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Abstract
Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the
deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Develop-
ing therapeutic tools relies on a better understanding of their multiplication cycle.
For these viruses, the genome replication and transcription activities most-often
segregate in membrane-less environments called inclusion bodies (IBs) or viral
factories. These “organelles” usually locate far from the cell surface from where
new virions are released, and -ssRNA viruses do not encode for transport fac-
tors. The efficient trafficking of the genome progeny toward the cell surface is
most often ensured by mechanisms co-opting the cellular machineries.
In this review, for each -ssRNA viral family, we cover the methods employed
to characterize these host-virus interactions, the strategies used by the viruses
to promote the virus genome transport, and the current gaps in the literature.
Finally, we highlight how Rab11 has emerged as a target of choice for the
intracellular transport of -ssRNA virus genomes.

INTRODUCTION

Negative single-strand RNA viruses form the Group V
of the Baltimore classification, based on their genomic
organization: negative sense, single-stranded RNA
genomes (-ssRNA). The negative sense, or antisense,
genomic RNA requires to be transcribed into a comple-
mentary positive sense mRNA by the viral polymerase
to enable viral protein expression. These viruses com-
prise multiple viral species of major concern for public
health, such as rabies (RABV), Ebola (EBOV), measles
(MeV), human respiratory syncytial (RSV), or influenza
A and B viruses (IAV/IBV). -ssRNA viruses can be
subdivided into non-segmented and segmented ones,
depending whether the whole genetic information of the
virus is present on a single or several RNA segments.
A schematic of a -ssRNA virus particle is presented in
Figure 1a, and the alternative family-specific naming of

Abbreviations: ssRNA, negative-strand single stranded RNA; IB, inclusion
body; LLPS, Liquid-Liquid Phase Separation; RE, recycling endosome; RNP,
ribonucleoprotein.
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virus proteins is listed in Figure 1b. These viruses pos-
sess an envelope derived from cellular membranes in
which viral glycoprotein(s) are embedded.The inner side
of the envelope is coated by the matrix protein, which
participates in the virus assembly and budding during
themultiplication cycle.The 10–15 kb viral genomic RNA
is at the core of the virion in the form of ribonucleopro-
tein complexes or vRNP(s) whether the genomic RNA
is segmented or not. vRNPs are comprised of the viral
RNA encapsidated by a nucleoprotein (N or NP) fur-
ther associated to an RNA-dependent RNA polymerase
(RdRp, often called L) and its non-enzymatic cofactors
involved in the viral RNA synthesis processes. vRNPs
are the functional units supporting viral RNA synthesis.
A schematic of the -ssRNA multiplication cycle is pre-
sented in Figure 1c. The entry steps lead to the release
of the vRNPs in the cytoplasm of infected cells. The
encapsidated genomic RNA are then used as a template
by the polymerase and its cofactors for both replication
of the genomic vRNA and transcription of viral mRNAs.
For the vast majority of -ssRNA viruses these RNA
synthesis processes cluster in cytosolic membrane-less
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FIGURE 1 Blueprint of a -ssRNA virus replication cycle. (a) Schematic of a virus particle. Respiratory syncytial virus is used as a virus
prototype. Surface glycoproteins (blue) are embedded in the envelope derived from cellular membranes. The matrix proteins (orange) form a
lattice under the envelope. The encapsidated viral genomic RNA (purple) associated with the viral polymerase (light brown) and its cofactor (red
and green) is at the center of the virion. (b) Table presenting family*-specific names of virus components. *Exception is made for the
Bunyavirales order, formally referred as a virus family (Bunyaviridae), and for which the taxonomy has been recently reorganized. (c) Following
entry, virus ribonucleoproteins (RNPs) are released in the cytosol where the virus protein expression starts. The RNPs serve as a template for
both the transcription and replication of the virus genome. These RNA synthesis processes are segregated from the cytosolic content and occur
in membrane-less compartments most often called inclusion bodies or viral factories. Upon replication, new RNPs are assembled, and then
transported to the membrane. This is where new virions are assembled and released to infect a new cell. Elements on the cartoon are not
scaled to the size of the cell.

compartments, most often called inclusion bodies (IBs)
(Cifuentes-Muñoz et al., 2017; Dolnik et al., 2015; Hein-
rich et al., 2010; Lahaye et al., 2009; Rincheval et al.,
2017). These IBs concentrate viral RNAs and proteins
and some cellular proteins. Assembly of the neosynthe-
sized genome into functional RNPs is also believed to
occur in the IBs.The virions then assemble at or near the
plasma membrane and bud releasing infectious virions
in the extracellular compartment. Of note, Orthomyx-
oviridae and Bornaviridae are particular in the way that
the virus transcription/replication occurs in the nucleus
of the infected cells.
At the scale of the cell, vRNPs are gigantic complexes

(>104 kDa) which cannot efficiently diffuse through the
cytosolic content (Luby-Phelps, 1999). Yet, viral fac-
tories usually locate far from the cell surface where
RNPs exit the infected cell into new virions and these
viruses do not encode for any active transport compo-
nent. To overcome the challenge of the RNP transport
from the viral factories to the plasma membrane, viruses

evolved strategies aimed at hijacking cellular transport
machineries. Indeed, cells have specialized machiner-
ies to ensure highly regulated transportation of various
cargos across the cytoplasm. Cargos generally transit
on the cytoskeleton in association to ATP-dependent
fiber-specific molecular motors: kinesins and dyneins for
the microtubules, and myosins for the actin polymers.
The specific directionality of the transport is ensured by
the motor dependency to the fiber polarity: anterograde
transports are ensured by kinesins and most myosins,
and retrograde transports are ensured by dyneins and
Myosin IV. Given their importance in the intracellular
transport, those two fibers are prime targets for viruses
when it comes to organize the (long-)distance transport
of RNPs.
Despite recent advances, the process by which RNPs

are transported to the plasma membrane remains rel-
atively poorly understood (yellow in Figure 1c). This is
mainly due to the nature of viral cycles, which should be
seen as continuums rather than series of disconnected
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steps: successive events are deeply intertwined and
laborious to disentangle. A study case on RABV import,
the causative agent of rabies highlights those difficulties.
The negative impact of anti-actin and -microtubule drugs
on the RABV multiplication is known since the 1980s
(Ceccaldi et al., 1989; Lycke & Tsiang, 1987). But it was
not clear from the published datasets what step(s) of
the viral cycle was disrupted, and especially what type
of fibers was involved in the transportation of vRNPs.
In fact, approaches targeting the cytoskeleton heavily
depend on the RABV post-infection time window. For
instance, anti-microtubule drugs used at different tim-
ings can generate seemingly incompatible results (Xu
et al., 2021; Zan et al., 2017). This is because cytoskele-
ton fibers support different stage-specific processes of
the virus replication cycle. Actin is first required very
early in the virus cycle, for the clathrin-mediated endo-
cytosis of the virus by the cell (Piccinotti et al., 2013).
Here, actin fibers coordinate the numerous factors medi-
ating the endocytosis, and passively mitigate the local
tension applied on the invaginated membrane (Kakso-
nen et al., 2006). While remaining intact within in the
endosomal vesicles, the internalized viral particles travel
along the microtubules towards the soma (Le Blanc
et al., 2005; Xu et al., 2015). It is only then that the virus
envelope and endosome membrane fuse to release the
viral RNPs (Piccinotti & Whelan, 2016). Physical inter-
actions between the RNP components and subunits of
microtubule-associated motors then promote the virus
transcription (Bauer et al., 2015; Tan et al., 2007). How
can one disentangle these processes, and assess the
transport of RNPs?
In this manuscript, we review the current understand-

ing of RNP trafficking, for each of the main viral families
harboring a -ssRNA genome. After a brief description
of the methodologies employed, the literature is individ-
ually discussed for each viral family. Finally, using our
recent findings on RSV, we highlight how Rab11 has
emerged as a cofactor of choice for the RNP transport
of several -ssRNA viruses.

Studying viral RNP transport

Studying directly RNP transport requires the ability to
characterize directed motions andmostly relies on imag-
ing methodologies. Two methods of choice, relatively
simple in their design, have emerged from the literature.
Ideally, authors generate recombinant viruses express-
ing a fluorescently tagged RNP (Figure 2, Method
A). Noteworthy engineering recombinant viruses from
reverse-genetics systems (i.e., plasmids) is a delicate
and laborious task for -ssRNA viruses. Moreover, fusing
fluorescent tags to a RNP component without perturb-
ing its multiple functions is particularly difficult. Authors
alternatively (transiently) express an individual fluores-
cent RNP component in cells subsequently infected

with a wild-type virus strain (Figure 2, Method B). In
addition to preserving the native structure of the virus
genome, this approach allows for titrating the expres-
sion levels and detrimental fitness of the tagged-protein.
For both methodologies, the incorporation of the fluo-
rescent protein in the neo-synthesized RNPs enables
live-visualization of the RNPs.
More elaborate techniques have been combined to

live-imaging for studying RNP transport in the IAV fields.
For instance, RNPs were tracked in cells transfected
with an antibody specifically directed against the RNP-
containing NP (Momose et al., 2011), or using affinity
RNA aptamers tags (Chiu et al., 2022). In spite of their
potential biasing effects on the velocity of the objects
tracked, these methods allow for detecting RNPs in con-
texts where fusion-proteins are detrimental for the virus
replication.
A consequent literature has also been generated by

imaging from fixed samples which limit the interpreta-
tions in the sense that motions must be inferred from
static subcellular localization patterns. This type of sam-
ples confers a more versatile catalogue of techniques
and imaging targets. For instance, detecting genomic
RNA in live-imaging remains inaccessible for most
viruses while established procedures have been devel-
oped for their static detection by Fluorescence In Situ
Hybridization (FISH) for individual RNA sequence types
(Jo et al., 2010; Rincheval et al., 2017), in multiplexed
configurations (Lakdawala et al., 2014), or at single-
molecule level (Chou & Lionnet, 2018). Using fixed
samples also allows for using higher-resolution imag-
ing technologies, such as electronmicroscopy (Alenquer
et al., 2019; De Castro Martin et al., 2017).
The extreme relevance of anti-cytoskeleton com-

pounds when studying intracellular transport is worth
mentioning in this section. As such, drugs depoly-
merizing and stabilizing the actin (Cytochalasins and
Phalloidin) and microtubule (Nocodazole and Paclitaxel)
are almost systematically tested in the literature cov-
ered in this review. These drugs provide invaluable
tools to study the direct involvement of a cytoskeleton
fiber type in RNP transport, especially when observa-
tions are made immediately following the addition of
the compound. The cytoskeleton however influences
virtually all cellular processes and cytoskeletal perturba-
tions may indirectly disrupt viral RNP transport and viral
multiplication. Especially in longer term drug exposure
contexts, RNP transport phenotypes must be confirmed
by complimentary approaches.

The actin-dependent transport of filovirus
RNPs

Filoviruses are best known for comprising the Marburg
(MARV) and Ebola (EBOV) viruses, which have caused
ravaging epidemics in Africa since the first reported
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FIGURE 2 Schematic of the optimal strategies to study virus RNP transport. (a) Cells are infected with a recombinant virus expressing a
fluorescent RNP component. (b) Cells expressing a fluorescent RNP component are infected with a wild-type virus strain. In both scenario, the
fluorescent proteins are incorporated in the neo-synthesized RNPs and can then be tracked by live-microscopy.

outbreak in 1976. Other members of the family have
been identified, but neither their replication cycle
nor their pathological potential has been robustly
investigated.
The transport of filovirus RNPs was assessed in two

consecutive studies, using the same approach (Figure 2,
Method A). Cells expressing a fluorescent EBOV or
MARV RNP component, the VP30, were infected with
a wild-type virus, and used for live-cell imaging (Schudt
et al., 2013, 2015). Transport events of RNPs were
tracked from the IBs to the filopodia, which are virus
induced extensions of the cellular membrane and where
filovirus egress occurs. These movements were strongly
impaired in cells treated with drugs impairing the actin
fibers’ stability, while Nocodazole had no effect. RNPs
transport is thus actin-dependent and microtubule-
independent (Schudt et al., 2013, 2015). Transport of the
matrix protein (VP40) was also found to solely rely on
the actin-network (Adu-Gyamfi et al., 2012). To assess
whether the matrix protein (VP40) could be part of
the RNP transport, the authors generated a recombi-
nant virus expressing a fluorescent VP40, and infected
cells expressing the fluorescent VP30 (Figure 2, Method
A+B). They found that whereas RNPs and VP40 use the
same fibers to travel in the cell, and whereas a pool of
VP40 locates at the IBs, RNPs emanating from IBs were
not associated to VP40 during their transport (Schudt
et al., 2013). In a later study based on co-transfection of
EBOV protein, it was found that N, VP35 (phosphopro-
tein) and VP24 (inhibitor of viral RNA synthesis) were
necessary and sufficient to ensure pseudo-RNP trans-
portation. The requirement of VP24 for transport could

ensure transport of RNPs not involved in viral RNA
synthesis (Takamatsu et al., 2018). Their precise role
remains to be explored.
The actin-dependent transport of RNPs seems motor-

ized by two processes, which depend on the stage of
the transport process. At early stages, RNPs emanat-
ing from the IBs are accompanied by the formation of
actin comets, that are WAVE-Rac1-Arp2/3 dependent,
which suggests an active role of actin nucleation in the
transport process (Grikscheit et al., 2020; Schudt et al.,
2015). At late stages, once located near the membrane,
RNPs associate to VP40, where the complex co-opts
the Myosin-10 to navigate (Berg & Cheney, 2002;Schudt
et al., 2013). It is only then that egress occurs, thereby
engaging several actin cofactors such as IQAP1, and for
which additional roles in transport events have not been
studied in depth (Lu et al., 2013).

Rhabdoviruses: VSV model and
long-distance transport of RABV-RNPs

Rhabdoviruses comprise ∼200 species, and infect var-
ious hosts. Yet, the current rhabdovirus knowledge
was mainly derived from two members: rabies (RABV),
known for its historical human burden, and vesicular
stomatitis virus (VSV) which has become a model of
choice owing to its wider tropism and biosafety.
The transport of neosynthesized VSVRNPs was stud-

ied by the Pattnaik group using a VSV strain encoding
for a fluorescent RNP component (Das et al., 2006).
Time-lapse imaging revealed RNP trajectories from the
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nucleus periphery toward the cellular membranes in
close association with mitochondria. Nocodazole treat-
ment of infected cells resulted in a drastic shift of
fluorescent signals from a diffuse polarized pattern in
untreated cells, to very large aggregates surrounding
the nucleus. Microtubules involvement in RNP transport
was further supported by the observation of an obvi-
ous association of neosynthesized RNPs with stained
microtubules. However, the sole involvement of micro-
tubules in RNP transport remains unclear. First because
the anti-MT treatments carried out in this manuscript
were performed before and maintained along the infec-
tion. This approach can affect the earliest steps of the
viral cycle and therefore bias observations on every-
thing that follows.Second because anti-actin drugs were
not tested, while actin is crucial for the mobility of mito-
chondria (Morris & Hollenbeck, 1995). In line with this
uncertainty, it was reported that when anti-actin drugs
are used at 1 hpi, after the initial steps of the multipli-
cation cycle, the mobility of the VSV RNPs is greatly
reduced (Yacovone et al., 2016).
Follow-up work on cells continuously exposed to

anti-MT drugs revealed that the cell surface localiza-
tion of the matrix protein M is, in contrast to RNPs,
microtubule-independent (Das et al., 2006, 2009). This
supports a model in which M and RNP transportations
are disconnected
As mentioned above VSV is naturally pantropic and

mostly studied using common cell types. The conserva-
tion of the genome organization allows to some extent
for extrapolating on the RABV biology. But given the
neurotropic circulation of RABV, which involves very-
long-range transports, the relevance of the VSV model
is unclear.
In neurons, RABV spreads from the axon to the cell

body (soma), then to the cell dendrites where RABV
buds at pre-synaptic terminals and infects the next
naïve neuron. This cycle is iteratively repeated until
reaching the central nervous system (Ugolini 1995). In
contrast to the axon-to-soma transport (i.e., the import
of RNPs), the soma-to-dendrite transport step has not
been characterized yet. Given the importance of micro-
tubule transport for the neuronal transport, it is assumed
that RNPs are transported along this fiber. Indirect clues,
such as a physical association of L and P microtubule
motors tend to support this model (Bauer et al., 2015;
Tan et al., 2007). Surprisingly however, no ultimate
demonstration of a retrograde microtubule-dependent
transport of neosynthesized RNPs has been reported
yet.
Perhaps even more surprising, such a microtubule-

dependent transport has been demonstrated in the
opposite, anterograde, direction (from the soma along
the axon), using neurons grown in polarizing cham-
bers (Bauer et al., 2014). In these cells, RNPs were
co-transported with secretory vesicles where the enve-
lope glycoprotein G is embedded (Bauer et al., 2014). It

remains now to be shown whether or not the transport
of neosynthesized RNPs is mechanistically similar in the
retrograde direction.

A limited literature on BDV and
bunyaviruses transport processes

The bornaviridae is the only viral family harboring a
non-segmented -ssRNA and exhibiting nuclear replica-
tion/transcription activities. Its prototype is the Borna
Disease Virus (BDV). Alike what is seen with other
MNVs, these RNA synthesis processes are segregated
from the cell in actual IBs (Hirai et al., 2021; Mat-
sumoto et al., 2012). This virus is understudied and the
mechanisms by which RNPs navigate within the cell
are unknown. Yet, transport processes are fundamental
for BDV regarding its neurotropism and trans-synaptic
cell-to-cell mode of transmission, because it involves
very-long-distance axonal shuttling of RNPs. The exit
from the nucleus is unclear. Several putative Nuclear
Export Signals (NES) have been detected on RNP com-
ponent (notably N and P), which could allow the nuclear
export of RNPs through the CRM1 pathway. However,
their accessibility in the context of RNP arrangements
remains to be demonstrated. Alike what was found for
IAVs (see Orthomyxoviridae section), the matrix protein
M exhibits a nuclear location and harbors a NES. It is
tempting to speculate that BDV could use an IAV-like
mechanism for the export of nascent RNPs (Honda &
Tomonaga, 2013). The cytosolic transport of RNPs is
not well understood either but it is suspected to rely on
the microtubule fibers for two major reasons. First, actin
destabilization has no effect on cell-to-cell transmission
of the virus (Charlier et al., 2013). Second, axonal trans-
port is known to heavily rely on microtubules (Maday
et al., 2014).Perhaps anecdotally but reinforcing the sus-
picion of the microtubule involvement, the human factor
EBLN1, an evolutionary maintained BDV-endogenized
gene, has recently been characterized for its critical
importance in the microtubule organization (Myers et al.,
2016). To what extent and how is still to be discovered.
Bunyavirales order include more than 10 viral fami-

lies. Despite comprising dozens of zoonotic pathogens,
several aspects of the Bunyavirus replication have
been neglected and the core knowledge regarding this
order is still fragmented. The Bunyavirales genome is
segmented into three negative-strand RNA molecules.
Some families composing this virus order present an
atypical feature, with one or two of these segments
encoding for ambisense genes (illustratively: 5′→←3′).
For these, the mRNA transcription of the 3′ gene is
initiated at the 3′ end of the segment.Aside from this par-
ticularity, the bunyavirus replication somewhat displays
features usually found in +ssRNA viruses. First, the
genome is replicated in viral factories near the endoplas-
mic reticulum or Golgi apparatus endomembranes (De
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Castro &Risco, 2014).Second, and perhapsmost impor-
tantly for this review, a large proportion of bunyaviruses
is assumed to bud in the lumen of these neighboring
organelles. For these, the RNP transport conundrum
nearly becomes anecdotal. Plasma membrane budding
has however been observed for some bunyaviruses
(Goldsmith et al., 1995; Ravkov et al., 1997), raising
questions about how their RNPs are transported.
To our knowledge, the RNP transport for these

“exceptions” was briefly interrogated in one only study
focused Lassa virus (Arenaviridae), in cells transiently
expressing a single virus protein. Authors found that
the localization to the plasma membrane of the Z
matrix protein was linked to TGN-originating endosomes
through the subversion of the kinesin KIF13A, amotor for
microtubule-dependent transport. The Z dependency to
KIF13A was also found for the Machupo and Junin are-
naviruses, which suggests that the process is broadly
conserved within this family. In contrast, KIF13A expres-
sion has no effect on the localization of the nucleoprotein
NP expressed alone (Fehling et al., 2013). Whether
RNPs follow the behavior of individual NP is unclear,
and further experiments are required to verify that this
dataset is indicative of a non-coupled Z-RNP transport.
This study echoes another publication on the Andes
Virus (ANDV, Hantaviridae). In this work, Rab11 marked
recycling endosomes (see next section), which motions
can be motorized by the KIF13A, clearly co-localized
with the NP during the infection, and Rab11 knock-down
resulted in a 10-fold decrease of the virus multiplication
(Rowe et al., 2008).

Rab11, a recurrent target of -ssRNA
viruses

Rab proteins, for Ras-related in brain, are small
GTPases which together with their interacting partners,
regulate virtually every aspect of vesicular trafficking.
Rab11 is one of dozen subfamilies. It includes Rab11a,
Rab11b, and Rab25/Rab11c, and is increasingly rec-
ognized for its impact on viral RNPs trafficking. In
short, Rab11a is a marker of recycling endosomes
(RE) governing the slow-pace sorting and transport of
endocytosis vesicles back to the apical plasma mem-
brane (Grant & Donaldson, 2009). This protein has
also been shown to control processes involving intra-
cellular vesicles such as late endosomal trafficking and
autophagy (Szatmári et al., 2014), or exocytosis (Urbé
et al., 1993).
Rab11 acts via its partners from the Rab11 family inter-

acting proteins (called Rab11-FIPs), which bridge Rab11
cargos to their targets such as cytoskeleton motors,
fibers, and lipids. Those interactions drive the vesicles
of interest to their destination, and consequently regu-
late the protein composition at the cellular membranes.
They also confer to Rab11 a versatile traveling capacity

by allowing both actin and microtubule associated trans-
ports. As such Rab11 is placed at a critical place for
the control of the polarity, the compartmentalization of
the cell and all the subsequent physiological processes
(Welz et al., 2014).

Influenza A viruses: The species for which
the Rab11 involvement is best
characterized

The transcription/replication process of the orthomyx-
oviruses, which comprise the influenza A viruses (IAV),
is atypical among their kind, as it occurs in the nucleus
of the infected cells. This feature involves a two-step
process for the transport of the RNPs. First, RNPs exit
the nucleus. For the sake of this review, we will not
cover in depth this step for which the literature is rich.
In brief, chromatin-adjacent neo-assembled RNPs are
complexed with the matrix protein M1 and the Nuclear
Export Protein NEP to exit the nucleus by subverting the
CRM1-exportin pathway (Elton et al., 2001; Neumann
et al., 2000; Watanabe et al., 2001).
The cytosolic journey of IAV RNPs has been exten-

sively studied. A compelling body of work produced
in the last ∼15 years has demonstrated the central
role of Rab11 in this process. The first evidence is the
observation of a clear accumulation of RNPs at the
MTOC (Momose et al., 2007), where Rab11 heavily co-
localizes. And from there, fluorescent RNPs travel with
Rab11, most likely primarily along microtubules (Amorim
et al., 2011; Avilov et al., 2012; Eisfeld et al., 2011; Bruce
et al., 2010). Anti-actin drugs alsoshowed an effect on
RNP movements, but the mechanism underlying this
inhibition remains unclear (Avilov et al., 2012). Efforts
have been put to characterize the mechanism of the
Rab11 subversion at the molecular level, and it seems
clear now that those transports are driven by a direct
interaction of Rab11 with the C-ter domains of the PB2
subunit of the IAV trimeric polymerase complex (Amorim
et al., 2011; Avilov et al., 2012; Veler et al., 2022).
For the longest time, these data were understood

as a direct subversion by IAVs of the RE process,
during which the RNPs would take advantage of the
physiological trajectories of RE vesicles to reach the
membrane. This model has been refined in recent publi-
cations. Upon IAV infection, Rab11 natural functioning is
impaired (Bhagwat et al., 2020; Kawaguchi et al., 2015;
Vale-costa et al., 2016), and the endoplasmic reticulum
is heavily remodeled around the MTOC (De Castro Mar-
tin et al., 2017). This leads to a micro-environment where
bio-condensates concentrating Rab11 and the RNPs
form upon LLPS (Alenquer et al., 2019). These liquid
organelles are then thought to act as a reservoir feeding
the RNP transport line by engaging endoplasmic retic-
ulum vesicles irregularly coated with Rab11 (De Castro
Martin et al., 2017; Vale-Costa & Amorim, 2017).
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Two fundamental questions remain unsolved. First,
while the data support a model in which Rab11 asso-
ciated RNPs primarily traffic along microtubules, anti-
microtubule drugs modestly impair RNP transport and
more generally the virus multiplication. Is there an
alternative Rab11-independent pathway? Can Rab11
associated RNPs co-opt actin fibers when the micro-
tubule network is unavailable? 2- It is unclear if traffic of
RNPs relies on Rab11 up to the budding site, or if addi-
tional mechanisms are involved in the terminal stages
of the transport. The overall involvement of Rab11 in the
IAV multiplication cycle is discussed in more depth in the
following review (Amorim, 2019).

The uncharacterized Rab11 associated
transport of paramyxovirus RNPs

Paramyxoviridae comprises several viruses of human
health concern, dispersed in several genera: mor-
billiviruses (Measles (MeV)), rubulaviruses (Mumps
(MuV)), respiroviruses (Sendai and Human Parainfluen-
zas (SeV and HPIVs)), or the emergent henipaviruses
(Nipah and Hendra (NiV and HeV)). Several studies on
the RNP transport in this viral family exhibit a striking
resemblance both in terms of methods employed, and
in terms of results generated.
The initial core of the literature on MeV RNP transport

first suggested a role of the matrix protein M, given its
natural ability of M to localize at both the IBs and the
membrane (Riedl et al., 2002). This was further sup-
ported by the fact that the accumulation of nucleoprotein
N to the cellular membranes at terminal stages of the
infection depends on a N–M interactions (Iwasaki et al.,
2009). Since the role of M in the virus budding is actin-
dependent, RNP transport was assumed to also rely on
the same cytoskeleton fibers (Dietzel et al., 2013).
A pivotal study from 2013 challenged this model.

The authors followed RNPs by live-imaging using a
recombinant strain encoding for a fluorescently tagged
polymerase (Figure 2, Method A). This virus allowed to
characterize an intense concentration of RNPs at the
MTOC, and RNP movements along the microtubules.
Questions were then raised about the potential motors
fueling these movements. The authors were inspired by
this MTOC localization and previous studies in which
virus transport processes were found to be depen-
dent on endosomal pathways. They searched for a
co-localization of the RNPs with the different types of
endosomes and found a selective association of RNPs
with Rab11 positive recycling endosomes. At a func-
tional level, most gene invalidation approaches carried
in classical cell lines, and using classical assays, led
to marginal differences. In contrast, Rab11 appeared
essential for an optimal virus growth in a polarized man-
ner, via RNP transport toward the apical membrane
(Nakatsu et al., 2013).

This biased interest toward a potential role of Rab11
is not unprecedented in the paramyxovirus field. Since
the 2000s, Rab11 associated transport of RNPs for in
SeV, MuV, or hPIV-1, has been selectively interrogated
using recombinant viruses and/or a fluorescently tagged
Rab11 protein, and similar results were obtained (Cham-
bers & Takimoto, 2010; Katoh et al., 2015; Stone et al.,
2016).

RSV, the most recently reported
Rab11-dependent species

Two human respiratory pathogens belong to the pneu-
moviridae: Respiratory Syncytial Virus (RSV), and the
human metapneumovirus (hMPV) for which the cur-
rent understanding of the multiplication cycle is mostly
derived from RSV. Alike what was observed for the
viruses already mentioned, anti-cytoskeleton have been
reported to impair the multiplication of RSV. But the
datasets reported are unsuited to specifically argue
about transport dynamics and mechanisms (Kallewaard
et al., 2005).
Until very recently, the community was clueless about

RSV RNP transport. To study this process, our group
recently engineered a recombinant RSV strain encod-
ing for a fluorescently tagged nucleoprotein N protein,
and employed live-imaging strategies (Figure 2, Method
A). We were able to record clear long-distance motions
of RNPs, sometimes originating from the IBs, along
the microtubules, and exhibiting an obvious directional-
ity. Still using live-imaging methodologies, we observed
a clear abolition of these movements on Nocoda-
zole treated cells, while Cytochalasin D had no effect
(Cosentino et al., 2022). Finally, we observed that these
motions were physically associated to, and partially
dependent on, the recycling endosome marker Rab11.
Our imaging set-up unfortunately did not allow for a
direct observation of the RNPs’ entire lifetime.
Vanover et al. previously suggested that RNPs were

recruited into intracellular vesicular extensions (called
filaments in the original manuscript and renamed here
for clarity) prior to assembly into filamentous virions
at the plasma membrane. These vesicular extensions
originated form recycling endosomes as they were dec-
orated by surface recycled viral G protein and formed in
a microtubule- and dynein-dependent manner (Vanover
et al., 2017). Given the biological relevance of Rab11
in the recycling endosomal processes, it is tempting to
speculate that our datasets captured the RNPs in transit
to these extensions.
In the early 2000s, directional release of RSV progeny

was shown to be impaired by dominant negative
(DN) forms of Rab11-FIP1 and -FIP2. The phenotype
observed were linked to defects in the budding process,
in a Myosin-dependent manner. It is however possi-
ble that defects at earlier steps in the viral cycle could
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FIGURE 3 Model of RSV trafficking in RSV. RNPs produced in IBs would first be transported to the plasma membrane along microtubules in
association to RE vesicles. Once near the cell surface, RNPs would be recruited to G-labeled RE vesicles forming intracellular vesicular
extensions. Finally, RNPs associated RE vesicles would be transferred to the subcortical actin network prior to viral filament formation.

contribute to the results as the DN-Rab11-FIPs were
expressed continuously during the RSV life cycle in
these assays. Since Rab11-FIP1, FIP2 and the Myosin
Vb mediate the interaction of Rab11 vesicles to the actin
network, one might propose that after fast transporta-
tion along the microtubules Rab11 associated RNPs are
transferred on actin network. These publications and our
findings converge toward the importance of Rab11 in
RSVmultiplication (Brock et al., 2003;Utley et al., 2008),
for which we propose a working model in Figure 3.

CONCLUSION

Negative RNA viruses have developed very different
strategies to ensure the transport of their RNPs into
the cell cytoplasm. Understanding this mechanism has
long suffered from difficulties in applying live-imaging
methodologies on infect-ed (-ious) samples. Yet, char-
acterizing these transports could lead to identify new
therapeutic targets or to original vaccine strategies. In
spite of the recent multiplication of studies dedicated at
characterizing RNP trafficking, the field is only emerg-
ing and there are more open questions than problems
solved (See summary table in Figure S1). The depth
of the influenza-Rab11 literature is somewhat of an
exception in this field.
To ensure the rapid transportation of RNPs to the bud-

ding site, -ssRNA viruses heavily engage the cytoskele-
ton network. For most viruses, the viral and cellular
proteins involved are poorly known, and even less char-

acterized at the structural level. The identity of molecular
motors involved in this process is especially unclear. The
human genome encodes for dozens of these motors.
To what extent they can complement each other for the
RNP-transport, and to what extent this phenomenon hin-
ders the search of these cofactors should be explored in
the future.
The IAV literature clearly demonstrates that the virus

does not simply use the cellular transport network
but rather shapes it for its own use. Aside from this
example, the field unfortunately lacks studies exploring
the virus-induced disturbances of the cellular trans-
port networks. Future studies on these aspects are
required to better illuminate the sophistication of the
vRNP trafficking processes. This also represent a sig-
nificant opportunity to better understand the balances
involved in the physiological functioning of these cellular
pathways.
While a large body of the -ssRNA phylogeny exhibits

divergent subversion strategies, several virus families
have converged toward the hijacking of the recycling
endosome (orthomyxoviridae, paramyxoviridae, pneu-
moviridae). All these viruses naturally infect polarized
respiratory epithelial cells with a basolateral and an api-
cal pole.The recycling endosome is especially important
in these cells as it is directed toward the apical mem-
branes and maintains the polarization. Hijacking Rab11
may promote apical budding and thus advantage a
regional spread of the virus progeny (Blau & Compans,
1995; Katoh et al., 2015). This interpretation remains
however limited by the cellular models used in most of
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the literature: the implementation of live-imaging strate-
gies and more generally the manipulation of polarized
epithelia requires an exquisite expertise.
As illustrated along this review, our overall under-

standing of -ssRNA RNP trafficking remains relatively
fragmented. But the available literature shows unde-
niable glimpses of an intense richness in terms of
strategies, mechanisms, and cellular partners involved.
While more work is required on a virus by virus basis,
efforts are made by different laboratories to increment
on this knowledge base, and the ad hoc imaging tech-
nologies are more and more accessible. In fact, this field
is likely to be on the brink of major breakthroughs.
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