

ą 1´ 2m´r. (91)

The above is proven estimating each term in the definition of the rαi: the terms
D, W 1{2 are estimated as in the proof of (59), }G´1} ď p1 ´ δq´1, and the
n´ 1 discrete inner products satisfy

Pr

˜

n
č

j“1

"

|xψj , ψ1ym| ď min

ˆ

?
1` δ,

3δ

2

˙*

¸

ą 1´ 2m´r,

since from the polarization identity and ψ1 ” 1 we have for any j ą 1 that

xψj , ψ1ym “
}ψj ` ψ1}

2
m

2
´
}ψj}

2
m

2
´

1

2

ď

$

&

%

}ψj}m ď
?

1` δ,
1` δ

2
}ψj ` 1}2 ´

}ψj}
2
m

2
´

1

2
“

1` δ

2
p}ψj}

2 ` 1q ´
}ψj}

2
m

2
´

1

2
ď

3δ

2
.

In (91), choosing δ depending on n and proceeding similarly as in the proof
of (59), one can obtain conditions on m of the order n4 ensuring

řm
i“1 |rαi| ď

C logm with large probability for some constant C.

Lemma 5.

ξpδq ď
δ2

2
, δ P r0, 1s. (92)
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Proof. Define Upδq :“ δ2{2 and Dpδq :“ Upδq ´ ξpδq. The function Dpδq is
continuously differentiable at any δ ě 0, and strictly increasing since dDpδq{dδ “
δ ´ lnp1 ` δq ą 0 for any δ ą 0. Since Dp0q “ 0, we have Dpδq ě 0 for any
δ P r0, 1s, and hence (92).

Lemma 6.

3p4 lnp4{3q ´ 1q δ2 ď ξpδq, δ P

„

0,
1

3



. (93)

Proof. Define ω :“ 3p4 lnp4{3q ´ 1q « 0.452, Lpδq :“ ωδ2 and Dpδq :“ ξpδq ´
Lpδq. The function Dpδq is twice continuously differentiable at any δ ě 0,
dDpδq{dδ “ lnp1 ` δq ´ 2ωδ, and d2Dpδq{dδ2 “ p1 ` δq´1 ´ 2ω. Hence the
function Dpδq is convex on r0, p2ωq´1 ´ 1s, concave on rp2ωq´1 ´ 1, 1{3s, and
since Dp0q “ dDp0q{dδ “ Dp1{3q “ 0 it is also nonnegative over r0, 1

3 s, that
gives (93).
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[21] H.M.Möller: Lower bounds for the number of nodes in cubature formulae,
Numerische Integration, 45:221–230, 1979.

[22] E.Novak: Deterministic and stochastic error bounds in numerical analysis,
Springer, 1988.

[23] E.Novak: Some Results on the Complexity of Numerical Integration, In:
Cools R., Nuyens D. (eds) Monte Carlo and Quasi-Monte Carlo Meth-
ods. Springer Proceedings in Mathematics & Statistics, vol 163. Springer,
Cham., 2016.

35



[24] E.Novak, K.Ritter: Simple cubature formulas with high polynomial exact-
ness, Constr.Approx. 15:499-522, 1999.

[25] E.Novak, H.Triebel: Function spaces in lipschitz domains and optimal rates
of convergence for sampling, Constr.Approx. 23(3):325–350, 2006.

[26] J.Oettershagen: Construction of optimal cubature algorithms with applica-
tions to econometrics and uncertainty quantification, Phd thesis, 2017.

[27] C.P.Robert, G.Casella: Monte Carlo statistical methods, Springer, 2013.

[28] M.Putinar: A note on Tchakaloff’s theorem, Proceedings of the American
Mathematical Society, 125(8):2409–2414, 1997.

[29] E.K.Ryu, S.P.Boyd: Extensions of Gauss quadrature via linear program-
ming, Found. Comput. Math. 15:953–971, 2014.

[30] S.Smolyak: Quadrature and interpolation formulas for tensor products of
certain classes of functions, Dokl. Akad. Nauk SSSR, 4:240–243, 1963.

[31] A.H.Stroud: Quadrature methods for functions of more than one variable,
New York Acad.Sci. 86:776–791, 1960.

[32] A.H.Stroud: Approximate Calculation of Multiple Integrals, Prentice-Hall,
1971.

[33] V.Tchakaloff: Formules de cubature méchaniques à coefficients non
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