
HAL Id: hal-03950347
https://hal.science/hal-03950347v1

Preprint submitted on 21 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Correctness of Concurrencies in (Reversible)
Concurrent Calculi

Clément Aubert

To cite this version:
Clément Aubert. The Correctness of Concurrencies in (Reversible) Concurrent Calculi. 2023. �hal-
03950347�

https://hal.science/hal-03950347v1
https://hal.archives-ouvertes.fr

The Correctness of Concurrencies in (Reversible)
Concurrent Calculi

Clément Aubert 1,

School of Computer and Cyber Sciences, Augusta University, Georgia, USA

Abstract

This article designs a general principle to check the correctness of the definition

of concurrency (a.k.a. independence) of events for concurrent calculi. Concur-

rency relations are central in process algebras, but also two-sided: they are

often defined independently on composable and on coinitial transitions, and no

criteria exists to assess whether they “interact correctly”. This article starts

by examining how reversibility can provide such a correctness of concurrencies

criteria, and its implications. It then defines, for the first time, a syntactical

definition of concurrency for CCSK, a reversible declension of the calculus of

communicating systems. To do so, according to our criteria, requires to define

concurrency relations for all types of transitions along two axis: direction (for-

ward or backward) and concomitance (coinitial or composable). Our definition

is uniform thanks to proved transition systems and satisfy our sanity checks:

square properties, sideways diamonds, but also the reversible checks (reverse

diamonds and causal consistency). We also prove that our formalism is either

equivalent to or a refinement of pre-existing definitions of concurrency for re-

versible systems. We conclude by discussing additional criteria and possible

future works.

Keywords: Formal Semantics, Process Algebra, Concurrency, Reversibility

2020 MSC: 68N19, 68Q85

Email address: caubert@augusta.edu (Clément Aubert)
1This work has benefited from the support of the Augusta University Research Assistance

Grants Program.

Preprint submitted to J. Log. Algebr. Methods Program January 21, 2023

https://orcid.org/0000-0001-6346-3043
https://orcid.org/0000-0001-6346-3043

Preamble

Following Lars Kristiansen [1], we tried to give priority to readability, partic-

ularly in this Preamble, to reach a broader audience: reversibility is not a topic

on its own, it is a tool that can bring enlightenment to diverse fields, and we hope

that this preamble will help the reader unfamiliar with reversibility but curious5

about concurrency to understand how this tool can be leveraged with benefits.

A concurrent program is by nature extremely hard to debug [2], but its

correctness can be evaluated by writing a specification, and then checking that

the program matches it [3]. Expressing those specifications requires a formal

language, that abstracts away irrelevant details and focus on the program’s ob-10

servable behaviour. Process algebras provide such a high-level description of

interactions, communications, and synchronizations between a collection of in-

dependent processes that allows to model a vast range of situations. A central

element of those algebras is to define when two events (generally associated to

the transitions that triggered them) are independent, or concurrent. By duality,15

events that are not concurrent are dubbed dependent, or causally related .2 Be-

ing able to distinguish between events those that are causally related and those

that are not is one of the crucial contributions of process algebras, as this mech-

anism allows to sidestep many of the difficulties one has to face when debugging

concurrent programs.20

But how can one guarantee that those definitions of concurrency and causal

relations are “the right ones”? Since the are defined by duality (two events

are concurrent iff they are not causally related), it suffices to define and check

only one of the two notion. For concurrency, written ⌣, a standard correctness

criteria is expressed in terms of “diamonds”:25

2As a matter of fact, the order is often swapped: dependency is the primitive relation, and

concurrency is defined by duality.

2

∀t1 : X
θ1−→ X1, t2 : X

θ2−→ X2 with t1 ⌣ t2, ∃Y s.t. X1
θ2−→ Y and X2

θ1−→ Y .

(Square Property)

∀t1 : X
θ1−→ X1, t2 : X1

θ2−→ Y with t1 ⌣ t2, ∃X2 s.t. X
θ2−→ X2

θ1−→ Y .

(Sidways Diamond)

They intuitively means that any two transitions t1, t2 that are independent

(i.e., that are in the ⌣ relation) can be combined differently without altering

the end-result. (Square Property) expresses this fact for coinitial transitions: it

states that simultaneous transitions starting from the same state can “later on”

agree if they are concurrent. (Sidways Diamond) expresses it for composable5

transitions: subsequent transitions, that follow each other, can be swapped if

they are concurrent. Graphically, we can represent them as follows:

X1

Xθ1

Yθ2

X2

θ2

θ1

X

X1θ1

Y

θ2

X2
θ2 θ1

(Square Property) (Sidways Diamond)

More succinctly:

Looking more carefully, one may observe that requiring both diamonds to

hold actually requires two definitions of concurrency: one on coinitial transitions10

(⌣i), and one on composable transitions (⌣c). If they are related, and if they

are, how, is generally overlooked: in the vast literature on process algebras,

one can find systems where only one notion is defined, but to my knowledge

those that defines the two do not have a formal criteria to assess whenever they

interact correctly. At best, the same definition is be used for both notions of15

concurrencies [4], which seems to prevent the need for a formal criteria. One

reason for this lack of criteria, we assume, is that “interacting correctly” is

difficult to define: how should composable and coinitial transitions relate w.r.t.

concurrency?

3

One of the goal of this paper is to convince the reader that reversibility pro-

vides an excellent method to answer that question. It has been, to the best of

our knowledge, completely overlooked, despite its simplicity and universal ap-

plicability. The starting point is the loop lemma, that states that any transition

in a reversible system t : X
θ
−→ Y can be reversed3 as t• : Y

θ
X with (t•)• = t.5

From there, a correctness criterion linking ⌣i and ⌣c can easily be formulated:

(t1 ⌣i t2 for t1 : X
θ1−→ X1, t2 : X

θ2−→ X2)

⇐⇒ (t•1 ⌣c t2 for t•1 : X1
θ1

X, t2 : X
θ2−→ X2)

(Correctness of Concurrencies)

However, this correctness uses a definition of ⌣i on forward coinitial transi-

tions, and a definition of ⌣c on backward then forward composable transitions.

Looking more closely, defining both ⌣i and ⌣c on reversible systems requires

to split each definition in four, depending on the directions of the transitions:10

coinitial Composable

Both forward ⌣f
i ⌣f

c

Both backward ⌣b
i ⌣b

c

Forward then backward ⌣fb
i ⌣fb

c

Backward then forward ⌣bf
i ⌣bf

c

Our (Correctness of Concurrencies) to relate coinitial and composable con-

currencies seems to come at the high cost of having to define eight different

notions of concurrency (not to mention the additional diamonds we now have

to prove—we come back to this later). Luckily, three principles can be leveraged15

to limit the burden considerably:

3In general, the label θ is not altered by this reversing, but the rest of our discussion in

this preamble would still be valid if it was, albeit probably less digest.

4

Concurrencies should be symmetric That is,

(t1 ⌣fb
i t2 for t1 : X

θ1−→ X1, t2 : X
θ2

X2)

⇐⇒ (t2 ⌣bf
i t1 for t2 : X

θ2
X2, t1 : X

θ1−→ X).

Concurrencies should be direction-agnostic That is,

(t1 ⌣f
c t2 for t1 : X

θ1−→ X1, t2 : X1
θ2−→ X2)

⇐⇒ (t•2 ⌣b
c t

•
1 for t•2 : X2

θ2
X1, t

•
1 : X1

θ1
X).

Correctness of Concurrencies The criteria we presented earlier can be in-

stantiated as:

(t1 ⌣f
i t2 for t1 : X

θ1−→ X1, t2 : X
θ2−→ X2)

⇐⇒ (t•1 ⌣bf
c t2 for t•1 : X1

θ1
X, t2 : X

θ2−→ X2)

(t1 ⌣fb
i t2 for t1 : X

θ1−→ X1, t2 : X
θ2

X2)

⇐⇒ (t•1 ⌣b
c t2 for t•1 : X1

θ1
X, t2 : X

θ2
X2)

(t1 ⌣bf
i t2 for t1 : X

θ1
X1, t2 : X

θ2−→ X2)

⇐⇒ (t•1 ⌣f
c t2 for t•1 : X1

θ1−→ X, t2 : X
θ2−→ X2)

(t1 ⌣b
i t2 for t1 : X

θ1
X1, t2 : X

θ2
X2)

⇐⇒ (t•1 ⌣fb
c t2 for t•1 : X1

θ1−→ X, t2 : X
θ2

X2)

Writing e.g., ⌣f
i ⇐⇒ ⌣bf

c to express that ⌣f
i and ⌣bf

c can be mutually

defined, our three principles give:

⌣f
i ⇐⇒ ⌣bf

c (1)

⌣b
i ⇐⇒ ⌣fb

c (2)

⌣fb
i ⇐⇒ ⌣bf

i ⇐⇒ ⌣f
c ⇐⇒ ⌣b

c (3)

5

coinitial Composable

(1)
⇐=⇒

(2)
⇐=⇒

⇐⇒
(3)

⇐=⇒ ⇐⇒

Table 1: Concurrencies for Reversible Systems

Square Properties

Reverse Diamonds

Sideways Diamonds

Table 2: Diamonds and Squares for Reversible Systems

Hence, we need to define only one relation on each line (1), (2) and (3) to

define concurrency for the eight possible cases. We represent those equivalences

graphically in Table 1.

Defining three relations instead of eight and letting the principles we laid out

earlier guarantee that they interact correctly saves us some burden, but we still5

have to address our initial question: how can we make sure that those (now nu-

merous) definitions of concurrency are “the right ones”? A natural strategy is to

decline our diamonds ((Square Property) and (Sidways Diamond)) to reversible

systems to account for all the possible situations, as presented in Table 2.4

Satisfying all those diamonds is, in our opinion, an excellent indication that10

4There has been some variations in the naming of those properties. From a rewriting

perspective, they are all forms of (local) confluence, but the concurrency community has used

diverse namings. The name “reverse diamond” was coined very early in the study of reversible

systems [5, Proposition 5.10][6, Definition 2.3] and seemed the best fit for this property that

does not exist in forward-only systems.

6

the concurrency relations were properly defined and behave as expected. Fur-

thermore, using the logical principles we presented, proving only one of each

(Square Properties), (Reverse Diamonds) and (Sideways Diamonds) is enough

to obtain them all.

We believe this article to be the first one to identify and clearly lay out5

this criteria to guarantee the correctness of the definitions of concurrency. For

systems endowed with only a definition for coinitial or composable transitions,

our criteria can also be used to provide a definition for the missing one. An

added beauty is that it allows to mutually define concurrency relations between

coinitial and composable transitions, and between forward and backward tran-10

sitions, making both worlds interact in harmony. It is enabled by the study

of reversibility, which has repeatedly contributed to a better understanding of

notions applicable to the forward-only world too.

This article illustrates those general principles for a particular concurrent

system, CCSK. It introduces a single definition for ⌣f
c , ⌣b

c and ⌣fb
c and ⌣bf

c by15

providing a direction-agnostic definition of ⌣c, and prove three of the required

diamonds. We believe the general applicability of the principles exposed in this

preamble goes far beyond the particular case of CCSK, or of process algebras for

that matter, and hope that it will inspire researchers in other fields to leverage

reversibility to obtain sound, logical, notions.20

1. Introduction: Reversibility, Concurrency–Interplays

Concurrency Theory is being reshaped by reversibility: fine distinctions

between causality and causation [5] contradicted Milner’s expansion laws [7,

Example 4.11], and the study of causal models for reversible computation led to

novel correction criteria for causal semantics—both reversible and irreversible [8].25

“Traditional” equivalence relations have been captured syntactically [9], while

original observational equivalences were developed [7]: reversibility triggered a

global reconsideration of established theories and tools, with the clear intent

of providing actionable methods for reversible systems [10], novel axiomatic

7

foundations [11] and original non-interleaving models [8, 12, 13].

Two Formalisms extend with reversible features the Calculus of Commu-

nicating Systems (CCS) [14], which is the godfather of π-calculus [15], among

others formalisms. Reversible CCS (RCCS) [16] and CCS with keys (CCSK) [5]

are similarly the source of most [8, 17, 18, 19]—if not all—of later formalism5

developed to enhance reversible systems with some respect (rollback operator,

name-passing abilities, probabilistic features, . . .). Even if those two systems

share a lot of similarities [20], they diverge in some respects that are not fully

understood—typically, it seems that different notions of “contexts with history”

led to establish the existence of congruences for CCSK [7, Proposition 4.9] or10

the impossibility thereof for RCCS [21, Theorem 2]. However, they also share

some shortcomings, and we offer to tackle one of them for CCSK, by providing a

syntactical definition of concurrency that is easy to manipulate and that satisfies

the usual sanity checks, in addition to our (Correctness of Concurrencies).

Reversible Concurrency is of course a central notion in the study of15

RCCS and CCSK, as it enables the definition of causal consistency—a princi-

ple that, intuitively, states that backward reductions can undo an action only if

its consequences have already been undone—and to obtain models where con-

currency and causation are decorrelated [5]. As such, it has been studied from

multiple angles, but, in our opinion, never in a fully satisfactory manner. In20

CCSK, sideways and reverse diamonds properties were proven using conditions

on keys and “joinable” transitions [5, Propositions 5.10 and 5.19], but to our

knowledge no “definitive” definition of concurrency was proposed. Ad-hoc def-

initions relying on memory inclusion [22, Definition 3.1.1] or disjointness [16,

Definition 7] for RCCS, and semantical notions for both RCCS [9, 12, 23] and25

CCSK [6, 13, 24] have been proposed, but, to our knowledge, none of these

have ever been

1. compared to each other,

2. compared to pre-existing forward-only definitions of concurrency,

3. proven to satisfy our (Correctness of Concurrencies).30

8

Our Contribution introduces the first syntactical definition of concurrency

for CCSK (Sect. 3.1), by extending the “universal” concurrency developed for

forward-only CCS [25], that leveraged proved transition systems [26]. Our def-

inition of dependency (Sect. 3.3) is almost identical to the one used for proved

forward-only systems, and our definition of concurrency is simple enough to be5

applicable to all types of transitions along the two axis: direction (forward or

backward) and concomitance (coinitial or composable). The square properties,

sideways and reverse diamonds are proven in a very similar fashion, and gives all

the squares of Table 2 easily (Sect. 4.2). We furthermore establish the correct-

ness of this definition by proving other expected reversible properties, among10

which causal consistency (Sect. 4.3). We then discuss how proved transition

systems can be adapted to other reversible systems (RCCS [16, 22] and its

“identified” declensions [21]) , and how our definition of concurrency relates to

pre-existing ones, including one coming from reversible π-calculus (Sect. 5). In

essence, we prove that our technique gives a notion of concurrency that either15

match or subsumes existing definitions, that sometimes lack a notion of concur-

rency for transitions of opposite directions. Finally, we sketch some additional

criteria our definition should ideally fulfill, and how to approach them (Sect. 6).

We then briefly conclude (Sect. 7).

Changelog. This article extends and improves a conference publication [27] and20

its preliminary technical report [28]. In particular, it:

• Clarifies in the Preamble the general applicability and methodology behind

our method,

• Clarifies the interplay and differences between our definition of concur-

rency and the forward-only one (Sect. 3.4),25

• Streamlines and clarifies the proofs of all the results,

• Contains more details about the “universality” of our approach,

• Proves the additional Coinitial Propagation of Independence property

(Corollary 1), which in turns gives the Independence of Diamonds (Corollary 2),

9

• Generally improves the exposition and narrative.

2. Finite and Reversible Process Calculi

We begin by recalling the pre-existing material required to detail our con-

tribution: the finite fragment of CCS, its proved transition system, and then

CCSK.5

2.1. A Proved Transition System For CCS

We briefly recall the (forward-only) finite fragment of the calculus of com-

municating system (simply called CCS) following a standard presentation [29],

and then its proved transition system [25]. Proved transition systems [25, 26,

30, 31, 32, 33] enrich the transition labels with prefixes that describe parts of10

their derivation, to keep track of their dependencies or lack thereof.

We recall here a variation on an earlier formalism [34] that accommodated

CCS with replication and enabled a definition of causality that agreed with

pre-existing causal semantics of CCS and CCS with recursion [25, Theorem 1].

This system includes information about sums [25, footnote 2], but diverge in15

its definitions of dependencies and concurrencies: our definition of dependency

needs to account for the permanence of the sum operator, and our concurrency

relation accounts for internal (i.e., τ -) transitions, omitted from that work [25,

Definition 3] but present in older articles [32, Definition 2.3].

Definition 1 ((Co-)names and labels). Let N = {a, b, c, . . . } be a set of names20

and N = {a, b, c, . . . } its set of co-names. The set of labels L is N∪N∪{τ}, and

we use α, β (resp. λ) to range over L (resp. L\{τ}). A bijection · : N → N, whose

inverse is also written ·, gives the complement of a name, and we let τ = τ for

commodity.

Definition 2 (Operators). CCS processes are defined as usual:25

P,Q :=0 (Inactive process)

α.P (Prefix)

P\α (Restriction)
10

Action and Restriction

act.
α.P

α
−→ P

P
θ
−→ P ′

ℓ(θ) /∈ {a, a} res.

P\a
θ
−→ P ′\a

Parallel Group

P
θ
−→ P ′

|L
P | Q

|Lθ
−−→ P ′ | Q

P
υLλ−−→ P ′ Q

υRλ
−−→ Q′

syn.

P | Q
〈|LυLλ,|RυRλ〉
−−−−−−−−−→ P ′ | Q′

Q
θ
−→ Q′

|R
P | Q

|Rθ
−−→ P | Q′

Sum Group

P
θ
−→ P ′

+L

Q+ P
+Lθ−−−→ P ′

Q
θ
−→ Q′

+R

Q+ P
+Rθ
−−−→ Q′

Figure 1: Rules of the proved labeled transition system (LTS) for CCS

P +Q (Sum)

P | Q (Parallel composition)

The inactive process 0 is omitted when preceded by a prefix, and the binding

power of the operators [35, p. 68], from highest to lowest, is \α, α., | and +, so

that e.g., α.P +Q\α | P + a is to be read as (α.P) + (((Q\α) | P) + (a.0)). In

a process P | Q (resp. P +Q), we call P and Q threads (resp. branches).

Definition 3 (Enhanced labels). Let υ, υL and υR range over strings in the set5

{|L, |R,+L,+R}∗, enhanced labels are defined as

θ := υα ‖ υ〈|LυLα, |RυRα〉

We write E the set of enhanced labels, and define ℓ : E → L:

ℓ(υα) = α ℓ(υ〈|LυLα, |RυRα〉) = τ

The proved labeled transition system for CCS,
θ
−→, is reminded in Fig. 1.

2.2. CSSK: A “Keyed” Reversible Concurrent Calculus

CCSK captures uncontrolled reversibility using two symmetric LTS—one for

forward transitions, one for backward transitions—that manipulate keys mark-10

11

ing executed prefixes, to guarantee that reverting synchronizations cannot be

done without both parties agreeing. We borrow the syntax to the latest paper

on the topic [7], which slightly differs [7, Remark 4.2] with the classical defini-

tion [5]. However, those changes have no impact since we refrain from using

CCSK’s newly introduced structural congruence, but discuss it in Sect. 6.5

Definition 4 (Keys, prefixes and CCSK processes). Let K = {m,n, . . .} be a

set of keys, we let k range over them. Prefixes are of the form α[k]—we call

them keyed labels—or α. CCSK processes are CCS processes where the prefix

can also be of the form α[k], we let X , Y range over them.

The forward LTS for CCSK,
α[k]
−−→, is given in Fig. 2—with key and std10

defined in Definition 5. The reverse LTS
α[k]

is the exact symmetric of
α[k]
−−→ [7,

Figure 2] (it can also be read from Fig. 3), and we write X
α[k]
−−−→ Y if X

α[k]
Y

or X
α[k]
−−→ Y . For all three types of arrows, we sometimes omit the label and

keys when they are not relevant, and mark with ∗ their transitive closures. As

usual, we restrict ourselves to reachable processes, defined below.15

Definition 5 (Standard and reachable processes). The set of keys in X , key(X),

is defined inductively:

key(0) = ∅ key(P +Q) = key(P) ∪ key(Q)

key(α.P) = key(P) key(P |Q) = key(P) ∪ key(Q)

key(α[k].P) = {k} ∪ key(P)

We say that X is standard and write std(X) iff key(X) = ∅—that is, if X is a

CCS process. If there exists a process OX s.t. std(OX) and OX →∗ X , then X

is reachable.

Lemma 1 (Loop lemma). For all t : X
θ
−→ X ′, there exists a unique t• : X ′ θ

X, and conversely. Furthermore, (t•)• = t.20

Proof. This was proven for CCSK at its inception [5, Prop. 5.1] and simply

follows from the fact that each rule in Fig. 2 has an inverse.

12

Action, Prefix and Restriction

std(X) act.

α.X
α[k]
−−→ α[k].X

X
β[k]
−−→ X ′

k 6= k′ pre.

α[k′].X
β[k]
−−→ α[k′].X ′

X
α[k]
−−→ X ′

α /∈ {a, a} res.

X\a
α[k]
−−→ X ′\a

Parallel Group

X
α[k]
−−→ X ′

k /∈ key(Y) |L
X | Y

α[k]
−−→ X ′ | Y

Y
α[k]
−−→ Y ′

k /∈ key(X) |R
X | Y

α[k]
−−→ X | Y ′

X
λ[k]
−−→ X ′ Y

λ[k]
−−→ Y ′

syn.

X | Y
τ [k]
−−→ X ′ | Y ′

Sum Group

X
α[k]
−−→ X ′

std(Y) +L

X + Y
α[k]
−−→ X ′ + Y

Y
α[k]
−−→ Y ′

std(X) +R

X + Y
α[k]
−−→ X + Y ′

Figure 2: Rules of the forward labeled transition system (LTS) for CCSK

13

3. A New Causal Semantics for CCSK

We begin our contribution with a simple definition of a proved transition

system for CCSK and its causal semantics. Enhanced keyed labels let us easily

define a notion of causality for CCSK with “built-in” reversibility, as the exact

same definition will be used for forward and backward transitions. We discuss5

this design choice in more detail in Sect. 3.4, after proving with Lemma 3 that

the past does not matter (when it is not involved).

3.1. Proved Labeled Transition System for CCSK

Enhanced keyed labels differ with enhanced labels (Definition 3) only in the

fact that their labels must be keyed. We will abuse the notation and write them10

the same way:

Definition 6 (Enhanced keyed labels). Let υ, υL and υR range over strings in

{|L, |R,+L,+R}∗, enhanced keyed labels are defined as

θ := υα[k] ‖ υ〈|LυLα[k], |RυRα[k]〉

We write E the set of enhanced keyed labels, and define ℓ : E → L and k : E → K:

ℓ(υα[k]) = α ℓ(υ〈|LυLα[k], |RυRα[k]〉) = τ

k(υα[k]) = k k(υ〈|LυLα[k], |RυRα[k]〉) = k

We present in Fig. 3 the rules for the proved forward and backward LTS for

CCSK. The rules |R, |•R, +R and +•
R are omitted but can easily be inferred.15

This LTS has its derivation in bijection with CCSK’s original LTS:

Lemma 2 (Adequacy of the proved labeled transition system). The transition

X
α[k]
−−−→ X ′ can be derived using Fig. 2 iff X

θ
−→ X ′ with k(θ) = m and ℓ(θ) = α

can be derived using Fig. 3.

Proof. The proof is by induction on the length of the derivation: since the only20

axiom rules (act. and act.•) are identical, it easily follow by inspection of the

remaining rules of Fig 2 and 3.

14

Action, Prefix and Restriction

Forward
std(X) act.

α.X
α[k]
−−→ α[k].X

X
θ
−→ X ′

k(θ) 6= k pre.

α[k].X
θ
−→ α[k].X ′

X
θ
−→ X ′

ℓ(θ) /∈ {a, a} res.

X\a
θ
−→ X ′\a

Backward
std(X) act.•

α[k].X
α[k]

α.X

X ′ θ
X

k(θ) 6= k pre.•

α[k].X ′ θ
α[k].X

X ′ θ
X

ℓ(θ) /∈ {a, a} res.•

X ′\a
θ
X\a

Parallel Group

Forward

X
θ
−→ X ′

k(θ) /∈ key(Y) |L
X | Y

|Lθ
−−→ X ′ | Y

X
υLλ[k]
−−−−→ X ′ Y

υRλ[k]
−−−−→ Y ′

syn.

X | Y
〈|LυLλ[k],|RυRλ[k]〉
−−−−−−−−−−−−→ X ′ | Y ′

Backward

X ′ θ
X

k(θ) /∈ key(Y) |•L
X ′ | Y

|Lθ
X | Y

X ′ υLλ[k]
X Y ′ υRλ[k]

Y
syn.•

X ′ | Y ′ 〈|LυLλ[k], |RυRλ[k]〉
X | Y

Sum Group

Forward

X
θ
−→ X ′

std(Y) +L

X + Y
+Lθ−−−→ X ′ + Y

Backward

X ′ θ
X

std(Y) +•
L

X ′ + Y
+Lθ

X + Y

Figure 3: Rules of the proved LTS for CCSK

Definition 7 (Transitions and traces). In a transition t : X
θ
−→ X ′, X is the

source, and X ′ is the target of t. Two transitions are coinitial (resp. cofinal) if

they have the same source (resp. target). Transitions t1 and t2 are composable

if the target of t1 is the source of t2. Two transitions are concomitant 5 if they

are either coinitial or composable.5

5For lack of a more canonical term. Adjacent was also suggested by Ivan Lanese, and

“joinable” was also used [5, p. 84], but for concomitant concurrent transitions.

15

A sequence of pairwise composable transitions t1; · · · ; tn is called a trace,

denoted T , and ǫ is the empty trace.

Note that following Lemma 2, the Loop lemma trivially holds for the system

presented in Fig. 3, and we write similarly t• : X
θ
−→ X ′ the reverse of t : X ′ θ

X , and reciprocally.5

3.2. The Past Does Not Matter (When It Is Not Involved)

In Sect. 4, we will need to use the fact that the pre. rule is transparent from

the perspective of enhanced keyed labels, as no “memory” of its usage is stored in

the label of the transition. This lets us show that as long as a transition does not

reverse a particular action, its presence or absence does not affect derivability10

or the label (Lemma 3). To make this more formal, we begin by introducing a

function that “removes” a keyed label.

Definition 8 (Removal function). Given a label α and a key k, we define the

removal function rmα[k] by

rmα[k](0) = 0 rmα[k](X | Y) = rmα[k](X) | rmα[k](Y)

rmα[k](β.X) = β.X rmα[k](X + Y) = rmα[k](X) + rmα[k](Y)

rmα[k](X\a) = (rmα[k] X)\a

rmα[k](β[k
′].X) =







X if α = β and k = k′

β[k′]. rmα[k](X) otherwise

We define the removal function of a label and its complement by

rmα
k =







rmα[k] ◦ rmα[k] if α ∈ L\{τ},

rmτ [k] otherwise
.

The function rmα[k] simply looks for an occurrence of α[k] and removes it:

as there is at most one such occurence in a reachable processs, there is no need

for a recursive call when it is found. This function preserves derivability of15

transitions that do not involve the key removed:

16

Lemma 3. For all X, α, k, and θ with k(θ) 6= k, if k /∈ key(rmα
k (X)),6 then

X
θ
−→ Y ⇐⇒ rmα

k (X)
θ
−→ rmα

k (Y).

Proof. We reason by the number of occurrences of k in X , which is the same

as the number of occurences of k in Y , since k(θ) 6= k. As keys occur at most

twice, attached to complementary names, in reachable processes [7, Lemma 3.4],5

we know that we have only three cases to consider: 0, 1 and 2.

0 occurence Then there is nothing to prove, as rmα
k (X) = X and rmα

k (Y) = Y .

1 occurence Since k /∈ key(rmα
k (X)), we know that the key k is attached to α

or α. We suppose without loss of generality that it is attached to α, and start

by proving the left-to-right direction of the implication. This means that the10

derivation of X
θ
−→ Y is of the form

.... π1

X ′ θ′

−→ Y ′

pre.

α[k].X ′ θ′

−→ α[k].Y ′

.... π2

X
θ
−→ Y

or

.....
π•
1

X ′ θ′

Y ′

pre.•

α[k].X ′ θ′

α[k].Y ′

.....
π•
2

X
θ

Y

depending on the direction of the transition.

To obtain the derivation of rmα
k (X)

θ
−→ rmα

k (Y), it suffices to “skip” the pre.

rule: since it does not alter the enhanced keyed label θ′, composing π1 and15

π2 (where α[k].X ′ and α[k].Y ′ have been replaced by X ′ and Y ′) yields a

correct derivation of rmα
k (X)

θ
−→ rmα

k (Y) (where k does not occur, since it

was not occuring in π1 or π2). The same reasoning can be used to obtain the

derivation of rmα
k (X)

θ
rmα

k (Y).

6This cumbersome condition is here to prevent k from occurring in X attached to a different

label. In practice, we will always remove α[k] from processes where we know it occurs, so that

this condition will always be vacuously true, since the same key cannot be attached to labels

that are not complement of each others [7, Lemma 3.4].

17

Action

α[k]⋖ θ ∀α, k, θ

Sum Group

+Lθ ⋖+Rθ
′

+Rθ ⋖+Lθ
′

+dθ ⋖+dθ
′ if θ ⋖ θ′

Parallel Group

|dθ ⋖ |dθ
′ if θ ⋖ θ′

〈θL, θR〉⋖ θ if ∃d s.t.θd ⋖ θ

θ ⋖ 〈θL, θR〉 if ∃d s.t.θ ⋖ θd

〈θL, θR〉⋖ 〈θ′L, θ
′
R〉 if ∃d s.t.θd ⋖ θ′d

For d ∈ {L,R}.

Figure 4: Dependency Relation on Enhanced Keyed Labels

For the right-to-left direction of the implication, it suffices to introduce a pre.

or pre.• rule in the derivation of rmα
k (X)

θ
−→ rmα

k (Y). We know by hypothesis

that k /∈ key(rmα
k (X)), and since k(θ) 6= k, k /∈ key(rmα

k (Y)) as well. Hence,

the side condition of pre. or pre.• is always met, and the rule can be applied

at any point in the derivation to obtain the desired transition.5

2 occurences Then it suffices to apply the reasoning above twice, to the pre. or

pre.• rules that introduce α[k] and α[k], to obtain the desired transition.

3.3. Dependency and Concurrency for CCSK

Definition 9 (Dependency relation). The dependency relation ⋖ on enhanced

keyed labels is induced by the axioms of Fig. 4.10

Claim 1. The dependency relation ⋖ is reflexive, neither symmetric nor anti-

symmetric, and not transitive.

Proof. We prove each property separately:

Reflexive This proceeds by induction on the structure of θ: if θ is α[k], then

it is immediate by definition. Otherwise, it proceeds easily by induction on15

the main operator of θ.

Not symmetric For instance, a[m]⋖ |Lb[n], but |Lb[n]⋖ a[m] does not hold.

18

Not antisymmetric For instance, a[m]⋖ b[n] and b[n]⋖ a[m] both hold, and

yet a[m] 6= b[n].

Not transitive For instance,

|La[n1]⋖ 〈|Lb[m], |Rb[m]〉 and 〈|Lb[m], |Rb[m]〉⋖ |Rc[n2]

both hold, and yet |La[n1]⋖ |Rc[n2] does not hold.

Definition 10 (Concurrency relation). Two enhanced keyed labels θ1 and θ2

are concurrent, written θ1 ⌣ θ2 iff neither θ1 ⋖ θ2 nor θ2 ⋖ θ1.5

Claim 2. The concurrency relation ⌣ is irreflexive and symmetric.

Proof. Irreflexivity follows from the fact that ⋖ is reflexive, symmetry is imme-

diate by definition.

Definition 11 (Composable concurrency). Let t1 : X1
θ1−→ X2 and t2 : X2

θ2−→

X3 be two composable transitions, t1 is concurrent with t2 (t1 ⌣c t2) iff θ1 ⌣ θ2.10

Coinitial concurrency is then defined using composable concurrency and the

Loop lemma:

Definition 12 (Coinitial concurrency). Let t1 : X
θ1−→ Y1 and t2 : X

θ2−→ Y2 be

two coinitial transitions, t1 is concurrent with t2 (t1 ⌣i t2) iff t•1 ⌣c t2.

To our knowledge, this is the first time coinitial concurrency is defined15

from composable concurrency (not just concomitantly), hence enforcing the

(Correctness of Concurrencies). While the axiomatic approach discussed coini-

tial concurrency [11, Section 5], it primarily studied independence relations

that could be defined in any way, and did not connect these two notions of

concurrency. However, our system is somehow a degenerate case, since both20

concurrencies are actually a property of the enhanced key labels, and not of the

traces:

Lemma 4 (Concurrencies are trace-insensible). For all t1 : X1
θ1−→ X2 and

t3 : X ′
1

θ1−→ X ′
2,

19

1. For all t2 : X2
θ2−→ X3 and t4 : X ′

2
θ2−→ X ′

3, t1 ⌣c t2 ⇐⇒ t3 ⌣c t4.

2. For all t2 : X1
θ2−→ X3 and t4 : X ′

1
θ2−→ X ′

3, t1 ⌣i t2 ⇐⇒ t3 ⌣i t4.

Proof. The proof is immediate:

1. t1 ⌣c t2 ⇐⇒ θ1 ⌣ θ2 ⇐⇒ t3 ⌣c t4 by Definitions 11 and 12, and

2. t1 ⌣i t2 ⇐⇒ θ1 ⌣ θ2 ⇐⇒ t3 ⌣i t4 by Definitions 11 and 12.5

Lemma 4 makes it clear that all the needed information is in the labels, and

that the actual processes (or their actual traces) involved are irrelevant. As a

corollary, we can ease the notation:

Notation 1. For t1 and t2 two concomitant traces with labels θ1 and θ2, we

will simply write θ1 ⌣ θ2 for t1 ⌣c t2 or t1 ⌣i t2.10

We can also obtain Coinitial Propagation of Independence [11, Defitinion

4.2] as a simple corollary:

Corollary 1 (Coinitial Propagation of Independence (CPI)). For all t1 : X1
θ1−→

Y1, t2 : X1
θ2−→ Y2, t3 : Y1

θ2−→ X2 and t4 : Y2
θ1−→ X2 with t1 ⌣i t2 then t3 ⌣c t

•
1.

In picture, we have X1

Y1θ1

θ1 X2

θ2

Y2
θ2 θ1

15

Proof. This is immediate:

t1 ⌣i t2 =⇒ θ1 ⌣ θ2 =⇒ t3 ⌣c t
•
1

Example 1. Consider the following trace, dependencies, and concurrent en-

hanced keyed labels:

20

(a.b) | (b+ c)

|La[m]
−−−−→ a[m].b | b + c

|Lb[n]
−−−→ a[m].b[n] | b+ c

|R+Rc[n′]
−−−−−−→ a[m].b[n] | b+ c[n′]

|Lb[n]
a[m].b | b + c[n′]

|R+Rc[n′]
a[m].b | b+ c

〈|Lb[n],|R+Lb[n]〉
−−−−−−−−−−−→ a[m].b[n] | b[n] + c

And we have, e.g.,

|La[m]⋖ |Lb[n]

as a[m]⋖ b[n],

|R+Rc[n
′]⋖ 〈|Lb[n], |R+Lb[n]〉

as +Rc[n
′]⋖+Lb[n], and

|Lb[n] ⌣ |R+Rc[n
′]

since labels prefixed by |L and |R

are never causes of each others.

3.4. Discussion

This may be a good moment to pause and reflect on this definition of concur-

rency we will be using. Originally, in CCS [25, p. 311], the dependency relation

⋖ on labels had to be parametrized by the trace, since a transition with a label5

θ1 could not be the cause of a transition with a label θ2 unless it happened

before it.

We would then have [25, Definition 3], given a trace T ,

θ1 ⋖T θ2 ⇐⇒







θ1 ⋖ θ2

θ1 happens before θ2 in T

Without this constraint, one could e.g., decide that b is a dependency of a

in the CCS trace a.b
a
−→ b

b
−→ 0, since, after all, b 4 a. But of course this would

not make much sense, due to the temporal order of those transitions. Hence,10

⋖T would be considered instead of ⋖, and the causal dependency 4T would be

defined as the symmetric and transitive closure of ⋖T [32, Definition 2.2][25,

Definition 3].

This transitive closure was important, too. Without it, you could for instance

conclude that in a CCS trace [25, footnote 2]15

b.a|a.c
|Lb
−−→ a|a.c

〈|La,|Ra〉
−−−−−−→ 0|c

|Rc
−−→ 0|0 (4)

21

it was the case that the transitions whose labels are |Lb and |Rc are independent,

since neither |Lb⋖ |Rc nor |Rc⋖ |Lb would hold.

But, in our definition, we do not parametrize the dependency relation by the

trace, and we do not need its transitive closure. Why? There are two reasons,

and neither are caused by reversibility, curiously enough.5

The first one is that we are interested in concomitant (Definition 7) transi-

tions. This is fairly standard, as the diamonds are concerned only with that

types of transitions, and as only “local” permutations will be considered. Won-

dering wether |Lb and |Rc are independent in (4) makes no sense, as they are

not concomitant, and will never be, since neither can be permuted with the10

transition labeled 〈|La, |Ra〉.

The second reason is that dependencies is simply a tool to define concurrency,

and we are not focused on capturing “the right” notion. It is acceptable if we

consider a to be a dependency of b and b to be a dependency of a in a.b
a
−→ b

b
−→ 0:

what matters is that we detect that there is some dependency between those two15

traces, e.g., that they are not concurrent. Stated differently, the temporal order

is needed for causality but not for concurrency, as we have θ1 ⌣ θ2 iff neither

θ1 ⋖ θ2 nor θ2 ⋖ θ1 (Definition 10, this is also the case in one of our inspiration

paper [25, Definition 4]). This disjunction allows to discard the temporal order:

suddenly, we do not care about which happened first.20

As we wrote, those design choices are not caused by reversibility, but, as

it turns out, they play really well together. In CCSK, when the CCS trace

a.b
a
−→ b

b
−→ 0 is executed and then reversed, we obtain:

a.b
a[m]
−−−→ a[m].b

b[n]
−−→ a[m].b[n] (5)

a[m].b[n]
b[n]

a[m].b
a[m]

a.b (6)

Again, one could argue that b[n]⋖a[m] makes no sense for (5) but is correct

w.r.t. (6), due to the temporal order. We explained why this does not matter

when the focus in on concurrency, but it is also interesting to remark that decid-

ing that b[n] is a dependency of a[m] regardless of their temporal order makes

our definition of dependency independent from the direction of the transition.25

22

We can also observe that our dependency relation matches the forward-only

definition for action and parallel composition, but not for sum: while the original

system [25, Definition 2] requires only +dθ ⋖ θ′ if θ ⋖ θ′, this definition would

not capture faithfully the dependencies in our system where the sum operator is

preserved after a reduction. This is also the reason why our dependency relation5

is reflexive, while their is not (Claim 1).

All in all, our design choices allow to use only one definition of dependency

to define concurrencies, instead of having to take the transitive closure of a

tertiary conflict or causality relation (as briefly discussed in Sect. 5.1.2). Our

definitions are also direction-insensitive7 and “identifiers agnostic”: by that we10

mean that any identifying mechanism, not only the key mechanism of CCSK,

could work with it, as we discuss further in Sect. 5.

4. Diamonds, Squares and Consistency

4.1. Preliminary: Decomposing Transitions

To prove the required properties, we need an intuitive and straightforward15

lemma (Lemma 5) that decomposes a concurrent trace involving two threads

into one trace involving one thread while maintaining concurrency. That is, we

prove that a trace of the form

X | Y
|Lθ
−−→ X ′ | Y

|Lθ
′

−−→ X ′′ | Y

with |Lθ ⌣ |Lθ′ can be decomposed into a trace

X
θ
−→ X ′ θ′

−→ X ′′

with θ ⌣ θ′. A similar lemma is also needed to decompose traces involving two20

branches Lemma 6). In both cases, the lemma is cumbersome to spell out, but

easy to prove by simple case analysis.

7As we discuss in Sect. 5, many existing definitions proceeds by case (“If transitions are

forward, . . . , if they are backward, . . . ”), sometimes “forgetting” about transitions of opposite

directions (Sect. 5.2.3). Our definition does not make such distinction, and is adequate for

any combination of forward and bacward transitions.

23

Lemma 5 (Decomposing concurrent parallel transitions). Let i ∈ {1, 2} and

θi ∈ {|Lθ′i, |Rθ
′′
i , 〈|Lθ

′
i, |Rθ

′′
i 〉}, define the left projection on enhanced keyed labels

πL as:

πL(θi) =







θ′i if θ = |Lθ′i or if θi = 〈|Lθ′i, |Rθ
′′
i 〉)

undefined otherwise

and extend it to processes as

πL(X) =







XL if X = XL | XR

undefined otherwise

We define similarly the right projection on keyed labels πR and extend it to

processes.

Whenever T : XL | XR
θ1−→ YL | YR

θ2−→ ZL | ZR with θ1 ⌣ θ2, then for

d ∈ {L,R}, if πd(θ1) and πd(θ2) are both defined, then there exist a trace

πd(T) : πd(XL | XR)
πd(θ1)
−−−−→ πd(YL | YR)

πd(θ2)
−−−−→ πd(ZL | ZR)

and πd(θ1) ⌣ πd(θ2).5

Proof. The trace πd(T) exists by virtue of the rule |d, syn. or their reverses.

What remains to prove is that πd(θ1) ⌣ πd(θ2) holds.

The proof is by case on θ1 and θ2, but always follows the same pattern. As

we know that both πd(θ1) and πd(θ2) need to be defined, there are 7 cases:

θ1 = |Lθ
′
1 and θ2 = |Lθ

′
2 θ1 = |Rθ

′
1 and θ2 = |Rθ

′
2

θ1 = |Rθ
′
1 and θ2 = 〈|Lθ

′
2, |Rθ

′′
2 〉 θ1 = 〈|Lθ

′
1, |Rθ

′′
1 〉 and θ2 = |Rθ

′
2

θ1 = |Lθ
′
1 and θ2 = 〈|Lθ

′
2, |Rθ

′′
2 〉 θ1 = 〈|Lθ

′
1, |Rθ

′′
1 〉 and θ2 = |Lθ

′
2

θ1 = 〈|Lθ′1, |Rθ
′′
1 〉 and θ2 = 〈|Lθ′2, |Rθ

′′
2 〉

By symmetry, we can bring this number down to three:10

(case letter) a) b) c)

θ1 |Lθ′1 〈|Lθ′1, |Rθ
′′
1 〉 〈|Lθ′1, |Rθ

′′
1 〉}

θ2 |Lθ′2 |Lθ′2 〈|Lθ′2, |Rθ
′′
2 〉}

24

In each case, assume πL(θ1) = θ′1 ⌣ θ′2 = πL(θ2) does not hold. Then it must

be the case that either θ′1 ⋖ θ′2 or θ′2 ⋖ θ′1, and since both can be treated the

same way thanks to symmetry, we only need to detail the following three cases:

a) If θ′1 ⋖ θ′2, then it is immediate that θ1 = |Lθ′1 ⋖ |Lθ′2 = θ2, contradicting

θ1 ⌣ θ2.5

b) If θ′1⋖θ′2, then |Lθ′1⋖ |Lθ′2 and 〈|Lθ′1, |Rθ
′′
1 〉⋖ |Lθ′2, from which we can deduce

θ1 ⋖ θ2, contradicting θ1 ⌣ θ2.

c) If θ′1 ⋖ θ′2, then |Lθ′1 ⋖ |Lθ′2 and 〈|Lθ′1, |Rθ
′′
1 〉⋖ 〈|Lθ′2, |Rθ

′
2〉, from which we can

deduce θ1 ⋖ θ2, contradicting θ1 ⌣ θ2.

Hence, in all cases, assuming that πd(θ1) ⌣ πd(θ2) does not hold leads to a10

contradiction.

Lemma 6 (Decomposing concurrent sum transitions). Let i ∈ {1, 2} and θi ∈

{+Lθ
′
i,+Rθ

′′
i }, define the left summand of enhanced keyed labels πL as:

ρL(θi) =







θ′i if θ = +Lθ
′
i

undefined otherwise

and extend it to processes as

ρL(X) =







XL if X = XL +XR

undefined otherwise

We define similarly the right summand of keyed labels ρR and extend it to

processes.

Whenever T : XL + XR
θ1−→ YL + YR

θ2−→ ZL + ZR with θ1 ⌣ θ2, then for

d ∈ {L,R}, if ρd(θ1) and ρd(θ2) are both defined, then there exists a trace15

ρd(T) : ρd(XL +XR)
ρd(θ1)
−−−−→ ρd(YL + YR)

ρd(θ2)
−−−−→ ρd(ZL + ZR)

and ρd(θ1) ⌣ ρd(θ2).

Proof. The trace ρd(T) exists by virtue of the rule +d or its reverse. What

remains to prove is that ρd(θ1) ⌣ ρd(θ2) holds.

25

The proof is by case on θ1 and θ2, but always follows the same pattern. As

we know that both ρd(θ1) and ρd(θ2) need to be defined, there are 2 cases:

θ1 +Lθ
′
1 +Rθ

′
1

θ2 +Lθ
′
2 +Rθ

′
2

For d ∈ {L,R}, assume ρd(θ1) = θ′1 ⌣ θ′2 = ρd(θ2) does not hold, then it is

immediate to note that θ1 ⌣ θ2 cannot hold either, a contradiction.

4.2. Diamonds and Squares: Concurrency in Action5

Our goal in this section is to prove our Main Theorem, that states that

for all X
θ1−→ X1 and X

θ2−→ X2 with θ1 ⌣ θ2, there exist X1
θ2−→ Y and

X2
θ1−→ Y . This statements, because we enjoy the Loop lemma and enforce the

(Correctness of Concurrencies), is equivalent to stating that we enjoy all the

diamonds listed in Table 2. This is one of the main technical goal of this paper,10

the other interesting properties, discussed in Sect. 4.3, following almost for free

thanks to the the axiomatic approach to reversible computation [11].

To obtain this result, we first prove one of the (Sideways Diamonds) (ac-

tually, the (Sidways Diamond)) with Lemma 7, one of the (Reverse Diamonds)

(Lemma 8) and finally one of the Square Properties (Lemma 9). Our Main Theorem15

is then a trivial consequence of those lemmas. Interestingly, all three proofs are

almost identical, except for some very subtle points that we highlight.

Lemma 7 (Sideways diamond). For all X
θ1−→ X1

θ2−→ Y with θ1 ⌣ θ2, there

exists X2 s.t. X
θ2−→ X2

θ1−→ Y .

In short, the proof proceeds by induction on the length of the deduction for20

the derivation for X
θ1−→ X1, using Lemmas 5 and 6 to enable the induction

hypothesis if θ1 is not a prefix. The proof requires a particular care when X is

not standard, more particularly if the last rule is pre., but Lemma 3 provides

just what is needed to deal with this case.

Proof. The proof proceeds by induction on the length of the deduction for the25

derivation for X
θ1−→ X1.

26

Length 1 In this case, the derivation is a single application of act., and θ1 is

of the form α[k]. But α[k] ⌣ θ2 cannot hold, as α[k] ⋖ θ2 always holds, and

this case is vacuously true.

Length > 1 We proceed by case on the last rule.

pre. There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′ θ1−→ α[k].X ′

1 = X1 and5

k(θ1) 6= k. As α[k].X ′
1

θ2−→ Y we know that k(θ2) 6= k [7, Lemma 3.4].

Furthermore, since k occurs attached to α in X1 and since X1 makes a for-

ward transition to reach Y , we know that k /∈ key(rmα
k (X1))∪key(rmα

k (Y)).

Hence, we can apply Lemma 3 twice to obtain

rmα
k (α[k].X

′) = X ′ θ1−→ rmα
k (α[k].X

′
1) = X ′

1
θ2−→ rmα

k (Y)

As θ1 ⌣ θ2 by hypothesis, we can use the induction hypothesis to obtain10

that there exists X2 s.t. X ′ θ2−→ X2
θ1−→ rmα

k (Y). Since k(θ2) 6= k, we can

append pre. to the derivation of X ′ θ2−→ X2 to obtain α[k].X ′ = X
θ2−→

α[k].X2. Using Lemma 3 one last time, we obtain that rmα
k (α[k].X2) =

X2
θ1−→ rmα

k (Y) implies α[k].X2
θ1−→ Y , which concludes this case.

res. This is immediate by induction hypothesis.15

|L There exists XL, XR, θ′1, X1L , and YL, YR s.t. X
θ1−→ X1

θ2−→ Y is

XL | XR
|Lθ

′

1−−−→ X1L | XR
θ2−→ YL | YR.

Then, XL
θ′

1−→ X1L and the proof proceeds by case on θ2:

θ2 is |Rθ′2 Then XR
θ′

2−→ YR, X1L = YL and the occurrences of the rules |L

and |R can be swapped to obtain

XL | XR
|Rθ′

2−−−→ XL | YR
|Lθ

′

1−−−→ YL | YR.

θ2 is |Lθ′2 Then, XL
θ′

1−→ X1L

θ′

2−→ YL and XR = YR. As |Lθ′1 = θ1 ⌣ θ2 =20

|Lθ′2, it is the case that θ′1 ⌣ θ′2 in XL
θ′

1−→ X1L

θ′

2−→ YL by Lemma 5, and

we can use induction to obtain X2 s.t. XL
θ′

2−→ X2
θ′

1−→ YL, from which it

is immediate to obtain XL | XR
|Lθ

′

2−−−→ X2 | XR
|Lθ

′

1−−−→ YL | XR = YL | YR.

27

θ2 is 〈|Lθ2L , |Rθ2R〉 Since |Lθ′1 = θ1 ⌣ θ2 = 〈|Lθ2L , |Rθ2R〉, we have that

θ′1 ⌣ θ2L in XL
θ′

1−→ X1L

θ2L−−→ YL by Lemma 5. Hence, we can use

induction to obtain XL

θ2L−−→ X2
θ′

1−→ YL. Since we also have that XR
θ2R−−→

YR, we can compose both traces using first syn., then |L to obtain

XL | XR

〈|Lθ2L ,|Rθ2R〉
−−−−−−−−−→ X2 | YR

|Lθ
′

1−−−→ YL | YR.

|R This is symmetric to |L.5

syn. There exists XL, XR, θ1L, θ1L, X1L , X1R , YL and YR s.t. X
θ1−→ X1

θ2−→ Y

is

XL | XR
〈|Lθ1L,|Rθ1R〉
−−−−−−−−−→ X1L | X1R

θ2−→ YL | YR.

Then, XL
θ1L−−→ X1L , XR

θ1R−−→ X1R and the proof proceeds by case on θ2:

θ2 is |Rθ2R Then X1R
θ2R−−→ YR, X1L = YL and 〈|Lθ1L, |Rθ1R〉 ⌣ |Rθ2R.

Then by Lemma 5 there exists XR
θ1R−−→ X1R

θ2R−−→ YR and θ1R ⌣ θ2R.10

We can then use the induction hypothesis to obtain XR
θ2R−−→ X2R

θ1R−−→ YR

from which it is immediate to obtain

XL | XR
|Rθ2R−−−−→ XL | X2R

〈|Lθ2L ,|Rθ1R〉
−−−−−−−−−→ X1L | YR = YL | YR.

θ2 is |Lθ2L This is symmetric to |Rθ2R.

θ2 is 〈|Lθ2L , |Rθ2R〉 This case is essentially a combination of the two pre-

vious cases. Since 〈|Lθ1L, |Rθ1R〉 = θ1 ⌣ θ2 = 〈|Lθ2L , |Rθ2R〉, Lemma 5

gives the two traces

XL
θ1L−−→ X1L

θ2L−−→ YL and XR
θ1R−−→ X1R

θ2R−−→ YR

and θ1L ⌣ θ2L and θ1R ⌣ θ2R, respectively. By induction hypothesis,

we obtain two traces

XL

θ2L−−→ X2L
θ1L−−→ YL and XR

θ2R−−→ X2R
θ1R−−→ YR

that we can then re-combine using syn. twice to obtain, as desired,

XL | XR

〈|Lθ2L ,|Rθ2R〉
−−−−−−−−−→ X2L | X2R

〈|Lθ1L,|Rθ1R〉
−−−−−−−−−→ YL | YR.

28

+L There exists XL, XR, θ′1, θ
′
2, X1L, and YL s.t. X

θ1−→ X1
θ2−→ Y is

XL +XR
+Lθ

′

1−−−→ X1L +XR
+Lθ

′

2−−−→ YL +XR.

All transitions happen on “XL’s side” and XR remains unchanged as other-

wise we could not sum two non-standard terms, so that θ2 must be of the

form +Lθ
′
2. Then, we can use Lemma 6 to obtain

XL
θ′

1−→ X1L

θ′

2−→ YL

and θ′1 ⌣ θ′2. Hence we can use the induction hypothesis to obtain X2 s.t.5

XL
θ′

2−→ X2
θ′

1−→ YL. From this, it is easy to obtain

XL +XR
+Lθ

′

2−−−→ X2 +XR
+Lθ

′

1−−−→ YL +XR = YL + YR

and this concludes this case.

+R This is symmetric to +L.

Example 2. Re-using Example 1, since |Lb[n] ⌣ |R+Rc[n
′], Lemma 7 allows

to re-arrange the trace

a[m].b | b+ c
|Lb[n]
−−−→ a[m].b[n] | b+ c

|R+Rc[n′]
−−−−−−→ a[m].b[n] | b+ c[n′]

as

a[m].b | b+ c
|R+Rc[n′]
−−−−−−→ a[m].b | b+ c[n′]

|Lb[n]
−−−→ a[m].b[n] | b+ c[n′].

We state, discuss and then prove the following two lemmas:

Lemma 8 (Reverse Diamond). For all X
θ1−→ X1

θ2
Y with θ1 ⌣ θ2, there10

exists X2 s.t. X
θ2

X2
θ1−→ Y .

Lemma 9 (Square Property). For all X
θ1

X1
θ2−→ Y with θ1 ⌣ θ2, there

exists X2 s.t. X
θ2−→ X2

θ1
Y .

In both cases, in the particular cases of t; t• : X
θ1−→ X1

θ1
X , or of t•; t,

note that θ1 ⌣ θ1 never holds since θ1 ⋖ θ1 always holds by reflexivity of ⋖15

(Claim 1) and hence Lemmas 8 and 9 cannot apply. The proofs re-use the proof

of Lemma 7 almost as it is, since Lemmas 3, 5 and 6 hold for both directions.

29

Proof of Lemma 8. The only case that diverges with the proof of Lemma 7 is

if the deduction for X
θ1−→ X1 have for last rule pre. In this case, α[k].X ′ θ1−→

α[k].X ′
1

θ2
Y , but we cannot deduce that k(θ2) 6= k immediately. However, if

k(θ2) = k, then we would have α[k].X ′
1

α[k]
α.Y ′ = Y , but this application of

act.• is not valid, as std(X ′
1) does not hold, since X ′

1 was obtained from X ′ after it5

made a forward transition. Hence, we obtain that k(θ2) 6= k, that k occurs in X ,

X1 and Y attached to α, so that k /∈ key(rmα
k (X))∪key(rmα

k (X1)∪key(rmα
k (Y)),

and we can carry out the rest of the proof, using Lemma 3, as before.

Example 3. Re-using Example 1, since |R+Rc[n
′] ⌣ |Lb[n], the trace

a[m].b[n] | b+ c
|R+Rc[n′]
−−−−−−→ a[m].b[n] | b+ c[n′]

|Lb[n]
a[m].b | b+ c[n′],

can be rearranged using Lemma 8 as

a[m].b[n] | b+ c
|Lb[n]

a[m].b | b+ c
|R+Rc[n′]
−−−−−−→ a[m].b | b+ c[n′].

For Lemma 9, the main difference lies in leveraging the dependency of sum

prefixes between e.g., +Rθ1 and +Lθ2 in X+OY
+Rθ1

OX+OY
+Lθ2−−−→ OX +Y .10

Proof of Lemma 9. The proof is very similar to the proof of Lemma 7, but we

detail it nevertheless for completeness, and also because the sum case diverges

and exposes the design choices made in Definition 9 for the sum group.

It proceeds by induction on the length of the deduction for the derivation

for X
θ1

X1:15

Length 1 In this case, the derivation is a single application of act.•, and θ1 is

of the form α[k]. But α[k] ⌣ θ2 cannot hold, as α[k] ⋖ θ2 always holds, and

this case is vacuously true.

Length > 1 We proceed by case on the last rule.

pre.• There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′ θ1

α[k].X ′
1 = X1 and20

that k(θ1) 6= k. As α[k].X ′
1

θ2−→ Y we know that k(θ2) 6= k [7, Lemma

3.4]. Furthermore, since k occurs attached to α in X1 and since X1 makes

30

a forward transition to reach Y , we know that k /∈ key(rmα
k (X1))∪ key(Y).

Hence, we can apply Lemma 3 twice to obtain

rmα
k (α[k].X

′) = X ′ θ1
rmα

k (α[k].X
′
1) = X ′

1
θ2−→ rmα

k (Y)

As θ1 ⌣ θ2 by hypothesis, we can use the induction hypothesis to obtain

that there exists X2 s.t. X ′ θ2−→ X2
θ1

rmα
k (Y). Since k(θ2) 6= k, we can

append pre. to the derivation of X ′ θ2−→ X2 to obtain α[k].X ′ = X
θ2−→5

α[k].X2. Using Lemma 3 one last time, we obtain that rmα
k (α[k].X2) =

X2
θ1

rmα
k (Y) implies α[k].X2

θ1
Y , which concludes this case.

res.• This is immediate by induction hypothesis.

|•L There exists XL, XR, θ′1, X1L , and YL, YR s.t. X
θ1

X1
θ2−→ Y is

XL | XR
|Lθ

′

1 X1L | XR
θ2−→ YL | YR.

Then, XL
θ′

1 X1L and the proof proceeds by case on θ2:10

θ2 is |Rθ′2 Then XR
θ′

2−→ YR, X1L = YL and the occurrences of the rules |•L

and |R can be swapped to obtain

XL | XR
|Rθ′

2−−−→ XL | YR
|Lθ

′

1 YL | YR.

θ2 is |Lθ′2 Then, XL
θ′

1 X1L

θ′

2−→ YL and XR = YR. As |Lθ′1 = θ1 ⌣ θ2 =

|Lθ′2, it is the case that XL
θ′

1 X1L

θ′

2−→ YL and θ′1 ⌣ θ′2 by Lemma 5, and

we can use induction to obtain X2 s.t. XL
θ′

2−→ X2
θ′

1 YL, from which it15

is immediate to obtain XL | XR
|Lθ

′

2−−−→ X2 | XR
|Lθ
−−→ YL | XR = YL | YR.

θ2 is 〈|Lθ2L , |Rθ2R〉 Since |Lθ′1 = θ1 ⌣ θ2 = 〈|Lθ2L , |Rθ2R〉, we have XL
θ′

1

X1L

θ2L−−→ YL and θ′1 ⌣ θ2L by Lemma 5. Hence, we can use induction to

obtain XL

θ2L−−→ X2
θ′

1 YL. Since we also have that XR
θ2R−−→ YR, we can

compose both traces using first syn., then |•L to obtain20

XL | XR

〈|Lθ2L ,|Rθ2R〉
−−−−−−−−−→ X2 | YR

|Lθ
′

1 YL | YR.

|•R This is symmetric to |•L.

31

syn.• There exists XL, XR, θ1L, θ1R, X1L , X1R , YL and YR s.t. X
θ1

X1
θ2−→

Y is

XL | XR
〈|Lθ1L, |Rθ1R〉

X1L | X1R
θ2−→ YL | YR.

Then, XL
θ1L X1L , XR

θ1R X1R and the proof proceeds by case on θ2:

θ2 is |Rθ2R Then X1R
θ2R−−→ YR, X1L = YL and 〈|Lθ1L, |Rθ1R〉 ⌣ |Rθ2R

implies XR
θ1R X1R

θ2R−−→ YR and θ1R ⌣ θ2R by Lemma 5. We can then5

use the induction hypothesis to obtain XR
θ2R−−→ X2R

θ1R YR from which

it is immediate to obtain

XL | XR
|Rθ2R−−−−→ XL | X2R

〈|Lθ1L, |Rθ1R〉
X1L | YR = YL | YR.

θ2 is |Lθ2L This is symmetric to |Rθ2R.

θ2 is 〈|Lθ2L , |Rθ2R〉 This case is essentially a combination of the two pre-

vious cases. Since 〈|Lθ1L, |Rθ1R〉 = θ1 ⌣ θ2 = 〈|Lθ2L , |Rθ2R〉, Lemma 5

gives two traces

XL
θ1L X1L

θ2L−−→ YL and XR
θ1R X1R

θ2R−−→ YR

and θ1L ⌣ θ2L and θ1R ⌣ θ2R, respectively. By induction hypothesis,

we obtain two traces

XL

θ2L−−→ X2L
θ1L YL and XR

θ2R−−→ X2R
θ1R YR

that we can then re-combine using syn. and syn.• to obtain, as desired,

XL | XR

〈|Lθ2L ,|Rθ2R〉
−−−−−−−−−→ X2L | X2R

〈|Lθ1L, |Rθ1R〉
YL | YR.

+•
L There exists XL, XR, X1L, and YL s.t. X

θ1
X1

θ2−→ Y is10

XL +XR
+Lθ

′

1 X1L +XR
θ2−→ YL + YR.

Then, XL
θ′

1 X1L and we proceed by case on θ2:

θ2 is +Lθ
′
2 Then, X1L

θ′

2−→ YL and XR = YR. Since +Lθ
′
1 ⌣ +Lθ

′
2, we can

use Lemma 6 to obtain

XL
θ′

1 X1L

θ′

2−→ YL

32

and θ′1 ⌣ θ′2, and by induction hypothesis there exists X2 such that

XL
θ′

2−→ X2
θ′

1 YL

from which it is easy to obtain

XL +XR
+Lθ

′

2−−−→ X2 +XR
+Lθ

′

1 YL +XR = YL + YR.

θ2 is +Rθ
′
2 Since +Lθ

′
1 ⋖+Rθ

′
2, it cannot be the case that θ1 ⌣ θ2, so this

case is vacuously true.

Theorem 1 (Main Theorem). For all t1 : X
θ1−→ X1 and t2 : X

θ2−→ X2 with5

θ1 ⌣ θ2, there exist t′1 : X1
θ2−→ Y and t′2 : X2

θ1−→ Y .

The proof is by case on the directions of the arrows, but always follow the

same pattern: use the Loop lemma to orient the arrows to be able to use either

Lemma 7, 8 or 9, then use the appropriate Lemma to obtain a trace, and use

again the Loop lemma to orient it as desired.10

X

X1

θ1

X2

θ2
Loop
===⇒ X

X1

θ1

X2

θ2

Diamonds or
==========⇒
Square Property

Y

X1

θ2

X2

θ1

Loop
===⇒

X

X1

θ1

X2

θ2

Y

θ2 θ1

Proof. The proof proceeds by case on the directions of t1 and t2.

If t1 : X
θ1

X1 and t2 : X
θ2−→ X2 This corresponds to this case: .

The Loop lemma gives t•1; t2 : X1
θ1−→ X

θ2−→ X2, and since we know that

θ1 ⌣ θ2, we can use the sideways diamond (Lemma 7) to obtain t′′1 ; t
′′
2 :15

X1
θ2−→ Y

θ1−→ X2, and letting t′1 = t′′1 and t′2 = t′′
•
2, we obtain t′1 : X1

θ2−→ Y

and t′2 : X2
θ1

Y as desired.

If t1 : X
θ1−→ X1 and t2 : X

θ2
X2 This corresponds to this case: .

By symmetry it is identical to the previous one.

33

If t1 : X
θ1

X1 and t2 : X
θ2

X2 This corresponds to this case: .

The Loop lemma gives t•1; t2 : X1
θ1−→ X

θ2
X2, and since we know that

θ1 ⌣ θ2, we can use the reverse diamond Lemma 8 to obtain t′′1 ; t
′′
2 : X1

θ2

Y
θ1−→ X2, and letting t′1 = t′′1 and t′2 = t′′

•
2, we obtain t′1 : X1

θ2
Y and

t′2 : X2
θ1

Y as desired.5

If t1 : X
θ1−→ X1 and t2 : X

θ2−→ X2 This corresponds to this case: .

The Loop lemma gives t•1; t2 : X1
θ1

X
θ2−→ X2, and since we know that

θ1 ⌣ θ2, we can use the square property (Lemma 9) to obtain t′′1 ; t
′′
2 : X1

θ2−→

Y
θ1

X2, and letting t′1 = t′′1 and t′2 = t′′
•
2, we obtain t′1 : X1

θ2−→ Y and

t′2 : X2
θ1−→ Y as desired.10

Example 4. Following Example 1, we can obtain e.g., from the coinitial tran-

sitions

a[m].b[n] | b+ c
|R+Lb[n

′]
−−−−−−→ a[m].b[n] | b[n′] + c

and

a[m].b[n] | b+ c
|Lb[n]

a[m].b | b+ c

the transitions converging to a[m].b | b[n′] + c,

a[m].b[n] | b[n′] + c
|Lb[n]

a[m].b | b[n′] + c

and

a[m].b | b+ c
|R+Lb[n

′]
−−−−−−→ a[m].b | b[n′] + c.

4.3. Causal Consistency & Other Properties

Formally, causal consistency (Theorem 2) states that any two coinitial and

cofinal traces are causally equivalent. The empty trace being denoted by ǫ

(Definition 7), causally equivalence is defined as follows:

34

Definition 13 (Causally equivalent). Two traces T1, T2 are causally equivalent,

if they are in the least equivalence relation closed by composition satisfying

t; t• ∼ ǫ and t1; t
′
2 ∼ t2; t

′
1 for any t1; t

′
2 : X

θ1−→
θ2−→ Y , t2; t

′
1 : X

θ2−→
θ1−→ Y .

Theorem 2. All coinitial and cofinal traces are causally equivalent.

The axiomatic approach to reversible computation [11] allows to obtain5

causal consistency from other properties that are generally easier to prove. We

state and prove them so that the proof of Theorem 2 becomes a simple corollary.

Lemma 10 (Backward transitions are concurrent). Any two different coinitial

backward transitions t1 : X
θ1

X1 and t2 : X
θ2

X2 are concurrent.

The proof is by induction on the length of the deduction for the derivation for10

X
θ1

X1 and leverages that k(θ1) 6= k(θ2) for both transitions to be different.

Proof. The first important fact to note is that k(θ1) 6= k(θ2): by a simple

inspection of the backward rules in Fig. 3, it is easy to observe that if a reachable

process X can perform two different backward transitions, then they must have

different keys.15

We then proceed by induction on the length of the deduction for the deriva-

tion for X
θ1

X1:

Length 1 In this case, the derivation is a single application of act.•, and θ1 is

of the form α[k], with X = α[k].X ′ and std(X ′). Hence, X cannot perform

two different transitions, and this case is vacuously true.20

Length > 1 We proceed by case on the last rule.

pre.• There exists α, k, X ′ and X ′
1 s.t. X = α[k].X ′ θ1

α[k].X ′
1 = X1. Then,

it must be the case that X ′ θ1
X ′

1 and X ′ is not standard. Since X ′ is

not standard, the last rule for the derivation of X
θ2

X2 cannot be act.•,

and since X = α[k].X ′, it must be pre.•, hence it must be the case that25

X = α[k].X ′ θ2
α[k].X ′

2 = X2, and we know that X ′ θ2
X ′

2. We conclude

by using the induction hypothesis on the two backward transitions of X ′

and the observation that pre.• preserves the label and hence concurrency.

35

res.• This is immediate by induction hypothesis.

|•L There exists XL, XR, θ′1 and X1L s.t. X
θ1

X1 is

XL | XR
|Lθ

′

1 X1L | XR.

Then, XL
θ′

1 X1L and the proof proceeds by case on θ2, using Lemma 5

to decompose the traces:

θ2 is |Rθ′2 Then this is immediate, as |Lθ′1⋖ |Rθ′2 and |Rθ′2⋖ |Lθ′1never hold.5

θ2 is |Lθ′2 Then there exists X2L such that XL
θ′

2 X2L , and we conclude

by induction on XL’s backward transitions.

θ2 is 〈|Lθ2L , |Rθ2R〉 Then we know that

XL | XR
〈|Lθ2L , |Rθ2R〉

X2L | X2R .

For |Lθ′1 and 〈|Lθ2L , |Rθ2R〉 to be concurrent, we must have θ′1 ⌣ θ2L . By

induction hypothesis on XL
θ′

1 X1L and XL
θ2L X2L , we know that10

those two transitions are concurrent, which concludes this case.

|•R This is symmetric to |•L.

syn.• This case is similar to the two previous ones and does not offer any

insight nor resistance.

+•
L There exists XL, XR, and X1L s.t. X

θ1
X1 is15

XL +XR
+Lθ

′

1 X1L +XR.

Then, note that θ2 must also be of the form +Lθ
′
2, as XR must be standard.

Hence, this follows by induction hypothesis on the transitions XL
θ′

1 X1L

and XL
θ′

2 X2L, using Lemma 6 to decompose the trace.

Lemma 11 (Well-foundedness). For all X there exists n ∈ N, X0, . . . , Xn s.t.

X Xn · · · X1 X0, with std(X0).20

This lemma forbids infinite reverse computation, and is obvious in CCSK

as any backward transition strictly decreases the number of occurrences of keys.

36

Proof of Theorem 2. We can use the results of the axiomatic approach [11] since

our forward LTS is the symmetric of our backward LTS, and as our concurrency

relation (that the authors call the independence relation, following a common

usage [36, Definition 3.7]) is irreflexive and symmetric (Claim 2). Then, by

Theorem 1 and Lemma 10, the parabolic lemma holds [11, Proposition 3.4],5

and since the parabolic lemma and well-foundedness hold (Lemma 11), causal

consistency holds as well [11, Proposition 3.5].

We use here the axiomatic approach [11] in a narrow sense, to obtain causal

consistency—which was our main goal—, but we can use it to obtain many

other desirable properties for this system “for free”. For instance, since our10

system enjoys Coinitial Propagation of Independence (Corollary 1) and—as we

just proved—a principle the authors call “BTI” (Lemma 10), we obtain “inde-

pendence of diamonds” automatically:

Corollary 2 (Independence of Diamonds [11, Definition 4.6]). For all t1 :

X1
θ1−→ Y1, t2 : X1

θ2−→ Y2, t3 : Y1
θ2−→ X2 and t4 : Y2

θ1−→ X2 with Y1 6= Y2 if all15

transitions are forward or if all transitions are backward, X1 6= X2 otherwise,

then t1 ⌣i t2.

In picture, we have X1

Y1θ1

X2

θ2

Y2
θ2 θ1

Proof. This is a direct consequence of [11, Proposition 4.7], as our system enjoys

Corollary 1 and Lemma 10.20

Example 5. Re-using the full trace presented in Example 1, we can re-organize

the transitions using the diamonds so that every undone transition is undone

immediately, and we obtain up to causal equivalence the trace

a.b | b + c
|La[m]
−−−−→ a[m].b | b+ c

〈|Lb[n],|R+Lb[n]〉
−−−−−−−−−−−→ a[m].b[n] | b[n] + c

37

5. Comparing Concurrencies Accross Calculi

We detail in this section how the concurrency we defined is universal, in the

following sense:

• It is equivalent to the restriction to CCSK of the definition of concurrency

on composable transitions for a reversible π-calculus extending CCSK [18]5

(Sect. 5.1),

• Our definition, when adapted to RCCS (Sect. 5.3), yields a concurrency

that extends (Sect. 5.4) existing definitions for RCCS (Sect. 5.2),

• Our definition can similarly be adapted to an “identified” declension of

RCCS and proven equal to its definition of concurrency (Sect. 5.5).10

It should be noted, with respect to this second point, that existing defini-

tions for RCCS do not define concurrency on transitions of opposite directions,

whereas ours does (Sect. 5.2.3): in this sense, recognizing more transitions as

concurrent is an interesting improvement testtest

We also briefly illustrate, p. 43, that the concurrency stemming from the15

first item does not satisfy the “denotationality” [8, Section 6] criteria, i.e., that

it is not preserved by CCSK’s structural congruence.

Comparing accross calculi requires to introduce two other reversible systems

and four other definitions of concurrency. This a lot of technical content, but

we tried to make it as compact and as intuitive as we could, and we would like20

to stress that the results stated below are fairly routine to prove.

5.1. Comparing With Concurrency Stemming From Reversible π-Calculus

A definition of concurrency was introduced for a reversible π-calculus extend-

ing CCSK [18], but without sum. We offer to restrict it to CCSK (without

sum), to compare the resulting relation with our definition using proved labels,25

and to assess how it fares with respect to structural equivalence for CCSK.

38

5.1.1. Causalities: Definitions and Adequacy

The following definitions can easily be extended to CCSK with sum, so we

preserves the “full” system for this study of the adequacy of causality.

Definition 14 (Context). A context is a CCSK process with a slot ·:

C[·] := · ‖ C[·] +X ‖ X + C[·] ‖ C[·]|X ‖ X |C[·] ‖ α[k].C[·] ‖ C[·]\α

Note that the context α.C[·] (i.e., without the key) is missing as it does not

play any role in the following definition.5

Definition 15 (Structural cause [18, Definition 21]). For all X , m1,m2 ∈

key(X), the prefix with key m1 is a structural cause of the prefix with key m2,

denoted m1 ⊏X m2, if ∃C[·] s.t. X = C[α[m1].Y] with m2 ∈ key(Y).

Definition 16 (Structural causality [18, Definition 22]). In

t1; t2 : X
α1[m1]
−−−−→ X1

α2[m2]
−−−−→ X2,

t1 is a structural cause of t2, denoted t1 ⊏ t2, if10

• i1 ⊏X2
i2, if t1 and t2 are both forward,

• i2 ⊏X i1, if t1 and t2 are both backward.

We now prove that the structural causality we just defined agrees with the

dependency relation (Definition 9), letting f be the function that maps keyed

labels to proved labels obtained from Lemma 2.15

Lemma 12 (Adequacy of the structural causality with the dependency relation).

In t1; t2 : X
α1[m1]
−−−−→ X1

α2[m2]
−−−−→ X2, if t1 and t2 have the same directions, then

t1 ⊏ t2 iff f(α1[m1])⋖ f(α2[m2]).

Proof. First, observe that t1 ⊏ t2 iff t•2 ⊏ t•1, and since similarly θ1 ⋖ θ2 in

t1; t2 : X
θ1−→ X1

θ2−→ X2 iff θ2 ⋖ θ1 in t•2; t
•
1 : X2

θ2−→ X1
θ2−→ X , it suffices to20

prove the statement for both t1 and t2 forward.

We prove the statement from right to left first, proceeding by induction on

the length of the deduction for the derivation for X
α1[m1]
−−−−→ X1.

39

Length 1 In this case, the derivation is a single application of act., and it

is easy to see that f(α1[m1]) is α1[m1], and since α1[m1] ⋖ f(α2[m2]) and

X2 = α1[m1].Y with m2 ∈ k(Y), both causality relations coincide.

Length > 1 We proceed by case on the last rule.

pre., res., +L, +R This is immediate by induction hypothesis, once noted5

that the derivation for X1
α2[m2]
−−−−→ X2 must also end with the same rule.

|L Then we know that X
α1[m1]
−−−−→ X1 is of the form

XL | XR
α1[m1]
−−−−→ CL[α1[m1].YL] | XR

and there are three cases, depending on the last rule in the deduction for

the derivation for X1
α2[m2]
−−−−→ X2:

|L Then we proceed by induction hypothesis, observing that, for i ∈ {1, 2},10

f(αi[ki]) is of the form |Lθi, and that |Lθ1 ⋖ |Lθ2 if θ1 ⋖ θ2.

|R Then it cannot be the case that f(α1[m1]) ⋖ f(α2[m2]) by definition,

and and it cannot be the case that t1 ⊏ t2, since X2 = CL[α1[m1].YL] |

CR[α2[m2].YR].

syn. Then X2 = Y ′
L | CR[α2[m2].YR], with m2 ∈ k(X2), and it suffices to15

reason by induction on the derivations of CL[α1[m1].YL] | XR and Y ′
L.

|R and syn. Those cases are similar to |L.

We now prove the statement from left to right, by induction on the length of

f(α1[m1]) and f(α2[m2]), and by case analysis on the rules of the dependency

relation given in Fig. 7:20

Action If f(α1[m1]) = α1[m1]⋖ f(α2[m2]), then t1 ⊏ t2 is immediate.

Sum First, note that since both t1 and t2 are forward, it cannot be the case

that f(α1[m1]) and f(α2[m2]) are prefixed with different +d symbols, since a

forward trace cannot execute the right operand of a sum then its left operand

(or reciprocally). Hence, f(α1[m1]) = +dθ1 ⋖ f(α2[m2]) = +dθ2 holds iff25

θ1 ⋖ θ2, which is necessary and sufficient for t1 ⊏ t2 to hold by induction

hypothesis.

40

Parallel Each of those four rules state that f(α1[m1]) ⋖ f(α2[m2]) holds if

and only if a dependency exists in “the same thread” of the process, which is

exactly the notion captured by the requirement on the existence of a context

of the form C[α1[i1].Y], hence both notions coincide.

5.1.2. Conflict and Concurrencies5

For reversible π-calculus, the causality relation requires to account for names

previously shared, using an object causality [18, Definition 23], that is not mean-

ingful nor required in CCSK. However, transitions of opposite direction need

to be accounted for with a conflict relation that we restate below:

Definition 17 (Conflict relation [18, Definition 25]). In10

t1; t2 : X
α1[m1]
−−−−→ X1

α2[m2]
−−−−→ X2,

t1 and t2 are in conflict if

• t1 is a forward transition, and t2 = t•1,

• t1 is a backward transition, t2 is a forward one, and t2 consumes a prefix

freed by t1.

Note that the conflict relation falls short on detecting conflict in the presence15

of sum: indeed, taking e.g., t1; t2 : a[m] + b
a[m]

a + b
b[k]
−−→ a + b[k], t1 and t2

would not be in conflict according to Definition 17, as t2 does not “consume” a

prefix freed by t1. However, it would not be correct to declare them concurrent

(as would this work [18, Definition 26]), since they cannot be swapped and are,

indeed, dependent. This is fine in the sum-free reversible π-calculus, but also20

illustrates how concurrency cannot be defined by “simply” restricting the π’s

calculus definition to CCSK, in the presence of sum.

Lemma 13 (Adequacy of conflict and causality on transitions of opposite direc-

tions). In a sum-free CCSK, in t1; t2 : X
α1[m1]
−−−−→ X1

α2[m2]
−−−−→ X2, if t1 and t2

have opposite directions, then t1 and t2 are in conflict iff f(α1[m1])⋖f(α2[m2]).25

41

Proof. If t2 = t•1, then note that t2 consumes a prefix freed by t1 if t1 was

backward, so t2 and t1 are in confilct no matter their directions. In this case, it is

immediate that f(α1[m1])⋖ f(α2[m2]) = f(α1[m1]), as ⋖ is reflexive (Claim 1),

so both relations coincide.

If t2 6= t•1, then we need to proceed by case on the direction of t1:5

If t1 is forward Then observe that t1 and t2 are never in conflict. We need

to prove that f(α1[m1]) ⋖ f(α2[m2]) never holds, but it follows easily from

Lemma 10: since t2 6= t•1, we know that the coinitial backward transitions

t•1 and t2 are different, and hence by Lemma 10 that they are concurrent,

proving that f(α1[m1])⋖ f(α2[m2]) does not hold.10

If t1 is backward Then we have to prove that f(α1[m1]) ⋖ f(α2[m2]) iff t2

consumes a prefix freed by t1. Proving this statement from left to right is

easy: it is immediate that if t2 consumes a prefix freed by t1, then f(α1[m1])⋖

f(α2[m2]) will hold. For the reverse direction, inspecting the Action and

Parallel rules of Fig. 7 suffices to prove that f(α1[m1]) ⋖ f(α2[m2]) implies15

that t2 have consumed a prefix freed by t1.

Hence, in the absence of sum, both notions coincide. It should be noted that

our definition of concurrency based on proved labels offers a couple of benefits:

1. It requires only one relation to define concurrency, while the concurrency

stemming from reversible π-calculus requires two relations (structural causal-20

ity and conflict).

2. By our definition, it is obvious that t1 and t2 are concurrent iff t•2 and t•1

are, whereas this result is not obvious for the concurrency stemming from

reversible π-calculus.

3. There is no need to inspect the keys or to build appropriate contexts to25

decide if transitions are concurrent: it suffices to read their (enhanced

keyed) labels.

42

5.1.3. Interplay Between Concurrency and Structural Congruence

Last, but not least, we prove that this concurrency stemming from reversible

π-calculus does not fare well with CCSK’s structural congruence.

Definition 18 (Free and bound keys [7, Definition 2.1]). A key k is bound in X

iff it occurs either twice, attached to complementary prefixes, or once, attached5

to a τ prefix, in X . A key k is free in X if it occurs once in X , attached to a

non-τ prefix.

Definition 19 (Structural equivalence [7, p. 133]). The structural equivalence

of CCSK is the smallest equivalence relation (that is, reflexive, symmetric, and

transitive relation) closed under the following rule:10

X ≡ X [n/m] m bound in X , n /∈ key(X)

where [n/m] denotes the substitution of all the occurrences of key m with key

n.

The labeled transition system of CCSK is then endowed with the following

rules:

Y ≡ X X
α[k]
−−→ X ′ X ′ ≡ Y ′

equiv.

Y
α[k]
−−→ Y ′

15

Y ′ ≡ X ′ X ′ α[k]
X X ≡ Y

equiv.•

Y ′ α[k]
Y

For technical reasons beyond the scope of this exposition, those rules can

only be used last when proving a derivation. However, taken as defined, this

relation does not play well with the concurrency relation inherited from the

reversible π-calculus:20

Theorem 3. The conflict relation inherited from the reversible π-calculus is

not adequate for CSSK endowed with structural congruence.

Proof. Consider the following two equations (the first one is just reflexivity of

≡) and derivation:

43

a[m].c|a[m] ≡ a[m].c|a[m] (7)

a[m].c[m′]|a[m] ≡ a[h].c[m′]|a[h] (8)

(7)

act.

c
c[m′]
−−−→ c[m′]

pre.

a[m].c
c[m′]
−−−→ a[m].c[m′]

|L.

a[m].c|a[m]
c[m′]
−−−→ a[m].c[m′]|a[m] (8)

equiv.

a[m].c|a[m]
c[m′]
−−−→ a[h].c[m′]|a[h]

Then, it is clear that

t1; t2 : a.c | a
τ [m]
−−−→ a[m].c|a[m]

c[m′]
−−−→ a[h].c[m′]|a[h]

and yet since m /∈ key(a[h].c[m′]|a[h]), t1 is not seen as a structural cause of t2

according to Definition 15, even if it should based on intuitive understanding of

concurrency.5

We conjecture that the structural causality could be adapted to account

for the substitution of bound keys, but that it will make the definitions quite

tedious, since the structural cause relation is purely local.

5.2. Recalling RCCS’s Concurrencies

It is relatively easy to adapt our proved labeled to RCCS, no matter which10

declension of the calculus you consider [9, 16, 22, 23, 20]. Below, we look at

the “early” version of RCCS [16, 22] because, to our knowledge, it is the only

version that received a syntactical definition of concurrency, relying on memory

inclusion [22, Definition 3.11] or disjointness [16, Definition 7]. This version

has the heaviest notation, since transitions are labeled with the memory of the15

thread executing, in addition to the label, but it is immediate to add prefixes

to those labels. We briefly remind this system below, and refer to the original

presentations [16, 22] for more details. We do not consider recursive definitions,

briefly discussed in some versions of RCCS.

44

5.2.1. Syntax and Semantics of RCCS

The CCS processes used to build RCCS processes follow a slightly different

presentation from Sect. 2.1, since the prefix operator can appear only below a

n-ary sum. This allows to combine three operators and two rules into one:

• letting n = 0 allows to represent 0, letting n = 1 allows to recover the5

usual prefix, and any n > 1 represents the sum,

• the rule (also called act.) subsumes the rules for the prefix and the sum.

For simplicity, we will however generally use (guarded) binary sum, written +,

write α.P for α.P + 0 [9, Sect. 2.2], and define the structural equivalence using

this binary sum (Definition 21).10

Definition 20 (RCCS Processes). The set of reversible processes R is built on

top of the set of CCS processes by adding memories to the threads:

P,Q := P | Q |
∑

i>0λi.Pi | P\a (CCS Processes)

m := 〈〉 | 〈1〉 ·m | 〈2〉 ·m | 〈m′, a, P 〉 ·m | 〈⋆, α, P 〉 ·m (Memory)

T := m⊲ P (Reversible Threads)

R,S := T | R | S | R\a (RCCS Processes)

We let nm(m) = {α | α ∈ N or α ∈ N occurs in m} be the set of (co-)names

occurring in m.

Definition 21 (Structural equivalence). We write ≡+,\,α the congruence on

CCS terms obtained by the symmetric and transitive closure of the following

equations, letting =α being the usual α-equivalence on labels:

P + 0 ≡ P P +Q ≡ Q+ P

(P1 + P2) + P3 = P1 + (P2 + P3) P ≡ Q if P =α Q

Structural equivalence on R is the smallest equivalence relation generated by

45

the following rules:

R|S ≡ S|R (Composition Symmetry)

(R1|R2)|R3 ≡ R1|(R2|R3) (Composition Associativity)

P ≡+,\,α Q

m⊲ P ≡ m⊲Q
(CCS congruence)

m⊲ (P | Q) ≡ (〈1〉.m⊲ P) | (〈2〉.m⊲Q) (Distribution of Memory)

m⊲ P\a ≡ (m⊲ P)\a with a /∈ nm(m) (Scope of Restriction)

The (Distribution of Memory) rule is the reason why this formalism has often

been dubbed “dynamic” [20], since the memory can “move” during execution.

Notation 2. We let ζ = α | α− be a directed action and µ ranges over mem-

ories and memory pairs. We write m ∈ µ if µ = m or if µ = {m,m′}, and,

accordingly, m1 ∩m2 = m if m ∈ m1 and m ∈ m2. Finally, given two memories5

m1, m2, we write m1 ⊏ m2 if ∃m such that m ·m1 = m2.

Definition 22 (Replacement operator). The operation @ is defined as follows:

(R|S)m2@m1
= Rm2@m1

|Sm2@m1

(R\a)m2@m1
= (Rm2@m1

)\a (If a /∈ m2)

(〈⋆, α,Q〉 ·m1 ⊲ P)m2@m1
= 〈m2, α,Q〉 ·m1 ⊲ P

Rm2@m1
= R (In all the remaining cases)

The forward and backward LTS for RCCS, that we denote
µ:ζ
−−→=

µ:ζ
−−→ ∪

µ : ζ
,

is given in Fig. 5. In RCCS, the loop lemma [22, Lemme 2.2.1] also holds, and

we write t− the reverse of t.

5.2.2. Definitions of Concurrencies10

Concurrency on coinitial Transitions. We first remind of the original definition

of concurrency on coinitial transitions.

Definition 23 (Concurrency on coinitial transitions in RCCS [16, Definition

7]). Let t1 = R
µ1:ζ1
−−−→ S1 and t2 = R

µ2:ζ2
−−−→ S2 be two coinitial transitions, t1

and t2 are said to be concurrent if µ1 ∩ µ2 = ∅, and we write t1 ⌣o
i t2.15

46

act.

(m⊲ λ.P +Q)
m:λ
−−→ 〈⋆, λ,Q〉 ·m⊲ P

act.−

〈⋆, λ,Q〉 ·m⊲ P
m : λ−

m⊲ (λ · P +Q)

R
m1:λ−−−→ R′ S

m2:λ−−−→ S′

syn.
R | S

m1,m2:τ
−−−−−→ R′

m2@m1
| S′

m1@m2

R
m1 : λ−

R′ S
m2 : λ

−

S′

syn.−

Rm2@m1
| Sm1@m2

m1,m2 : τ−

R′ | S′

R
µ:ζ
−−→ R′

par.

R | S
µ:ζ
−−→ R′ | S

R
µ:ζ
−−→ R′ ζ /∈ {a, a, a−, a−}

res.

R\a
µ:ζ
−−→ R′\a

R1 ≡ R R
µ:ζ
−−→ R′ R′ ≡ R′

1
≡

R1
µ:ζ
−−→ R′

1

Figure 5: Rules of the labeled transition system (LTS) for RCCS

47

Concurrency on Composable Transitions. We now remind of the original defi-

nition of concurrency on composable transitions.

Definition 24 (Precedence [22, Definition 3.1.1]). Given t = R
µ:ζ
−−→ R′ and

t′ = R′ µ′:ζ′

−−−→ R′′ two composable transitions, we say that t precedes t′ if

• t and t′ are forward, and ∃m ∈ µ, ∃m′ ∈ µ′, and m ⊏ m′,5

• t and t′ are backward, and ∃m ∈ µ, ∃m′ ∈ µ′, and m′ ⊏ m.

Definition 25 (Concurrency on composable transitions in RCCS). Two com-

posable transitions t, t′ with the same direction are concurrent if t does not

precedes t′, and we write t ⌣o
c t′.

5.2.3. On Transitions of Opposite Directions10

Neither ⌣o
i nor ⌣o

c account for transitions of opposite directions. For ⌣o
c it

is obvious: composable transitions of opposite directions are neither concurrent

nor not concurrent, since precedence is not defined on those transitions.

For ⌣o
i , even if the original definition does not make any explicit requirement

about the direction of the transitions, and could be read as valid if t1 and t2

had opposite directions, it actually requires t1 and t2 to be both forward or

backward. Indeed, for the two transitions

t1 : 〈⋆, a,Q′〉 · 〈〉⊲ (b.P +Q)
〈⋆,a,Q′〉·〈〉:b
−−−−−−−−→ 〈⋆, b,Q〉 · 〈⋆, a,Q′〉 · 〈〉⊲ P

t2 : 〈⋆, a,Q′〉 · 〈〉⊲ (b.P +Q)
〈〉 : a−

〈〉⊲ a.(b.P +Q) +Q′

we have t1 ⌣o
i t2, since 〈⋆, a,Q′〉 · 〈〉 ∩ 〈〉 = ∅. However, the intuitive under-

standing of concurrency (as well as the sideways diamonds) shows that those15

two transitions should actually not be concurrent.

On top of appearing incomplete, those definitions further prevents checking

the validity of (Correctness of Concurrencies). Given two composable transi-

tions t1 and t2, it makes no sense to wonder whether

t1 ⌣o
c t2 ⇐⇒ t−1 ⌣o

i t2.

48

Indeed, since there will be transitions of opposite directions on one side of the

implication, and since both ⌣o
c and ⌣o

i requires both transitions to have the

same direction, one cannot compare the two relations.

5.3. Defining Proved RCCS

We define a proved declension of RCCS exactly like we did for CCSK in5

Sect. 3.1, by enriching the labels and letting the proved LTS propagate them.

Many optimizations could be done (ignoring direction, replacing memories with

identifiers as frequently done in subsequent versions of RCCS, etc.), but we

focus on providing a simple definition, to ease the proof burden in Sect. 5.4,

when we prove that enriched labels give a notion of concurrency equivalent to10

the previous ones (when both are applicable).

We begin by defining the enhanced labels and the proved LTS first. Note

that since action and prefixes are mixed, and since sum are not “preserved” as

main operator after a reduction, as opposed to CCSK, there is no need for the

+L and +R annotations anymore, hence we can simplify Definition 3 as follows:15

Definition 26 (Enhanced labels (bis)). Let υ, υL and υR range over strings in

{|L, |R}∗, enhanced labels are defined as

θ := υζ ‖ υζ ‖ υ〈|LυLζ, |RυRζ〉

And we let

ℓ(υζ) = ζ ℓ(〈|LυLα, |RυRα〉) = τ

ℓ(υζ) = ζ ℓ(〈|LυLα
−, |RυRα−〉) = τ−

In this particular case, since the congruence relation is needed because of the

(Distribution of Memory) rule, we keep it, but remove the (Composition Symmetry)

and (Composition Associativity) rules, as they do not fare well with proved la-20

bels (Sect. 6). As a consequence, we also need to replace the par. rule with

two rules, par.L and par.R, as presented in Fig. 6. And, from now on, we will

assume that the structural congruence used by both systems does not contain

(Composition Symmetry) nor (Composition Associativity).

49

act.

(m⊲ λ.P +Q)
m:λ
−−→ 〈⋆, λ,Q〉 ·m⊲ P

R
µ:θ
−−→ R′

par.L
R | S

µ:|Lθ
−−−→ R′ | S

act.−

〈⋆, λ,Q〉 ·m⊲ P
m : λ−

m⊲ (λ · P +Q)

S
µ:θ
−−→ S′

par.R
R | S

µ:|Rθ
−−−→ R | S′

R
µ:θ
−−→ R′ ℓ(θ) /∈ {a, a, a−, a−}

res.

R\a
µ:θ
−−→ R′\a

R
m1:θLλ−−−−−→ R′ S

m2:θRλ
−−−−−→ S′

syn.

R | S
m1,m2:〈|LθLλ,|RθRλ〉
−−−−−−−−−−−−−−→ R′

m2@m1
| S′

m1@m2

R
m1 : λ−

R′ S
m2 : λ

−

S′

syn.−

Rm2@m1
| Sm1@m2

m1,m2 : 〈|LθLλ
−, |RθRλ−〉

R′ | S′

R1 ≡ R R
µ:θ
−−→ R′ R′ ≡ R′

1
≡

R1
µ:θ
−−→ R′

1

Figure 6: Rules of the proved labeled transition system (LTS) for RCCS

50

Action

ζ ⋖ θ

ζ ⋖ θ

For d ∈ {L,R}

Palallel Group

|dθ ⋖ |dθ
′ if θ ⋖ θ′

〈θL, θR〉⋖ θ if ∃d s.t.θd ⋖ θ

θ ⋖ 〈θL, θR〉 if ∃d s.t.θ ⋖ θd

〈θL, θR〉⋖ 〈θ′L, θ
′
R〉 if ∃d s.t.θd ⋖ θ′d

Figure 7: Dependency Relation on Enhanced Keyed Labels

Definition 27 (Dependency relation). The dependency relation on enhanced

keyed labels is induced by the axioms of Fig. 7.

It should be noted that this relation is the same as in the forward-only

CCS, further illustrating how resilient the proved label technique is. Transitions,

traces and concurrencies are defined as in Definitions 7, 11 and 12.5

Exactly like for CCSK with Lemma 2, it is easy to prove the adequacy of

the proved system w.r.t. the original one:

Lemma 14 (Adequacy of the proved labeled transition system). The transition

R
µ:ζ
−−→ S can be derived using Fig. 5 iff R

µ:θ
−−→ S with ℓ(θ) = ζ can be derived

using Fig. 6.10

Proof. This is obvious, and we write f the mapping from ζ to θ.

5.4. Adequacies of RCCS’s Concurrencies

We now prove that the original two definitions of concurrency coincide with

the one resulting from adopting proved labels for RCCS.

5.4.1. On coinitial Traces15

Theorem 4. For all co-intial transitions with the same direction t1 = R
µ1:ζ1
−−−→

S1 and t2 = R
µ2:ζ2
−−−→ S2, t1 ⌣o

i t2 iff ¬(f(ζ1)⋖ f(ζ2)).

Proof. We start by proving the left-to-right direction first, by case on the struc-

ture of R:

51

m ⊲ P Then we proceed by induction on the size of P , and by case on the

structure of P :

0 This is vacuously true, since 0 cannot reduce.

∑

αi.Pi Then all the transitions from m ⊲ P are of the form

m ⊲

∑

αi.Pi
m:αi−−−→ m′ ·m ⊲ Pi

But since m∩m 6= ∅, any two such transitions are not pairwise concurrent.5

Since we always have that αi ⋖ θ, we have that f(ζ1)⋖ f(ζ2).

P |Q Then m ⊲ P |Q cannot reduce, without using (Distribution of Memory)

to become of the form R1|R2, that we study next.

R1|R2 Then, every transition that R1|R2 can perform has for memory either a

pair, or a memory prefixed by 〈1〉 or by 〈2〉. We proceed by case on µ1 and10

µ2:

If µ1 and µ2 are prefixed by the same number Then since |dθ ⋖ |dθ′ if

θ ⋖ θ′, we can proceed by induction.

If µ1 and µ2 are prefixed by different numbers Then the transitions are

concurrent, and since neither |Lθ ⋖ |Rθ
′ nor |Rθ ⋖ |Lθ

′ hold, we are done15

with this case.

If µ1 or µ2 is a pair Then we simply reason on its elements, exactly like

the rules of Fig. 7 concerned with tuples 〈θL, θR〉 decompose them to assess

whenever they are dependent of other labels.

(a)R Then this is immediate by induction.20

For the converse direction, it suffices to observe the rules of Fig. 7 and to note

that all the rules imply that the memories of the process initiating the two

transitions must have a non-empty intersection, hence providing the desired

result.

52

5.4.2. On Composable Transitions

Using the following lemma, it is enough to prove the adequacy of our notion

for one direction only:

Lemma 15. For all composable forward transitions t1, t2,

(t1 precedes t2 ⇐⇒ f(ζ1)⋖ f(ζ2)) ⇐⇒ (t−2 precedes t−1 ⇐⇒ f(ζ2)⋖ f(ζ1))

Proof. This is immediate by symmetry of Definitions 24 and 27.5

Lemma 16. For all composable forward transitions, t1 = R
µ1:ζ1
−−−→ S1 and

t2 = S1
µ2:ζ2
−−−→ S2, t1 ⌣o

i t2 iff ¬(f(ζ1)⋖ f(ζ2)).

Proof. We need to prove that t1 precedes t2 iff f(ζ1)⋖f(ζ2). We reason by case

on the last rule of the derivation for t1:

act. Then, letting µ = m, µ2 = 〈⋆, λ,Q〉 · m for some λ and Q, and hence10

m1 ⊏ m2 and t1 precedes t2. That f(ζ1)⋖ f(ζ2) is also immediate.

par.L Then R = R1|R2, S1 = T1|T2, S2 = T3|T4 and we proceed by case on the

last rule in the derivation of t2:

par.L Then we proceeds by induction on the trace R1
µ1:ζ1
−−−→ T1

µ2:ζ2
−−−→ T3.

par.R Then t1 cannot precede t2, and f(ζ1)⋖ f(ζ2).15

syn. Then t1 precedes t2 (resp. f(ζ1)⋖ f(ζ2)) iff t′1 precedes t′2 (resp. f(ζ1)⋖

f(ζ′2)) in t′1; t
′
2 : R1

µ1:ζ1
−−−→ T1

µ′

2
:ζ′

2−−−→ T3, and we proceed by induction

syn. and par.L Those two cases are similar to the previous one.

res. and ≡ are immediate by induction hypothesis.

Theorem 5. For all different composable transitions with the same direction20

t1 = R
µ1:ζ1
−−−→ S1 and t2 = S1

µ2:ζ2
−−−→ S2, t1 ⌣o

i t2 iff ¬(f(ζ1) ⋖ f(ζ2)) if t1 and

t2 are forward, or if ¬(f(ζ2)⋖ f(ζ1)) if t1 and t2 are backward.

Proof. This is an immediate consequence of Lemmas15 and 15.

53

5.5. Reversible and Identified CCS

We refer to the original paper [21] for the precise definition of (this declension

of) RCCS, and only recall the strict minimum below. In a nutshell, this calculus

endows RCCS processes with a seed [21, Definition 4], which is an identifier

patterns [21, Definition 1] that dynamically generates the identifiers for each5

transition, and that can get split [21, Definition 3] between threads if needed.

Being able to know ahead of time the identifer generated for each transition was

leveraged to offer an original definition of concurrency, where identifiers need to

be compatible [21, Definition 12]—written i1 ⊥ i2—or not downstream, both

conditions essentially stating that the transition involved different threads. We10

keep the development rather informal not to burden the reader, but the proofs

could be worked out in details based on the sketches we provide below.

This calculus also explored different types of sums, but we restrict ourselves

to the “classical one”, denoted + as usual.

Definition 28 (Concurrency). Two different coinitial transitions15

t1 : s ◦m⊲ P
α1[i1]
−−−−→ s1 ◦m1 ⊲ P1 and t2 : s ◦m⊲ P

α2[i2]
−−−−→ s2 ◦m2 ⊲ P2

are concurrent iff

• t1 and t2 are forward transitions and i1 ⊥ i2;

• t1 is a forward and t2 is a backward transition and i1 (or i11 and i21 if

i1 = i11 ⊕ i21) is not downstream of ipt2 (or ip1t2 nor ip2t2);

• t1 and t2 are backward transitions.20

It is easy to similarly adjust the system to use proved labels, and then to

prove its adequacy in the sense of Lemma 14—we will also write f the mapping

from labels to proved labels. Note that the dependency relation is defined as

with RCCS here: since the sum operator is not preserved, it is not needed to

account for it in the proved label.25

Theorem 6. For all s ◦ P
α1[i1]
−−−−→ s1 ◦ P1 and s ◦ P

α2[i2]
−−−−→ s2 ◦ P2, i1 ⊥ i2 are

concurrent iff f(α1)⋖ f(α2) does not hold.

54

Proof. For forward transition, it is not difficult to observe that, given two dif-

ferent coinitial transitions s ◦P
α1[i1]
−−−−→ s1 ◦P1 and s ◦P

α2[i2]
−−−−→ s2 ◦P2, i1 ⊥ i2 iff

¬(f(i1 : α1)⋖ f(i2 : α2)):

• both transitions cannot come from reducing the very same action, which

means that P must have a different operator at top level,5

• if they result from the execution of the left- and right-hand-side of the same

sum operator, then they get assigned the same identifier, and since they

will both be labeled with actions, they will not be concurrent according

to both definitions,

• if they result from the execution of a multi-threaded process, then it is10

easy to observe that the condition on the incompatibility of the identi-

fiers match the definition of dependencies, as transitions resulting from

synchronizations are concurrent iff their components are in both cases.

For transitions with opposite directions, the “downstream” condition essentially

ensures that the identifiers originate from different seeds, e.g., from different15

threads. That this condition is equivalent to the inexistence of a dependency

between proved labels on transitions of opposite direction is a direct, though

tedious, result of the unfolding of both definitions.

For backward transitions, it is immediate: any two backward transitions are

concurrent according to Definition 28, and we have this result as well for proved20

labels, by adapting the proof for proved CCSK (Lemma 10) to this proved

identified RCCS.

6. Structural Congruence and Other Criteria

Causality for a semantics of concurrent computation should satisfy a variety

of critera, the diamonds being the starting point, and causal consistency being25

arguably the most important for reversible systems. This section aims at briefly

presenting additional criteria.

55

Concurrency-Preserving Structural Congruences. “Denotationality” [8, Section

6] is a criteria stating that structural congruence should be preserved by the

causal semantics. Unfortunately, our system only vacuously meets this criteria—

since it does not possess a structural congruence. The “usual” structural congru-

ence is missing from all the proved transition systems [26, 32, 33, 37], or missing5

the associativity and commutativity of the parallel composition [34, p. 242].

While adding such a congruence would benefits the expressiveness, making it

interact nicely with the derived proof system and the reversible features [7,

Section 4][38] is a challenge we prefer to postpone.

Comparing with concurrency inspired by reversible π-calculus. It is possible to10

restrict the definition of concurrency for reversible π-calculi extending CCSK

back to CCSK. We did it in Sect. 5.1 for a particular line of work [18], but it is

not the only one that can be the source of comparison. Indeed, a similar work

could have been done by restricting concurrency for e.g., reversible higher-order

π-calculus [39, Definition 9], reversible π-calculus [40, Definition 4.1] or croll-15

π [41, Definition 1]. However, it seems more constructive to extend our definition

to a reversible π-calculus rather than proceeding the other way around.

Optimality, Parabolic Lemma, and RPI. The optimality criteria is the adequacy

of the concurrency definitions for the LTS and for the reduction semantics [40,

Theorem 5.6]. While this criteria requires a reduction semantics and a notion of20

reduction context to be formally proven, we believe it is easy to convince oneself

that the gist of this property—the fact that non-τ -transitions are concurrent iff

there exists a “closing” context in which the resulting τ -transitions are still

concurrent—holds in our system: as concurrency on τ -transitions is defined in

terms of concurrency of its elements (e.g., 〈θ1R, θ
1
L〉 ⌣ 〈θ2R, θ

2
L〉 iff θ1d ⌣ θ2d for at25

least one d ∈ {L,R}), this criteria is obtained “for free”.

Properties such as the parabolic lemma [16, Lemma 10]—“any trace is equiv-

alent to a backward trace followed by a forward trace”—or “RPI” [11, Definition

3.3]—“reversing preserves independence”, i.e., t ⌣ t′ iff t• ⌣ t′–follow imme-

diately, by our definition of concurrencies for this latter. We furthermore be-30

56

lieve that “baking in” the RPI principle in definitions of reversible concurrencies

should become the norm, as it facilitates proofs and forces to have t1 ⌣ t2 iff

t•1 ⌣ t•2, which seems a very sound principle. How those properties logically

relates to our (Correctness of Concurrencies) is another venue that could be

fruitlful to explore.5

7. Conclusion and Perspectives

We believe our proposal to be not only elegant, but also extremely resilient

and easy to work with. It should be stressed that it does not require to observe

the directions, but also ignore keys or identifiers, that should in our opinion only

be technical annotations disallowing processes that have been synchronized to10

backtrack independently. We had previously defended that identifier should be

considered only up to isomorphisms [9, p. 13], or explicitly generated by a built-

in mechanism [21, p. 152], and re-inforce this point of view here. From there,

much can be done. A first interesting line of work would be to compare our

syntactical definition with the semantical definition of concurrency in models of15

RCCS [9, 12, 23] and CCSK [6, 13, 24]. Of course, as we already mentioned,

extending this definition to reversible π-calculi, taking inspiration from e.g., the

latest development in forward-only π [37], would allow to re-inforce the interest

and solidity of this technique.

Another interesting track would be to consider infinite extensions of CCSK,20

since infinite behaviors in the presence of reversibility is not well-understood

nor studied: an attempt to extend algebras of communicating processes [42],

including recursion, seems to have been unsuccessful [43]. A possible approach

would be to define recursion and iteration in CCSK, to extend our definition of

concurrency to those infinite behaviors8 and to attempt to reconstruct the sepa-25

ration results from the forward-only paradigm [45]. Whether finer, “reversible”,

8This is, by the way, the reason why we piced this particular formalism and presentation

over concurrent formalisms for CCS. Older presentations [30, 31] are indeed better equipped

to possibly accommodate replication for reversible calculi [44], in our opinion.

57

equivalences can preserve this distinction despite the greater flexibility provided

by backward transitions is an open problem. Another interesting point is the

study of infinite behaviors that duplicate past events, including their keys or

memories: whether this formalism could preserve causal consistency, or what

benefits there would be in tinkering this property, is also an open question.5

Last but not least, these last investigations would require to define and under-

stand relevant properties, or metrics, for reversible systems. In the forward-only

world, termination or convergence were used to compare infinite behaviors [45],

and additional criteria were introduced to study causal semantics [8]. Those

properties may or may not be suited for reversible systems, but it is difficult to10

decide as they sometimes even lack a definition. This could help in solving the

more general question of deciding what it is that we want to observe and assess

when evaluating reversible, concurrent systems [46, 47].

Acknowledgments

I would like to thank Doriana Medić for suggesting that I adapt the defini-15

tion of concurrency for a reversible π-calculus extending CCSK [18] and com-

pare it to the concurrency developed in this paper, as done in Sect. 5.1. Peter

Browning—who is working on implementing CCSK [48]—and Neea Rusch gave

me an early feedback on the Preamble that helped me in making it more accessi-

ble, and I would like to thank them for their time. I really appreciated presenting20

a preliminary version of this work [27] at the 14th Conference on Reversible Computation,

and would like to thank Claudio Antares Mezzina for organizing it, and him,

Ivan Lanese and Irek Ulidowski for the very interesting discussions that followed.

I am also extremely thankful to the reviewers for their careful reading of the

first version of this technical paper, and for their enlightening suggestions.25

References

[1] L. Kristiansen, Reversible computing and implicit computational

complexity, Science of Computer Programming 213 (2022) 102723.

doi:10.1016/j.scico.2021.102723.

58

https://reversible-computation-2022.github.io/
https://doi.org/10.1016/j.scico.2021.102723

[2] C. E. McDowell, D. P. Helmbold, Debugging concurrent programs, ACM

Computing Surveys 21 (4) (1989) 593–622. doi:10.1145/76894.76897.

[3] H. Wayne, Why don’t people use formal methods? (01 2019).

URL https://www.hillelwayne.com/post/why-dont-people-use-formal-methods/

[4] C. Aubert, R. Horne, C. Johansen, Diamonds for security: A non-5

interleaving operational semantics for the applied pi-calculus, in: B. Klin,

S. Lasota, A. Muscholl (Eds.), 33rd International Conference on Concur-

rency Theory, Vol. 243 of Leibniz International Proceedings in Informat-

ics, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022, pp. 30:1–30:26.

doi:10.4230/LIPIcs.CONCUR.2022.30.10

[5] I. Phillips, I. Ulidowski, Reversing algebraic process calculi, The

Journal of Logic and Algebraic Programming 73 (1-2) (2007) 70–96.

doi:10.1016/j.jlap.2006.11.002.

[6] I. Phillips, I. Ulidowski, Reversibility and models for concurrency, Elec-

tronic Notes in Theoretical Computer Science 192 (1) (2007) 93–108.15

doi:10.1016/j.entcs.2007.08.018.

[7] I. Lanese, I. Phillips, Forward-reverse observational equivalences in CCSK,

in: S. Yamashita, T. Yokoyama (Eds.), Reversible Computation - 13th

International Conference, RC 2021, Virtual Event, July 7-8, 2021, Proceed-

ings, Vol. 12805 of Lecture Notes in Computer Science, Springer, 2021, pp.20

126–143. doi:10.1007/978-3-030-79837-6_8.

[8] I. Cristescu, J. Krivine, D. Varacca, Rigid families for CCS and the

π-calculus, in: M. Leucker, C. Rueda, F. D. Valencia (Eds.), Theo-

retical Aspects of Computing - ICTAC 2015 - 12th International Col-

loquium Cali, Colombia, October 29-31, 2015, Proceedings, Vol. 939925

of Lecture Notes in Computer Science, Springer, 2015, pp. 223–240.

doi:10.1007/978-3-319-25150-9_14.

59

https://doi.org/10.1145/76894.76897
https://www.hillelwayne.com/post/why-dont-people-use-formal- methods/
https://www.hillelwayne.com/post/why-dont-people-use-formal- methods/
https://doi.org/10.4230/LIPIcs.CONCUR.2022.30
https://doi.org/10.1016/j.jlap.2006.11.002
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1007/978-3-030-79837-6_8
https://doi.org/10.1007/978-3-319-25150-9_14

[9] C. Aubert, I. Cristescu, How reversibility can solve traditional ques-

tions: The example of hereditary history-preserving bisimulation, in:

I. Konnov, L. Kovács (Eds.), 31st International Conference on Con-

currency Theory, CONCUR 2020, September 1–4, 2020, Vienna, Aus-

tria, Vol. 2017 of Leibniz International Proceedings in Informatics,5

Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 13:1–13:24.

doi:10.4230/LIPIcs.CONCUR.2020.13.

[10] I. Lanese, From reversible semantics to reversible debugging, in: J. Kari,

I. Ulidowski (Eds.), Reversible Computation - 10th International Confer-

ence, RC 2018, Leicester, UK, September 12-14, 2018, Proceedings, Vol.10

11106 of Lecture Notes in Computer Science, Springer, 2018, pp. 34–46.

doi:10.1007/978-3-319-99498-7_2.

[11] I. Lanese, I. C. C. Phillips, I. Ulidowski, An axiomatic approach to re-

versible computation, in: J. Goubault-Larrecq, B. König (Eds.), Foun-

dations of Software Science and Computation Structures - 23rd In-15

ternational Conference, FOSSACS 2020, Held as Part of the Euro-

pean Joint Conferences on Theory and Practice of Software, ETAPS

2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Vol. 12077

of Lecture Notes in Computer Science, Springer, 2020, pp. 442–461.

doi:10.1007/978-3-030-45231-5_23.20

[12] C. Aubert, I. Cristescu, Reversible barbed congruence on configuration

structures, in: S. Knight, A. Lluch Lafuente, I. Lanese, H. T. Vieira (Eds.),

ICE 2015, Vol. 189 of Electronic Proceedings in Theoretical Computer Sci-

ence, 2015, pp. 68–95. doi:10.4204/EPTCS.189.7.

[13] E. Graversen, I. C. C. Phillips, N. Yoshida, Event structure semantics of25

(controlled) reversible CCS, Journal of Logical and Algebraic Methods in

Programming 121 (2021) 100686. doi:10.1016/j.jlamp.2021.100686.

[14] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Com-

puter Science, Springer-Verlag, 1980. doi:10.1007/3-540-10235-3.

60

https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.1007/978-3-319-99498-7_2
https://doi.org/10.1007/978-3-030-45231-5_23
https://doi.org/10.4204/EPTCS.189.7
https://doi.org/10.1016/j.jlamp.2021.100686
https://doi.org/10.1007/3-540-10235-3

[15] D. Sangiorgi, D. Walker, The Pi-calculus, Cambridge University Press,

2001.

[16] V. Danos, J. Krivine, Reversible communicating systems, in: P. Gardner,

N. Yoshida (Eds.), CONCUR 2004 - Concurrency Theory, 15th Interna-

tional Conference, London, UK, August 31 - September 3, 2004, Proceed-5

ings, Vol. 3170 of Lecture Notes in Computer Science, Springer, 2004, pp.

292–307. doi:10.1007/978-3-540-28644-8_19.

[17] Arpit, D. Kumar, Calculus of concurrent probabilistic reversible pro-

cesses, in: ICCCT-2017: Proceedings of the 7th International Confer-

ence on Computer and Communication Technology, ICCCT-2017, Asso-10

ciation for Computing Machinery, New York, NY, USA, 2017, pp. 34–40.

doi:10.1145/3154979.3155004.

[18] D. Medić, C. A. Mezzina, I. Phillips, N. Yoshida, A parametric framework

for reversible π-calculi, Information and Computation 275 (2020) 104644.

doi:10.1016/j.ic.2020.104644.15

[19] C. A. Mezzina, V. Koutavas, A safety and liveness theory for total re-

versibility, in: F. Mallet, M. Zhang, E. Madelaine (Eds.), 11th Interna-

tional Symposium on Theoretical Aspects of Software Engineering, TASE

2017, Sophia Antipolis, France, September 13-15, IEEE, 2017, pp. 1–8.

doi:10.1109/TASE.2017.8285635.20

[20] I. Lanese, D. Medić, C. A. Mezzina, Static versus dynamic reversibility in

CCS, Acta Informatica (Nov. 2019). doi:10.1007/s00236-019-00346-6.

[21] C. Aubert, D. Medić, Explicit identifiers and contexts in reversible con-

current calculus, in: S. Yamashita, T. Yokoyama (Eds.), Reversible Com-

putation - 13th International Conference, RC 2021, Virtual Event, July25

7-8, 2021, Proceedings, Vol. 12805 of Lecture Notes in Computer Science,

Springer, 2021, pp. 144–162. doi:10.1007/978-3-030-79837-6_9.

61

https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1145/3154979.3155004
https://doi.org/10.1016/j.ic.2020.104644
https://doi.org/10.1109/TASE.2017.8285635
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1007/978-3-030-79837-6_9

[22] J. Krivine, Algèbres de processus réversible - programmation concurrente déclarative,

Ph.D. thesis, Université Paris 6 & INRIA Rocquencourt (2006).

URL https://tel.archives-ouvertes.fr/tel-00519528

[23] C. Aubert, I. Cristescu, Contextual equivalences in configuration structures

and reversibility, Journal of Logical and Algebraic Methods in Program-5

ming 86 (1) (2017) 77–106. doi:10.1016/j.jlamp.2016.08.004.

[24] I. Ulidowski, I. Phillips, S. Yuen, Concurrency and reversibility, in: S. Ya-

mashita, S. Minato (Eds.), Reversible Computation - 6th International

Conference, RC 2014, Kyoto, Japan, July 10-11, 2014. Proceedings, Vol.

8507 of Lecture Notes in Computer Science, Springer, 2014, pp. 1–14.10

doi:10.1007/978-3-319-08494-7_1.

[25] P. Degano, F. Gadducci, C. Priami, Causality and replication in concurrent

processes, in: M. Broy, A. V. Zamulin (Eds.), Perspectives of Systems In-

formatics, 5th International Andrei Ershov Memorial Conference, PSI 2003,

Akademgorodok, Novosibirsk, Russia, July 9-12, 2003, Revised Papers, Vol.15

2890 of Lecture Notes in Computer Science, Springer, 2003, pp. 307–318.

doi:10.1007/978-3-540-39866-0_30.

[26] P. Degano, C. Priami, Enhanced operational semantics, ACM Computing

Surveys 33 (2) (2001) 135–176. doi:10.1145/384192.384194.

[27] C. Aubert, Concurrencies in Reversible Concurrent Calculi, in: C. A.20

Mezzina, K. Podlaski (Eds.), Reversible Computation - 14th International

Conference, RC 2022, Urbino, Italy, July 5-6, 2022, Proceedings, Vol.

13354 of Lecture Notes in Computer Science, Springer, 2022, pp. 146–163.

doi:10.1007/978-3-031-09005-9_10.

[28] C. Aubert, Concurrencies in Reversible Concurrent Calculi, technical Re-25

port (Mar. 2022).

URL https://hal.archives-ouvertes.fr/hal-03605003

62

https://tel.archives-ouvertes.fr/tel-00519528
https://tel.archives-ouvertes.fr/tel-00519528
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1007/978-3-319-08494-7_1
https://doi.org/10.1007/978-3-540-39866-0_30
https://doi.org/10.1145/384192.384194
https://doi.org/10.1007/978-3-031-09005-9_10
https://hal.archives-ouvertes.fr/hal-03605003
https://hal.archives-ouvertes.fr/hal-03605003

[29] N. Busi, M. Gabbrielli, G. Zavattaro, On the expressive power

of recursion, replication and iteration in process calculi, Mathe-

matical Structures in Computer Science 19 (6) (2009) 1191–1222.

doi:10.1017/S096012950999017X.

[30] G. Boudol, I. Castellani, A non-interleaving semantics for CCS based on5

proved transitions, Fundamenta Informaticae 11 (1988) 433–452.

[31] G. Boudol, I. Castellani, Three equivalent semantics for CCS, in: I. Gues-

sarian (Ed.), Semantics of Systems of Concurrent Processes, LITP Spring

School on Theoretical Computer Science, La Roche Posay, France, April

23-27, 1990, Proceedings, Vol. 469 of Lecture Notes in Computer Science,10

Springer, 1990, pp. 96–141. doi:10.1007/3-540-53479-2_5.

[32] G. Carabetta, P. Degano, F. Gadducci, CCS semantics via proved transition

systems and rewriting logic, in: C. Kirchner, H. Kirchner (Eds.), 1998

International Workshop on Rewriting Logic and its Applications, WRLA

1998, Abbaye des Prémontrés at Pont-à-Mousson, France, September 1998,15

Vol. 15 of Electronic Notes in Theoretical Computer Science, Elsevier, 1998,

pp. 369–387. doi:10.1016/S1571-0661(05)80023-4.

[33] P. Degano, C. Priami, Proved trees, in: W. Kuich (Ed.), Au-

tomata, Languages and Programming, 19th International Colloquium,

ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings, Vol. 62320

of Lecture Notes in Computer Science, Springer, 1992, pp. 629–640.

doi:10.1007/3-540-55719-9_110.

[34] P. Degano, C. Priami, Non-interleaving semantics for mobile pro-

cesses, Theoretical Computer Science 216 (1-2) (1999) 237–270.

doi:10.1016/S0304-3975(99)80003-6.25

[35] R. Milner, A Calculus of Communicating Systems, Vol. 92 of Lecture Notes

in Computer Science, Springer-Verlag, New York, NY, 1980.

63

https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1007/3-540-53479-2_5
https://doi.org/10.1016/S1571-0661(05)80023-4
https://doi.org/10.1007/3-540-55719-9_110
https://doi.org/10.1016/S0304-3975(99)80003-6

[36] V. Sassone, M. Nielsen, G. Winskel, Models for concurrency: Towards

a classification, Theoretical Computer Science 170 (1-2) (1996) 297–348.

doi:10.1016/S0304-3975(96)80710-9.

[37] R. Demangeon, N. Yoshida, Causal computational complex-

ity of distributed processes, in: A. Dawar, E. Grädel (Eds.),5

LICS, Association for Computing Machinery, 2018, pp. 344–353.

doi:10.1145/3209108.3209122.

[38] C. Aubert, I. Cristescu, Structural equivalences for reversible calculi of communicating systems (oral comm

Research report, Augusta University, communication at ICE 2020 (2020).

URL https://hal.archives-ouvertes.fr/hal-0257159710

[39] I. Lanese, C. A. Mezzina, J. Stefani, Reversibility in the higher-

order π-calculus, Theoretical Computer Science 625 (2016) 25–84.

doi:10.1016/j.tcs.2016.02.019.

[40] I. Cristescu, J. Krivine, D. Varacca, A compositional semantics for the

reversible p-calculus, in: LICS, IEEE Computer Society, 2013, pp. 388–397.15

doi:10.1109/LICS.2013.45.

[41] I. Lanese, M. Lienhardt, C. A. Mezzina, A. Schmitt, J. Stefani, Concurrent

flexible reversibility, in: M. Felleisen, P. Gardner (Eds.), Programming

Languages and Systems - 22nd European Symposium on Programming,

ESOP 2013, Held as Part of the European Joint Conferences on Theory20

and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.

Proceedings, Vol. 7792 of Lecture Notes in Computer Science, Springer,

2013, pp. 370–390. doi:10.1007/978-3-642-37036-6_21.

[42] J. C. M. Baeten, A brief history of process algebra, Theoretical Computer

Science 335 (2-3) (2005) 131–146. doi:10.1016/j.tcs.2004.07.036.25

[43] Y. Wang, Retracted article: An algebra of reversible computation, Springer-

Plus 5 (1) (2016) 1659. doi:10.1186/s40064-016-3229-7.

64

https://doi.org/10.1016/S0304-3975(96)80710-9
https://doi.org/10.1145/3209108.3209122
https://hal.archives-ouvertes.fr/hal-02571597
http://www.discotec.org/2020/ice.html
https://hal.archives-ouvertes.fr/hal-02571597
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1186/s40064-016-3229-7

[44] C. Aubert, Causal consistent replication in reversible concurrent calculi,

under revision (Oct. 2021).

URL https://hal.archives-ouvertes.fr/hal-03384482

[45] C. Palamidessi, F. D. Valencia, Recursion vs replication in process calculi: Expressiveness,

Bulletin of the EATCS 87 (2005) 105–125.5

URL http://eatcs.org/images/bulletin/beatcs87.pdf

[46] C. Aubert, D. Varacca, Processes, systems & tests: Defining contextual

equivalences, in: J. Lange, A. Mavridou, L. Safina, A. Scalas (Eds.), Pro-

ceedings 14th Interaction and Concurrency Experience, Online, 18th June

2021, Vol. 347 of Electronic Proceedings in Theoretical Computer Science,10

Open Publishing Association, 2021, pp. 1–21. doi:10.4204/EPTCS.347.1.

[47] C. Aubert, D. Varacca, Processes against tests: On defining contextual

equivalences, Journal of Logical and Algebraic Methods in Programming

(2022) 100799doi:10.1016/j.jlamp.2022.100799.

[48] P. Browning, C. Aubert, IRDC-CCSK (8 2022).15

URL https://github.com/CinRC/IRDC-CCSK

65

https://hal.archives-ouvertes.fr/hal-03384482
https://hal.archives-ouvertes.fr/hal-03384482
http://eatcs.org/images/bulletin/beatcs87.pdf
http://eatcs.org/images/bulletin/beatcs87.pdf
https://doi.org/10.4204/EPTCS.347.1
https://doi.org/10.1016/j.jlamp.2022.100799
https://github.com/CinRC/IRDC-CCSK
https://github.com/CinRC/IRDC-CCSK

	Introduction: Reversibility, Concurrency–Interplays
	Finite and Reversible Process Calculi
	A Proved Transition System For CCS
	CSSK: A "Keyed" Reversible Concurrent Calculus

	A New Causal Semantics for CCSK
	Proved Labeled Transition System for CCSK
	The Past Does Not Matter (When It Is Not Involved)
	Dependency and Concurrency for CCSK
	Discussion

	Diamonds, Squares and Consistency
	Preliminary: Decomposing Transitions
	Diamonds and Squares: Concurrency in Action
	Causal Consistency & Other Properties

	Comparing Concurrencies Accross Calculi
	Comparing With Concurrency Stemming From Reversible pi-Calculus
	Causalities: Definitions and Adequacy
	Conflict and Concurrencies
	Interplay Between Concurrency and Structural Congruence

	Recalling RCCS's Concurrencies
	Syntax and Semantics of RCCS
	Definitions of Concurrencies
	On Transitions of Opposite Directions

	Defining Proved RCCS
	Adequacies of RCCS's Concurrencies
	On coinitial Traces
	On Composable Transitions

	Reversible and Identified CCS

	Structural Congruence and Other Criteria
	Conclusion and Perspectives

