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CARLESON’S FORMULA FOR SOME WEIGHTED DIRICHLET
SPACES

B. BOUYA AND A. HARTMANN

ABSTRACT. We extend Carleson’s formula to radially polynomially weighted Dirich-
let spaces.

Dedication: This paper is dedicated to the memory of Mohamed Zarrabi who sadly
past away in december 2021. He was a very esteemed colleague which we all miss in
Bordeauz. The results presented here had mainly been elaborated a very long time
ago when Brahim Bouya was a postdoc at the University Bordeaux 1. This paper is
also the occasion to bring back memories of Brahim who left this world prematurely
mn 2020. Even though they did not work explicitely together on Dirichlet spaces —
one of Mohamed’s research directions — Brahim was one of Mohamed’s co-authors.
It appears natural to present this work in this special edition of the Moroccan Journal
of Pure and Applied Analysis.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS.

Let D be the standard Dirichlet space of analytic functions with square area in-
tegrable modulus of the derivative on the unit disk D of the complex plane C (see
precise definitions below). It is well known that D is contained in the Hardy space
H? (see for instance [13]), and thus that every function f € D has non-tangential
boundary values almost everywhere on T := JD which have square integrable mod-
ulus on T. Even more is true, those functions f admit actually non-tangential limits
quasi-everywhere on T, see (3, 9, 13].

While the norm of a function f € D is a priori defined wvia the values of its
derivative on the unit disk DD it is possible to express it by its values on T only.
Indeed, Douglas’ formula (see (1.4)) gives a characterization involving difference
quotients on the boundary [7]. We refer for instance to the survey paper [13] and
the textbook [9] for more information on Dirichlet spaces.

A special attention in this connection was attracted by outer functions in D since
they are completely determined by their moduli on the boundary. Indeed, a famous
result by Carleson [5] states that the norm of an outer function f in D can be
completely recovered from its moduli on the boundary (see (1.6)). Later, analogs
of Carleson’s formula were established in other classes of analytic functions, such as
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2 B. BOUYA, A. HARTMANN

that given by Vinogradov and Shirokov [16] for the space of analytic functions with
derivative in the classical Hardy space H? and also in [15, Theorem 3.1| for some
spaces of analytic functions smooth up to the boundary.

Another result that is worth being mentioned here is by Aleman [1| who char-
acterizes the norm of some Dirichlet type functions in terms of their moduli and
involving mean oscillation of the function’s modulus with respect to harmonic mea-
sure, see also [4, 8, 14] and the survey paper [2], but this characterization uses also
the values of the modulus of f inside the disk. The aim of this paper is to gener-
alize Carleson’s result to weighted Dirichlet spaces for which an analog of Douglas’
formula is actually known (see (1.5)). Without entering into the very definitions of
weighted Dirichlet spaces D,, associated to a measure y, we mention that when pu
is supported on T, Richter [11]| introduced and studied these spaces as part of his
analysis of two-isometric operators. In [12] Richter and Sundberg give a Carleson
type formula for the spaces D,,, when p is supported on T.

In this paper, we are interested in the case of polynomial radial weights in the
disk. In this situation, our characterization recovers Carleson’s result in the limiting
situation when the weight becomes constant (with non optimal constants however).

In order to be more precise, we now introduce the weighted Dirichlet spaces we
are interested in. Let D, be the space of analytic functions f on D with a finite
weighted Dirichlet integral

Do) = = [ 1RO = D AG) (1)

where A is the standard area Lebesgue measure and 0 < «a < 1 is a real number.
Equipped with the norm

1£11D, = 1£(O)]* + Dalf), (1.2)

the space D, becomes a Hilbert space. The limit case D := Dy is the classical
Dirichlet space, and the case o = 1 corresponds to the classical Hardy space H2.
We denote by £%(T) the space of complex valued functions with square integrable
modulus on T. Note that we can define an equivalent norm in D, by (||f|? +
D, (f))Y?, where || f]|2 is the standard norm in £*(T).

In all what follows we suppose that h € £?*(T) is a non negative function such
that

/7r log h(t)dt > —o0, (1.3)

where we identify the circle and the real line R by h(t) := h(e), t € R. By well
known Hardy space theory (see for instance [10]) we can associate with h the outer
function Oy, defined by

On(2) :=exp{u, (2) +iv, (2)}, zeD,
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where

u, () ::i/ Re( 2 “)loghlg)dp, 2 €D,

2m el —
and v, is the harmonic conjugate of the harmonic function u, given by

L[ e
v, (2) ::—/ Im( w—i_Z)logh( )de, z€D.

27 ew — z

The non tangential limits of |Op| exist and coincide with h on T almost everywhere
with respect to Lebesgue measure. When studying the Plateau problem, Jesse
Douglas [7| obtained the following formula for f € ’HQ,

~w [ e

which expresses the Dirichlet integral in terms of values of f on the boundary T

dbdyp, (1.4)

i 610

only. The formula generalizes to weighted spaces D, where equality is replaced by
equivalence (see for instance |6, 9]):

Ol
/_W/_W |ew—ewa L dfdep. (1.5)

When f is outer, then it is uniquely determined by the modulus of its boundary

values, and one may ask whether it is then possible to express the Dirichlet integral
by these moduli only. In [5], Carleson proved the following formula

D(Oy,) = 42// (W) — 12(0) log i L dpdo, (1.6)

ech _ 616’|2

which thus allows to express the norm of outer functions in D by their moduli on

the boundary. Carleson actually proved a more general result taking into account

also the inner part, but then, obviously, the Dirichlet integral is no longer given by

the modulus of its boundary values only, and one has to consider the zeros of the

Blaschke factor and the singular measure. A main ingredient in the proof of (1.6)

is the classical Stokes formula which is in fact not adapted to the situation in D,.
A natural guess for a candidate replacing (1.6) in the space D, would be

(R*(¢ 0)) log 1)
GO
N |ezgp_619|2 «@

However, as it turns out, there are functions f € D,, when 0 < a < 1, for which
Co(]f]) is not finite, see Theorem 1.4 below.

Note that an elementary computation yields that for strictly positive numbers a
and b we have
" (a — b)?, if %b < a < 2b,
0 < (a* — b*)log 7= a*log ¢, if a > 20, (1.7)
b*log 2, if a < 3b.
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So, in the characterization that we propose below, according to the three cases
appearing in (1.7), we will distinguish what happens on the different parts of the
circle when the quotient h(yp)/h(6) is bigger than 2, less than 1/2 or between 1/2
and 2. In order to be more precise, we need to introduce some notation. Let A be
the set of measurable functions on T that are strictly positive a.e. with respect to
Lebesgue measure. For h and A € A, we set

1he) = RO, g (1.8)
. |eup 19|2 @ ’ :

noy = [ ne log iz do) “do 1.9

na( ) ) T B ( )( h(w)g%h(e) |6’Lg0 _619|2 ()0) ( ’ )
i et —eif]>A(6)

and log 1)

98 h(p)

?L/a(h, )\) = \/;ﬂ— h2(9)</h(¢)<1 de@)d& (110)

|etP — eZG|<A(9)

Observe that by the triangular inequality, we have
Na(h) < Da(On). (1.11)

For two real valued functions k; and ks and a positive constant ¢ we use the

notation k; = ko, to design ¢ lky < ki < cky. By ky<ky and k; < ky we mean
. . . C

respectively that there exists some non specified constant ¢ such that k; =< k9 and
k?l S Ck’g.

We are now in a position to state our first main result.

Theorem 1.1. Let 0 < a < 1 be a real number. Let h € L*(T) be a non negative
function satisfying (1.3). Then

10u113, = 1IAlI3 + Na(h) + inf {na(h, A) +7a(h, A}, (1.12)
where ¢, < 1 when o — 0.

Let us consider the special situation when o = 0. It is clear that formula (1.12)
does not depend on the choice A € A when o = 0. Hence, in this case, the theorem
gives an equivalent expression to Carleson’s formula (1.6).

An immediate consequence of this result is the following observation.

Corollary 1.2. A bounded outer function Oy, which is also bounded away from zero
s in Dy if and only if
Ny(h) < 0.

We include the simple proof of this fact here.

Proof. We have

cl<h< c,
for some positive constant ¢ > 1. Then, for almost all 6 and ¢,
h(0)
()

S

-2 < < 2

=>
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One could replace the constant 1/2 appearing in the definitions (1.9) and (1.10) by
any other value in (0, 1), say ¢~2. In this case, the expressions ny(h, \), 7a(h, ) and
m(h, \) are zero since we integrate over void domains. O

We shall now discuss an appropriate choice for the function A in the above theo-
rem. In order to do this we associate with A and A € A the following functions

L 08 75

%@’%/wwmwwwﬂw (1.13)
le?® —ei0| > (0)
and ho)
~ 1
(lh’)\ (9) = % h(cp)g%h(ﬂ) lOg md@ (114)
let —et0| <A (6)

The function Axay, » has an interpretation as a Poisson integral at z(6) = (1—-X(6))e®

of the function log %X where x is the characteristic function of {¢ : h(p) <

Th(0),|e” — €] > A}. For this one can observe that |e? — | =< [e** — 2(6)].
Similarly, @, /A as a Poisson integral at z(6) of the function log %S{ where Y is the
characteristic function of {¢ : h(¢) < 1h(0),[e? —e™| < A}. Actually, Aapx+ana/A
is equivalent to the Poisson integral of log %X}l(w)gh(g) /2 at z(0).

We set

w,, (0) := sup {,u € (0,1] : sup {5%75(0), 5h’g(0)} < 2} : (1.15)

0<o6<p

This allows to state our second main result.

Theorem 1.3. Let 0 < a < 1 be a real number. Let h € L*(T) be a non negative
function satisfying (1.3) and such that N,(h) < +o00. Then u, € A and

10811, = 13 + Na(h) + na(h) + fia(h), (1.16)
where ng(h) :=na(h, p,) and 1o (h) == ng(h, 1, ), and c, < 1 when a — 0.

It would be interesting to know whether D, (Op)=<N,(h) + na(h) + na(h). Note
that both sides vanish for constant functions.

We should make two more important observations here. First, though the condi-
tion of Theorem 1.3 might appear difficult to check at first glance, it confirms that
as in Carleson’s result for D, the membership of an outer function f in D, depends
on its modulus on T only, which seems to be of interest in its own.

Second, as it turns out, there is a family of functions for which the quantities in
(1.16) can be estimated explicitely. As a result, for this family the quantities N,,
D, and C, are shown to be not equivalent to each other. This will be discussed in
the last section where we consider the following class of functions hg:

1
S 6 € (0, 7]
& B 7 3 )

ha(0) =4 0210873 (1.17)
() 0 (~,0),
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where v = me?#/® guaranteeing that hg is decreasing on (0, 7).
Then we have the following result.

Theorem 1.4. Let 0 < a <1 and > 0. Then

1. For N,(hg) < 400 it is necessary and sufficient that 5 > %
2. For O, € D, 1t is necessary and sufficient that 3 > 1 — %a.
3. For Co(hg) < 400 it is necessary and sufficient that 3 > 1.

The paper is organized as follows. In the next section we present some auxiliary
results. Section 3 is devoted to presenting some properties related to the function
w, defined in (1.15). The proof of our main result being quite technical (though the
main tools are rather elementary), we have split it into two sections: Section 4 is
devoted to the proof of the sufficiency while the necessity is shown in Section 5. In
the last part of the paper we will prove Theorem 1.4.

2. AUXILIARY RESULTS.

Let f := e“™ € H?*(D) be an outer function and let 0 < a < 1 be a real number.
We define f, to be the function

fr(w) == frw), weD,

where 0 < r < 1. Clearly f, is holomorphic and thus continuous in a neighborhood
of the closed unit disk. It is possible to check that (see e.g. [9])

1
a,.m - 1
/0 (1—7’) T dTAW, mEN, (21)

independently of «. By Parseval’s identity and (2.1) we get
=3 [f(m)P(L+n) (2.2)
n>1
In particular, when a = 0,
=> " fm)P(L+n), 0<r<l, (2.3)
n>1

which is actually an equality. In all what follows we suppose that 0 < o < 1. Using
(2.1) and (2.3)

/Dfr drAZ\f 2(14n)t-, (2.4)

n>1

which therefore yields

f=a /0 D(f,n)(l_r—ryy_ldr, (2.5)

independently of o and f.
This allows us to express D,(f) in a way crucial for us. Indeed, the following
lemma reflects somehow the magic of the Cauchy-Riemann equations which allow
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to express the weighted Dirichlet integral through an integration of a function which
is not necessarily positive.

Lemma 2.1. Let f = %™ € D,. Set
dAy(2) == a(l —r)* tdrds, z:=re? €D,
Then ) 5
D = — 29 ()dA 2.
A1) = 5= [ 1EPG()aA) (2.)
independently of a and f.

Observe the absence of the factor r in the definition of dA, which is thus not the
usual weighted area Lebesgue measure.

Proof. We begin reformulating D(f,.). Set f = €9 with ¢ = u + iv, then express-
ing first the derivative of g in polar coordinates and using then Cauchy Riemann

=1 ((52) + ()

equations, we get at z = se
8
F12 = 1P x 1T = I£I? x

= |f]>= (@@_@@>

O0s 06 06 0s

On the other hand

0 , OV 0 XA Judv  Oudv

%('ﬂ %) —@(Ifl %) =2fF <as 0 aeas>’
so that replacing f by f,., we get

0 v 0 v
/ 2 __ . o 2 -
20f(2)s = v (1F2(r2) 55 (r2) ) = 155 (112r2) 52 02)).

Since f is outer, the function w — |f|?(rz)%%(rz) is continuous on D so that

/ 53 (1P SE ) )ao = [(11F(rse) Tirse) |7 =0

o+

u 81}

and hence .

. i
D) = 5 [ 1) e s 1)
Setting
dAy(2) == a(l —r)* tdrds, z:=re? €D,
we deduce (2.6) from (2.5) and (2.7) O
As we have already mentioned in (1.11) we have D,(O},) 2 N,(h) independently
of both v and h, so in order to prove our main results we can suppose from now on
that N, (h) < 400.

Let T, be the set of points € € T where Oy, has radial boundary limit such that
0 < lim |Oy(re®)| = h(e®) < oco. It is well known that T, coincides with T except
r—1-

for a set of zero Lebesgue measure. We will also use the notations

T,(0) = {p €] —m,7] : h(p) Zh(0)}, €’€T,,
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T (0) :={p €] —m 7] : h(p) > 2h(0)}, e?eT

h’

and

T (0) :={p€|—mn] : hip) < sh0O)}, e?eT

-
We finally recall the following classical equality
e’ — 2|2 = (1 — 1) +r|e" — em|27 z:=re? € D and ¥ € T, (2.8)

which yields the following estimate

e — z| > max{1l —r, §|ew — e}, z=re? €D and e¥ € T. (2.9)

3. THE FUNCTION /.

Recall that Aay )\ and @, /A have interpretations as Poisson integrals of log %

over T, (0) and |e? — ™| > A(#) and |¢? —e?| < A(6) respectively. The next lemma
considers the part of the Poisson integrals on T} (6).

Lemma 3.1. Suppose N,(h) < co. Then the Lebesque measure of

. 1 1—r? h(y)
T,s:={c?eT : li — : ] do > 6
TSR T Sy T e E a9 =)

is zero for every 6 > 0.

Proof. Let 0 < ¢ < % be a real number. With each point e? € T}s we associate
re =7:9 € (0,1) such that r. > 1 — ¢ and

1 1—r? h(p) 4
— . 1 de > —. 3.1
27 Joroy 16 — 1. % (o) ¥ = 2 &1
The dependence of r. on 6 is not relevant in the argument below. Using (2.9)
N 9|€'i(p_€'i0|a - 9 if |€i<p_6i9| >1—r
(1 — 7’) |€7,<p o 619’2 |ezgp . 67,9|2—0c =
i 0|2 — . i " .
et — re| A= < P if e — eif] < 1—7
It follows
1—r) 9
(L=r)* (3.2)

|eigo _ reiG‘Z — ‘eigo - €i9|2—a'
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Therefore, using (3.1) and (3.2),

2 2
/ "0y < / O
ewETh’g e 6i0€Th’5 (1 - ra) @

2 (L —ro)” h(yp)
< h*(6 , — | dodf
= 10 Jowes, (6) /m,) leie — 28 h(e) Y
0) log h(p)
< / / O godg
0Ty, 5 ’J1‘+(6 e — eif|2—e
©)* 18N, (h)
< — " —dpd) = ——. 3.3
- / /ﬂ |€z<p 610|2 « ) ( )
Since h # 0 a.e. on T, and letting ¢ tend to 0, we deduce the desired result. O

We obtain the following lemma that provides some properties of p, .

Lemma 3.2. Suppose N,(h) < oco. Then u, € A and

|On(re®)| > e h(h), r>1—p,(6), (3.4)
for every point ¢ € T, such that u,(0) > 0. If ¢ € T, is a point such that
0<u,(0) <1, then

1 1-— 6)|? h(6

L — |z )’2log (0)

21 Jr—(9) € — 2n(0)] h(y)
where z,(0) := (1 — p, (0))e?® € D\ {0}.

do > 1, (3.5)

Proof. In order to check that p, € A, we need to show that p, is strictly positive
almost everywhere. Suppose p, (6) = 0 for a fixed point ¢ € T,, i.e. there exists
a sequence of positive numbers {0, : n € N} CJ0, 1] converging to 0 and satisfying,
for each n € N, at least one of the following inequalities

G5, 0) 1 / h(6)
= log ——d 2 3.6
[e?? —et¥|<én
or
S, log h (p)
§nah,5n (9) = %/ = (0) —|€zso _ 620|2d ©w > 2. (37)

\ei‘P—eie\zén

Associated to € and the numbers d,,, we define in D the following points
wi= (1 —6,)e”, n € N.

Since e € T, and lim 6, = 0, there exists a number Ny € N such that

n—oo
Oz, 1
\ og’ f:(<6))||§1’ for all n > Nj.
Since 6, = 1 — |z,| and using (3.6) and (3.7)
1 / 1— |z)? h(0)
— . log de > 1. 3.8
2 Jo o) 16 — 2al? 8 i) (38)
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By decomposition

o o) €9 — 2, \2 h(0)
IOh(Zn)| 1/ 1—]z[* . h(yp)
= log rE 2 | 1 d
BTRO) 2w oy e =l OO
| 1= |z . h(0)
1 d 3.9
+27r/ e — 22 B hip) (39)

(observe the inversion of the log-fraction in the last integral explaining the plus-sign
before this integral) and

1 1—|z,)?

h(e)

27 Jo o) 67 — Zn|2|10g 0 |dp < log?2, (3.10)
so that
_ 2
217r /11‘*(9) ’iiso _|ZZ| 2 log Z((SHD)) dyp
_ 2
37 o T g
2
_% T.(6) |elw |ZZ||2UOg ];L(((g))\d@

Zz_logQ, nZNO

So, € € Th3/4-10g2, and, by Lemma 3.1, 1, > 0 a.e. on T, and thus p, € A.
Now, we let z € D be a point such that » > 1 — pu, (¢), then

1 1—1r? h(6
— . 5 log () dy
27 Ju()<no) € — 2| h(e)
1 1 1
2T Sinoysniorzne) 2t 2w
h(6) h(0)
1 logh 9 log hp)
< - _ e
< log2+ - _— T, d + = (1 T) o e ]2
letP —eif|<1—r |etP —eif|>1—p
where we have used (3.2). By the very definition of u, (¢), this yields
1 1—1r? h(6
T log ( )d¢§10g2~|—4—|—36. (3.11)

27 Juip)<no) 1€ — 227 h(p)

Since obviously
1 1—r? log h(6)
h(g)
we obtain (3.4). We argue similarly as in the proof of (3.8) to show that if 0 <
w,(0) < 1 then there exists a sequence of positive numbers {e, : n € N} CJ0, 1]

27 Jnoy<n(y) 1€ — 2[?
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converging to 0 such that

| 1 — Jw,|?
/ [nl” 106 200D 405y, (3.12)
T

2 i) 16 —waP F hip)
where w,, = (1 — (u,(0) + £,))e?® € D\ {0}. We apply Lebesgue’s dominated
convergence theorem in (3.12) to deduce (3.5). O

The following Lemma gives a lower estimate of D, (Oj,) involving p, , and will be
used in Section 5 to get some necessary conditions for Oy, € D,,.

Lemma 3.3. We have
/ h2(0),u‘;f_1(9)d0 < D, (Oy),
my (0)<1

where ¢ > 0 is a constant independent of both v and h.

Adding the points where pu, (6) = 1, we get
[ 7020570300 < e(Da(01) + [1IE). (3.13)
T

Proof. According to Lemma 3.2, we have u, € A. Let ¢ € T, be a point such
that 0 < p, (6,) < 1. For the point 2;,(6,) = (1 —p, (6))e™, we claim that two cases
may occur:

1 1—[z(6,)1* | h(p) 1
— . log dp > — 3.14
27 Jegop 16— O)F Ehi0,) 7 7 3 .
N 04(21(6,)
r\Zn\U, log2—3
— e e, 1
ne,) S e 1 (3.15)
Indeed, if we suppose that (3.14) is false, then with (3.5)
On(21(6,))] 1 / 1—[z(6,)1* | h(p)
log—— = — . log dy
h(6,) 21 Ju;0,) 1€ — 2n(0,)1> 7 h(0,)
1 L—|z(6)F | h(y)
+— . log dy
21 Jrt oy € — zn(0,)12 7 h(6,)

1/‘ L—[2(0,)) | h(p)
+— . log d
27 Juya,) 167 — 2n(0)F ° hl6,) "

1
-1+ Z + log 2,

IN

which shows (3.15).
Now, on the one hand, if 6, satisfies (3.14), then (with (3.2) in mind),

i) = - fa@p < ﬂe)ﬁi;_‘z;ff;)'));mg A

h(p)

/ md%
T (0,) €7 — €070
h \Y0
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which gives, using (1.7) and the triangular inequality,

w0 0) 5 [ 1) = hOP | Onle) = OO, (5 16

~ - ’61'@ _ eieo |2—a |€i(p _ ei90 |2—a

independently of 6,, o and h.

On the other hand, for almost all points ¢ € T, that satisfy (3.15), we have
h%(0,) < |On(24(8,)) — On(6,)|*(observe that e°#2=3/4 < 1), and thus, by Jensen’s
inequality,

#0) S5 [ L= 12nl)P 1o () = 0u0,) P

~ o ) e — a6,

As a consequence

o 0) < [ L= 120D 5 (o) — 0,0, P

€% = zn(6,)]

< /7r [On() — Oh(eo)Pd% (3.17)

|€ig0 _ ei90 |2—o¢

independently of 6,, o and h. The desired result follows from Douglas’ formula (1.5)
and the inequalities (3.16) and (3.17). O

4. THE SUFFICIENCY.

In this section we prove the sufficient condition of Theorem 1.1, more precisely

Doa(O) < Na(h) + inf (na(h, A) + fia(h, A)). (4.1)

1 — a xeA

Observe that for this upper estimate we do not need the term [|Oy]|3.
Recall from Lemma 2.1 that in order to prove that Oy, = e“™* € D,, it is sufficient
to estimate the integral

1 ,0v,
> [ 1015
where dA,(z) = a(l — r)*"tdrdd.
Depending on h, we define the following set of rays

D, :={zeD: ¢’ eT,},

(2)dAn(2), (4.2)

which we divide into the following two parts

K, :={z=re’ €D, : sup |Ox(w)|>2h(0)},
weD(z)
where D(z) :=={w €D : |w—z| < 3(1 —7)} is a pseudohyperbolic disk with fixed
radius, and
L, =D, \K,.

Observe that we do not need to consider integration on the remainder set D\ (K,UL,)
which is a union — over a set of Lebesgue measure zero on T — of rays and hence
of Lebesgue area measure zero.
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4.1. The integration on the region K;. In the following Lemma we show that
the integral on K, is controlled by N, (h) only.

Lemma 4.1. We have
/ 102(:) 22 (2) dAu(2) < eNa(h),
- a9

where ¢ > 0 is a constant independent of both v and h.

Proof. We suppose that the area Lebesgue measure of K, is different from zero
(otherwise there is nothing to prove). Clearly

sup |Op(w)| <2 sup ||Ox(w)| — h(8)],

weD(z) weD(z)

z e K,. (4.3)
We set

1 (™ 1—1r2 0
H(z) : —212|h(g0) — h(8)|dep, z=re” eD,.

" or - e —

For a point z = re? € K,

sup ||On(w)| = h(0)] = sup {|On(w)[} — A()
weD(z) weD(z)

1 (™ 1—|w?

< — ————h(p)dp ¢ — h(0

N wse%)lé)z) {27T /TI' |6190 - ’lU|2 (SO) 4'0} ( )
I 7 1—|w?

< — - —

6 [T 1—1r?

< - ——|h(p) — h(0)|d

< o[ S —nol

= 12H(z). (4.4)

Hence, with (4.3) we get
sup |Op(w)| < 24H(z), zeK,. (4.5)

weD(z)

The classical Cauchy formula for holomorphic functions applied to the complex
derivative of Oy, on 0D(z) implies

sup [Op(w)]
aOh webD(z)
Thy < ,
Dre) <2t e, (4.6
so that
003 90, 2 H2(2)
“h — h < A\
| P (2)] = |20(2) P ()| < 48 T z €K,.

Jensen’s inequality implies

2 1 7r1—7”2 2
H) <o [ ol —no)de se,

—% F‘eiga_
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which gives

dep, zeK

Bt

003 <gf%m—ww

0z (Z)| -7 et — z|?

; _ _ putiv Ipi®\ — e=% (v i0 : Ou i0 :
Since Oy, = €’ = """, and ¢'(re) = ( (re) —igg(re )), a computation

yields "
003 90y, 210L(2)* [/0v, N2 [Ou, \2
L) = u@x>azvn=——7——¢gﬁww +(55)
> Yo, %0:),  zeD (4.7
and hence

8 482/ () — h(8)|”

2
|Oh( 80 ‘ - 21 |ez¢ _ Z|2 ng[), A Kh‘ (4_8)

With z = re® and using (2.9) we get
1 a—1
1
o / U=n",
o T 7P

1—L|eir—eif| 1 — )L 1 1 — )1
= Oé/ ’ ﬁdr + Oé/ idr
0 1

|€ZSO — rr-619|2 7%|ei9976i9| |61¥7 — r”-619|2

1—21|etv—eif| 1 — )1 1
< a/ 2 (1=r) dr + — Ja . / (1 —7r)*dr
0 1

(1—r)? | — €[ J1_1jeie i)
1 . .
ip 0
~ eie — eif|2a’ e e T\ {e"}. (4.9)
Hence, inequalities (4.8) and (4.9) yield
(% 482 [T h(p) — h(0) 2
2
< = A S
/]Kh 01(2) 55 (2)]dAa(2) - < 2 ) . </D | e — z | dAO‘(Z)>d<'D
< ¢eN4(h), (4.10)
where ¢ > 0 is a constant independent of both « and h. O

4.2. The integration on the region L;. Recall that by definition
Ly={z€D,: sup |On(w)| < 2h(0)}.
weD(2)

Fix A € A. Associated with h and A we define the following function
pra(0) := min{y, (), Qa;(@)}, e?eT,.

Since A € A, a simple estimate of the integral in (1.13) shows that a, , < +oc0 a.e.
with respect to Lebesgue measure, and hence pj 5 € A.
In order to estimate our integral over the region L, we need to divide it into the
following two parts
Liy={z€ly : r<1—pua(0)}
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and
Liy={z€ly : r>1—pua(0)}.

We observe here that since p; » € A the boundary of ]L,ll, , meets T on a set of zero
Lebesgue measure while for ]Li’ , this happens on a set of full measure.

4.2.1. The integration on the region LL; ,. In this section we discuss the control
of the integral in (4.2) on L, ,.

Lemma 4.2.

cox

—(a(h, X) + na(h, V),

[, 101 g <

where ¢ > 0 1s a constant independent of a, h and \.

Proof. From (4.6), (4.7) and the very definition of Ly,

ov,
59 )|

2
‘Oh(z) =TT

QOh(z)—(z)' < 8rh2(9), z € L.

It follows that

—T

v ™ 1—pn,A(0)
/]Ll ‘Oi(z)aaé‘(z)}dAa(z) < 8a/ hQ(Q)(/O (1—7=)a—2dr>d9

8« T e el _ 8a o,
- = [ oo - [ e

8«
l1—«

/ h2(0)p;‘;1(0)d0. (4.11)
pr,A(0)<1 7

We let e € T, be a point such that 0 < p,(6,) < 1. We first suppose that
ph,A(eo) = 2&;1)\(90). Then

Phn (05) = (ana(0,)/2)' ™" < ay, 5 (6,)- (4.12)

Now we assume that pp A(6,) = i, (6,). Then by (3.5)

prnt () = (1= [z (6,) )" < %/T(e ) Tig_'zz}gfg)g: log h((f;)) dep.
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Therefore (with (3.2) and (2.9) in mind)
1 (1~ [zn(0,)])* | 1(6,

a—1 )
0 < — _ : d
R I = AR T N
lei® —c*0 [<x(6,)
1 1-— 0.« h(0
A Ola@))e w6,
™ ) et —2z,(0,)7 7 h(p)
leiv "0 |>A(0,)
h(0
9 log ety
< — _ ——
- I T}, (%) |eup _ 6190 |27a
leiv ™0 |<x(6,)
h(6,)
9 . log )
+;(1 - |Zh<90)|) T}:(90> ‘ei@ _ ei90‘2

: 20,
lei® —e'%0 |21 (0,)

By our assumption p,(6,) = p, (6,) < 2&,;1\(90), so that (1 — |2,(0,)])* = p(0,) <
2a;,5(6,). Therefore, by the very definition of aj A(6),

9 log f;((%))
SO0 [ e < 36050,)
leiv "0 [>A(0,)
Hence
h(6,)
a 9 log 7] o
ph,)\l(e()) S ; Ty (09) mdgp + 36&;11’/\ (90) (413)
lei® —e'%0 |<x(0,)
By combining (4.11), (4.12) and (4.13) we deduce
0
[ 10005k (aa)
]Ll 80
h,A
a T lOg %6)) T
2 ¢ 2 1-a
< 1_&(/ h (9)(/ o ‘ew_ewpad@)dwf P(6)al " (0)d0)
- |eip —eif | <A(6) o
= Falh, A) + na(h,N), (4.14)
where ¢ > 0 is a constant independent of a, h and . O

4.2.2. The integration on the region L; ,. The estimates on this domain are
more complicated. It is actually not possible to use the triangular inequality directly,
and some symmetry properties of the derivative of the conjugate Poisson kernel need
to be exploited in the estimates of % To be more precise, we need to recall that
v, is the conjugate function of w,:

1 (" i
v, (2) = Im (e.w i Z) log h(p)dyp, z e D.

2 J_. e —z
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Observe that the function

: 9] e+ z :
ip o _ i6
Qe¥,z) = —801111 (ew—z)’ z=re’ €D,

depends only on |¢? — | and 7. More precisely, we have

Q(6i¥77 Z) _ T2(1 — T)Q — ’619 — ei@‘Q(l + T2), (415)

et — "

which yields the following estimate

2
ip =
Q.2)| < (416)
Note also that [* Q(e?, z)dp = 0, and hence
v, 1 [ - h(y)
— ¥ 21 d D,. 4.1
a6 ) 27r/_7rQ(e loggrgyde, 2€D, (4.17)
In particular
v, (Z)’ - _/7r %dt (4.18)
a0 ) e —z2 '
Lemma 4.3. We have
[, 10 G (2)4a(2)| < eNah) + 1 T ) + (V)
L? , -
where ¢ > 0 1s a constant independent of a, h and \.
Proof. By the triangular inequality we first get
| / OF(2)| S (2)dAa(2)| (4.19)
]]_42

S/LQ “O’%)'_hQ(e)H%(Z)‘dA“(ZH‘/% hz(H)%(z)dAa(z)|.

h,\
Now, by construction we have |Op(z)| < 2h(0), for every z € L, and thus (consid-
ering the two cases [Oy(2)| > Lh() and |Oy(2)| < Lh(0))

4= @) ), 1040
12(6) ~ 1% )

R ZELh.

Note also that since |Op(2)| < 2h(0) we have

10n(2)[* = h*(0)] < h*(0).
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Incorporating both estimates in the first integral in the right hand side of (4.19),
and using (4.18), we get

v,
[, 1031 - 20| G ) iAule)
12,
’ gh(@)’
5/ h? 9)(/ MO dp)dAa(z)
L2, T/ (o)uT; (0) |€°F — 2]

+ /]L B(0)]log ’ifz(g’;)ﬂ( / Mg’—mczgp)d/xa(z). (4.20)

Consider the second integral in (4.19). Decomposing the integral in (4.17) into four
pieces: Ty(0), T} (0), T, (9) and |e?? — ™| < A(0), as well as T;, (6) and |e? — e*#| >
A(#), without applying the triangular inequality on the piece Ty,(6), we obtain first:

v lo h( ®)
(/L R0 T (2)d A 2) g/y h?(e)(/m) %d )dAq(2)

)
|log 72|

2
—l-/]L2 h<9)(/ T, (0) Wd )dA()
h,A et —ei® | <X(0)

|log 72|

+/L%Mh2(9)(/ 0 md ) dAq(2)

ei0 —ei® | > ()

W)
+ h2(0 e? 2)1o dpdA,,
L&,()TWQ( ok 3 Ao )
=T +1y+ 13+ 14

And hence, noting that Z;, Z, and Z3 also appear in the first integral in (4.20), from
(4.19) and (4. 20) we thus get

)AQwh ()4 (2)

O
511+12+13+I4+/ h2(0)|log| h(Z”\(/
L2, h(0)

[ log 44|

o) e — z|?

4¢)dAa(:)

The last integral on the right hand side will be denoted by Zs.
It is clear that

hg) _ h(o) — h(6)
©8 50 =T he)

@ € TF(0). (4.21)

Then, by using (4.9),

7, < a/ / / Ihtp) = MO 2 (1 — 1) Ydrdpdd < No(h). (4.22)
T, JT} (0) |€w - Z|
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By the very definition of 71, (h, \) and using again (4.9),

MO Pt
EEPS h*(0 1 . drdodd < 7 (h,)). (4.23
2 a/qrh ) T () it h(p) /0 et — 2|2 rdedd S na(h, M) ( )

et —et¥|<A(6)

Thanks to |e" — z| > 3|e™ — |, we get

h(6)
I; < h2(0)( Md@)&(l — ) Ldrdg
~ 12 T, () ’eicp _ 61’9‘2
A lei? —eif1>(0)

" log 249
O e — eif]2 1—pp 2 (0)<r<1

—T . .
et —ct01>2(0)

Now, the integral over r corresponds to pj | which is controlled by (2/ap A(¢))*, and
thus by definition of aj \ and n,(h, \) we get

Ty < na(h, V). (4.24)

We now estimate the integral Z, exploiting some symmetry properties of () that will
allow us to recover the quadratic difference |h(6) — h(p)]?* (see (4.28) below). To
this end, in the equation (4.15) we set ¢ := ¢ — 6, so that

(1 —7r)% —2sin?(t/2)(1 + r?)
(1 —7)2 + 4rsin®(t/2))2

Qe 2) = 2r =:q(t,r). (4.25)

In particular we remark that ¢ is even with respect to the first variable. We define
L) :={0| <7 :’ €Ty, !0+ ¢ T,(9)}, te[—m,mnl.

We note that 6 € I', (—t) if and only if # —t € T, (¢). By a change of variables

/ gt )/ /F ,1(@)log h(:(z)t)de)dt

—T

— /O Wq(t,r)( /F » h2(6) log h(:(g)t)de)dt

= /O7r q(t,r)(/F o R*(0 +t)log h(];(i)t)dg)dt’ 0<r<l1. (4.26)
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Therefore (note that the change of variables (p, ) = (t + 0, 60) is harmless),

[re(] e e giae)ia

= / (/ /( - q(t,r)log h(:(;_)t)dt)d9> (1 —7)*tdr
6+t er, (9)
= a/ (/ / p h%(0) log h(:(z)t) dQ)dt) (1 —7)*tdr
) / { [ rh (1) W) ok h(:(g)t)de
+ /Fh(t) h*( + t) log h(Z(f—)t) d9] dt} (1 —r)*tdr
= —« 1 ' q(t,r)( Pu(6,t)d)dt) (1 — r)*'dr, (4.27)
o “Jo T, (t)

where we have used (4.26) and
Pu(8,t) := (R*(0 +t) — h*(0)) (log h(6 + t) — log h(F)).

Since for € T',(t) we have /) € T, (0), i.e. h(0 +t) 2 h(6), it is clear (see e.g.
(1.7)) that we get the desired quadratic difference

0<Pu(0,t) <4(h(0+1) —h(0))®, te[-mn]andOeT,(t).  (4.28)

Observe that the function we integrate over JL,QL’ ) is not positive, so that we cannot
just replace this domain by D. Still, writing L} , = D\ (K, UL ,), the triangular
inequality obviously yields

‘ /D h2(9)< Q(%, ) log Mdgo)d/la(z)‘

T, (6) h()
+’/ h2(9)< Q(e"*, 2) log h@o)dgp)d/la(z)‘
L., T, (6) h(6)
h
+]/ 2O [ Qe 2)log hie) p)dAa(2)| (4.29)
K T, (6) h(0)
We can now use the triangular inequality in the integral over D. From (4.16),
a—1
lq(t,7)] = [Q(e™, re'”)| < 2/|e'e—z[2 = 2/|e/+0) —re 2, and by (4.9), [y ﬁ
1/]e0) — ¢|2=« Hence, from (4.27) et (4.28), we deduce that
, h
o[ e oot Eas)aa )] < N (4:30)
SO 0

dr <
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(Without our symmetry argument, the triangular inequality together with the es-
timates (4.16) and (4.9) would only have given the linear difference which is not
enough.)

Next, since on Ty,(0), | log(h(¢)/h(0))| < log2 and |Q(e*, 2)| < 1/[e™ — 2|2, using
the standard integration of the Poisson kernel

1 2w
——dp = — 4.31
/T |€up_r€z€|2 ¥ 1—7’27 ( )

’ /IL}M hQ(H)(/Th(e) Qe z) log %dgp) dAa(z)‘

S RGGIERRNG

10‘ /h2(9)pg;(6)de— a /h2(0)de,
— ) o

_7r 11—«

we get

<t R
1 - prA(0)<1

Hence, as in the proof of Lemma 4.2, we obtain

/]Ll h2(9)< o Q(e", 2)log Z((Cg)) dgp) dAa(z))

< (0%
Nl_

For the integral over K, we start with the same argument as above (since in the

—(7ia(h, A) + na(h, ). (4.32)

inner integral we indeed integrate over Tj(#)) to get

‘/K al / Q(e*,2) log (( ))dso)dA (2 )] ,S/K R2(0)(1 =)~ dAu(2).

h

By the very definition of K; and the inequalities (4.5) — implying in particular
h(B) < supyepren) [On(w)] < H(z) — and (4.9),

/h2(6)(1—r)1dAa(z) < [ 06

——2=dA,
Khl—'f’ <)

N /K ) / ﬂ @l_f;(?‘zd@d@(z)
S Na(h)
Thus
’/Kh il / Q(e'*, 2)log h<< ))d )dda(2)| S Na(h). (4.33)

By combining (4.29), (4. 30) (4.32) and (4.33)
" (7ia(h A) + 1 (B, V).

Ty < No(h) +

~
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It remains to estimate Zs. Using first the very definition of the outer function
Oy, (so that log|Oy| is just the Poisson extension of logh at z = re®) and then
rearranging terms,

1 T 1 h
s < h2(0) | — | d
(<P)|

log
x / |—th dAa(2)
T, (0) et — 2]

. / n200) = / ozl 2<1 )dAq(2) (4.34)
= 27 — ——dyp —r9)dA,(z :
L2, 21 J1, o) e — 2|

h

1 1—r?
X(% /Th( eigo_z|2|1og h ’d¢)dA (2).

)

MO),_ (h(6) — ()
o8 5oy! = | |

so that by Jensen’s inequality,

|log h¢)|
dso
27T T, (0) 1€ — 2[?
1 ’ 1
—7”
h(0) — h(p)|d —_
<27T |6“p Z|2‘ () (¢)| @) X (]_—7"2)2
1
<
- 27

56) = hie) o

T, (0) |€“p - Z|2

Hence using again (4.9)

LS CIPAY
27?/ B2(6) —/ B0 o) (1 - r2)dAa ()
12, 21 Jr, (0 € — 2|

|h() — h(0)]’
< /L . /T o A, (2)do < No(h).

e 2P

Consider the second term in (4.34). Since on Tp(#), the expression log h((‘p)) is

bounded, the last factor is bounded by a constant, so that this term is controlled by
10g2><(11 +IQ +I3) ]

As a conclusion, the desired estimate (4.1) follows from Lemmas 4.1, 4.2 and 4.3.
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5. THE NECESSITY
In this section we show that if O, € D,, then
100Dy Z Na(h) +na(h) + (1 = a)* g (h). (5.1)

Note that ||Op||p, = ||h]|3 + Da(Or) and that we have already observed (see (1.11))
that

Do (0r) Z Nu(h).
We start with the following Lemma.

Lemma 5.1. We have
10413, 2 na(h).

independently of both o and h.

Proof. From Lemma 3.2, we know that u, € A. Then, setting ar, = any, , by
definition of u, (see (1.15)),

w,(@)a,(0) <2, ae onT. (5.2)
Thus, by Lemma 3.3,
Doz [ weweaz [ Redees.  63)
uh(9)<1 Nh(9)<1

Note that when pu, (f) = 1, again by (5.2) ax(#) < 2, and so

Ez [ e e, (5.4)
ny (0)=1

The proof is completed by adding the inequalities (5.3) and (5.4) together. O

The most difficult part of the proof of the necessity is the control of n,(h). We
set

My, :={ze€D, : r>1—py,(0)}.

As it turns out it is integration on M, which will yield the desired control.

We start with the following simple auxiliary lemma which is certainly well known,
but for which we produce a proof here for the convenience of the reader thereby
exhibiting the right control of the constants.

Lemma 5.2. We fix two real numbers 0 < u <1 and 0 < u < 2. Then

1 Uoru? — (1 —r)?
1 _ a—1 d > 04—2 N 0 < <
1—04/_u((1—7")2+7“u2)2< )T rdr 2 ™ i U=

where ¢ > 0 is a constant independent of c.

Notice that while the function we integrate is not necessarily positive on the
integration domain, the integral itself will be positive.
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Proof. We have
! u® — (1 — T>2 a—
IR (e e
a a—1
- 0_</1 u(l e +ru2(1_r> rdr)

u
a a—1
= —— (u —(1- us)ds), where 1 — r = su,
Ou o 1—wus —I— 52
w/u
= u®? ——— (1 —us)ds + — el — )
), T—usts (01— ) + 42
-1
« d
Hu /0 (1 —us+ 32) °
) p/u o1
> (1—a)u*" —— (1 —wus)d
= (I—aju /0 1—u5+52( us)ds
1— 1/4
> &ua_Q/ s s, it u<up, (5.5)
4 0
from where we deduce the assertion of Lemma 5.2. 0J

Recall from (2.6) that D,(f) =< o= [ |f(2)[*25(2)dA.(2), and from (4.17) that
%(2) =L [T Q(e%, 2)log M2 o) dgo. The next two lemmas allow to obtain the con-
trol of N (h).

Lemma 5.3. We have
Lo L, Qe lordo) ) o - affulb)

lei —e?@<p, (6)

where ¢ > 0 is a constant independent of both v and h.
Proof. We have
- h()
2 ip
/Mhh (9)(/ —_— Q(e'?, z) log h dp)dAa(z) (5.6)

leiP —ei®|<p, (0) (9>
m h(0) ! : _
= h*(6 / _ log ——= —04/ Q(e?, 2)(1 —r)* Ydr)dy ) db.
/_” ( >< \eiv’—i?g(li)u ) h(@( 1=, (6) | ! ) ) SO)

Let ¢ € T, be a point such that yu, (§) =: u > 0. For a fixed number 0 < t =
v — 0 <7 we set u:= 2sin(t/2). With (4.25) in mind,

—a /1 luq(t,r)(l — r)oldr

1 281n2(t/2)(1 +r2) = (1—7)? .
/1—u A= R g sy LT

ru* — (1 —r)? L
> 2 1—7r)*"
> a/l_“ (=L +m2)2( r)* trdr,
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where in the last inequality we have used 1 4 r2 > 2r and the fact that the denom-
inator is positive (again, the function we integrate is not necessarily positive on the
whole integration interval).

Now, an easy computation gives |u| = |2sin(¢/2)| = |¢*¥ — €?| which is supposed
to be bounded by p in (5.6), so that by Lemma 5.2, we get

1l -«
|eig0 _ 67L€|2—o¢ :

— /1 qit,r) (1 —7r)*tdr > (1 —a)u*? = (5.7)

The estimate in Lemma 5.3 follows from (5.6), (5.7) and the very definition of
Mo (h). O

The next lemma connects the previous estimate with D, (Oy,).

Lemma 5.4. We have

Duon+louEz [ O ., e osfioldg)ia ),

le?P —e?@<p, (6)
independently of both o and h.

Proof. Recall that

avh /Q %, z)log <<))d90,

and hence

/M h2(9)(/ _— Qe 2) log Zi(g)) dp)dAa(z)

let® —ei¥|<p, ()

S RGECEACTNG

_ /M 12(0)( / - Q(ew,z)logz((g))d@)dAa(z)

le? —ei0|>p, (0)

- [ o[ e i)

0)
_/Mh h2(0 / Q(e"*, 2) log };L(( ))dgo)dAa(z). (5.8)

We will now estimate the 4 integrals appearing above.
The proof of the first estimate

VM () () (2)| <

is lengthier, and we prefer to postpone it to the end of this section (see Lemma 5.5).

1
11—«

D.(0Op) (5.9)
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Next, from (4.16) we get

: h(p)
2 7
‘ /I\;ﬁ h / = (0) Q(e ‘p’Z) log Wd(p)dAa(Z)‘
" |ei® —if) 2, (6)
h(0)

/ h2(0)(/ . gre) ) dAq(2)

|ezg0 _ 610|2

AN

le?P —ei@|>p, (0)

- /7T hQ(Q)ah(Q)(/l o a(l —r)*tdr)do.

—T

Obviously fllfu (e)oz(l — ) tdr = p,(0)*, and by definition a;(0) < 2/pu,(6).
h
Hence, with Lemma 3.3, and in particular (3.13),

’/Mth(e)(/ o Q7 2)log }/i((gg;dSO)dAa(Z)‘

lei? —e®]> 1), (9)

5/ B2(0)1 1 (6)d6 < [[h][2 + Da(On). (5.10)

—T

Consider the integral on T} (6). Again using (4.16) and (4.9)

1 ' 1
o Qe 2)(1 —r)* tdr <

- ~ |€z<p 610|2—a :

Since on T (6) we have h?(6)log Z((‘g < h(O)h(p) < (h(p) — h(0))?, we get

| ) [ Q2o R )AL S Nal) SDL(00). G.11)

For the last integral, we have

/M l12(9)(/T (O)Q(ei“",z)log Zﬁgg))dgo)dAa(z)

:/hQ(Q)(/ Qe 2)log };L(((g))dgp)dAa(z)

Lo, S aniai

As in (4.30)

h(6)
Since on Ty (), |log(h(v)/h(0))] < log2, and with (4.16) and (4.31) in mind,

| /D h2(0)( /T (B)Q(ew,z) log h<“0)d<p)dAa(z)‘ < Na(h).

|/ , Qe o | =



CARLESON’S FORMULA FOR SOME WEIGHTED DIRICHLET SPACES 27

Then, by using Lemma 3.3,

2 i h(@)
‘/D\Mhh 0)( M@)Q(e . 2)log hO d@dAa(z)(

< ‘/ P61~ ) dAu(2)] :a/ h2(9)/ L
D\M;, _x r<i—p, (0) (1—r)>=

(6]
< h2(0) 1 (6)do
Nl_&/ﬂ(g)<1 (0 (0)
h

< 72 Da(0n)
Therefore
: o) log M) 1
[ o] ae e gdladinc| s oo 61

Taking (5.9) for granted (see Lemma 5.5 below), the desired result follows from this
estimate as well as from the estimates (5.8), (5.10), (5.11) and (5.12). O

To finish the proof of the necessary condition of Theorem 1.1, i.e. (5.1), it suffices
to combine Lemmas 5.1, 5.3 and 5.4.

We finish this section with the proof of (5.9):
Lemma 5.5. We have

0
D00 2 | [ 105k ),
M, 00

independently of both o and h.
Proof. Using (3.4) and Lemma 4.1,

/ h2(0)| S a“ (2)|dAa(z) < 682/ 02(2)
MhﬂKh Mthh

< Nu(h) < Da(Oh). (5.13)

With (5.2) in mind, we observe that M \ K, = Lj, where Lj = Lj , . Since
h(0)? = 0x(0)] < |03(0) — Oi(2)| + |On(2)?], we have

JRECEABUNS

[ 10t =00l @l +| [ 108153 )
= I+, (5.14)

8'0 ‘dA

IN

The following two facts are well known.

1
<@ +y),  wy >0, (5.15)

(z+y)? <2 +y?), z,y>0. (5.16)
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In particular, using first that |Op(2)| < 2h(0) for z € L}, and then (5.15) (setting

y =|0n(2) — On(0)|/v/1 — 1), yields

7 < 3 [ h)]0w:) - 0uO)|| )| dAu(o)

h

= 0n2) = OO, 2 [ Ol g P i)

Now, by (4.18),
h(e)
v, 1™ |log 35|
< - —d
| 00 (ZM I /_,r et — z|? v

() h(e)
B / %d*’!*l / 1850 4,
(@)<h(o) € — z|? T Ju(o)>neo) 1€ — 2|?

’ log = loh I ’ log Z(—‘g))
< T pde zeD,.
1—7“ h(e)>h(o) €% — 2|
Applying this and (5.16) to the sum on the right hand side in (5.17) yields

On(z) — O (0)|” log 15245
n < | D= OL 11+ JREC plE il
L2 L2

IN

(5.17)

lL—r 1—7r
log )
+/ h2(0)(/ %dg})ﬂu —r)dAa(z). (5.18)
L2 h(p)>h(0) |€° — 2|

In the above, the second integral is controlled by the first one since for almost all
points z € L7, we have from (3.4),

|On(2)]
h(6)

41 }Oh<z) - Oh(e)‘
| <e 0 : (5.19)

‘ log

Now since
lkgh((g))’< ‘ ( ) ( )l

Jensen’s inequality gives

5 Lo 92509 = G 21 i )
— ———dp) = (s 0g ©
27 Jno)=nie) € — 2|2 27(1 = 12) Jio)=n(o) 1€ — z|2 h(6

2

1 / |h(0) — h(0)]
< . dp, zeD,,
20h2(0) (1 —72) Jyupsney e — 2|2 v "

which allows to control also the third integral in (5.18):

< [0 OO 1y )+ v [ (OO i
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Again by Jensen’s inequality,

0u(2) — Ou(B) < - /ﬂf‘—rwohw)—oh(e)\?dso,

< o e — z|?

for almost all points z € D with respect to area Lebesgue measure. This together
with (4.9) on the second term and then another application of (4.9) on the first term
as well as Douglas’ formula (1. 5) yield

// On(y) d dA( / / ) dipdf
e zP - |ew il

(5.20)

Now we turn to the integral Z,. Again, we cannot use the triangular inequality
directly in IL? since we need to take care of the sign of vy, /0. To this end, we use
L? =D, \ {K,UL}}, where L} := Ll . Then

/ 01(2)] 81} / 02(2) 52 (2) | d Ao (2
/ |07 (2) =2 (2)|dAu (= (5.21)
and so, by (2.6) and Lemma 4.1,
Ty S Duy(0p) + Ny(h) + /}Ll \Oi(z)aazg (z)\dAa(z). (5.22)

Since for z € L, we have |Op(2)| < 2h(0), inequalities (4.7) and (4.6) give |O? %%H <

2
9% = 90,292 < 2 x 2h(6) x %h_@, and so
82} T 1
O3 )dAL(2) < 8a/ R%(0 / —————dr|df
1 ‘ h( ‘ -7 ( )( r<l—pu, (0) (1 - 7’)2704 >
< B / h2(0) 2 (0)d6. (5.23)
l—aJ, @< "
h
Combining inequalities (5.22) and (5.23), and applying Lemma 3.3,
1
PR 1= Do (On). (5.24)
Hence, the desired result follows from the estimates (5.13), (5.14), (5.20) and (5.24).
0
6. THE EXAMPLE
Recall that for 0 < a < 1 and > 0, we have defined the function
1
o3 /8 ) 0 e <O7 7Tj|7
hs(6) := < 0z log” ] (6.1)

9
co == hg(m), 6 € (—m,0),
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where the value of v (= 7e?/%) guarantees that hg is well defined, decreasing on
(0, 7.
We want to show the following result.

Proposition. Let 0 < a <1 and 8 > 0. Then

(i) For Nu(hg) < 400 it is necessary and sufficient that 3 > 1.
(ii) For Oy, € Dy it is necessary and sufficient that § > 1 — L.
(iii) For Co(hg) < 400 it is necessary and sufficient that 5 > 1.

In order to not overload notation in our following discussions, we will set h = hg.
Note that since o < 1, we can check easily that h € £2(T) and satisfies the condition
(1.3), and hence Oy, € H?.

For the convenience of the reader all estimates in the proof below will be done on
[—7, 7] rather than on T.

Proof. Assertion (i)
We have

- ‘2
Na(h) — / / eup 619‘2 ad d9
(s~ )
s 0 - —
— 02 log® )
- 2/0 /W leiv — ei0[2—a de | do

2
( T 1
™ 3 o
02 log? % 02 logf X
42 A =N
ety — ez€|2—a
0 0<O<p<m ‘

= Il +IQ (62)
Since |e¥ — €| = 2|sin 22|, then
‘eicp_ewy — |90_0|7 if e (0771-/2> andgpe (—77',0), (6 3)
lo — 6 + 27|, if 0 € (n/2,m) and ¢ € (—,0). '

We estimate the inner integral in the first term Z;:

/ 7 dip ~ (W—%) T 0€(0,7/2).

|ez‘,0 — 619|27a 05 log ’ay fl—a

Now taking the outer integral in Z;, the convergence of which does not depend on

the behavior on (7/2,7), we get

Il<OO <~ /

and since on (0,7/2) we have

2 1
— co> Ql_adﬁ < 00,

N\Q
cIDIQ
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this yields

w/2 1 1 w/2 1
Il < 00 ~ / 23 1_ df = / —25 < 0.
0 O log %0 “ 0 910g %

Hence
L1 <o <& 260>1,
which yields the necessity in (i) of the proposition.
h(0) —
0—¢
¢ < p, we will be interested in the derivative of h:

Let us discuss the second integral Z,. Since

1
| (0)| = — T 6 €0, 7[.
0'*+2%log” 1
As above
|€i¢_ei9‘ = ’90_9‘7 97906 (O,W)-
So

I, = 2/ / —|—2/ /
0 9%02329 0 J2o<p<n

2 ["(( s WA [ o 0rdo)as

p<m p<m

4 1 1
+2/ _— / ——dyp|db
0o 0 10g25%< 20<p<n (p—0)2 <p>

T 1
S’ / 28 v do,
o Olog™ 3

N
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hig) _ h'(§) for some 6 <

(6.4)

(6.6)

which converges when 25 > 1. As a result we deduce the sufficient part in (i) of the

proposition.

Assertion (ii)
Now we set

A(0) == —, 0] <.
It is clear that A € A and
0] < |¢|, 0] < 7 and [e? — €| < \(6).
From (6.7) and the explicit form of h, we deduce that
h(p)=<h(#), 0<60,0<mand |e” —e? <AO).

Hence
h(0)

log
| h()

0<6,0<mand | — P <\O).

(6.7)

(6.8)

(6.9)
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It is also obvious that when —7 < 6 < 0, then for no ¢ we can have h(p) < $h(6),
so that in the integration for 71, we only need to integrate for 6 € (0, ).
Thus
i log 7
~ _ 2 E
i) = [0 [, el

let® — e19\<,\(e)

h(0) — h(p
/ / i ) 19<2 )o‘c d dg
—r |e“P cioj<x(g) € — €|
S N (6.10)

N

which, by assertion (i), converges when > 1/2, and so also when f > 1 — /2.
[t remains to estimate n,(h, A). For the same reason as above, when computing
ne we only need to integrate over (0, 7):
™ log ne) 1—a
_ 2 h(ep)
na(h,\) = /0 h (0)( / O ede@) do

let® —ei0 > ()

h(6)

< / " 12(6) ( / o8 o) e
< T dy) b,
0 leiv —eif| >\ (9) |€ v¥—e 6.|2

o hO) q_
< h2(0) ([ —— de.
| e (=5)
We have
h() o v
Hence
logm - 1
h2(0) — X 0 € (0,7).
< 0 ) 0log™ ' 2
We get

e log " = [ ! do
| mo(=5>) “/OW

which converges when 23—1+4a > 1 or 8 > 1—%. This achieves the sufficiency in (ii).

Let us turn to the necessity of this condition. We fix a point 6 €]0, w[. Observe
that

h(0
ba, (0) = 2 loggg)
a’h,G( ) - % h(<p)<1h(9) |e7,4p ei0|2
leiP — 619\>0
0 log%f)

Y

A @E(—m,0) |€z<p _620|2 b
lei® —ei0|>0

2> logh(f) — oo, as 0 — 0. (6.12)
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In particular, there is a number 0 < § < /4, such that
ba, ,(0) > 2, 0<6<i. (6.13)

It follows
w, (0) <0, 0<8 <.

Thus, for 0 < 6 < 6,

1 logm
a,(0) = — B
" 21 | mMo<ino) el — eif |2
|ei5075i9|2‘uh(0)
o)
> L s Ty o
= 27 | ee-m0 |eup _ 620|2
|etP —eif| >0
log h(6
< Ogg( >’ (6.14)

which gives

no(h) = / e h*(0)al~*(0)d6 > / 6h2(9)a1—a(0)d9

0

11—«
S /5 1 <log %) o
~ Jo 02 logmg 0

5
1
= ————db. 6.15
/0 910g2ﬁ+a71 % ( )

Hence, the condition g > 1 — %Oz is necessary for n,(h) < 400, which finishes the
proof of the second assertion.

Assertion (iii)
Clearly, there is a constant k& > 1 such that h(f) > kh(yp) = ¢y when ¢ € [—7,0]
and 6 € [0, 7/2[. This yields

R%(0) — h2(p) < h*(), @ € [-m 0] and 0 € [0,7/2[. (6.16)

Using (6.3) and (6.11),

h(6)

72, 0 (h2(0) — h2(¢)) log 0L /2 h2(0) log MO
Ca(h> Z / (/ ( ( ) (90)) gh(g,) d(p)de / ( ) og o do
0 0

L e op e

w/2 1 .
———df.
/0 Hlogw_1 g

Hence the condition 5 > 1 is necessary for C,(h) < +00.
We now show the sufficiency of this condition. Since the function h is constant
on (—m,0), there is nothing to prove when ¢, 8 € (—m,0). We now consider the case

Vv

X
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when 0 € ) and ¢ € (—7,0). We have in view of (6.16) and (6.3)

(0,7
. / ( /o (n2(0) — h*()) log 115 ] ) o

‘eiga _ ei9|2 «a

(o)

/2, (0 h2(f) log M2 ™ o [0 h2(0)log X
A/O (/ g >d9+/7r/2</_ Frpe )de
/2

7 |

1 T h(0) [° 1
< —d9+/ h*(0)1 / dipd.
~ /0 elogZB ! 7r/2 ( ) Og CO —T |90 - 0 + 27T|2_a 90

The second term is of no harm since h%(#) log h{6) is bounded on [r/2, w|. Hence

Co
converges if and only if f /2 md@ converges, which happens when g > 1. It

remains to check the case when ¢, 6 € (0, ). By (6.5),

(h?(0 2(¢)) log 2 m
cp)
/ / |6150 _ 67,9|2 a d dy
o (h2(0) — h*(p)) log 115
=2 "D o) g
0 \Jocp<n et — e?]me

= o (2 .
0 0<p<m |SD - 6‘

. (h2(6) — 12(p)) log 12
A e

Clearly

lo—6]>356

i h2(9)10g— T 1
= ———pgza ¢ d9§/ b, 6.17
/0 </|<p—ez;0 [ — 02~ ) o Olog?! 2n (6.17)

which as in the previous estimate is bounded when 5 > 1. Finally we consider the
integral for |p — 6] < %9. We observe first that in this case, as already discussed
earlier, h(#) < h(y) and

log h(0) ‘ < |h(6) — h(p)|
h(yp) h(6)
Hence
™ (h2(0) = h*()) log 145
( o g i) do
0 h(¢)<h(0) and |o—0|< 30 Y
T[T hO) — k()]
< | dp |df < Ny(h),
/0 </0 o — 0> ) (*)
which converges when 25 > 1 and in particular when g > 1. O
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