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Abstract

Electromagnetic waves, developing in vacuum or into matter, produce
dynamical alterations of the space-time metric. This is a consequence of
Einstein’s equation, that we are able to solve explicitly in some circum-
stances. Solutions are in fact obtained by plugging on the right-hand side
of the equation some appropriate energy tensors. Hence, the passage of a
wave generates both electrodynamics and ‘gravitational’ (local and tem-
porary) modifications of the molecular lattice of a dielectric. If the wave or
the dielectric body are asymmetric, we could theoretically obtain a distri-
bution of Newtonian-like forces with nonzero resultant. This hypothesis
suggested a laboratory experiment where an electromagnetic signal ap-
plied to a ring with a particular geometry imparts a directional thrust in
apparent violation of the action-reaction principle. This test was recently
realized with success. Therefore, the present theoretical approach, once
appropriately refined, may constitute a crucial referring point for further
developments.

Keywords: Electrodynamics, Stress-energy tensor, Einstein’s equations, EM-
Truster.

1 Introduction

A number of relatively recent papers analyze the role of general relativity in
the description of phenomena happening inside matter. For instance, relations
between phonons (or even sound waves) and space-time deformations have been
theoretically studied in [1, 3, 2, 4]. The findings suggest possible applications
in various fields, with the aim of taking advantage of the gravitational mass
component. In the present paper we disclose the results of a preliminary study
concerning the space-time deformations following the passage of an electromag-
netic wave traveling into vacuum or a dielectric. This analysis, in part heuristic,
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has suggested the construction of a device able to generate asymmetric thrust
[5]. The prototype has been successfully tested in laboratory, confirming the
theoretical expectations. At this point, a further validation of both theory and
practice follows parallel paths.

The device tested in [5] is an asymmetric ring supplied by radio-frequency
electromagnetic signals, which undergoes a directional shift in violation of the
laws of momentum conservation. The device, belonging to the family of the so
called EM-thrusters (see for instance the EmDrive [6]), may represent a valid
propulsion engine in particular in those applications where there is the need
to generate unbalanced forces by only relying on electromagnetic sources, thus
without the help of moving components, permanent magnets or some kind of
fueling. Various explanations are possibly available. For example, momentum is
transferred to the quantum vacuum [7, 8, 9, 10], a radiation of electromagnetic
entity which pervades the universe. More sophisticated approaches rely upon
the Unruh effect [11, 12, 13] or the concept of warped space-time [14, 15, 16]. As
mentioned above, we are trying here to provide the reader with an alternative
version of the facts, which is the one that actually inspired the construction of
the new working device.

Figure 1: An electromagnetic pulse travels from left to right within the molecular
lattice of a dielectric, causing a local deformation at its passage. The picture shows
the modified displacements at different times. The signal has enough power and travels
at a speed larger than that needed for the recovery reaction of the molecular links. At
the end of the process, the initial framework turns out to be slightly shifted backwards.
A continuous reiteration of the signal recalls the wakes shaking the body of a shuffling
caterpillar.

Action-reaction principle can be put into discussion when taking into account
the delay occurring between two events. For example, if our Sun suddenly dis-
appears and we admit that the gravitational information travels at the speed
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of light, it takes more than 8 minutes before the change will be detected on
Earth. During that time, our planet will continue its trajectory along an ellip-
tic orbit, disregarding some basic classical assumptions. In the same way, an
electromagnetic wave traveling inside a medium may produce local and tempo-
rary variations of the molecular displacement. The inertia of the molecules to
regain their initial displacement plays a role where an asymmetry is encoun-
tered. Moreover, the uncertainty principle of quantum mechanics, in the form
of momentum-position or energy-time, allows for the violation of classical con-
servation properties under certain restrictive conditions.

The question is how to induce effects as the one outlined in Fig. 1, where,
hypothetically, a backward shift of the medium is realized after the passage of a
pulse. More specifically, the problem is how to convert electromagnetic strength
into Newtonian-like forces. Moreover, we would like to have a non vanishing
resultant, able to confer a directional thrust. Therefore, the introduction of
some asymmetry in the system becomes a primary concern. Note that, at
frequencies of the order of GHz, the wavelengths are measured in centimeters.
Thus, there are good margins to be able to work with tools having a manipulable
size. Even if the results are negligible for a single pulse, a repetition at a rate
of billions times per second may end up in significant outcomes.

The above mentioned laboratory experiment is still waiting to be replicated
by other researchers. By the way, its realization was suggested by the same
theoretical considerations that we would like here to report. In order to provide
a background for a better understanding of the discovery, and suggest how the
performances could be improved upon, in the following pages we try to give a
formal description of the model equations ruling the phenomenon, as well as
their main properties. Due to the technicality of the subject, we are not be able
to explain all facts, but we shall limit our analysis to the development of the
theoretical foundations and the discussion of some relatively simple examples.

2 The model equations

We denote by ~E the electric field, by ~B the magnetic one, and by ~V a velocity
vector field. In particular, ~V follows the evolution of the electromagnetic infor-
mation, which is not necessarily carried by real massive bodies, such as charged
particles. For this reason, the equations will also have validity in pure vacuum.
In the simplest cases, ~V maintains the direction of the Poynting’s vector ~E× ~B.
A set of model equations coupling Maxwell’s equations with Euler’s equation
for non viscous fluids can be obtained as follows:

∂ ~E

∂t
= c2curl ~B − ρ~V ∂ ~B

∂t
= −curl ~E div ~B = 0 (1)

ρ

(
µ−1

D~V

Dt
+ ~E + ~V × ~B

)
= −ε−10

~∇p (2)
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with ρ = div ~E and c is the speed of light. The above equations were introduced
and discussed in [17, 18] and further analyzed in [19]. Hence, we refer to those
publications for comments and explanations. The setting is not dissimilar from
the ones reported in [20], chapter 10, within the framework of plasma physics.
Analogous formulations are found in Magneto-HydroDynamics (see, e.g., [21, 22,
23]). The exception is that we do not introduce any mass density here. Indeed,
the model corresponding to (1)-(2) represents, compatibly with the existing
ones and in the respect of the physics canons, the most general way to handle
electromagnetic phenomena without involving the presence of massive particles.
The equations actually derive from a very general classical energy-stress tensor
(see (9)). The model has been built to describe phenomena in vacuum, and it
is naively applied to dielectrics. In truth, the description for the momentum of
light in a medium is a serious issue that requires more attention, since it has
been subject of different interpretations in the past [24].

We recall some useful facts. The first equation in (1) is the Ampère’s law

and the second one the Faraday’s equation. As usual, the term D~V /Dt denotes
the substantial derivative and ε0 is the dielectric constant in vacuum. The scalar
p is a potential denoting pressure density per unit of surface, that, differently
from fluid dynamics, can also attain negative values. The term ~E + ~V × ~B
recalls Lorentz’s force. Finally, the constant µ is dimensionally equivalent to
Coulomb/Kg. An estimation of µ is provided in [18], appendix H, in a specific
circumstance. The most important difference is that density of mass does not
appear in the equations and the link between electromagnetic and Newtonian-
type forces is represented by the unknown p.

The above set of equations extends the classical Maxwell’s model in vacuum.
Indeed, by imposing ρ = 0, we get:

∂ ~E

∂t
= c2curl ~B

∂ ~B

∂t
= −curl ~E div ~E = 0 div ~B = 0 (3)

Another significant case is when D~V /Dt = ~0 and p = 0, but ρ 6= 0. In such
a circumstance, we get:

∂ ~E

∂t
= c2curl ~B−ρ~V ∂ ~B

∂t
= −curl ~E ρ( ~E+ ~B× ~V ) = ~0 div ~B = 0 (4)

According to [17], the solutions of (4) (that include those of (3)) are named
free waves and consist of electromagnetic phenomena that evolve according to
the rules of geometrical optics. Indeed, as far as (4) is concerned, it turns out

that the vector field ~V must be constant and orthogonal to both ~E and ~B (i.e.,

it is lined up with the Poynting’s vector). The relation |~V | = c, stating that
the velocity of propagation of the signal equals that of light, also becomes the
eikonal equation [25], which actually rules the propagation of fronts in classical
optics. As pointed out in [17, 18] there is plenty of these waves that do not
satisfy (3), justifying the introduction of the extended model. By applying the
divergence operator to the first equation in (4), the following continuity equation
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is automatically derived:
∂ρ

∂t
= −div(ρ~V ) (5)

Note that the term ρ~V is not necessarily a classical current, but is related to a
kind of density charge accompanying the evolution of a wave. The reason for
assuming that ρ can attain values different from zero also in vacuum is explained
for instance in [19].

The equations (1)-(2) can be expressed in relativistic form, by using 4-
vectors and introducing suitable tensors. As usual, in the system of coordinates
(ct, x, y, z), we denote by Fαβ the electromagnetic tensor (see, e.g., [26, 27] or
other typical text on general relativity). Within the space-time metric denoted
by gαβ , we consider the electromagnetic stress tensor:

Uαβ = −gγδFαγFβδ + 1
4 gαβ FγδF

γδ (6)

Afterwards, by introducing a velocity 4-vector ~V , we define a mass tensor Mαβ

that recalls that of a dust of particles for a perfect fluid:

Mαβ = µ−1ρ VαVβ + ε−10 gαβΠαβ (7)

with Παβ = diag(E ,−p,−p,−p), where the scalar E denotes an energy density
per unit of volume and p our pressure density per unit of surface. The intro-
duction of the constant µ is justified by the observation that ρ is a density of
charge per unit of volume, and not a density of mass, as in standard mechanics.
In this way, we remain within a pure electromagnetic context. Inside matter,
the information will not be transported by massive particles (such as electrons)
but develops by means of compression and rarefaction waves, as a kind of sound
wave. Similar consideration may be applied when modeling the behavior of
phonons [28].

By putting together the tensors so far examined, we arrive at a global stress-
energy tensor:

Tαβ = ε0(Uαβ −Mαβ) (8)

The covariant version of the the model equations is obtained from requiring:

∇βTαβ = 0 α = 0, 1, 2, 3 (9)

By specializing the expression in a Minkowski metric, we finally get (1)-
(2). In order to make this exposition more fluent, we omit the details of this
computation. We also get the following equation:

∂E
∂t

= −ε0
(
cdiv( ~E × ~B) + ρ ~E · ~V

)
(10)

where E = 1
2ε0(| ~E|2 + c2| ~B|2). This is akin to the Poynting’s theorem and

says that the local time variation of energy follows the evolution of the vector
product ~E × ~B and also depends on the scalar product ~E · ~V (which is zero for
a free wave).

5



3 Some interesting solutions

In Cartesian coordinates (x, y, z), the electric and magnetic fields of a standard
(suitably polarized) plane wave traveling in the direction of the x-axis can be
represented as follows:

~E = (E1, E2, E3) = (0, f(ξ), 0) ~B = (B1, B2, B3) = (0, 0, f(ξ)/c) (11)

where ξ = x − ct and f is an arbitrary function. In this circumstance we have
ρ = 0, so that we are in the usual Maxwell’s setting in vacuum. More complex
plane waves, where the function f also depends on y and z can be considered. In
these cases it is necessary to use the modified model (4). The reader interested
to this extension is addressed to [17, 18] for more clarifications. Here, for the
sake of simplicity, we will not use such an option.

The full set of equations (1)-(2) also allows for solutions where a component

of the electric field is lined up with ~V (that implies ~E · ~V 6= 0). Electromag-
netic waves having a component in the direction of motion actually exist when
traveling within a dielectric. In this case, a viable solution is:

~E = (h(ξ), f(ξ), 0) ~B = (0, 0, f(ξ)/c) ~V = (V1, V2, V3) = (c, 0, 0) (12)

where h is another arbitrary function. We now have ρ = h′(ξ), with the prime
denoting derivation with respect to ξ. Moreover, we get:

p = −1

2
ε0h

2 ~∇p = −ε0(hh′, 0, 0) (13)

Of course, we return to the expression in (11) when h = 0. Note that the
pressure has negative signature. It is worthwhile to observe that, when f = 0
(so that ~B = ~0), the constant c in (1)-(2) is multiplied by zero. This means that
in principle a pure longitudinal wave is free to travel at any speed.

The last example teaches us that in order to create pressure we need two
facts: there must be a divergence ρ different from zero (this also emerges from

examining the left-hand side of (2)), there must be a component of ~E along the
direction of propagation. We return to this issue in section 4.

We would like to plug the tensor (8) on the right-hand side of Einstein’s
equations. This means that we have to solve:

Gαβ = Rαβ − 1
2gαβR = χTαβ (14)

where Rαβ is the Ricci’s curvature tensor and R = gαβRαβ the scalar curvature.
On the right-hand side a constant χ appears, that is not in relation with the
gravitational constant. The dimension of χ is meters/joules. An estimate of
such a constant in a very special circumstance has been given in [18], appendix
E. The question of providing a value to χ is delicate. We expect that χ is
many orders of magnitude greater than the corresponding constant related to
gravitation. Indeed, inside matter, masses are concentrated in the nuclei whose
volume size is 10−15 times smaller that of the corresponding atoms. The total
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mass is negligible from the classical gravitational viewpoint. The corresponding
density of mass, taking into account the relevant spacing between nuclei, is also
extremely small. Gravitational relativity refers to masses as a whole, without
considering that the distribution is concentrated in tiny peaks. On the other
hand, an enormous amount of free energy is circulating between atoms, with
magnetic fields of the order of Teslas. The fields tend to cancel each other on the
average, presenting a piece of matter like an almost neutral object, thus hiding
the large energies that keep atoms together. This means that the role of χ in
this context must be rethought. The constant will also depend on the material
under consideration. We are unable in this short paper to provide a full theory,
but the question is certainly of interest and should be further investigated, also
in view of the observations that will be made in section 4.

Our analysis is conducted at a pure electromagnetic level. Hence, masses
are not to be taken into account. When we talk about ‘deformation of the
space-time’ we mean that this is due to some form of energy of electromagnetic
nature which does not come from the presence of massive bodies or black holes.
We are going to show that an electromagnetic wave will carry within itself a
gravitational-type wave, i.e., a local time-dependent metric with nonzero cur-
vature. Here the name ‘gravity’ should not be associated with the standard
terminology. For instance, speaking about phonons, in [4] the authors observe
that they actually carry mass, which is not due to the usual mass-energy con-
version, since the effect survives in the nonrelativistic limit. Moreover, they
remark that the effect is not of quantum type. Just to have an idea, the ion-
ization energy of the Hydrogen atom is of the order of 10−18 J (more exactly
13.6 eV). The gravitational interaction would be only of order 10−56 J. Obvi-
ously, the description of the space-time metric inside matter cannot be a direct
descendant of gravitational type phenomena at large scales.

Let us examine the first case, relative to the solution in (11). Since E1 =
E3 = B1 = B2 = 0, our tensors are rather simple. We anticipate that only Uαβ
will be necessary in this case. We then look for a metric of the form:

(ds)2 = (c dt)2 − (dx)2 − (σ(ξ) dy)2 − (dz)2 (15)

where the function σ is the unknown to be determined. In other words, we have
to find gαβ = diag(c2,−1,−σ2,−1). In the special case we are examining, the
non-vanishing entries of the electromagnetic tensor Fαβ are: F02 = E2 = f ,
F20 = −E2 = −f , F12 = −cB3 = −f , F21 = cB3 = f . Correspondingly, the
nonzero entries of the electromagnetic stress tensor Uαβ are:

U00 = U11 = (f/σ)2 U01 = U10 = −(f/σ)2 (16)

The next step is to evaluate the curvature tensor. Starting from (15), the
Christoffel’s symbols are:

Γ0
22 = Γ1

22 = −σ′σ Γ2
02 = Γ2

20 = −σ′/σ Γ2
12 = Γ2

21 = σ′/σ (17)

Subsequently, we get:

G00 = G11 = −σ′′/σ G01 = G10 = σ′′/σ R = 0 (18)
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The above outputs have been evaluated with the help of an algebraic manipu-
lation software. Finally, substituting into (14) we must have:

−σ σ′′ = χε0 f
2 (19)

which is a simple nonlinear second-order equation (see also [18], p. 248). Com-
ments about its resolution will be given later in this section.

Let us now consider the electromagnetic displacement (12). For simplicity,
we only treat the case when f = 0. This time we look for a metric of the
following form:

(ds)2 = (c dt)2 − (σ(ξ) dx)2 − (dy)2 − (dz)2 (20)

corresponding to gαβ = diag(c2,−σ2,−1,−1). The nonzero entries of the elec-

tromagnetic tensors are (recall that now ~B is zero):

F10 = −h F01 = h U00 = U22 = U33 = 1
2 (h/σ)2 U11 = − 1

2h
2 (21)

The Christoffel’s symbols are:

Γ0
11 = −σ′σ Γ1

01 = Γ1
10 = −σ′/σ Γ1

11 = σ′/σ (22)

As far as the curvature is concerned, we get:

G22 = G33 = −σ′′/σ R = −2σ′′/σ (23)

Let us solve the Einstein’s equation. It turns out that only the pressure part of
the mass tensor Mαβ in (7) is needed. We end up with the following relations:

−σ σ′′ = χε0 h
2 E = 1

2ε0 h
2/σ2 p = − 1

2ε0 h
2/σ2 (24)

Again we get equation (19). The scalar curvature R is not zero and is propor-
tional to p. This can be also checked by taking the trace of (14) and recalling
that the trace of Gαβ is equal to −R and that of Uαβ is zero. Thus, we obtain:

R = χ(E − 3p) = 2χε0 h
2/σ2 = −4χp (25)

Let us now approach the solution of the first equation in (24). If the
right-hand side is h(ξ) = sin(ωξ), for some ω > 0, it is easy to check that:
σ(ξ) = (

√
χε0/ω) sin(ωξ). This immediately says that the magnitude of the

gravitational deformation is inversely proportional to the frequency ω, which is
quite an interesting result. Moreover, we get:

p = −ω2/2χ R = 2ω2 (26)

Thus, in presence of a longitudinal sinus wave, the scalar curvature is a constant
only depending on the parameter ω.

Therefore, there might be conflicts with classical gravitational fields (the one
relative to Earth, for instance), suggesting how to build tools for increasing or
screening gravitational forces.
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As far as different forcing terms h are concerned, the evaluation of σ must be
done numerically. We show in Fig. 2 the plot of σ when h is a sawtooth signal.
We imposed the boundary conditions σ(0) = σ(1) = 0. The corresponding
σ is asymmetric, with σ′ and σ′′ growing at ξ = 1 as the slope of h on the
right becomes steeper. This means that, if we prolong the plot periodically, the
junctions are not smooth. The alteration of the space-time is continuous, but
presents asperities.
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Figure 2: Plot of σ (blue line) solution of the first equation in (24), when h (orange
line) is a sawtooth.

We recall that ξ = x − ct. An asymmetric signal shifting at speed c (not
necessarily that of light) inside a molecular lattice (see Fig. 1) produces slight
deformations at a local level. These are certainly electrodynamics effects acting
on chemical bonds, but they could be also interpreted as microscopic deviations
due to a flow of ‘immaterial masses’ as a consequence of a gravitational type
wave traveling inside the body. This wave does not necessarily develop at the
speed of light and may have a sensible intensity. In fact, for the reasons spec-
ified at the beginning of this section, the constant χ in (14) can be relevantly
bigger in comparison to the classical gravitational case. Note that the pressure
gradient (where p is given in (24)) is oriented along the longitudinal direction.
Note instead that p = 0 in those cases when the electric field has no longitu-
dinal component. We are reminded that ~∇p represents our link between forces
of electrodynamical nature and forces of mechanical type. Here, we are not
converting energy into matter in order to take advantage of gravitational forces.
As it is known, this would give negligible outcomes. The idea is to convert
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electromagnetic energy directly into mass density, forgetting the intermediate
passage. The trick is to stimulate asymmetrically the large electromagnetic en-
ergy hidden inside matter, having fields that tend to cancel each other, with the
aim to extract a ‘positive’ resultant.

The phenomenon is certainly nonlinear and the reaction of the medium may
be different if the signal imparted has a very slow growth followed by a fast
damping. If this is true, we would entail that a periodic signal carrying an
asymmetric time behavior could generate mechanical forces with nonzero resul-
tant. Indeed, by sitting on a wheelchair without the feet touching the ground,
we can impart neat acceleration in one direction by moving our body back and
forth, each way with a different velocity law. In the case under discussion, we
would take advantage of a sort of internal ‘friction’ hidden in the interatomic
gaps. Heuristically, this phenomenon may be a consequence of the fact that the
molecules take a finite fraction of time to regain their relative position after the
passage of a pulse.

If the above argument is not convincing, and we want to stick to the classical
rules on momentum conservation, we may say that the backward recoil shown
in Fig. 1 is due to the forward ejection of a ‘massive object’ of electromagnetic
type. Such an emission is totally different from waves generated by an antenna,
that, with the exception of a brief transient near the source, carry a transversal
signal satisfying the laws of geometrical optics (see the solutions in (11)). Waves
of this last type have p = 0 (so they do not carry mass). They only exert very
mild mechanical forces (radiation pressure) when interacting with matter (a
survey on theory and applications is provided in [29]). For this reason, we do
not expect a significant recoil from a classical antenna as a result of energy
emission. As previously observed, the ejected mass is not comparable to that
attributed to concrete objects (made of an enormous amount of molecules) and
successively converted into gravitational forces of very small magnitude. We are
dealing with a new interpretation of relativistic phenomena, where the constants
involved are far more large. The electric energy supplied to the system is partly
transformed in mass density (without masses) moving inside the material and
following well-known rules of conservation. A power of 1 Watt is easily realized
in an electric circuit and is a relevant quantity in classical mechanics. Even if
such an energy conversion was highly inefficient there could still be margins for
exploitation.

It is not straightforward however to build a device able to expel longitudinal
signals. This is not trivial, at least, along rectilinear paths. The experiment
becomes feasible if we opt for circular type paths. The discussion will follow in
the next section.

4 Rotating electromagnetic waves

The set (1)-(2) also admits interesting solutions rotating about the axis of a
cylinder. These are discussed in detail in [17, 18]. We report here a simplified
version. We work in the system of coordinates (r, φ, z). For an integer k ≥ 1

10



and arbitrary constants ω > 0 we have for any z:

~E =

(
Qr

ω
+
kJk(ωr)

ωr
cos(cωt− kφ), J ′k(ωr) sin(cωt− kφ), 0

)
(27)

~B =
1

c

(
0, 0, − Qr2

k
− Jk(ωr) cos(cωt− kφ)

)
(28)

where Q is another constant and Jk denotes the k-th Bessel function of the first
kind, that satisfies:

J ′′k (ξ) +
J ′k(ξ)

ξ
− k2Jkξ)

ξ2
+ Jk(ξ) = 0 (29)

We may take r between 0 and the first zero of Jk (denoted by δk), in order to
actually obtain a solution defined on a disk (for any fixed z). The radial part
of the stationary electric field, i.e. (Qr/ω, 0, 0), is the one corresponding to a

uniformly charged dielectric. The stationary part of ~B, i.e. (0, 0,−Qr2/ck), is
the one generated inside a uniformly charged rotating cylinder (though there is
no physical rotation of the body).

The displacement of the electric field for Q = 0 and k = 1 is shown in Fig. 3
at a fixed time t. The magnetic field is perpendicular to the page. As t evolves
the picture rotates with constant angular velocity determined by the parameter
ω. For r = δ1, we have ~B = ~0, whereas ~E is tangential to the cylinder surface
(E1 = E3 = 0). Always for Q = 0, the electromagnetic fields satisfy Maxwell’s
equations (3), since we have ρ = 0 in this case.

As Q 6= 0, we need to use the full set of equations (1)-(2). In fact, we have

that ρ = div ~E = 2Q/ω is constant and different from zero. We now define
~V = (0, cωr/k, 0). This velocity field describes a uniform angular rotation

about the z-axis. As a consequence we get that D~V /Dt = (−c2ω2r/k2, 0, 0) is
radial and points towards the center. Moreover, we start having p 6= 0. Indeed,
we obtain the expression (up to an additive constant):

p = ε0

[
c2ωQr2

µk2
− Q2 r2

ω2

(
1− ω2r2

2k2

)
− 2Qr

kω
J ′k(ωr) cos(cωt− kφ)

]
(30)

Note that with this choice p is zero for r = 0. The check that (27)-(28)-(30) are
actually solutions is straightforward. It is enough to compute partial derivatives
and substitute into the corresponding equations. Note that (29) must be used

several times. From (27) we observe that ~E has the component E1 transversal
to the direction of rotation (as in a classical plane wave in vacuum) and also a
longitudinal one, i.e., E2. The situation is similar to that illustrated in (12).

Unfortunately, the solution of Einstein’s equations is rather complicated
now, therefore we do not have results to show. Explicit solutions are extremely
rare, and those proposed in the previous section are the result of an intensive
study using algebraic manipulation. Numerical simulations aimed at approx-
imating periodic solutions of Einstein’s equation are rather challenging. The
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problem may be approached with techniques similar to those used for the study
of rotating black-holes. Some scattered references in this field are for instance
[30, 31, 32]. The case of a rotating cylinder with anisotropic fluid has been also
treated [37] in the framework of general relativity. The metric in the case of the
electromagnetic fields in (27)-(28) is not as simple as in (15) or (20). For sure,
the term g02 = g20, coupling time with the rotation angle φ, is activated. Our
guess is that, due to the complicated structure of the right-hand side Tαβ , the
term g01 = g10 is also going to be different from zero, making the resolution of
Einstein’s equation very tough.

Figure 3: Electric field for k = 1 and Q = 0 on the disk of radius δ1 (left). The
magnetic field is orthogonal, so that the whole displacement is defined on a cylinder
of infinite length. The system rotates with constant angular velocity. For Q 6= 0,
according to (30), we have pressure waves developing circularly inside the body (right).

We cannot rely on exact (or approximated) solutions, but we can however
come out with useful qualitative considerations. By putting together the exis-
tence of field displacements like in (27)-(28) together with the argumentation
of the previous section, we entail that pressure waves, accompanied by suit-
able space-time deformations, rotate inside the cylinder. Some sort of non-
homogeneous mass is then circulating around the axis. In the experiment in [5],
the solicitations were obtained through a winding made of a conducting wire
supplied with specific frequencies related to some resonance properties of the
object. Thus, the rotating electromagnetic wave and the consequent gravita-
tional one are expected to produce dynamical effects on the molecular bonds
(Fig. 3, right). This should shake the entire body with oscillations that, of
course, are supposed to be extremely small. On the other hand, as we men-
tioned in the introduction, these happen at a rate of a billion times per second,
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so that the final effect may be appreciable. We are however at a periodic regime
inside a symmetric body. Therefore, we get a compensation of the various forces
by integrating in a period of time. In other words, the resultant displays zero
average.

The situation is different if the cylinder section is not a disk. In this occur-
rence, we may encounter dynamical displacements where the resultant of the
forces at a fixed time is different from zero and, in addition, remains different
from zero also after averaging over a period of time. This could generate a
thrust towards a specific direction that depends on how the cylinder section has
been designed.

As far as the determination of electromagnetic displacements is concerned,
from the case of the cylinder it is relatively simple to pass to a ring geometry.
The first computations were proposed in [33]. Numerical solutions of the full set
of equations (1)-(2) circulating in rounded cavities (also including toroids), are
also available in [17, 18, 34, 35, 36]. Their evolution is very similar to that of fluid
dynamic vortex rings [38]. Periodic behaviors are obtained by requiring that the
eigenfunctions associated with the vector Laplace operator on the domain have
multiplicity at least four. From the viewpoint of general relativity, finding the
metric generated by the corresponding stress tensors requires an effort that at
the moment is out of our possibilities.

From the practical viewpoint, the adoption of the ring makes the realization
more easy and forces the magnetic field to follow closed loops inside the body,
conferring additional stability properties. The analysis of real-life situations
becomes more intricate if we take into account that the supplied signal (the one
carried by the conducting winding) does not travel at the speed of light and its
velocity is not equal in general to the one propagating inside the dielectric. Thus,
the correct imposition of boundary conditions should not be underestimated.

Together with a dynamical behavior, the fields in (27)-(28) also display a
stationary component proportional to the constant Q. This option was also
taken into account in the practical realization of the experimental device. In
fact, the addition of a radial steady electric field emphasizes the properties of the
thruster. We can provide a sort of justification by showing again some explicit
results related to the solution of Einstein’s equation. The cylinder and the ring
turned out to be rather difficult to handle. We can say something regarding a
charged dielectric sphere. The preparatory work was done in the recent paper
[19].

We are in the spherical system of coordinates (ct, r, θ, φ). As in [19], we look
for a metric of the form:

(ds)2 = c2 τ2(r)(dt)2 − σ2(r)(dr)2 − r2(dθ)2 − r2 sin2 θ (dφ)2 (31)

and we consider (14) with the right-hand side (8), which is built on the radial

electric field ~E = (Qr, 0, 0), whereas ~B and ~V are zero. Here Q is a dimensional
constant proportional to charge and depending on the relative dielectric constant
of the medium. By solving equation (28) in [19] with the term χε0Q

2r2 on the
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right-hand side, we discover that:

τ(r) =
√

1 + χε0Q2r4/5 σ(r) = 1/τ(r) (32)

We also get:

E = −p =
3

2
ε0Q

2r2 R = 6χε0Q
2r2 (33)

Moreover, we obtain ρ = 3Q either in the flat or the curved space (interesting
result, since ρ is not a relativistic invariant).

The above finding tells us that the sole fact of charging a body produces a
deformation of the space-time metric. According to (32) the effect is minimal
near the center (r = 0), where τ and σ are approximately equal to 1.

Quantitatively, the final effect depends on the magnitude of the parameter
χ (see also the comments at the beginning of section 2), which is expected
to depend on the atomic properties of the dielectric material. We can try to
provide a rough estimate for χ as follows. A relativistic charged body can be
described by the Reissner-Nordström metric. For the electric field external to
a charged sphere ~E = (q/4πε0r

2, 0, 0), the metric is obtained by choosing an
appropriate τ and σ in (31). In [19], working with the same tensor (8) for the
study of the electric field external to a pulsating charged sphere, the following
functions were deduced in the stationary case:

τ(r) =

√
1− 2mG

c2r
+

χq2

16π2ε0r2
σ(r) = 1/τ(r) (34)

where G is the gravitational constant and m is the mass of the body.
Let us suppose that we are in the situation in which the massive and the

electric components are approximately of the same magnitude, i.e.:

2mG

c2r
≈ χq2

16π2ε0r2
⇒ χ ≈ 32π2ε0mG

q2c2
r (35)

We now compare χ with the classical constant G/c4 of Einstein’s equation:

χ = γ
G

c4
where γ ≈ 32π2 mc2

q2

ε0r

(36)

If, for instance, our body is a proton, we can evaluate γ for r equal to its radius
(about .85× 10−15 meters), so obtaining the multiplicative factor:

γ ≈ 13.93 (37)

Therefore, thanks to (36), χ has a an order of magnitude not too far from the
standard constant. Moreover, we can observe that γ defined in (36) is adimen-
sional, being the ratio between two energies. The situation changes drastically
when we consider an entire hydrogen atom. In this case, the diameter is of the
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order of 10−10 meters, but the mass is only concentrated on the nucleus and
the corresponding gravitational field rapidly decays outside. On the other hand,
the electric field mildly reduces its strenght. Hence, γ changes its meaning if we
intepret it as a ratio of energy densities, so that the new G must be multiplied
by a factor of order 1015, at least.

Somebody certainly finds these considerations unconventional. Neverthe-
less, they help to better understand what actually happens inside matter. It
is enough to think about the bending of light due to diffraction, where angles
change within very small spatial ranges. The guess is that the rays are fol-
lowing geodesics of a modified geometry induced by the presence, not only of
the nuclear lattice, but of the full electromagnetic internal environment. This
approach supports the existence of solutions as those in Fig. 3 (see also (27)-
(28)), pertaining to rotating electromagnetic waves. An interpretation in terms
of general relativity can provide a more robust description of optics phenomena,
beyond the abstract application of geometrical rules. In this framework, also
the attraction or repulsion of charges due to Coulomb’s law ceases to be a mere
phenomenological rule and acquires a deeper meaning in terms of modifications
of the space-time (note that the potential p may take either positive or nega-
tive values). The challenge would be to show that between two neutral object,
the resultant of the nonlinear mutual interactions of their internal charges still
amounts to a residual weak action, which is what we call gravitational force. If
this was true, a theory unifying electromagnetic and gravitational forces would
become a reality. A more thoroughgoing discussion on these issues has been put
forth in [18], section 2.6, with more examples and remarks, though again at the
level of an interrogative analysis .

Going back to the experiment, the role of the stationary electric field was
proven to be significant Indeed, a second independent wiring was added to the
primary one. The purpose of this circuitry was to apply a constant voltage
difference of the order of KVolts between the secondary coil and the center of
the dielectric (represented by a further wire running inside the ring). In this
fashion, the ring itself becomes a charged capacitor.

With a mixture of rigorous and heuristic considerations, a ring with an
asymmetric section was built as described in [5] (see Fig. 4). The design of
its shape and the electric circuit benefit from the above theoretical hints. As
a combination of stationary and dynamical signals is applied to the device, a
sensible thrust is observed in the direction of the bottom part (the rounded
one). In absence of the high frequency signal, the sole presence of the high
voltage does not produce any measurable effect, and this is a confirmation of
the theoretical predictions. In principle, performances may vary depending on
many parameters, such as: the frequency injected in the system, the magnitude
of the stationary electric field (see Q in (27)), the geometry of the ring, the
properties of the dielectric, the conductivity and the number of spires in the
wiring, etc. Quantitative information will be available as more tests will be
conducted.
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Figure 4: Section of the asymmetric ring used for the experiments in [5]. The geometry
has been suggested by heuristic arguments. The idea is to allow for a smooth rotation
of the signal in the lower part of the ring and emphasize instead the acceleration term
D~V /Dt on the upper side. This last is relatively large at the corner line on top and
points downward. As the angular velocity of the signal is constant, by neglecting
the term ~E + ~V × ~B in (2), we expect that the integral of the pressure gradient ~∇p
shows a neat resultant pointing downwards. The shape can be certainly ameliorated
in order to increase performances. This should be done in conjunction with numerical
experiments conducted on the model equations.

What really happens is difficult to explain without a good dose of numerical
simulations that are expected to be carried out in the future. These will be
confronted with the experimental outcomes and ameliorated when necessary.

According to the results of this paper, an ‘immaterial’ mass is circulating
inside the ring, following trajectories as specified by the arrows in figure. There
are two kinds of asymmetries. The first one is the section shape. The sharp
form of the upper side was actually designed to emphasize diversity. Secondly,
we note that the semi-path passing through the ring hole is different (in terms
of surface density) from the one running outside. Our guess is that the orbits
are not closed, but are spiraling towards the bottom. As we specified, this may
be due to some nonlinear properties of the dielectric material, or because part of
the signal is ejected from the top (or both the occurrences). In this framework,
the violation of the action-reaction principle is not due to the interaction with
the surrounding vacuum (that would be negligible). The asymmetric Newto-
nian forces should come instead from the induced repositioning of some ‘virtual
masses’ partly already present inside matter due to the strong chemical bonds.
The density of such ‘alternative’ mass is certainly small, but it is spread all over
the volume of the body, contrary to what happens to standard masses that are
only concentrated at the nuclei. The rotatory process is ignited by the elec-
tromagnetic component enforced externally. Unfortunately, we are not in the
position to provide more details at the moment.
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5 Conclusions

Electromagnetic waves traveling into matter bring along a space-time deforma-
tion that can be assimilated to a kind of mass flow, with the consequence of
generating longitudinal mechanical pressure variations. Analogous theoretical
results have been obtained by other authors with the purpose of finding feasible
applications. The results discussed above actually suggested the construction of
an asymmetric thruster, as experimented in [5]. Though the device still needs
to be replicated and tested by independent research groups, the material here
collected may represent a key point for improvements, as well as a source for
further new ideas. In addition, the theoretical contributions here collected may
open a new page for the study of relativistic phenomena inside matter.
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