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ABSTRACT: Background: Available treatments for
Parkinson’s disease (PD) are only partially or transiently
effective. Identifying existing molecules that may present
a therapeutic or preventive benefit for PD (drug
repositioning) is thus of utmost interest.
Objective: We aimed at detecting potentially protective
associations between marketed drugs and PD through a
large-scale automated screening strategy.
Methods: We implemented a machine learning
(ML) algorithm combining subsampling and lasso logistic
regression in a case–control study nested in the French
national health data system. Our study population com-
prised 40,760 incident PD patients identified by a vali-
dated algorithm during 2016 to 2018 and 176,395
controls of similar age, sex, and region of residence, all
followed since 2006. Drug exposure was defined at the
chemical subgroup level, then at the substance level of
the Anatomical Therapeutic Chemical (ATC) classification
considering the frequency of prescriptions over a 2-year
period starting 10 years before the index date to limit

reverse causation bias. Sensitivity analyses were con-
ducted using a more specific definition of PD status.
Results: Six drug subgroups were detected by our algo-
rithm among the 374 screened. Sulfonamide diuretics
(ATC-C03CA), in particular furosemide (C03CA01),
showed the most robust signal. Other signals included
adrenergics in combination with anticholinergics (R03AL)
and insulins and analogues (A10AD).
Conclusions: We identified several signals that deserve
to be confirmed in large studies with appropriate consid-
eration of the potential for reverse causation. Our results
illustrate the value of ML-based signal detection algo-
rithms for identifying drugs inversely associated with PD
risk in health-care databases. © 2022 The Authors. Move-
ment Disorders published by Wiley Periodicals LLC on
behalf of International Parkinson and Movement Disorder
Society

Key Words: Parkinson’s disease; drug repositioning;
machine learning; French national health data system;
reverse causation bias

Among neurological disorders, Parkinson’s disease
(PD) is the fastest growing in terms of prevalence, disability,
and deaths.1 Over the past generation, the global burden of
PD has more than doubled as a result of population
aging.2,3 PD is associated with increased risk of institution-
alization and death4 and is an important source of health
expenses.5 Currently available PD treatments are only par-
tially or transiently effective and fail to restore lost dopami-
nergic neurons and delay disease progression.
In this context, there has been an increasing interest

in how existing molecules could be repurposed as an
accelerated route for drug discovery.6 Drug repurposing
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or repositioning is the application of a known drug to
new indications and can lead to shorter and inexpen-
sive drug development cycles with increased probabil-
ity of success. Expensive drug development, coupled
with high clinical attrition rates, has fueled the inter-
est of the pharmaceutical industry and academic
teams in drug repurposing strategies.7 For example,
recent studies suggested that salbutamol, a brain-
penetrant β2-adrenergic agonist, could be associated
with reduced PD risk.8,9 Other examples of drugs
associated with lower PD risk include immunosup-
pressants10 or drugs used to treat symptoms of benign
prostatic hyperplasia.11

These works targeted a molecule or family of mole-
cules based on prior knowledge or hypotheses to study
their potential protective role. Our approach differs in
that we propose to identify potential candidate drugs
for repurposing in a fully agnostic manner. To our
knowledge, only one study sought to do so by emulat-
ing randomized control trials, with PD progression as
the outcome of interest.12 Here, we focused on drugs
that exhibit beneficial effects on PD incidence with a
methodology inspired by automated signal detection in
post-marketing pharmacovigilance.
The aim of post-marketing pharmacovigilance is to

detect the adverse effects of marketed drugs as early as
possible. Pharmacovigilance systems rely on large data-
bases of individual case safety reports of adverse events
suspected to be drug induced. Several methods, the most
recent of which rely on multiple logistic regression machine
learning (ML) algorithms,13,14 have been developed to
mine this large amount of data and highlight suspicious
drug-adverse events. These methods act as hypothesis gen-
erators, and signals must be further investigated.
We used an extensive large-scale automated drug

screening ML-based strategy in a case–control study
nested within the French national health data system
(Système National des Données de Santé [SNDS]). Our
aim was to highlight drugs inversely associated with PD
incidence.

Patients and Methods
Data Source

We conducted a case–control study nested in the
SNDS, which includes exhaustive individual informa-
tion on demographic characteristics (age, sex, and place
of residence), health-care consumption (drug claims,
consultations with general practitioners or specialists,
nursing care, and biological procedures), benefits for
long-term diseases, and detailed information on hospi-
tal stays, for more than 97% of the French population
since 2006.15 Our analyses are restricted to the general
scheme that includes persons employed in the private
sector and spouses if unemployed (76% of the French

population). As the SNDS was initially developed for
the general scheme, data for its affiliates are more
exhaustive than for other schemes, especially for
historical data.
We used the Anatomical Therapeutic Chemical

(ATC) classification for drugs. Diagnoses for hospitali-
zations were coded according to the International Clas-
sification of Diseases and Related Health Problems,
10th revision (ICD-10).

PD Patients
We identified incident PD patients in 2016, 2017,

and 2018 as follows. We first identified individuals with
at least one antiparkinsonian drug claim (ATC N04)
between 2013 and 2018, after excluding persons
aged below 20 years, those aged below 50 years reim-
bursed for bromocriptine alone (lactation suppression),
and those only on anticholinergics and neuroleptics
(drug-induced parkinsonism).
Using an algorithm that was previously validated

against a clinical diagnosis of PD by a neurologist,16 we
estimated the probability that a person who is reim-
bursed antiparkinsonian drugs is treated for PD, based
on dose, regularity of use, and demographic variables.
The probability cutoff (0.255) of this algorithm with
the best combination of sensitivity (92.5%) and speci-
ficity (86.4%) according to the Youden index was used
to identify PD patients as it is highly predictive of PD
status (area under the curve, 0.95). Incident PD patients
a given year were persons identified by the algorithm
for the first time that year.
We then used several exclusion criteria to refine and

increase the specificity of our incident case ascertain-
ment. First, we increased the specificity of the algo-
rithm by excluding PD patients with ICD-10
hospitalization codes for causes of parkinsonism other
than PD (eg, supranuclear palsy and multisystem atro-
phy) after the incidence date. Second, we excluded PD
patients with reimbursements of antiparkinsonian
drugs, hospitalizations for PD, or benefits for long-
term diseases related to PD (ICD-10 G20-G26 and
F023) before the incidence date (prevalent PD
patients). Third, to exclude PD patients with drug-
induced parkinsonism, we excluded individuals with
at least one prescription of neuroleptics (ATC N05A,
except N05AN [lithium]) before the incidence date.
Fourth, we excluded PD patients with a history of
dementia before the incidence date, who are unlikely
to have idiopathic PD as dementia preceded parkin-
sonism. These PD patients used antidementia drugs
(ATC N06DA02/N06DA03/N06DA04/N06DX01),
were hospitalized with dementia (ICD-10 F00/F01/
F02/F03/F051/G30/G311), or had benefits for long-
term diseases related to dementia before the incidence
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date. We did not exclude PD patients who developed
dementia after the incidence date.
In a sensitivity analysis, we increased the specificity of

PD definition by excluding PD patients with a probabil-
ity of the algorithm used for PD ascertainment of less
than 0.383 (89.1% sensitivity and 89.2% specificity).

Controls
Three controls were randomly matched to each PD

patient by incidence density sampling on age at their inci-
dence year (index year = 2016, 2017, and 2018), sex,
and region of residence (French département). Controls
were selected among all subjects present in the SNDS
without any antiparkinsonian drug reimbursement, hospi-
talization for PD, or benefits for long-term diseases related
to PD between 2013 and 2018. As we excluded PD
patients who used neuroleptics before the incidence date
and those with dementia, we also excluded controls who
used neuroleptics or controls with dementia before the
index date. We also excluded a small number of controls
who used antiparkinsonian drugs before 2013.

Drug Exposure Assessment
SNDS data were available from January 1, 2006, to

December 31, 2018. Thus, at least a follow-up of
10 years was available before the index date for all PD
patients and controls. PD has a long prodromal phase
that could induce reverse causation bias.17 To minimize
the risk of reverse causation, we considered a lag of
8 years before the index date, and we assessed drug
exposure and covariates over the 2 years before this
lag. In the following text, we refer to this 2-year period
as the exposure period.
We first considered the penultimate level of the ATC

classification, corresponding to chemical, pharmacolog-
ical, or therapeutic subgroups of drugs. We then refined
our analyses by considering drugs according to their
active chemical substance (finest level of the ATC
classification).
We assessed the number of drug deliveries per indi-

vidual during the exposure period and, for each drug,
generated three binary, embedded variables, following
the approach used in the high-dimensional propensity
score algorithm18: the drug is delivered (1) ≥ once
(“ever” exposure in the remainder of the paper),
(2) ≥ the median number of deliveries of that drug
among exposed controls (“sporadic” exposure), and
(3) ≥ the 75th percentile of the number of deliveries
among exposed controls (“frequent” exposure). A
“frequent” user of a given drug is assigned a value of
1 for all three variables. Each binary variable is
thereby associated with a specific exposure cutoff; if
any two of the cutoff values are equal, only the
binary variable associated with the lowest frequency
is created. See Section S1 for more details.

Covariates
Sociodemographic variables considered in our ana-

lyses were age (5-year groups), sex, and a surrogate for
socioeconomic status defined at the commune (smallest
administrative unit in France) of residence level, the
French Deprivation Index (FDep, in quintiles).19 The
higher the score, the greater the social disadvantage.
We considered the proportion of land devoted to agri-
culture (Surface Agricole Utile [SAU], in quintiles) in
each commune as a surrogate for pesticide exposure.20

Additional covariates included benefits for long-term
diseases; main/related diagnoses of hospital stays; con-
sultations with general practitioners, psychiatrists and
neurologists, dentists, any other specialists, or specialty
not specified; use of nursing care; and biological proce-
dures. See Section S2 for an extensive description of the
data. Except for long-term diseases with benefits (one
binary variable for each), other variables were all coded
into three binary variables, as for drugs. All these
covariates, including sociodemographic variables, were
assessed during the exposure period.

Statistical Methods
We implemented a signal detection strategy combin-

ing multiple sample splitting and lasso logistic regres-
sion, an ML method used, notably, to perform variable
selection in high-dimensional data (see Section S3 for
more details and Section S6 for an R script).21 As the
exclusion of some PD patients and controls led to
break the matching, all analyses were adjusted for age,
sex, FDep, and SAU. To avoid numerical instability,
we removed binary variables, for both drugs and
covariates (other than sociodemographic variables),
with <100 occurrences.
Our approach involved (1) randomly splitting the

data into two samples of equal size D1 and D2; (2)
implementing a lasso logistic regression with fivefold
cross-validation in D1 to identify a subset of potentially
relevant variables S associated with PD status among
drug exposures and all covariates, while forcing age,
sex, FDep, and SAU; (3) fitting an unconditional logis-
tic regression model in D2 including the variables in S
as independent variables. For each binary drug variable
present in S, we estimated its regression coefficient β in
D2. For binary drug variables not in S, their regression
coefficients were set to zero. We repeated this procedure
from (1) to (3) 500 times and obtained 500 estimated
regression coefficients for each binary drug variable.
We considered as signals binary variables related to
drugs selected more than half (selection percentage,
SP = 50%) of the 500 repetitions of steps (1) and (2),
and with a negative average regression coefficient,
noted β hereafter, which indicates a protective effect
toward the outcome. We also present as Supplementary
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material the full list of signals generated with a less-
stringent SP threshold of 10%.

Data Sharing
The use of the SNDS data in this research project was

approved by Commission Nationale de l’Informatique
et des Libertés. We are not allowed to share these data
due to legal restrictions, but SNDS data are accessible
to researchers who meet the criteria for access (request
for access is evaluated by Commission Nationale de
l’Informatique et des Libertés, https://www.health-data-
hub.fr/page/faq-english).

Results

Figure 1 presents a flowchart for the selection of par-
ticipants into the study. Our main analysis was based
on 40,760 PD patients and 176,395 controls whose

main characteristics at the index date are shown in Sup-
plementary Table C. PD patients and controls were
equally distributed within age groups; about 50% were
aged 70 to 85 years. The distributions of sex, FDep,
and SAU were similar in PD patients and controls, who
predominantly lived in urban areas.
Our set of potential covariates contained 1302 binary

variables (Supplementary Table D): 15 pertained to
long-term diseases, 392 to hospitalization diagnoses,
15 to consultations, 67 to biological procedures, and
20 to sociodemographic characteristics. We screened
374 chemical subgroups coded with 793 binary
variables.
Eight signals were generated, involving six drug sub-

groups (Table 1). The most suggestive signal cor-
responded to plain sulfonamide diuretics (ATC
C03CA), with frequent exposure (≥22 deliveries) show-
ing the highest SP among our signals (78.8%) and a
stronger association (β=� 0.14) than for ever exposure

FIG. 1. Flow diagram of the study population.
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(β=�0.05). Another suggestive signal corresponded to
drugs used in nicotine dependence (N07BA), with a
higher SP for ever (67.0%) than frequent exposure (≥2
deliveries, 54.0%) and a similar strength of association
(β=�0.12). Additional signals were detected for fre-
quent exposure to adrenergics in combination with
anticholinergics (R03AL), sporadic exposure to insulins
and analogues for injection (A10AD), ever exposure to
paraffin and fat products (D02AC), and direct-acting
muscle relaxants (M03C Þ.
Figure 2 shows the distribution of the estimated

regression coefficients over 500 repetitions for 8 signals.
Overall, the dispersion of these distributions was corre-
lated with the proportion of exposed individuals: the
smaller the proportion, the flatter the distribution. For
sulfonamide diuretics (C03CA), the distribution of fre-
quent exposure was shifted toward smaller negative
values compared to that of ever exposure, suggesting a
dose–effect relationship.
In Supplementary Section S4, we provide the list of

112 signals generated by relaxing the SP threshold to
10% instead of 50% (Supplementary Table E).
At the finest level of the ATC classification, we

screened 831 substances coded with 1680 binary vari-
ables; this analysis included 2189 variables
(Supplementary Table D). Six signals were generated

(Table 2), four of which involved substances belonging
to the drug subgroups previously highlighted. Among
plain sulfonamide diuretics, furosemide (C03CA01)
was the most represented substance in our study popu-
lation; both ever (SP = 58.6%, β=�0.05) and frequent
(SP = 56.2%, β=�0.08) exposures to furosemide
stood out. Insulin aspart (A10AD05) was the most rep-
resented substance among insulin and analogues; only
sporadic use emerged as a signal (SP = 60.2%,
β=�0.23). Drugs used in nicotine dependence were
approximately equally distributed between nicotine and
varenicline users; of these two substances, only frequent
exposure to varenicline (N07BA03) emerged
(SP = 66.4%, β=�0.39). Among adrenergics, a sub-
stance belonging to a slightly different drug subgroup
from the one previously identified (R03AL) was
highlighted with frequent exposure to formoterol and
budesonide, a β2-agonist in combination with a cortico-
steroid (R03AK07, SP = 52.2%, β=�0.08). The last
signal corresponded to ever exposure to mycophenolic
acid (L04AA06, SP = 55.6%, β=�0.33). There were
no signals for soft paraffin and fat products (D02AC)
or direct-acting muscle relaxants (M03C).
Results of sensitivity analyses based on a more spe-

cific definition of PD (29,873 PD patients and 176,395

TABLE 1 Characteristics of the generated signals (boldface) and corresponding binary variables: penultimate level of the Anatomical Therapeutic Chemical
classification

Drugs Drug chemical subgroup label
Exposed PD
patients (%)

Exposed
controls (%)

Exposure
cutoff

Selection
percentage β OR

� �

A10AD-ever Insulins and analogues for
injection, intermediate- or long
acting combined with fast
acting

0.55 0.59 1 38.0 �0.039 (0.962)

A10AD-sporadic 0.24 0.30 15 58.6 �0.175 (0.840)

A10AD-frequent 0.14 0.16 21 7.4 0.020 (1.020)

C03CA-ever Sulfonamides, plain 4.48 4.51 1 65.8 �0.053 (0.948)

C03CA-sporadic 2.15 2.27 10 22.2 0.004 (1.004)

C03CA-frequent 1.05 1.21 22 78.8 �0.144 (0.866)

D02AC-ever Soft paraffin and fat products 9.68 9.33 1 65.2 �0.043 (0.958)

D02AC-frequent 2.86 2.70 3 5.4 0.003 (1.003)

M03C-ever Muscle relaxants, directly acting
agents

0.18 0.22 1 51.6 �0.147 (0.864)

M03C-frequent 0.06 0.08 2 9.4 0.006 (1.006)

N07BA-ever Drugs used in nicotine
dependence

0.75 0.84 1 67.0 �0.117 (0.889)

N07BA-frequent 0.20 0.26 2 54.0 �0.122 (0.886)

R03AL-ever Adrenergics in combination with
anticholinergics including triple
combinations with
corticosteroids

1.19 1.13 1 1.0 0.001 (1.001)

R03AL-sporadic 0.77 0.76 2 9.8 0.006 (1.006)

R03AL-frequent 0.26 0.31 7 60.6 �0.161 (0.851)

Signals are ordered by the alphabetical order of the Anatomical Therapeutic Chemical classification.
Abbreviations : β, average regression coefficient; OR, average odds ratio (exponential of the average regression coefficient).
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controls) are shown in Supplementary Section S5
(Tables F–I). Overall, these analyses yielded results gen-
erally consistent with those from the main analysis. At
the penultimate level of the ATC classification, all sig-
nals identified in the main analysis were also generated
except for insulins and analogues (Supplementary
Table H). The signal for plain sulfonamide diuretics
was stronger than in the main analysis (C03CA-
ever, SP = 80.4%, β=�0.078; C03CA-frequent, SP =

90.6%, β = �0.229). This analysis also generated sig-
nals not identified in the main analysis, namely other
emollients and protectives (D02AX-frequent), anti-

inflammatory preparations, nonsteroids for topical use
(M02AA-frequent), anticholinergics (R03BB-ever), and
mucolytics (R05CB-ever). Analysis conducted at the fin-
est level of the ATC classification (Supplementary
Table I) identified furosemide with a high SP
(C03CA01-ever, SP = 77.0%, β = �0.086; C03CA01-
frequent, SP = 82.6%, β = �0.191). Two signals were
generated for the two main drugs used in nicotine
dependence, that is, nicotine and varenicline. Signals
were also generated for ever exposure to tiotropium
bromide (R03BB04-ever) and for ever exposure to
direct-acting muscle relaxants (M03C).

FIG. 2. Distribution of regression coefficients obtained over the 500 repetitions of our signal detection approach for eight generated signals: penultimate
level of the Anatomical Therapeutic Chemical classification. The peaks of the distributions correspond to the number of repetitions where binary
variables were not selected in the first step of our algorithm. SP: selection percentage. [Color figure can be viewed at wileyonlinelibrary.com]
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Discussion

This study is part of a research effort aimed at identi-
fying already-developed compounds associated with
reduced PD risk. Using an ML-based signal detection
approach, we identified six subgroups of drugs in our
main analysis: plain sulfonamide diuretics, drugs used
in nicotine dependence, adrenergics in combination
with anticholinergics including triple combinations with
corticosteroids, insulin and analogues for injection, soft
paraffin and fat products, and muscle relaxants. Our
criteria for characterizing a signal were the proportion
of selection over the repetitions of our algorithm
(SP) and the average strength of the inverse association
with PD. Analyses conducted at the active substance
level of drugs confirmed our results by highlighting spe-
cific substances among subgroups previously identified:
furosemide among plain sulfonamide diuretics, insulin
aspart among insulin and analogues, and varenicline
among drugs used in nicotine dependence.
According to our criteria, the signal pertaining to

plain sulfonamide diuretics was the strongest. Ever and,
even more, frequent exposures were associated with
decreased PD risk in both main and sensitivity analyses.
This pattern suggests a dose–effect relationship that
strengthens the plausibility of a protective effect.
Furosemide is a sulfonamide-derivative loop diuretic
primarily used for the treatment of edema. Furosemide
has been recently proposed as a probe molecule
for Alzheimer’s disease based on anti-inflammatory
properties due to the inhibition of the secretion of

proinflammatory TNF-α, IL-6, and nitric oxide; it has
also been shown to inhibit Aβ oligomer formation.22-24

Furosemide binds to mitoNEET, a mitochondrial outer-
membrane protein that plays an important role in mito-
chondrial function and metabolism.25 MitoNEET
knockout mice show signs of striatal mitochondrial
dysfunction and parkinsonian symptoms,26 and
mitoNEET inhibition attenuates lipopolysaccharide-
induced inflammation and oxidative stress.27

Zonisamide is another sulfonamide and antiepileptic
that has also been proposed as a PD treatment based
on several antiparkinsonian mechanisms, including
blocking of calcium channels, modulation of dopamine
metabolism, induction of neurotrophic factors, inhibi-
tion of monoamine oxidase-B, oxidative stress, apopto-
sis, and neuroinflammation.28 In France, zonisamide is
very rarely prescribed for epilepsy and has no market-
ing authorization for PD; the number of participants
exposed was too small to allow analyses for this drug.
One major difference between zonisamide and furose-
mide, however, is that whereas zonisamide readily
crosses the blood–brain barrier (BBB), furosemide has
poor BBB penetration. It is possible that age-related
BBB alterations or high doses may facilitate its penetra-
tion into the brain.29 Alternatively, whether peripheral
changes in body fluid homeostasis due to furosemide
have central effects remains to be determined.30,31

Frequent exposure to adrenergics in combination
with anticholinergics including triple combinations with
corticosteroids was highlighted in both main and sensi-
tivity analyses at the penultimate level of the ATC

TABLE 2 Characteristics of the generated signals (boldface) and corresponding binary variables: finest level of the Anatomical Therapeutic Chemical
classification

Drugs
Drug chemical
subgroup label

Exposed PD
patients (%)

Exposed
controls (%)

Exposure
cutoff

Selection
percentage β OR

� �

A10AD05-ever Insulin aspart 0.36 0.38 1 14.0 0.002 (1.002)

A10AD05-sporadic 0.15 0.19 12 60.2 �0.230 (0.795)

A10AD05-frequent 0.09 0.10 19 0.6 0.005 (1.005)

C03CA01-ever Furosemide 4.23 4.24 1 58.6 �0.050 (0.951)

C03CA01-sporadic 2.12 2.18 9 6.6 0.004 (1.004)

C03CA01-frequent 0.97 1.09 22 56.2 �0.077 (0.926)

L04AA06-ever Mycophenolic acid 0.04 0.08 1 55.6 �0.333 (0.717)

N07BA03-ever Varenicline 0.38 0.41 1 7.6 0.006 (1.006)

N07BA03-frequent 0.06 0.11 2 66.4 �0.391 (0.676)

R03AK07-ever Formoterol and
budesonide

3.46 3.33 1 6.2 0.001 (1.001)

R03AK07-sporadic 1.85 1.82 2 3.2 0.002 (1.002)

R03AK07-frequent 0.77 0.85 8 52.2 �0.083 (0.920)

Signals are ordered by the alphabetical order of the Anatomical Therapeutic Chemical classification.
Abbreviations: β, average regression coefficient; OR, average odds ratio (exponential of the average regression coefficient).
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classification (R03AL subgroup). It was also
highlighted at the substance level (long-acting
formoterol) in the main analysis. There has been recent
interest in the association between β2-adrenergic ago-
nists and PD but with inconsistent findings. Discrepan-
cies across studies may stem from differences in
duration of follow-up and how important confounders
(eg, smoking) or the prodromal phase of PD was con-
sidered; in addition all studies did not distinguish long-
and short-acting adrenergic drugs.8,9,32-36

In our main analysis, we also identified a signal for
insulin use, although only sporadic exposure to insulin
and analogues was selected. This signal was not
highlighted in sensitivity analyses. Emerging evidence
from epidemiological and laboratory studies is in favor
of increased PD risk among diabetes mellitus patients.37

However, these studies focused on type 2 diabetes,
which is characterized by insulin resistance and is more
frequent and occurs at a later age than insulin-
dependent diabetes. Nevertheless, biological plausibility
for an inverse association between insulin and PD may
stem from intrinsic properties of insulin that crosses the
BBB and influences a multitude of brain pathways,
including neuronal survival and dopaminergic transmis-
sion.38 The insulin/IGF-1 signaling pathway contributes
to control neuronal excitability, and its dysfunction
induces progressive neuronal loss in PD.39

The signal corresponding to ever exposure to soft
paraffin and fat products (used as emollients and pro-
tectives) is difficult to interpret because there is no
straightforward mechanism involving these dermatolog-
ical products that could influence PD risk. The signal
corresponding to muscle relaxants is also unlikely to be
plausible. The only substance in this group is
dantrolene, which is used in specific situations (eg, after
a stroke, paraplegia, cerebral palsy, or multiple sclero-
sis), therefore suggesting that this signal may be a proxy
for a particular medical condition. These two signals
were the only ones generated solely for ever exposure,
which makes them less credible compared to signals for
frequent exposures. Moreover, none of them were
highlighted in analyses at substance level.
The main strengths of our study are its large size and

long follow-up before the index date, which allowed us
to address reverse causation bias by excluding expo-
sures over several years preceding PD diagnosis.17 The
prodromal phase of PD is characterized by the progres-
sive emergence of nonmotor and motor symptoms in
the years preceding PD diagnosis that are likely to lead
to increased medical contacts and changes in prescrip-
tions. Thus, the inclusion of a lag between drug expo-
sure and disease incidence decreases the risk of biased
associations reflecting changes in prescriptions in PD
patients that are caused by prodromal symptoms and
are unlikely to play a causal role in disease incidence.
Moreover, our population-based case–control study

was nested within a nationwide database representative
of the French population in which reimbursements of
drugs prescribed by physicians are exhaustively
recorded (except those used during hospital stays or
delivered over the counter). Our approach, inspired
from signal detection in pharmacovigilance, acts as a
hypothesis generator. Unlike most hypothesis-driven
studies, the purely agnostic nature of our approach
allows highlighting unexpected associations and thus
promotes new discoveries, which are immediately
needed to develop disease-modifying treatments.
Furthermore, the ML methodology is appropriate con-
sidering the large dimension of the data and allows
handling multiple drug exposures and confounders.
Alternative studies relied on artificial intelligence to
identify a set of candidate drugs potentially associated
with a reduced risk of Parkinson’s disease.40,41

Limitations include the lack of direct adjustment for
potential confounders (eg, smoking and physical activ-
ity). However, we adjusted our analyses for a wide
range of covariates available in the SNDS using an ML
algorithm capable of handling numerous covariates that
could serve as proxies for potential confounders. Fur-
thermore, although we used a previously validated
algorithm to identify PD patients, misclassification of
some PD patients cannot be ruled out, but our main
signal for plain sulfonamide diuretics was reinforced in
sensitivity analyses with a more specific PD definition.
The fact that drugs used in nicotine dependence were
inversely associated with PD in our study, even though
these drugs are not used frequently, is a strong argu-
ment in favor of the validity of our PD case ascertain-
ment method and ML-based signal detection approach.
The inverse association between smoking and PD is
indeed one of the most consistent observations in PD
epidemiology,42 and recent Mendelian randomization
studies support a causal association.43 Because drugs
for nicotine dependence were retained in the models,
our analyses are indirectly and partially adjusted for
smoking.
The search for new PD therapies through drug

repositioning has gained attention given the current
lack of fully satisfactory therapeutic options. By mining
a large-scale case–control study nested within the
French SNDS using an ML algorithm developed to
account for unmeasured confounding, we screened
agnostically a large number of drugs and identified
plain sulfonamide diuretics as a drug chemical sub-
group potentially inversely associated with PD risk;
weaker signals included insulin and β2-adrenergic ago-
nists. Our findings result in new hypotheses that
deserve replication and could lead to developing new
therapeutic or preventive strategies in PD.
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