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Size-effect in concrete and other quasi-brittle materials defines the relation between the

nominal strength and structural size when material fractures. The main cause of size-effect

is the so-called energetic size-effect which results from the release of the stored energy in

the structure into the fracture front. In quasi-brittle materials and in contrast to brittle

materials, the size of the fracture process zone is non-negligible compared to the structural

size. As a consequence, the resulting size-effect law is non-linear and deviates from the

response predicted by linear elastic fracture mechanics. In order to simulate the size-effect,

one needs to rely on numerical modeling to describe the formation, development and prop-

agation of the fracture process zone. Although a number of models have been proposed

over the years, it transpires that a correct description of the fracture and size-effect which

accounts for boundary effects and varying structural geometry remains challenging. In this

study, the Lattice Discrete Particle Model (LDPM) is proposed to investigate the effects of

structural dimension and geometry on the nominal strength and fracturing process in con-

crete. LDPM simulates concrete at the aggregate level and has shown superior capabilities

1



in simulating complex cracking mechanisms thanks to the inherent discrete nature of the

model. In order to evaluate concrete size-effect and provide a solid validation of LDPM, one

of the most complete experimental data set available in the literature was considered and

includes three-point bending tests on notched and unnotched beams. The model parame-

ters were first calibrated on a single size notched beam under three-point bending and on

the mechanical response under unconfined compression. LDPM was then used to perform

blind predictions on the load-crack mouth opening displacement curves of different beam

sizes and notch lengths. Splitting test results on cylinders were also predicted. The results

show a very good agreement with the experimental data. The quality of the predictions was

quantitatively assessed. In addition, a discussion on the fracturing process and dissipated

energy is provided. Last but not least, the Universal Size-Effect Law proposed by Bažant

and coworkers was used to estimate concrete fracture parameters based on experimental and

numerical data.

Keywords: Concrete failure, Size-effect, Effect of geometry, Lattice Discrete Particle

Model, Numerical modeling, Energy dissipation

1. Introduction1

Size-effect in quasi-brittle materials has been extensively investigated in the literature2

experimentally, theoretically, and numerically. In these materials, a reduction in strength3

is observed when the structural size increases in geometrically similar structures. This phe-4

nomenon has been confirmed for concrete (see for instance the work of Bažant and Pfeiffer5

(1987); Hoover et al. (2013); Grégoire et al. (2013); Çağlar and Şener (2016)) and its im-6

portance was acknowledged in the civil engineering community, as it was for the first time7

incorporated in the most recent ACI standard in 2019 (ACI-Committee, 2019). Two main8

reasons explain this size-effect (Bažant and Planas, 1997; Bažant, 2002; Bažant and Le,9
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2017). The first one is the redistribution of stress due to stable crack propagation and re-10

lease of stored energy into the fracture front. The second reason is the spatial randomness11

in material properties. In this study, only size-effect due to stress redistribution is studied,12

i.e. the energetic size-effect which is, in passing, purely deterministic. In concrete, the size13

of the fracture process zone (FPZ) is non-negligible as compared to the structural size and14

a complete non-linear theoretical fracture mechanics framework does not exist. Simplified15

analytical formulations such as Bažant’s size-effect law (Bažant, 2002) only provide an ap-16

proximate description of concrete scaling law. In order to account for the release of the17

stored energy in the FPZ, and for the development and propagation of the fracture front18

for different specimen sizes and shapes, one must carry out accurate numerical simulations.19

Several types of models have been proposed over the years to describe concrete fracture20

and size-effect. One can mention for instance the cohesive model (Elices et al., 2002), the21

crack-band model (Bažant and Oh, 1983), non-local continuum damage models (Bažant22

and Jirásek, 2002), and discrete models (Bolander et al., 2021). In all the aforementioned23

formulations, two features are essential in capturing size-effect in strain softening materials24

such as concrete: (i) crack localization and (ii) existence of an internal characteristic length25

related to the size of the heterogeneity. In continuum models, these two ingredients are26

phenomenologically defined through constitutive laws. In this respect, random lattice or27

particle models such as the ones described by Cusatis et al. (2011a) or Eliáš et al. (2015)28

are considered superior. The actual mix design and particle size distribution can be simu-29

lated to produce a realistic heterogeneous internal structure made of interacting aggregates.30

In addition, the randomness in spatial distribution of particles reproduces the statistically31

isotropic nature of concrete and eliminates directional mesh bias during the fracturing pro-32

cess. Finally, a recent argument in favor of lattice particle models is their ability to capture33

the effect of stress parallel to cracks on the FPZ size and the induced size-effect, which was34

demonstrated to be significant in concrete (Nguyen et al., 2020a,b). In this study, one of35

such models, namely the Lattice Discrete Particle Model (LDPM) (Cusatis et al., 2011a,b)36

which simulates concrete at the coarse aggregate level is adopted.37

In order to assess the capabilities of LDPM in simulating fracture and predicting size-38
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effect, a comprehensive experimental data set on concrete fracturing (Grégoire et al., 2013)39

was considered in this study. This data set is among one of the very few available in the40

literature that includes three-point bending tests on notched and unnotched beams and41

encompasses a large range of beam depths. It should be mentioned that this set of data42

was previously used in several studies involving other numerical models. More specifically,43

an integral-type non-local model was used but was found ineffective in capturing correct44

size and geometry effects (Grégoire et al., 2013). In another study, a lattice model (Grassl45

et al., 2012) was able to simulate the data with a good accuracy. It must however be46

noted that the latter model falls into the miniscale category which implies computationally47

prohibitive simulations for more complex geometries that require an increase in structural48

size or account for the third dimension in the out-of-plane direction. It should also be49

mentioned that the model used in that study was bidimensional and that to the authors50

knowledge, there has been no attempt to extend the simulations to the 3D case. More51

recently, a study proposed to simulate concrete fracturing using a local isotropic damage52

constitutive model of the Rankine type through the crack band model (Barbat et al., 2020).53

Although a good agreement with experimental data was found, this type of smeared crack54

model is limited in capturing complex cracking mechanisms and realistic crack tortuosity55

observed in concrete, which might have a non-negligible effect on energy dissipation during56

fracture. As a matter of fact, this effect is especially important in the case of unnotched57

beams where a large damage zone is generated before its collapse to a single propagating58

crack that is ultimately tortuous and not straight. Last but not least, a re-implementation of59

LDPM which includes stochasticity in material parameters was recently used to simulate the60

data used in this paper (Eliáš and Vořechovskỳ, 2020) with a very good accuracy. It should61

be however emphasized that the latter study did not assess the capability of the model to62

predict size-effect. Indeed, the study used all the load-crack mouth opening displacement63

(CMOD) curves for all the beam sizes and notch lengths in the calibration process, with the64

exception of the unnotched beams and the smallest sizes that were discarded.65

In this work, the relevant LDPM parameters were calibrated on a single beam configu-66

ration, leaving the remaining fracture test results for blind predictions, including splitting67
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tests. In addition and in contrast with most available studies, a rigorous quantification of68

the prediction accuracy was performed. It is the wish of the authors that this work would,69

to some extent, pave the way for more detailed and quantitative analyses of goodness of fits70

and prediction quality in future numerical studies within the concrete community, using the71

same set of experimental data but possibly other data. This would ultimately allow one to72

compare different model capabilities, develop the most effective models and abandon the less73

accurate ones. The proposed approach and preliminary results were presented in a recent74

conference (Pathirage et al., 2022b,a; Pijaudier-Cabot et al., 2022). They are here largely75

extended and commented.76

2. The Lattice Discrete Particle Model77

In order to simulate the FPZ formation and propagation in concrete necessary to cap-78

ture size-effect, the Lattice Discrete Particle Model is here adopted. This model originally79

proposed by Cusatis and coworkers (Cusatis et al., 2011a,b) simulates the mechanical inter-80

actions among major material heterogeneities, i.e. coarse aggregates in concrete. Over the81

years, this model has been used to simulate other granular quasi-brittle materials such as82

mortar (Pathirage et al., 2019b; Han et al., 2020), fiber reinforced concrete and engineered83

cementitious composites (Schauffert and Cusatis, 2011; Rezakhani et al., 2021; Feng et al.,84

2022), unreinforced and reinforced stone masonry (Mercuri et al., 2020; Angiolilli et al.,85

2020, 2021; Mercuri et al., 2022, 2021), shale (Li et al., 2017), or cycling in concrete (Zhu86

et al., 2022). LDPM was also coupled to multi-physics models describing cement hydra-87

tion from microscale simulations, heat transfer and mositure diffusion, alkali-silica reaction,88

creep, aging (Alnaggar et al., 2013; Pathirage et al., 2019a; Yang et al., 2021, 2022), or more89

recently self-healing in concrete (Cibelli et al., 2022).90

2.1. Internal geometry91

In order to generate the LDPM skeleton, spherical particles are placed in a volume of92

material from the largest to smallest size. This placement follows a prescribed particle size93

distribution that is based on the actual concrete mix design with the maximum and minimum94
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aggregate sizes, da and d0, respectively. Figure 1(a) shows an example of particle placement95

in a prismatic sample. In order to simulate the interaction between particles, a lattice system96

is generated by means of a Delaunay tetrahedralization with the centers of particles. A dual97

tessallation is then performed which finally produces a system of polyhedral cells enclosing98

the spherical particles. Figure 1(b) shows an example of two adjacent polyhedral cells99

enclosing the spherical particles. One can also refer to Figures 22(b)-(d) where cells at the100

surface of prismatic samples are depicted. The surface of each polyhedral cell is composed of101

triangular facets where failure can potentially occur. On each facet, stresses and strains are102

formulated in a vectorial form through constitutive equations. Figure 1(c) shows the three103

unit vectors defined at a generic facet colored in red, in the normal direction and in the two104

tangential directions. LDPM incorporates specific constitutive equations to describe tensile105

fracturing with strain softening, cohesive and frictional shearing, and compressive response106

with strain-hardening. Since this study focuses on concrete fracturing, the corresponding107

constitutive laws are detailed in the following. The reader is referred to the Appendix for108

the complete set of constitutive equations.109
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Figure 1: LDPM internal geometry: (a) particle placement in a prismatic volume, (b) two adjacent LDPM

cells, and (c) triangular facet and vector orientations.
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2.2. Elastic, tension, and tension-shear constitutive behaviors110

If xi and xj denote the positions of nodes i and j, adjacent to the facet k, the facet111

strains are defined as:112

ek = [eNk
eMk

eLk
]t =

[
nt
k[[uk]]

lk

mt
k[[uk]]

lk

ltk[[uk]]

lk

]t
(1)

where eNk
is the normal strain component, and eMk

and eLk
are the tangential strain com-113

ponents, [[uk]] = uj −ui is the displacement jump corresponding to facet k, lk = ∥xj −xi∥ is114

the distance between the two nodes, nk = (xj − xi)/lk and mk and lk are two unit vectors115

mutually orthogonal in the facet plane projected orthogonally to the line connecting the116

adjacent nodes. The traction vector is defined as tk = [tNk
tMk

tLk
]t, where tNk

is the normal117

component, and tMk
and tLk

are the shear components. For the sake of readability, the118

subscript k that designates the facet is dropped. The elastic behavior is formulated through119

linear relations between the normal and shear stresses, and the corresponding strains as120

follows:121

tN = ENeN , tM = ET eM , tL = ET eL (2)

where EN = E0 and ET = α0E0. E0 ≈ E/(1 − 2ν) and α0 ≈ (1 − 4ν)/(1 + ν) are the122

effective normal modulus and the shear-normal coupling parameter, respectively, and E is123

the macroscopic Young’s modulus and ν is the macroscopic Poisson’s ratio.124

Because of the mesoscale nature of the model, concrete fracturing in mode I opening is125

always accompanied by shear at facets. This is a realistic feature since it is experimentally126

observed that most fracture paths are located at the interface between aggregates and cement127

paste. Therefore, the cohesive fracture behaviors in tension but also in tension-shear are128

important. This cohesive fracture occurs for eN > 0. One can define an effective strain129

as e = (e2N + α0(e
2
M + e2L))

1
2 , and an effective stress as t = (t2N + (t2M + t2L)/α0)

1
2 and130

write the relationship between stresses and strains through tN = teN/e, tM = α0teM/e and131

tL = α0teL/e. The effective stress t is defined incrementally as ṫ = EN ė and its magnitude132

is limited by a strain-dependent boundary which is written as 0 ⩽ t ⩽ σbt(e, ωsn) where133

σbt(e, ωsn) = σ0(ωsn) exp

[
−H0(ωsn)

⟨emax − e0(ωsn)⟩
σ0(ωsn)

]
(3)
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⟨x⟩ = max(x, 0), ωsn is a variable defining the level of interaction between shear and normal134

loadings. It is defined as tan(ωsn) = (eN)/(
√
α0eT ) = (tN

√
α0)/(tT ) where eT is the total135

shear strain eT = (e2M +e2L)
1
2 , and tT is the total shear stress tT = (t2M +t2L)

1
2 . The maximum136

effective strain is time dependent and is defined as emax(τ) = (e2N,max(τ) + α0e
2
T,max(τ))

1
2137

where eN,max(τ) = max
τ ′<τ

[eN(τ
′)] and eT,max(τ) = max

τ ′<τ
[eT (τ

′)]. The strength limit of the138

effective stress that defines the transition between pure tension and pure shear is written as139

σ0(ωsn) = σt
− sin(ωsn) + ( sin2(ωsn) + 4α0 cos

2(ωsn)/r
2
st)

1
2

2α0 cos2(ωsn)/r2st
(4)

where rst = σs/σt is the ratio of the shear strength to the tensile strength, σs is the shear140

strength and σt is the tensile strength. The post-peak softening modulus is controlled141

by the effective softening modulus H0(ωsn) = Hs/α0 + (Ht − Hs/α0) (2ωsn/π)
nt , in which142

Ht = 2E0/(lt/l − 1), Hs = rsE0 and nt is the softening exponent. Typically, the values of143

nt = 0.2 and rs = 0 are assumed and are fixed. lt is the tensile characteristic length defined144

as lt = 2E0Gt/σ
2
t and Gt is the mesoscale fracture energy.145

2.3. Static equilibrium equations and numerical implementation146

Finally, one can write the static linear and angular momentum equilibrium equations of147

each LDPM cell as follows:148 ∑
k∈FI

Ap
ktk = 0 ,

∑
k∈FI

Ap
kck × tk = 0 (5)

where FI is the set containing all the facets of a generic polyhedral cell I, Ap
k = Akn

tnk is149

the area of the projected facet k, n is the orientation of the tetrahedron edge associated to150

facet k and nk is the unit vector orthogonal to facet k of area Ak (Cusatis et al., 2011a). ck151

is the vector that represents the distance between the center of facet k and the center of the152

cell. The model was implemented within a dynamic explicit scheme, with a central difference153

algorithm for time integration. Although the actual equations that are solved numerically154

are dynamic (see Cusatis et al. (2011a) for more details), the inertia terms are absent in the155

two expressions in Equation 5 because all the simulations presented next were performed156

under quasi-static conditions. In other words, loading rates were small enough to ensure157
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the kinetic energy in the system would not exceed 5% of the internal energy throughout the158

analysis.159

3. Regression statistics160

Before describing the modeling and calibration process, it is important to introduce the161

regression statistics used in this work to perform the model parameter identification and162

list the different statistical indicators used to assess the quality of fit and the quality of163

predictions. In this study, a frequentist approach is proposed.164

3.1. Experimental data and model response165

Let yj
k be the experimental results for replicate k for a given test j. For instance,166

yj
1, yj

2, and yj
3 can be the measured forces for three replicates of a three-point bending167

test denoted j. In order to compare the experimental data, one needs at some point to168

compute the arithmetic difference between experimental data and model response Yj
k as169

εjk = yj
k −Yj

k. This expression implies that a model response, which depends on the given170

spatial distribution of particles, corresponds to a specific replicate of the experimental test.171

This is not entirely correct since the internal structure of the experimentally tested material172

is only statistically replicated by the model.173

To overcome this problem, a solution consists in: (i) averaging the experimental results174

of all replicates to obtain the mean data yj, (ii) running multiple simulations with different175

spatial distributions of particles and averaging the model responses to get Yj, and (iii)176

comparing the experimental and numerical results in terms of mean responses. In this177

process, there is a loss of information since the variance of the data is not known. Such a178

task would require the use a true stochastic model which appears unnecessary with respect179

to the very good results presented in Section 5. In addition, this loss remains minimal as the180

interest in this work is on central range statistics, viz. mean values for normally distributed181

regression errors, and is reduced as the number of replicates increases.182
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3.2. Parameter estimation183

Let xj be the predictor variable, for instance the displacements corresponding to the184

forces yj or Yj. One can first discretize in equally spaced intervals the predictor variable185

over its range of values and define xji , y
j
i , and Y j

i at index i = 1, ..., nj where nj is the186

number of discretized points. Next, if one denotes f j the model response corresponding to187

the simulation of test j and θ = [θ1 ... θp]
t the parameter vector containing the p unknown188

model parameters to be estimated, then, Y j
i = f j(xji ,θ). Next, one can formulate the general189

minimization problem as follows:190

Find the least square estimate θ̂ which minimizes Sj =
nj∑
i=1

(
yji − f j(xji ,θ)

)2
(6)

where Sj is the residual sum of squares for curve j. Using the least-square method is here191

well justified as the conditional variance of the data used later on can be considered uniform192

and because the residuals of the regression εji = yji − f j(xji ,θ) can be generally assumed193

independent or non-correlated.194

In the case of a single test, i.e. j = 1, the formulas stated earlier can be directly applied195

and S1 can be minimized to obtain θ̂. When multiple tests are considered simultaneously196

in the parameter identification process, one needs to normalize the residual sum of squares197

for each test and generate a global objective function to be minimized. This can be done by198

defining a new residual ϕj for each test j as follows:199

ϕj =
Sj∑nj

i=1

(
yji
)2 (7)

It is interesting to note that the normalization in Equation 7 becomes the Mean Absolute200

Percentage Error (MAPE) in the case of a single point estimate (i = nj = 1).201

The global residual is defined as a linear combination of ϕj for different tests j, which is202

consistent with the additive property of the square of the coefficient of variation of errors203

defined in Section 3.3. The general minimization problem is written as follows:204

Find the least square estimate θ̂ which minimizes ψ =
N∑
j=1

wjϕj (8)
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where wj can be seen as the weights for each test j and take the values between 0 and 1205

such that
∑N

j=1w
j = 1. N is the total number of tests considered. In absence of specific206

information about the tests, one can assume equal weights, i.e. ∀j, wj = 1/N .207

3.3. Fit and prediction quality208

Once the estimate θ̂ is obtained, one can appreciate the fit and prediction quality for209

each individual test. For this purpose, two statistical indicators are introduced and will be210

used throughout the paper.211

The first indicator is the coefficient of variation of the regression errors ωj which char-212

acterizes the ratio of the scatter band width to the data mean213

ωj =
sj

ȳj
where sj =

√
Sj

nj − p
(9)

sj is the standard error of the regression, nj − p is called degrees of freedom, and ȳj =214 (∑nj

i=1 y
j
i

)
/nj is the data mean.215

The second one is the adjusted (r2)
j
, also called the coefficient of determination which216

characterizes the ratio of the scatter band width to the overall spread of data and indicates217

what percentage of data variation is accounted for by the model response. By defining the218

corrected total sum of squares Sj
c =

∑nj

i=1

(
yji − ȳj

)2
and the standard deviation of all data219

s̄j =
√
Sj
c/(nj − 1), this indicator is written as:220

(
r2
)j

= 1− (sj)
2

(s̄j)2
(10)

In the case of a single point estimate, i.e. i = nj = 1, the aforementioned indicators221

are not valid. One can instead use the mean absolute percentage error which is written as222

MAPEj = 100|εj/yj| where εj = yj − f j(xj, θ̂), yj = yj1 and xj = xj1.223

In order to evaluate and quantify an overall quality of fit and predictions, one simply224

needs to regroup all data points for each test with their corresponding model responses into225

one global set and compute the overall coefficient of variation of errors, ω, and the overall226

coefficient of determination, r2.227
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Let us underline that the coefficient of variation and the coefficient of determination are228

mathematically derived for linear model regression only and are, in theory, not valid when229

one performs regression or assesses quality of fit for non-linear (parameter-wise) models.230

Nevertheless, they are often used in practice because of the absence of clear indicator for231

quality of fit, aside from the standard error of regression which however is unit-dependent,232

is not expressed in percentage, and is not bounded. In addition, one might argue that when233

the model is already fitted and the problem is well-conditioned, the residual sum of squares234

which is originally non-linear can be linearized around the least square estimate. Therefore,235

close enough to the estimate and when the original and linearized residual sums of squares236

are close enough, the use of these statistical indicators can be justified.237

4. Modeling and calibration process238

4.1. Summary of experimental campaign239

In the experimental work by Grégoire et al. (2013), four sizes of geometrically similar240

prismatic specimens with four depths D = 50 mm, 100 mm, 200 mm, and 400 mm, the241

span-to-depth ratio S/D of 2.5, and the out-of-plane thickness of 50 mm were tested in242

three-point bending. Unnotched and notched samples with a notch length a and the notch-243

to-depth ratios α = a/D = 0.5, 0.2, 0 were tested under CMOD control to obtain a stable244

post-peak response. In the case of unnotched beams, the legs of the extensometer were245

attached to the bottom surface of the beams at a distance from mid-span of half the beam246

depth to ensure crack initiation between the legs. Splitting tests on cylinders were also247

conducted to estimate tensile strength. In complement to fracture tests, cylindrical samples248

were tested under unconfined compression and measurements of elastic parameters and249

compressive strength were obtained. More details on the experimental program are given250

by Grégoire et al. (2013).251

4.2. LDPM internal geometry252

The parameters required to construct the LDPM geometry were first identified based on253

the actual mix design used in the experiments. The particle size distribution was numerically254
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reproduced following the procedure described in Yang et al. (2022) with a cut-off size d0 = 4255

mm and a maximum size da = 10 mm. Figure 2(a) shows the experimental and numerical
(a)
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(h)
(i)
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Figure 2: (a) Simulated particle size distribution, LDPM cells, geometries, and dimensions of the simulated

beams with the notch-to-depth ratios of (b) 0.5, (c) 0.2, and (d) 0 viz. unotched beam, for D = 50 mm, 100

mm, 200 mm, and 400 mm.

256

sieve curves. The remaining parameters were also chosen based on the mix design: cement257

content c = 286 kg m−3, water-to-cement ratio w/c = 0.626, and density ρ = 2121 kg m−3.258

Figure 2(b)-(d) show the simulated geometries and the resulting LDPM cells at the surface259

of the samples.260

4.3. Modeling and calibration process261

The identification of the parameters in the constitutive laws describing elastic, tension,262

and tension-shear behaviors followed a two-step procedure. First, the normal modulus E0263

and α0 related to the elastic behavior were calculated using the approximated formulas listed264

in Section 2.2, based on the mean values of the macroscopic elastic modulus and Poisson’s265

ratio reported by Grégoire et al. (2013). The values of E0 = 57180 MPa and α0 = 0.25 were266

obtained.267
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Next, the three parameters related to fracture and shear, i.e. the mesoscale tensile268

strength σt, the mesoscale fracture energy Gt, and the shear-to-tensile strength ratio rst were269

identified simultaneously based on: (i) the compressive strength obtained from cylinders270

with the diameter Dc = 74 mm and the height Hc = 142 mm, and (ii) the entire load-271

CMOD curve corresponding to the medium size beam with the depth D = 200 mm and272

α = 0.2. For the compression test, rigid plates were used on the top and bottom of the273

specimens. Friction between the plates and the sample was simulated through a simple274

Coulomb friction law with a friction coefficient µ = 0.13. Concerning the bending test, the275

loads were applied directly on the surface nodes. Both compression and fracture tests were276

simulated under displacement control with a constant velocity of 1 mm s−1 to ensure quasi-277

static conditions. For each test, three simulations were performed with different spatial278

distributions of particles. The least square estimate of the parameter vector θ = [σt Gt rst]
t

279

was obtained by minimizing the overall residual ψ = ϕC+ϕ3PBT where ϕC and ϕ3PBT are the280

residuals computed through Equation 7 for the compression and three-point bending tests,281

respectively. The values of σt = 2.9 MPa, Gt = 45.5 N m−1, and rst = 3.276 were obtained.
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Figure 3: Calibration results: (a) stress-strain curve of the unconfined compression test on the cylinder with

the diameter Dc = 74 mm and height Hc = 142 mm; the empty circle designates the mean peak value, (b)

failure mode at the peak load (c) load-CMOD curve of the three-point bending test on the notched beam

with D = 200 mm and α = 0.2.
282

Figure 3(a) shows the simulated stress-strain curve of the compression test together283

with the compressive strength obtained experimentally. The solid line is the mean curve of284
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the three individual simulations represented by dashed lines. The gray area represents the285

experimental scatter where the upper and lower bounds of the envelope corresponds to the286

maximum and minimum values of loads, respectively. The mode of failure at peak is shown287

in Figure 3(b), characterized by a shear band. The LDPM facets are colored according to the288

value of the mesoscale crack opening defined as w = (w2
N +w2

M +w2
L)

1
2 for eN > 0 and w = 0289

for eN < 0, wi = leinei where einei = ei − ti/Ei is the inelastic strain for i = N,M,L, and l290

is the edge length defined in Section 2.2. Figure 3(c) shows the experimental and numerical291

load-CMOD curves for the bending test. Typical failure modes are depicted in Figures 5(d),292

(e), (g) and (h). One can observe that the numerical results fit well the experimental data.293

In terms of quality of fit, a MAPE of 3.4% was reached for the compression test, whereas294

the three-point bending test fit was characterized by a coefficient of variation ω = 6.8% and295

a coefficient of determination r2 = 0.995. It is interesting to note that the ratio between296

the macroscopic splitting tensile strength fst reported in Section 5.1 and the compressive297

strength f ′
c shown in Figure 3(a) is approximately 9%, which is consistent with the range of298

values reported in the literature. Note also that the mesoscale tensile strength σt and the299

compressive yielding strength σc0 are not macroscopic properties but only model parameters.300

As explained in Section 2, concrete failure is characterized by multiple mechanisms that301

are different and LDPM is able to simulate all these mechanisms. For each mechanism,302

there is a set of relevant model parameters (less than 4) which makes the total number of303

parameters to be 16. The elastic behavior modeled by two parameters (E0, α0) and the304

mesoscale mixed mode fracture governed by three parameters (σt, Gt, rst) have been identi-305

fied. The remaining parameters were assumed based on the actual mix design and Section306

5.3 by Cusatis et al. (2011b), namely the softening exponent nt governing the interaction307

between shear and tensile behavior during softening, (σc0, Hc0, κc0, Ed) defining the behavior308

of the facet normal component under compression and affecting the macroscopic behavior in309

compression, (µ0, µ∞, σN0) contributing to the LDPM response in compression, mainly the310

triaxial compressive behavior at high-confinement, (κc1, κc2) governing the nonlinear evolu-311

tion of the normal facet stress in compression, and finally β controlling the coupling between312

the mesoscale compressive behavior and the macroscopic triaxial compressive behavior. All313
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parameters are listed in Table 1 for the sake of clarity.314

Table 1: Values of the material model parameters used in the numerical simulations

Designation Symbol Units Value Source

Density ρ kg m−3 2338 Grégoire et al. (2013)

Water-to-cement ratio w/c - 0.626 Grégoire et al. (2013)

Maximum aggregate size da mm 10 Grégoire et al. (2013)

Minimum aggregate size d0 mm 4 Fixed

Effective normal modulus E0 MPa 57,180 Identified

Shear-normal coupling parameter α0 - 0.25 Identified

Tensile strength σt MPa 2.9 Identified

Fracture energy Gt N mm−1 45.5 Identified

Shear strength ratio rst - 3.276 Identified

Softening exponent nt - 0.2 Cusatis et al. (2011b)

Compressive yielding strength σc0 MPa 120 Cusatis et al. (2011b)

Initial hardening modulus ratio Hc0/E0 - 0.4 Cusatis et al. (2011b)

Transitional strain ratio κc0 - 2 Cusatis et al. (2011b)

Deviatoric strain threshold ratio κc1 - 1 Cusatis et al. (2011b)

Deviatoric damage parameter κc2 - 5 Cusatis et al. (2011b)

Initial friction µ0 - 0.2 Cusatis et al. (2011b)

Asymtotic friction µ∞ - 0.0 Cusatis et al. (2011b)

Transitional stress σN0 MPa 600 Cusatis et al. (2011b)

Densification ratio Ed/E0 - 1.0 Cusatis et al. (2011b)

Volumetric deviatoric coupling β - 0.0 Cusatis et al. (2011b)

5. Prediction results and discussion315

The capability of the model to simulate fracture and predict size-effect was assessed by316

carrying out blind simulations, i.e. without adjusting model parameters, on splitting and317

size-effect tests for different beam sizes and notch lengths.318
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5.1. Splitting test319

LDPM was first validated on splitting tests for which peak loads for nine replicates are320

reported by Grégoire et al. (2013). For this purpose, three cylinders with the height Ls = 215321

mm and the diameter Ds = 113 mm with different spatial distributions of particles were322

simulated. The load was applied directly on particles at the surface of the cylinder. In323

addition, the simulations were performed under displacement control with a constant loading324

rate of 1 mm s−1 to ensure quasi-static conditions.325

Figure 4(a) shows the mean predicted nominal stress versus displacement curve repre-326

sented by a solid line and the three individual simulations in dashed lines, along with the327

experimental scatter represented with a gray area. The nominal strength was computed
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Figure 4: Prediction results: (a) nominal stress-displacement curve of the splitting test; the empty circle

designates the mean peak value, and (b) failure mode at the peak load.

328

using the formula fst = (2Pst,u)/(πDsLs) where Pst,u is the splitting peak force. One can329

observe that the numerical mean splitting tensile strength is within the scatter of the exper-330

iments. A MAPE of 7.5% was found when comparing the experimental and simulation peak331

values, which indicates a good accuracy in the prediction with respect to the scatter observed332

in experiments. Figure 4(b) shows the mode of failure at the peak load. As expected and333

in accordance with experimental observation, fracture initiates at the center where tensile334

stresses are the highest. The main crack is tortuous and has a slight eccentricity with respect335

to the vertical line passing through the center. This is due to the inherent ability of the336
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mesoscale model to reproduce heterogeneity in the material, and is by the way routinely337

observed in experiments (Rocco, 1996; Bažant and Planas, 1997).338

5.2. Size-effect tests339

5.2.1. Load-CMOD curves340

The model was next used to predict the load-CMOD curves for all sizes and notch341

lengths. The simulations were performed under displacement control and quasi-staticity was342

ensured by applying loads at a constant loading rate of 1 mm s−1. Figures 5(a)-(c) show the343

predicted curves for the notch-to-depth ratios of 0.5, 0.2, and 0, respectively. The solid line344

is the mean response of the three individual simulations in dashed lines. The experimental345

scatter is represented with a gray area. One can observe that the numerical simulations346

predict well the mechanical behavior in the elastic, near-peak and post-peak regimes for the347

different geometries and sizes. The prediction in the post-peak of the smallest size beam348

with a notch-to-depth ratio of 0.5 deviates from the experimental results. The reason might349

be that the number of aggregates in the ligament is not enough and makes the model too350

coarse. In addition, boundary effects play a significant role for such small specimens. In the351

case of the two unnotched beams with largest sizes, the response stops at the peak due to352

snapback, similarly to what was observed in the experiments.353

5.2.2. Fracture process zone and dissipated energy354

Figures 5(d)-(i) show the typical failure modes for the beams with the size D = 100355

mm for two different displacement values. Two types of failure can be distinguished. (i)356

For the notched specimens, the FPZ is localized and emanates at the crack tip. It develops357

for the increasing load and finally reaches an ultimate size at the peak load (Figures 5(d)358

and (e)). The FPZ of the constant size then propagates through the ligament (Figures 5(g)359

and (h)), which explains the strain softening behavior observed at the macroscale. (ii) For360

the unnotched specimens, the FPZ initiates at the bottom surface of the sample, where the361

stresses approach the material tensile strength, and is diffused on a zone much larger in size as362

compared to the notched-beam case. As the load increases up to the peak, the damaged zone363
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Figure 5: Prediction results: load-CMOD curves for (a) α = 0.5, (b) α = 0.2, (c) α = 0, the empty circles

designate mean peak values; failure modes at the peak load for the samples with the depth D = 100 mm

for (d) α = 0.5, (e) α = 0.2, (f) α = 0; failure modes at a displacement of 0.2 mm for the samples with the

depth D = 100 mm for (g) α = 0.5, (h) α = 0.2, (i) α = 0; dissipated energies for (j) α = 0.5, (k) α = 0.2,

(l) α = 0.
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becomes larger (Figure 5(f)). At the peak load, the FPZ eventually collapses to a single crack364

that propagates, whereas the surrounding strained material unloads. One can also observe365

that the final crack does not necessarily originate at mid-span. This phenomena shows366

the direct effect of material heterogeneity, realistically captured by the mesoscale model.367

Although not quantified here, the evolution of the FPZ is consistent with the one described368

in Lefort et al. (2015) based on Ripley’s function analysis on the same experimental data.369

As a matter of fact, the very nature of the model allows one to assess shear and tensile370

behaviors during fracture propagation in contrast with continuummodels where smear cracks371

over a region and are unable to capture local oriented events. In general, the LDPM facets372

are subject to both tensile and shear strains even though the test configuration is designed373

for mode I opening. One can look at the evolution of the dissipated energy computed from374

the increment of the dissipated energy density ẇd = 3(tN ė
ine
N + tM ė

ine
M + tLė

ine
L ) for eN > 0375

and the volume of the cell I containing the facet VI = (
∑

k A
p
klk)/3. Summing over the entire376

volume of the sample, one can obtain the evolution in time (or displacement here) of the total377

dissipated energy Wd and dissociate the individual contributions of the normal component378

Wd,N and the tangential componentsWd,T . In the present simulations,Wd,N almost coincides379

with the energy dissipated in tension. Figures 5(j)-(l) show the load-displacement curves380

for the beams with the size D = 100 mm for the three different notch lengths, together381

with the dissipated energies. As expected, the total energy dissipated at the end of the382

test/simulation is smaller for the larger notch length, i.e. for a smaller ligament length.383

This is consistent with the acoustic energy obtained from acoustic emission on the same384

type of experiments reported in the work of Grégoire et al. (2015).385

Moreover, one can observe a sharper increase in the dissipated energy as the notch length386

decreases, which is consistent with the increase in brittleness as α tends to zero. Up to the387

peak load, the energy dissipated in shear is negligible as compared to the one in tension,388

for all cases including the unnotched beam. However in the post-peak regime, the energy389

dissipated in shear becomes more than half of the energy dissipated in tension, which proves390

that the post-peak behavior involves both shear and tensile forces in the meso-structure.391

20



5.2.3. Quality of predictions392
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Figure 6: Statistics of the model predictions: (a) scatter of the measured versus predicted values of loads,

and (b) scatter of the measured versus predicted values of the peak loads only. The dashed lines correspond

to the 1:1 lines.

The quality of predictions was also assessed. Figure 6(a) shows the scatter between ex-393

perimental and numerical loads for all geometries and sizes, on the entire load-displacement394

curves. Figure 6(b) shows the same scatter but only for the peak values. In both figures,395

the cloud of points are close to the 1:1 lines. The set of load points that deviate the most396

to the 1:1 lines corresponds to the largest unnotched beam (Figure 6(a)). The prediction397

overestimates the peak load by about 15% (Figure 6(b)). One might be tempted to invoke398

statistical size-effect related to the randomness in material properties, which is not captured399

by the deterministic version of LDPM used in this study. Such an effect can be effectively400

simulated by introducing random fields on the mesoscale model parameters as performed in401

the work of Eliáš and Vořechovskỳ (2020). Nevertheless, the deterministic predictions are402

inaccurate only for the unnotched beam of size D = 400 mm. Further testing on larger403

unnotched beam sizes would help validate or invalidate a possible statistical effect for beam404

with the size D = 400 mm. In addition, the use of random fields would add a new level405

of complexity by making the inverse parameter identification problem ill-conditioned with406

respect to the limited reported experimental data.407

Overall, a coefficient of determination of r2 = 0.94 and a coefficient of variation of408
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ω = 36.8% were found when all load points are considered. For the peak loads only, the409

values of r2 = 0.95 and ω = 23.5% were obtained. The values of the coefficients of variation410

show that the numerical predictions are very reasonable and are within the typical scatter411

observed in concrete fracture testing. These results demonstrate quantitatively the capability412

of the model to predict the effects of size and geometry during concrete failure.413

5.3. Universal size-effect law and fracture parameters414

Macroscopic properties of concrete such as compressive or tensile strength are usually415

determined in laboratory using standardized sample dimensions. On the other hand, size-416

effect tests applied in a certain range of sizes were shown to provide an accurate estimation of417

fracture properties (RILEM, 1990). This method is preferred to the work of fracture method418

that provides apparent fracture properties which are geometry and size dependent. The size-419

effect method only requires the knowledge of peak loads and sample geometry (Bažant and420

Planas, 1997). It appears therefore interesting to compare the fracture parameters obtained421

using experimental results as reported by Grégoire et al. (2013) and parameters one could422

identify using the numerical predictions, keeping in mind that only one load-CMOD curve423

on a single size notched beam was sufficient for model calibration.424

For this purpose, many approximated formulae exist and can be used (Morel, 2008;425

Cusatis and Schauffert, 2009; Bažant and Yu, 2009; Di Luzio and Cusatis, 2018; Chen and426

Hu, 2022). Typically, two parameters are enough to capture size-effect in notched three-427

point bending tests (RILEM, 1990; Planas et al., 1997; Cusatis and Schauffert, 2009; Chen428

and Hu, 2022). Unnotched specimens can also be simulated but the size cannot be too429

large as statistical size-effect becomes non-negligible (Eliáš et al., 2015). In this study,430

the so-called Universal Size Effect Law (USEL) in its deterministic version (Bažant and431

Yu, 2009) was considered. This fitting formula bridges Type I size-effect which occurs in432

structures that fail at crack initiation from a smooth surface and Type II size-effect occurring433

in notched structures. It also covers the two distinct asymptotic behaviors at large size in434

the typical double-logarithm nominal strength versus structural size representation: (i) 1/2435

slope corresponding to linear elastic fracture mechanics for Type II size-effect and (ii) a436
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straight horizontal line corresponding to the elastic limit for Type I size-effect. The formula437

is written as:438

σNu =

√
EGf

g′0cf + g0D

(
1−

rc2fg
′′
0e

−kα2

4(lp +D)(g0D + g′0cf )

)1/r

(11)

where σNu = (3PuS)/(2WD2) is the nominal strength corresponding to the peak load Pu,439

Gf is the fracture energy , and cf is the effective length of the FPZ. g0 = g(α0) is the440

dimensionless energy release rate, and g′0 = g′(α0) and g′′0 = g′′(α0) are its first and sec-441

ond derivatives, respectively, evaluated at the initial notch-to-depth ratios α0 = 0.5, 0.2, 0.442

Finally, r, k, and lp are empirical constants. Based on the expression of g(α) reported for443

example by Bažant and Planas (1997) or Grégoire et al. (2013), the following values were444

computed for the geometry studied in this paper: g0 = 2.96, g′0 = 18.95, and g′0 = 153.88445

for α = 0.5, g0 = 0.57, g′0 = 3.17, and g′′0 = 10.77 for α = 0.2, and g0 = 0, g′0 = 3.41, and446

g′′0 =-16.75 for α = 0. By keeping the empirical constants r = 0.11, k = 113, and lp = 12.9447

identical to the ones reported in the work of Grégoire et al. (2013), the model was fitted448

using the simulation data. The values of the fracture energy and effective length, Gf = 39449

N m−1 and cf = 16.8 mm were obtained with a coefficient of determination r2 = 0.97 and a450

coefficient of variation of ω = 1.82%. Figures 7(a)-(b) show the fitted model plotted together451

with the experimental and numerical data.452
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Figure 7: Fitting with the Universal Size Effect Law: nominal strength versus size for (a) experimental data

and (b) simulation results.

These predicted fracture parameters are to be compared with the ones identified using453
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the experimental results, i.e. Gf = 42.6 N m−1 and cf = 25.7 mm (Grégoire et al., 2013):454

both fracture energy and effective length can be qualitatively considered close enough with455

respect to the scatter of typical experiments on concrete. This result suggests that one could456

perform only one fracture test on a specific geometry in the laboratory, calibrate and use457

LDPM to simulate different sizes (and possibly geometries) to finally identify the fracture458

energy and effective length of the FPZ through a size-effect law.459

6. Conclusions460

In this study, a large set of experimental results on fracture and size-effect including461

the effect of geometry was simulated using the Lattice Discrete Particle Model (LDPM).462

The load-CMOD curve of a single size notched beam under three-point bending, and the463

compressive strength were used for model calibration. The remaining experimental results,464

namely one splitting test and eleven three-point bending tests of different beam sizes and465

notch lengths, were used for model validation without parameter adjustment. The fracturing466

process was discussed along with a rigorous quantification of quality of fit and quality of467

predictions. Fracture parameters using the numerical results were identified through the468

Universal Size Effect Law (USEL). Based on the obtained results the following conclusions469

can be drawn:470

• The compressive strength and the load-CMOD curve of a single notched beam size are471

sufficient for a complete model calibration in elastic, tensile and tensile-shear behaviors.472

• The predictions on splitting tests and on the different beam geometries and sizes are473

overall in excellent agreement with the experimental data.474

• The fracturing process is well captured by LDPM for both notched and unnotched475

beams.476

• The dissipated energy in shear constitutes a large part of the total dissipated energy477

in the post-peak.478
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• The fracture energy can be estimated through a size-effect law by using the simulation479

results.480

• The use of a stochastic model does not seem to be justified with respect to the limited481

range of beam sizes.482
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9. Appendix492

9.1. LDPM constitutive equations for pore collapse, compaction, and frictional behavior493

The pore collapse and material compaction occur for eN < 0. Strain hardening plas-494

ticity behavior due to high compressive hydrostatic deformation is computed through a495

strain-dependent boundary σbc(eD, eV ) at each facet which limits the normal compressive496

stress component via the inequality −σbc(eD, eV ) ⩽ tN ⩽ 0, in which the volumetric497

strain is defined as eV = ∆V/(3V0), computed as the change between the current and498

the initial volume of each LDPM tetrahedron. While eV is the same for all the facets499

of a given tetrahedron, the deviatoric strain defined as eD = eN − eV changes. Finally,500

the strain-dependent boundary is calculated for three different cases σbc(eD, eV ) = σc0 for501

−eV ≤ 0, σbc(eD, eV ) = σc0 + ⟨−eV − εc0⟩Hc(rDV ) for 0 ≤ −eV ≤ ec1 and σbc(eD, eV ) =502

σc1(rDV ) exp [(−eV − ec1)Hc(rDV )/σc1(rDV )] otherwise, where rDV = |eD|/eV for eV > 0503
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and rDV = −|eD|/(eV − eV 0) for eV ≤ 0 in which eV 0 = κc3ec0. ec0 = σc0/E0 defines σc0 the504

mesoscale yielding compressive stress, ec1 = κc0ec0 is the strain at which the rehardening505

starts, κc0 and κc3 are material constants and σc1(rDV ) = σc0 + (ec1 − ec0)Hc(rDV ). The506

function Hc(rDV ) reads as Hc(rDV ) = Hc1 + (Hc0 − Hc1)/(1 + κc2⟨rDV − kc1⟩) where Hc0,507

Hc1, κc1 and κc2 are material constants.508

The frictional behavior due to compression-shear occurs also for eN < 0. In the presence509

of compressive stresses, the shear strength increases due to frictional effects. The frictional510

behavior is simulated by means of a nonlinear Mohr-Coulomb model in which the internal511

friction coefficient varies from an initial value µ0 to zero. The formulation can be written512

as σbs = σs + µ0σN0 − µ0σN0 exp(σN/σN0) where σs is the cohesion stress and σN0 is the513

transitional stress.514
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Bažant, Z. P., Oh, B. H., 1983. Crack band theory for fracture of concrete. Materials and Structures 16 (3),532

155–177.533

26
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