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I. Introduction

Modeling the propagation of waves inside a complex medium is a field of study that has been active for more than fifty years. This matter has been approached by several kinds of methods, due to the fact that accurately computing the wave scattering is an issue that has a wide panel of applications in geophysics, electromagnetism, fluid mechanics, acoustics, ... All these problems exhibit a common feature: they are described by a set of partial differential equations with hyperbolic character along the time coordinate, such as Maxwell equations for electromagnetism or Navier-Stokes equations for fluid dynamics. These equations can be solved temporally by direct numerical simulation, but this requires a huge amount of computational resources and it is therefore limited to simple configurations. Moreover, computing on a reduced space domain with open boundaries requires the derivation of non-reflecting boundary conditions, which remains a sticking point.

In many cases, the small-perturbation hypothesis can be invoked to linearize the system of equations. A solution The OW equations are therefore obtained by keeping only the rightgoing (or leftgoing) part and canceling the other part.

However, these factors contain, in their expression, the inverse of the square root of one or several Fourier/Laplace variables and the use of the microlocal approach leads to apply the pseudo-differential operators theory [START_REF] Taylor | Pseudo Differential Operators[END_REF], which allows to build a discretization of the operators. As these pseudo-differential operators are costly to form, the OW equations can be solved by using a rational approximation of this square root. Several of these approximations can be found in the literature for low order and for high order as well [START_REF] Halpern | Wide-angle One-way Wave Equations[END_REF][START_REF] Milinazzo | Rational Square-Root Approximations for Parabolic Equation Algorithms[END_REF][START_REF] Higham | Functions of Matrices: Theory and Computation[END_REF].

Microlocal One-Way wave equations have been used in several domains of application, including inverse problems such as ocean acoustics, geophysical migration [START_REF] Claerbout | Imaging the Earth's Interior[END_REF][START_REF] Op 't Root | One-Way Wave Propagation with Amplitude Based on Pseudo-Differential Operators[END_REF], acoustics [START_REF] Doc | Coarse-Grid Computation of the One-Way Propagation of Coupled Modes in a Varying Cross-Section Waveguide[END_REF], and electromagnetism [START_REF] Antoine | Microlocal Diagonalization of Strictly Hyperbolic Pseudodifferential Systems and Application to the Design of Radiation Conditions in Electromagnetism[END_REF]. All these problems are based on a more or less developed version of the second-order wave equation or on Maxwell equations. While these sets of equations can be the subject of an exact development for the OW method, which means that a direct access is provided to the explicit analytical expression of the pseudo-differential operator, it is no longer possible for more complex systems like linearized Navier-Stokes or Euler equations.

Recently, a new formulation of the One-Way equations has been published by Towne & Colonius [START_REF] Towne | One-Way Spatial Integration of Hyperbolic Equations[END_REF][START_REF] Towne | Advancements in Jet Turbulence and Noise Modeling: Accurate One-Way Solutions and Empirical Evaluation of the Nonlinear Forcing of Wavepackets[END_REF] and applied to the two afore-mentioned systems. It is based on an early discretization of the system in order to separate the rightgoing and leftgoing waves, avoiding the heavy algebraic factorization. This OW method also relies upon a technique previously used to derive non-reflecting boundary conditions, where an approximation of the eigenvalues provided by the user dispenses from the numerical computation of the eigenmodes at each step. This approach is independent of the studied system and it does not need any analytical formulation. Another advantage of this One-Way method over the PSE is that it does not suffer of the same stability limitations [START_REF] Towne | A Critical Assessment of the Parabolized Stability Equations[END_REF]. Moreover, it allows to track in the same simulation the propagation and the interactions between several modes of different nature (hydrodynamic and acoustic).

However, all of these models suffer from a restriction, since they rely upon a hypothesis of slowly varying flow in the propagation direction, confining their use to specific cases such as boundary layers or slowly varying co-axial jets. Even if the microlocal One-Way method has been the subject of improvements concerning this issue, with the development of True-Amplitude One-Way or the use of Bremmer Series for the computation of the reflected waves inside the medium of propagation, these approaches are still based on the analytical expressions of the operators and they are even more difficult to apply to the Euler or Navier-Stokes equations than the simple microlocal One-Way.

The purpose of the present work is to introduce two new formulations, based on an association of the Numerical One-Way method of Towne & Colonius with the True-Amplitude One Way and then with the Bremmer Series, taking into account the fast variations of the medium in the propagation direction. In particular, the reflections and transmissions of the incident wave caused by strong medium changes will be computed.

In the present paper, the construction of the standard One-Way and the Numerical One-Way methods for hyperbolic equations are reminded in Section II. Section III describes the new formulation of this OW method based on the same approximation tools used by Towne & Colonius. In section IV, the subject of variations of the base flow along the privileged direction is broached along with the computation of the reflected and transmitted waves, by merging the Numerical OW approach together with the True Amplitude formalism (Section IV.B) or the Bremmer series (Section IV.C). Some numerical results are then presented in Section V. Finally, the conclusions are drawn in Section VI.

II. The One-Way approximation

In this section, we begin by explaining some basic features of the pseudo-differential operators. Then, we discuss the construction of the One-Way method and its approximation for an arbitrary hyperbolic system of equations. From that, we derive our new formulation of the approximated OWE that allows us to take into account the effects of the heterogeneous medium/flow by solving the reflected and transmitted waves.

A. Some background about Pseudo-differential operators

Since both the standard One-Way formulation and the new formulation presented in this paper are using pseudodifferential operators and symbolic calculus, some definitions and basic features of this theory will be reminded first [START_REF] Taylor | Pseudo Differential Operators[END_REF][START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF][START_REF] Alinhac | Pseudo-Differential Operators and the Nash-Moser Theorem[END_REF] (the proofs can be found in these references, especially in the latter one) and a brief description of them will be made. These operators rely upon the Fourier transform defined as:

(F ) ( ) = ∫ ( ) - , (1) 
with the Fourier dual variable of .

Then, we proceed to a "classical" quantization that consists in linking a function of space-time variables and their Fourier associates to an operator. Hence, is a pseudo-differential operator if

( ) = 1 (2 ) 2 ∫ ( ) ( , ) (F ) ( ) , (2) 
with ( ) ( , ) the symbol of the operator . This symbol is of class with ∈ Z if it is a smooth function of and that satisfies the condition that for any indices ( , ) ∈ Z 2 , there exists a constant such that:

( ) ( , ) ≤ (1 + | |) -| | . (3) 
Thus, if we take as an example a simple pseudo-differential operator, a derivative in :

= , (4) 
its associated symbol of class 1 will be:

( ) = . (5) 
From here on out, the symbol of a pseudo-differential operator will be denoted by its lower-case letter . In the next three paragraphs, three rules that are inherent to the operators and that will be of interest for the new formulation of the One-Way method will be detailed: the asymptotic expansion of a symbol, the composition and the parametrix rule.

Asymptotic expansion of a symbol

Let ∈ be a symbol of operator of order with lim →+∞ = -∞. Then, there exists another symbol ∈ 0 such that, for any > 0:

- -1 =0 ∈ , (6) 
which allows to write:

∼ ≥0 . (7) 
The function 0 will be called the principal symbol of as it is the symbol of higher order in this asymptotic expansion.

Composition rule

Let and be two pseudo-differential operators of symbol ( ) = and ( ) = and of order and , respectively (i.e ∈ , ∈

). The composition of them will be another pseudo-differential operator of order + . The symbol of this operator, , is denoted # and its asymptotic expansion is:

# ( , ) ∼ ∞ =0 1 ! ( , ) ( , ) ∼ ( , ) ( , ) + ( , ) ( , ) + ( , ) , (8) 
where ( , ) is a symbol of order + -2. We can deduce from this relation that the principal symbol of is the product of the symbols and .

Parametrix rule

Let ∈ and ∈ -be two pseudo-differential operators. The operator will be a parametrix of if the following relation is valid:

= + , (9) 
with the identity operator and a pseudo-differential operator of order < 0. This operator can be seen as a residual and it can be truncated [at the order we want] [at any order ?].

These basic rules about the behavior of the pseudo-differential operators will be applied to the standard One-Way formalism in the next section.

B. Standard One-Way

In this part, we recall a classical construction of the microlocal One-Way approximation that will be named the Standard One-Way (SOW) from now on. This approach has been intensively used and improved in geophysics [START_REF] Angus | The One-Way Wave Equation: A Full-Waveform Tool for Modeling Seismic Body Wave Phenomena[END_REF][START_REF] Claerbout | Toward a Unified Theory of Reflector Mapping[END_REF], acoustics and electromagnetism [START_REF] Antoine | Microlocal Diagonalization of Strictly Hyperbolic Pseudodifferential Systems and Application to the Design of Radiation Conditions in Electromagnetism[END_REF] for more than fifty years. For all these different physical problems, this construction is always based on the same principles [START_REF] Halpern | Wide-angle One-way Wave Equations[END_REF]. Then, we use the following arbitrary linear hyperbolic system of equations to illustrate its construction:

+ ( , y) + -1 =1 ( , y) + ( , y) = 0. ( 10 
)
Here, the -axis will be considered as the privileged direction and the equations will be parabolized along it. The variable y = { 1 , 2 , ..., -1 } denotes the transverse counterpart in this -dimension problem. The unknown ( , y, ) is a vector-valued function and , and are matrix-valued functions depending on and y but assumed to be independent from the time variable in the present work.

A Fourier transform in time is performed to solve equation [START_REF] Halpern | Wide-angle One-way Wave Equations[END_REF] in the frequency domain and the dual variable of time is denoted . If the matrix is assumed invertible or diagonalizable, the system (10) can be rewritten as:

= , y, , , (11) 
where := 1 / , ..., -1 / . Let us define ( , y, ,

) = --1 + -1 =1 
( ) + as the symbol of .

Remark. The hypothesis on the matrix can be weakened [START_REF] Towne | One-Way Spatial Integration of Hyperbolic Equations[END_REF] but this technical difficulty is out of the scope of the present paper.

Now, if we assume that the first-order operatoris strictly hyperbolic, then, the following result holds: [START_REF] Taylor | Pseudo Differential Operators[END_REF][START_REF] Antoine | Microlocal Diagonalization of Strictly Hyperbolic Pseudodifferential Systems and Application to the Design of Radiation Conditions in Electromagnetism[END_REF] ∃ = ( , , , ) ∈ 0 an invertible operator such that = (micro-locally) where = ( + , -) is solution to:

+ - = Λ + 0 0 Λ - + - (micro-locally) , (12) 
where Λ ± are diagonal pseudo-differential operators of order 1 with a principal symbol equal to

± 1, =1,..., ±
where ± 1, =1,..., ± are the pure imaginary eigenvalues of the (matrix) principal symbol 0 of which have been classified in function of their "propagation" sense.

Remark. By the expression = (micro-locally), we mean that the distributions and have the same wavefront set on appropriate conical subsets of the tangent bundle.

Standard OW methods consist in taking approximations 0 of the operator and Λ + 1 of Λ + and computing = -1 0 where = ( + , -) is the solution to:

             + = Λ + 1 + - = 0 , (13) 
with the OW condition -= 0 that removes the leftgoing waves from the computation.

At this stage, the operator Λ + 1 is generally a pseudo-differential operator like a square-root operator, which has a non-local character. A direct discretization of this operator is consequently hard to perform and can be rapidly expensive in computational resources as the number of degrees of freedom in the transverse directions is increasing. This is the reason why the standard approach is based on high-order operator approximations using, for example, Padé approximants to form 0 and Λ + 1 . Even though these methods can be very accurate and efficient, the analytical expressions of the eigenvectors and eigenvalues are still required. This condition is responsible of the complexity to apply this One-Way decomposition to complex systems. This formulation (equation ( 13)) of the OW corresponds to the standard One-Way which was originally designed [START_REF] Claerbout | Toward a Unified Theory of Reflector Mapping[END_REF] to make sure that the wavelength and the wave travel time computed were correct even in heterogeneous media (due to the coherence of wave front sets induced by the microlocal approximation). In the contrary, the amplitude resulting of this model is not ensured to be accurate in case of variable coefficients in the -direction as some physical phenomena are not taken into account. Some True Amplitude One-Way models have been developed [START_REF] Zhang | Theory of True-Amplitude One-Way Wave Equations and True-Amplitude Common-Shot Migration[END_REF][START_REF] Barucq | True Amplitude One-Way Propagation in Heterogeneous Media[END_REF] to improve the amplitude accuracy in inhomogeneous cases but once again, they need even more complex analytical developments that can not be applied to the Euler or Navier-Stokes systems.

The application of the One-Way decomposition to the Euler and Navier-Stokes equations has been made possible recently thanks to the work of Towne & Colonius [START_REF] Towne | One-Way Spatial Integration of Hyperbolic Equations[END_REF]. Their method uses a transversally discretized system and an accurate approximated non-reflecting boundary condition in order to get rid of the analytical expression of the operators.

In the next section, we will go over this approach that will be the base of our new formulation.

C. Numerical One-Way

Exact construction

In this part, we recall the construction of this one-way method (outflow approach) introduced by Towne & Colonius in a series of papers [START_REF] Towne | One-Way Spatial Integration of Hyperbolic Equations[END_REF][START_REF] Towne | Improved Parabolization of the Euler Equations[END_REF][START_REF] Towne | Continued Development of the One-Way Euler Equations: Application to Jets[END_REF] and in a PhD thesis [START_REF] Towne | Advancements in Jet Turbulence and Noise Modeling: Accurate One-Way Solutions and Empirical Evaluation of the Nonlinear Forcing of Wavepackets[END_REF] by using the hyperbolic equation [START_REF] Halpern | Wide-angle One-way Wave Equations[END_REF].

We will begin by applying a Laplace (or Fourier) transform in time to equation [START_REF] Halpern | Wide-angle One-way Wave Equations[END_REF] as we want to express the system in the frequency domain. As we are interested in the stationary behaviour of the system, we will assume that the initial conditions are set to 0 and do not impact the final solution. The Laplace transform of the variable describing the perturbation will be denoted = ˆ and the dual variable ∈ C of the time will be decomposed as =where ∈ R will represent the angular frequency in our time-harmonic problems and ∈ R will be useful for the criterion allowing to distinguish the left from the rightgoing waves but apart from that, it will be set to 0 most of the time. The next step is to directly discretize the variation of ˆ in the transverse direction y by using a numerical approximation like finite difference or finite element methods. The transverse boundary conditions (BC) such as wall, free slip or even Perfectly Matched Layers have to be applied during this step. The goal is to get rid of the analytical expressions of pseudo-differential operators used in the standard OW approaches and that is why we use the expression of Numerical One-Way (NOW).

From now on, we will denote by bold characters the transversally discretized vector-valued or matrix-valued functions. Thereby, for example, the discretized equivalent of the matrix-valued function will be written A. Then, equation [START_REF] Halpern | Wide-angle One-way Wave Equations[END_REF] becomes:

A( ) q = -q - =1 B j ( ) q -C( ) q . ( 14 
)
Since equation ( 14) is a one-dimensional hyperbolic equation, the matrix ( ) is necessarily diagonalizable for each

x, has real eigenvalues and, we will assume for simplicity, is invertible. The case where the matrix ( ) is non-invertible is discussed in [START_REF] Towne | One-Way Spatial Integration of Hyperbolic Equations[END_REF]. Since A is the discretized counterpart of , the same assumptions can be made about it. We also know that this guarantees that the eigenvalues of A are real and we know the exact number of positive ( + ) and negative ( -) ones. The fact that A is diagonalizable entails that there exists an invertible matrix-valued function T such as:

T -1 AT = Ã = Ã+ 0 0 Ã- , (15) 
with à a diagonal matrix-valued function containing all the eigenvalues of A and Ã+ ∈ R + × + and Ã-∈ R -× -two diagonal matrix-valued functions containing the positive and negative eigenvalues respectively.

This induces the following variable change: = T -1 q and we obtain the relation:

= M( ) , (16) 
with

M = Ã-1 T -1 -I - =1 B j -C T -T -1 T
. The matrix M is here the propagation operator.

According to the previous separation of à in positive and negative eigenvalues, the same can be done concerning this propagation operator and the variable vector . Equation ( 16) can be written the following way:

+ - = M ++ M +- M -+ M -- + - , (17) 
with the first subscript denoting the number of rows ( + or -) and the second, the number of columns of the block matrix. The number of components of the vectors ± is also given by the subscript.

There exists an eigenvalue decomposition of the discretized operator M such as:

M = VDU , (18) 
with D the diagonal matrix containing all the eigenvalues of M and either V the corresponding right eigenvectors matrix or U the corresponding left eigenvectors matrix. The matrices U and V are the inverse of each other:

U = V -1 .
Then, we proceed to a new change of variable using this decomposition, defined by

= V = = + + - =1 v with
v the -th eigenvector of V. We keep once again the separation made during the first diagonalization with the + andsubscripts and equation ( 17) becomes:

+ - = D + 0 0 D - + - -U V + - . (19) 
Here, the matrix W = U V , which couples the functions + and -together, can be considered as the transmission/reflection matrix. It is neglected in the construction of the method, in order to decouple the left and right going information and this approximation is at the origin of slowly varying medium limitation in the direction.

It can be noted that this term is also neglected in the standard One-Way formulation, inducing the same limitation for both approaches. We will see in Section III that the new formulation proposed here will allow us to consider this neglected term in order to improve the results obtained by this kind of methods, independently from the studied system.

Equation ( 19) is now reduced to:

+ - = D + 0 0 D - + - . ( 20 
)
Remark. The decoupling procedure does not require a complete diagonalization of the matrix and it can be realized by a less fine spectral decomposition where only the eigenspaces are identified. In other words, the construction of an OW method can be based on the following kind of factorization of :

M = Ṽ D+ 0 0 D- Ũ , (21) 
with D+ and Dtwo square matrices whose eigenvalues are the rightgoing and the leftgoing modes, respectively. In this way, the transformation always uncouples the + and the -. For the sake of readability, we will keep the previous notation and we will use this particularity only to justify the new formulation proposed in this paper (Section III.C).

In the same way, the V and U matrices can be split according to the previous diagonalization:

V = V ++ V +- V -+ V -- , (22) 
U = U ++ U +- U -+ U -- . (23) 
Now that we have modified our equations to obtain an ordinary differential equation (ODE), we have to add a condition to be able to iterate on the -axis in a stable way. To do that, we have to identify the rightgoing and the leftgoing waves to select only the ones we are interested in. To do that, we will use the Briggs' criterion [START_REF] Briggs | Electron-Stream Interaction with Plasmas[END_REF] to separate the modes according to their propagation direction. Since D is diagonal, we can write:

= , (24) 
where is the -th eigenvalue of the operator M. The is here only to keep the consistency with the usual expression of a spatial wave-number. This way, the real part of is related to the phase-speed of the mode while its imaginary part is linked to the mode spatial growth rate.

The Briggs' criterion mentioned above tells us that a mode is rightgoing if:

lim →+∞ ( ) = +∞ , (25) 
or, on the contrary, is leftgoing if:

lim →+∞ ( ) = -∞ . ( 26 
)
As will tend to +∞, the discretized operator M will tend to -Ã-1 . The matrix à being diagonal, each of the diagonal values of M will either tend to +∞ or to -∞. The behaviour of these eigenvalues can thus be figured out by the sign of à and from that, we can deduce that the + first modes will be rightgoing while the -others will be leftgoing. Consequently, the last step is to erase the waves going in the opposite direction compared to the spatial march integration by applying the One-Way condition:

-= 0 . ( 27 
)
This expression of the One-Way condition is based on a uniform medium/flow of propagation along the preferred direction. Therefore, when heterogeneities appear, it gives rise to other phenomena. Indeed, those variations will impact the transmission/reflection matrix seen above, and more particularly the V matrix, which will not be negligible anymore. The effect is that the leftgoing and rightgoing waves will not be independent from each other and it results in reflection or transmission. However, the well-posedness of the hyperbolic system with variable coefficients [START_REF] Kreiss | Initial Boundary Value Problems for Hyperbolic Systems[END_REF] allows us to use a x-local study by freezing the coefficients, to divide the waves according to their propagation direction. It means that this reasoning is still applicable and permits us to obtain well-posed equations for the resolution. The only drawback is that the effects of the reflection and transmission will not be taken into account by this formulation of the One-Way equations.

We finally obtain the following One-Way system to solve:

         + = D + + -= 0 . ( 28 
)
In order to implement the system (28), we need to manipulate a part of the eigenvalues matrix of the propagation operator M. It means that in case of a variable medium/flow, we need to compute these eigenvalues and eigenvectors for each spatial station (of the integration march), which can increase significantly the computational cost.

Non-reflecting boundary condition approximation

This is the reason why the numerical approach [START_REF] Towne | One-Way Spatial Integration of Hyperbolic Equations[END_REF][START_REF] Towne | Advancements in Jet Turbulence and Noise Modeling: Accurate One-Way Solutions and Empirical Evaluation of the Nonlinear Forcing of Wavepackets[END_REF][START_REF] Towne | Improved Parabolization of the Euler Equations[END_REF][START_REF] Towne | Continued Development of the One-Way Euler Equations: Application to Jets[END_REF] is based on the use of a non-reflecting boundary condition (NRBC) to approximate the relation [START_REF] Briggs | Electron-Stream Interaction with Plasmas[END_REF]. The NRBC used was originally developped by Higdon [START_REF] Higdon | Numerical Absorbing Boundary Conditions for the Wave Equation[END_REF] in low order and in high-order by Givoli & Neta [START_REF] Givoli | High-Order Non-Reflecting Boundary Scheme for Time-Dependent Waves[END_REF]. Then, it was applied to first order systems by Hagstrom & Warburton [START_REF] Hagstrom | A New Auxiliary Variable Formulation of High-Order Local Radiation Boundary Conditions: Corner Compatibility Conditions and Extensions to First-Order Systems[END_REF].

It can be noted that the One-Way condition ( 27) can be switched back in term of :

-= U -+ + + U ---= 0 , (29) 
which gives us the following relation between + and -:

-= U -1 --U -+ + . (30) 
We will assume for the rest of this paper that U --is invertible. Even if we have no theoretical proof about this feature, as it is said in the Appendix B of [START_REF] Towne | One-Way Spatial Integration of Hyperbolic Equations[END_REF], a singularity in this matrix would prevent us to form an accurate One-Way system but this case has never been encountered by us.

Then, the One-Way system (28) can be expressed in terms of to get rid of the matrix D + :

         + = M ++ + + M +-- -= U -1 --U -+ + . ( 31 
)
This approximate method is based on the fact that we do not want to compute the eigenvalues and eigenvectors of the operator M. It comes down to replacing the second equation of ( 31) by another expression that does not involve U, V or D. In order to do that, we will proceed by recursion and we will introduce some new auxiliary variables and with = 0, ..., . Here, will be the order of the approximation. The higher the becomes, the closer to the exact solution we get. The variables indexed by a zero are the physical variables ( 0 = and 0 = ).

We saw earlier that we can sort the different waves thanks to the eigenvalues of the operator M and we will use this feature to remove the leftgoing waves. Firstly, we have to define some kind of reflection coefficient:

( ) = -1 =0 -+ -- , (32) 
with one of the eigenvalues of M and + and -a set of parameters chosen more or less arbitrarily. Indeed, for this method to converge to the wanted exact solution (i.e. maximize the effect of the rightgoing eigenvalues while minimizing the leftgoing ones to naturally remove the upstream modes) and to ensure an efficient convergence, we can choose to have the + parameters close to the cluster of rightgoing eigenvalues while choosing -parameters close to the cluster of leftgoing eigenvalues. In order to do that, we can use a simplification of the flow and perform an eigenvalue decomposition of the operator [START_REF] Huerre | Local and Global Instabilities in Spatially Developing Flows[END_REF][START_REF] Charru | Hydrodynamic Instabilities[END_REF] to have an idea of where the eigenvalues should be. It can be noted that the method converges even faster if these two sets of parameters are far from each other. Thereby, this ratio ( + )

will tend to 0 since the + coefficients are close to + while the corresponding -are further away. In the same way, the ratio ( -) will tend to ∞ for the same reason.

We now introduce the auxiliary variables mentioned above by writing:

= ( ) = 1, ..., , (33) 
which can also be written:

+1 = -+ -- = 1, ..., and = 0, ..., -1 . (34) 
This recursion relation defines the rest of the auxiliary variables. In matrix form, the previous equation becomes:

(D -+ I) = (D --I) +1 = 0, ..., -1 , ( 35 
)
where D is the diagonal matrix composed of the eigenvalues of M. The convention on the eigenvalues explains the presence of a before the parameters.

By defining = U , we obtain the final recursion relation:

(M -+ I) = (M --I) +1 = 0, ..., -1 . ( 36 
)
Even if we know + at the first spatial station in (it is the initial input to start the spatial marching), the number of variables is still greater than the number of equations by one. In order to find this additional equation, we will show that this relation converges toward the exact one-way relation under one simple condition: -= 0. To show that, we go back to equation [START_REF] Zhang | True Amplitude Wave Equation Migration Arising from True Amplitude One-Way Wave Equations[END_REF] but in a matrix form:

+ - = R ++ 0 0 R -- + - , (37) 
where R ++ and R --are diagonal matrices with the values of ( ) still sorted by the rightgoing ( + ) and leftgoing ( -) eigenvalues. By switching back the left-hand side of the equation to the variables, we obtain:

U ++ U +- U -+ U -- + - = R ++ 0 0 R -- + - . (38) 
By eliminating + , we get:

-= R -1 --U -+ U -1 ++ R ++ + + R -1 --U ---U -+ U -1 ++ U +--. (39) 
If we put here the condition -= 0, the previous relation becomes:

-= R -1 --U -+ U -1 ++ R ++ + . (40) 
From this equation, we can deduce the following relation:

R -1 --U -+ U -1 ++ R ++ + ≤ R -1 --U -+ U -1 ++ R ++ + . (41) 
Here, the norm of the matrices U -+ and U ++ and the vector + will not be affected by the choice of ± and are fixed. On the other hand, the norms of the two reflection matrices R ++ and R --will tend to 0 and ∞, respectively, when the set of ± coefficients is well-chosen. From this, we can infer that equation (40) tends to the One-Way condition, equation [START_REF] Briggs | Electron-Stream Interaction with Plasmas[END_REF].

Now that we have found two new relations, the approximate one-way equations proposed by Towne & Colonius are given by:

                 + = M ++ + + M +-- (M -+ ) = (M --) +1 , = 0, ..., - 1 
-= 0 . ( 42 
)
We have here a method that converges to the exact One-Way condition -= 0 when → +∞. In reality, this method is cost effective as long as << , which is generally the case in practice. Moreover, this OW method is relatively easy to implement and has proven its ability to take into account the variations of the base flow on the transverse direction but with a restricting hypothesis of slow -variation.

III. Improved Numerical One-Way

A. Numerical approach with standard formalism

As we will see later, taking into account the reflection and transmission of the waves will require to perform the diagonalization of the propagation operator M in order to solve the One-Way equations in terms of -variables, contrary to the numerical approach. This hybrid approach is using the same non-reflecting boundary condition as in the Numerical One-Way in order to form a pseudo-eigenvectors matrix Ũ allowing us to solve the One-Way equations in the same formalism as the standard one (i.e. in terms of -variables). Since this boundary condition is, this time, applied both in right and left directions, the matrix Ũ can generate the same eigenspace (and its separation in + andcontributions) as the exact eigenvectors matrix U. The resulting matrix Ũ is, therefore, precise enough (by considering a good convergence in the second relation of equation ( 42)) to guarantee an accurate diagonalization of the system and will also be the origin of the construction of the matrix W, crucial to compute the transmitted and reflected waves.

To start the construction of this new formulation, we use a reformulation of the system of equations (42) under the form:

                       + = M ++ + + M +-- + 0 = -1 =0 M --I -1 M -+ I Z : Non-reflection matrix + - , (43) 
with Z the non-reflection matrix obtained from the recursion relation, since this is the formalism to isolate the rightgoing modes (right One-Way). Another formulation of this relation can be made by inverting the + and -coefficients in order to form the Z matrix which aims to isolate the leftgoing modes (left One-Way).

We can split the recursion relation of equation ( 43) into + andas previously:

Z ++ Z +- Z -+ Z -- + - = + 0 . ( 44 
)
This relation becomes, by eliminating + and isolating -:

-= Z -- -1 Z -+ + . ( 45 
)
Since Z is dependent on the choice of ± , we can propose the following definition of the convergence in ± of equation (45) based on the exact relation [START_REF] Givoli | High-Order Non-Reflecting Boundary Scheme for Time-Dependent Waves[END_REF]:

Definition. The non-reflection boundary relation is said to be converged when the choice of the family of coefficients + and -, ∈ N | 0 < < when → +∞ guarantees the following relation:

Z -- -1 Z -+ = U -1 --U -+ . (46) 
In practice, a choice of ± can be made to guarantee a good enough approximation of equation ( 46).

The next section (Section III.B) will be focused on the case of systems of two equations (such as the first-order wave equations). Later on, we will treat the general multi-dimensional systems in Section III.C. The first of these sections will use the definitions stated in Section II.A about the pseudo-differential operators.

B. Application to systems of two equations

In systems of two equations, each block of the matrices split along the + andsubscripts contains only one pseudo-differential operator. Therefore, in the right One-Way formalism, the matrices --, -+ , --and -+ are composed of only one operator of which, we will assume, we ignore the analytical expression.

First, --is assumed to be a pseudo-differential operator of order and -1 --is its parametrix denoted ∈ -.

Moreover, the operator -+ is assumed to be of order and will be denoted for readability reasons ∈

. It leads, according to equation (46), to the fact that the product -- -1

-+ is of order = -+ and it will be denoted ∈ . This composition can then be written in terms of symbols:

= # . (47) 
Now, the asymptotic expansion of the symbols and the composition rules stated above in equations ( 7) and ( 8) yield:

0 + 1 + = 0 0 + 0 0 + 0 1 + 1 0 + 0 1 + 1 0 + , (48) 
where and are symbols of order -2 and represent the residuals of the asymptotic expansion of and the composition of # respectively. If we sort these symbols by order, we obtain:

                 0 = 0 0 ∈ 1 = 0 0 + 0 1 + 1 0 ∈ -1 = 0 1 + 1 0 + ∈ -2 . ( 49 
)
By keeping the first relation, we can deduce that the principal symbol of the product -- -1

-+ is equal to the one of -1 ---+ . Moreover, as is the left eigenvectors matrix of , --and -+ are the two components of the same eigenvector. This eigenvector can be normalized arbitrarily by setting one of these components to 1, for example. If we choose, for instance, to set -+ to 1, the first equation of the system (49) becomes:

0 = 0 . (50) 
If we put this equation back in term of operators:

--

-1 -+ = -1 --. (51) 
From this relation, we can get the second component of the eigenvector. As there is no uniqueness in the choice of normalization made (we can either set -+ or --to 1 or another choice of normalization), it will impact on the lower orders of equation (49). It means that even if the relation of the principal symbols is respected, some guesses will be more accurate than others for the lower orders relations.

In order to get the second eigenvector of , we need to reverse the Towne-Colonius method and to track the leftgoing waves. It can be done by reversing the recursion relation of the system (43) as follows:

0 - = -1 =0 M -+ I -1 M --I + - . (52) 
In this way, the non-reflection matrix is set to erase the rightgoing waves while keeping the leftgoing ones. This equation gives us a new relation between the two components of the remaining eigenvector. Similarly as before but in the other direction, with a sufficient number of ± (the same as before), we can write:

++ -1 +-≈ -1 ++ +-. (53) 
By using the same strategy of normalization as before, we can set ++ = 1 which means:

++ -1 +-= +-. (54) 
We now have access to an approximation of the whole matrix and consequently to approximations of the matrices and . Now, we only have to solve the system of equation [START_REF] Kreiss | Initial Boundary Value Problems for Hyperbolic Systems[END_REF].

The previous construction cannot be directly generalized to larger systems but it explains how to use the information contained in the non-reflection matrices to approximate the transmission/reflection operator. Based on it, the next section proposes a generalization of this approach.

C. Application to general systems

When the number of equations in the system is greater than two, the method used to form the One-Way operator is slightly different, as the number of leftgoing and rightgoing modes is too high to apply the same methodology as in Section III.B. Therefore, we need to introduce the following theorem:

Theorem 1. Let + , -=0,..., -1 be a family of parameters that induces the convergence of the non-reflection matrices Z and Z when -→ +∞. Then, the two "eigenspaces" of the operator M produced by the rightgoing eigenvectors (S ) and by the leftgoing eigenvectors (S ) can be characterized as follows when -→ +∞:

S Span U , * ∈ C + + -| = 1, ..., + = Span Z l , * ∈ C + + -| = 1, ..., + , (55) 
and

S Span U , * ∈ C + + -| = + + 1, ..., + + -= Span Z r , * ∈ C + + -| = + + 1, ..., + + -. (56)
Proof. It is easy to see that the non-reflection matrices have the same set of eigenvectors U and V as M whatever the value of . In particular, we can write:

U ++ U +- U -+ U -- Z ++ Z +- Z -+ Z -- = F (D) U , (57) 
with F (D) the matrix of eigenvalues of M with a coefficient of reflection F applied. The hypothesis of the convergence of the non-reflection matrices implies that the coefficient applied to the eigenvalues (i.e the term of F (D)) is either 0 or +∞ when → +∞. Therefore, when we form this matrix for the left-oriented One-Way, for the + eigenvalues and the associated eigenvectors, we can write the following identities:

         U ++ Z l ++ + U +-Z l -+ = 0 U ++ Z l +-+ U +-Z l --= 0 . ( 58 
)
On the other hand, for the right oriented One-Way, we obtain the following relations:

         U -+ Z r ++ + U --Z r -+ = 0 U -+ Z r +-+ U --Z r --= 0 . ( 59 
)
By using again the convergence hypothesis, we can add a new relation for the left-oriented system and another one for the right-oriented system as seen above. These relations read for the left OW:

Z ++ -1 Z +-= (U ++ ) -1 U +-, (60) 
and for the right OW:

Z r -- -1 Z r -+ = (U --) -1 U -+ . (61) 
By using equation ( 61) in (59), we obtain:

         Z l ++ Z l ++ + Z l +-Z l -+ = 0 Z l ++ Z l +-+ Z l +-Z l --= 0 , ( 62 
)
and similarly, the introduction of (60) in (58) gives:

         Z r -+ Z r ++ + Z r --Z r -+ = 0 Z r -+ Z r +-+ Z r --Z r --= 0 . ( 63 
)
We already knew that:

Span U , * ∈ C + + -| = 1, ..., + ∈ ker Z l , (64) 
and that:

Span U , * ∈ C + + -| = + + 1, ..., + + -∈ ker Z r , (65) 
From equation (62), we can deduce:

Span Z l , * ∈ C + + -| = 1, ..., + ∈ ker Z l , (66) 
and equation (63) shows that:

Span Z r , * ∈ C + + -| = + + 1, ..., + + -∈ ker Z r . ( 67 
)
By using the respective dimensions + and -of the spaces ker Z l and ker Z r , we finish the proof.

From this theorem, we can build a transformation matrix Ũ from the two matrices Z l and Z r which correspond to the matrices obtained by using the iterative relation of equation ( 42) in the left and right directions, respectively. This matrix Ũ takes the form:

Ũ = Z l ++ Z l +- Z r -+ Z r -- . (68) 
By construction, composing Ũ with the selected parts of Z and Z guarantees that the space induced by each part of the matrix is similar to the eigenspaces induced by the leftgoing and the rightgoing eigenvectors. It allows to perform a transformation of the operator matrix M following equation [START_REF] Alinhac | Pseudo-Differential Operators and the Nash-Moser Theorem[END_REF]. Once we obtained this transformation matrix, we can easily compute its inverse Ṽ and the block diagonalized matrix D.

Remark. The outflow approach of the One-Way as stated by Towne & Colonius suffers from two major drawbacks.

The first one is that this formulation of the OW is not compatible with the implementation of a source term. The only creation of information must be imposed at the inlet of the simulation. The second drawback is that the use of the variables instead of the ones prevents the imposed wave at the inlet to be projected. It means that the incident wave forced at the beginning of the marching algorithm is not split in leftgoing and rightgoing parts. The principal issue is that if this wave is not filtered manually, the two aforementioned parts are propagated along the privileged direction, distorting the result obtained. This problem can be got around by performing an eigenvalue decomposition and selecting a rightgoing eigenvector to initialize the One-Way. Both of these issues are dealt with by the projection approach also developed by Towne in his PhD dissertation [START_REF] Towne | Advancements in Jet Turbulence and Noise Modeling: Accurate One-Way Solutions and Empirical Evaluation of the Nonlinear Forcing of Wavepackets[END_REF]. However, as this formulation does not use the eigenvector matrix nor the variables, the improvement of the solution in the case of a variable medium/flow of propagation is not possible following the methodology presented in the present paper.

The next section will talk about different features of this new formulation and the computational cost for a three-equations system of Euler equations. 

D. Convergence and computational cost

Fig. 1 Convergence on the operator spectrum depending on for the Towne-Colonius method and for the new formulation

The choice of the ± coefficients is crucial for the convergence and the accuracy of these methods (for the outflow approach as well as for this new formulation) but a concession must be made for the computational efficiency. Indeed, the selection of these coefficients could be more or less arbitrary and the computation of the OW operator eigenvalues would still converge with a high enough number of ± but this would make the computation cost unbearable. On the contrary, it is possible to find a set of ± that ensures a fast convergence on the spectrum of the operator by having the + near the cluster of rightgoing modes while keeping the -close to the cluster of leftgoing modes. However, even if this way of choosing the ± gives a rapid convergence, it is not always easy to have all this information about the eigenvalues, especially in the case of a variable medium/flow. Therefore, it is of interest for the method to converge quickly with the less information possible supplied by the user. Figure 1 gathers a part of a spectrum computed in the case of a shear flow in which the axial velocity takes the following form:

¯ = tanh + , (69) 
with = 0.05, = 0.15 and = 0.2 (everything has been non-dimensionalized by the speed of sound and a reference length). We also suppose that the transverse velocity ¯ = 0 and that ¯ , ¯ and ¯ are constants. Computing directly the eigenvalues of the linearized Euler equations gives the blue spectrum while the approximations of that spectrum by the Towne-Colonius formulation and the new one are represented in red and green, respectively. The choice has been made to take ± coefficients uniformly spread on a 45 • line in the polar system (i.e. ± = ± ( + ) with 1 < < 150). The + have positive real and imaginary parts while the -have negative real and imaginary parts. This set of coefficients is arbitrary and can be applied to most of the flows or media of propagation. Even if the Towne-Colonius method is seen to converge quickly on the exact spectrum, the new formulation, thanks to the computation of the Z matrix in both directions, is converging faster to the wanted eigenvalues.

Since the new formulation proposed in this paper is more complex than the outflow approach, the question of CPU time consumption becomes relevant. Figure 2 is composed of two subfigures. The first one (Figure 2a) depicts the additional CPU time required by the new formulation in percentage of the Towne-Colonius one with a fixed number of points for the transverse discretization, , while sweeping , the number of ± coefficients used for the approximation.

The second subfigure (Figure 2b) shows the same variable but, this time, with a fixed and a sweep on . The times used for these comparisons are the ones taken for each of the formulation to form the One-Way operator as the rest of the method stays identical for both of them. It means that the outflow approach is forming the Z matrix while the new formulation needs to form U, V and D but also the W matrix that will be necessary to take into account the wave reflection and transmission. From that, we can see that the additional cost in CPU time induced by the new formulation is equal to 50 to 60% only of the concerned part and not the whole One-Way method. Moreover, we have to keep in mind that the convergence of the approximation seems to be faster with this new methodology and less dependent to the accuracy of the ± coefficients, meaning that the could be reduced for the same level of convergence compared to the Towne-Colonius method, inducing a save in computation cost. At the end, the induced extra CPU cost can be considered as low.

IV. Reflection and transmission processing A. Reflection and transmission

When variations or discontinuities occur in the medium of propagation along the direction of the wave, a phenomenon of reflection and transmission appears. The Figure 3 shows this phenomenon with an arbitrary example of three discontinuities. The incident wave 0 + will be transmitted when crossing a discontinuity changing its amplitude and wavelength while a part of it will be reflected backward. This reflected wave -, with the number of primary reflections inducing a leftgoing wave from a rightgoing one, will propagate backward until it meets another discontinuity where it will be transmitted and reflected again creating a wave + . This process will keep happening endlessly but its amplitude will decrease at each step. It is important to note that the same reasoning can be applied for continuous variations.

Fig. 3 Reflections and transmissions of a wave inside a heterogeneous medium

By nature, the simple One-Way method is not capable of capturing this physical behavior, as the marching algorithm is processed in only one direction. Moreover, the rightgoing waves are decoupled from the leftgoing ones in equation [START_REF] Kreiss | Initial Boundary Value Problems for Hyperbolic Systems[END_REF], solved by the OW, allowing it to be well posed for the spatial marching algorithm. On the contrary, equations [START_REF] Towne | A Critical Assessment of the Parabolized Stability Equations[END_REF] can take into account these direction changes by recoupling the + andsides with the reflection/transmission matrix W. However, this term leads to the ill-posedness of these equations inside the One-Way method, requiring a slightly different approach to solve them.

Section IV.B is about an improved One-Way that will use the information we have access to, thanks to this new formulation, to better process the transmission phenomenon. Section IV.C will present another method to solve the ill-posedness of equation ( 19) and will compute the wave reflection as well as its transmission by applying the Bremmer series concept, already used in geophysics for the wave equation.

B. True amplitude One-Way

The One-Way method, by construction, is not able to take into account the effects of the waves reflections appearing with the presence of heterogeneity along the privileged direction inside the medium of propagation. However, the transmission phenomenon can be well captured by the formulation of True Amplitude One-Way equations [START_REF] Zhang | Theory of True-Amplitude One-Way Wave Equations and True-Amplitude Common-Shot Migration[END_REF][START_REF] Barucq | True Amplitude One-Way Propagation in Heterogeneous Media[END_REF].

This way, we can ensure that the equations are both kinematically and dynamically preserved [START_REF] Zhang | True Amplitude Wave Equation Migration Arising from True Amplitude One-Way Wave Equations[END_REF] while only the first criterion is respected by the standard OW formalism.

Thanks to the new formulation presented in Section III.C, the reflection matrix W can be built and we can use this information to enhance the accuracy of the standard OW method when the wave encounters any variation. More precisely, we can isolate the term responsible of the phenomenon of transmission, W ++ , to build this new True Amplitude One-Way equation, that can be written in the following way:

         + = D + + + W ++ + + (0) given . . (70) 
This method requires to form the reflection/transmission matrix W = U V , which can be done by using differentiation on the V matrix .

However, this formulation still has some limitations, as it gives satisfying results only when the reflection phenomenon is negligible for the outgoing wave. Indeed, the mechanism of the OW can only compute the transmission of the original incident wave and does not include any rightgoing reflection waves. For the same reason, using this method is relevant only if we are interested in the wave leaving the computation domain at the right outlet.

This way of writing the One-Way method is nevertheless interesting for moderately variable cases (one big variation or several moderate ones), since it captures well the fluctuations in amplitude of the incident wave for a negligible extra computational cost (building the W matrix) and its implementation is straightforward considering that it uses the same spatial marching algorithm as the standard One-Way.

         2 + = D + 2 + + W ++ 1 + + W +- 1 - 2 + (0) = 0 , (75) and  
        - 2 -= D - 2 -+ W -+ 1 + + W -- 1 - 2 -( ) = 0 . ( 76 
)
From these equations, the system solved at the th order of the Bremmer series in the ± direction reads:

± ± = D ± ± + W ±+ -1 + + W ±- -1 - . (77) 
Once the iterative process is converged (i.e. ± ≈ 0), the final result can be obtained by adding all the contributions ± :

= =0 + + -, (78) 
with the order of the Bremmer series method. It can be noticed that if we have access to enough memory, by keeping the different matrices D, V and W formed, a great amount of computational time can be saved, as the marching algorithm is only a small part of the total CPU time required.

Contrary to the True Amplitude One-Way method, the Bremmer series computes accurately the reflected waves that go in the + anddirections, which means that it does not suffer from the same limitations. Moreover, using rightgoing and leftgoing iterations ensures the result to be correct inside the whole domain of computation from the inlet to the outlet.

Figure 4 translates into a diagram the different steps needed to use the Bremmer series. To illustrate this process, we will use a case based on the 1D wave equation with three different media, each of them having a particular speed of sound. The discontinuities in 1 = 33.333 and in 2 = 66.666 are smoothed to be ∞ in the computational domain and are expressed by:

= -tanh -1 + + ( + ) tanh -2 + , (79) 
with = -15, = 0.5, = -5, = 1 and = 20 + . These discontinuities are here to illustrate the impact of the reflection on the final result.

At first order, a simple One-Way is performed in the + direction while setting the leftgoing waves to 0 ( 0 -= 0).

Then, this first term of the serie 0 + is used as a source term for the + and -OW to compute the second order. The other two ± obtained are, in turn, used as source terms for the next higher order terms. Once the convergence is good enough (here 4 ± ≈ 0), we can add all the different contributions obtained in order to get the result of the simulation which is, here, compared to a full wave simulation.

The next section will present some results obtained with both methods presented above and they will be compared to the Numerical One-Way and some full wave simulations. The systems used will be the wave equation (Section V.B), used in acoustics and geophysics, and the linearized Euler equations (Section V.C), especially used in aeroacoustics. 

V. Numerical results

A few numerical results are presented in this section. In Section V.B, the wave equation will be used to compare a full wave solution and a Numerical One-Way simulation with the two new methods introduced above, while Section V.C will present similar comparisons with the 2D Euler equations. But before all that, the methodology of computation will be discussed in Section V.A.

A. Computational methodology

The methodology used for solving the full wave equation is particular, due to the fact that the Numerical One-Way used for the comparison is the one based on the outflow approach (see Section II.B) which is not capable of projecting the wave imposed at the inlet of the domain. Therefore, we have to manually separate the leftgoing from the rightgoing waves in order to only impose the latter one at the entry of the computational domain of the OW. The methods of resolution of the Full wave and the One-Way problem remain valid for both applications.

Full wave resolution

The full wave simulations are carried out using the same methodology for the wave equation and for the Euler equations. The 2D computational domain is surrounded by Perfectly Matched Layers (PML) on each side of the -axis while other boundary conditions are used in the transverse direction , depending on the case studied. The computational domain is separated in two sides by the line = 0, from which we will extract the result in order to use it for the initialization of the One-Way computations. The left part of the computational domain is composed of a homogeneous medium/flow in (it can have some variations in ) to avoid any reflection going back into the right part, that can not be computed by the OWs. It also contains a source term that takes the shape of a Gaussian, from which the waves will propagate. The Figure 5 summarizes this setup in one illustration. All the full wave simulations will be done with a high-order 2D finite element code (we will limit ourselves to second order) with a good mesh convergence.

Fig. 5 Construction of the full wave reference simulation

The variations along the privileged direction are present inside the second part of the computational domain and this is where the reflections and refractions happen. The computation is carried out in order to give reference results that will be used for the comparison between the different methods but, because of the backscattering induced by the reflection, the extracted data at = 0 is composed of both rightgoing and left going waves.

Since it is not possible to project the wave at the inlet of the Numerical One-Way using the outflow approach (contrary to the approach presented in this paper), we need to separate the leftgoing and the rightgoing components of the incident wave manually to keep only the interesting part. Therefore, another computation will be performed in order to initialize correctly the different One-Way approaches. This second computation features a homogeneous medium/flow in for the two parts of the computation domain with the same variation in . As a result, we can obtain a purely right propagating wave that does not need to be projected to remove the left propagating part considering that no reflection in can occur.

Figure 6 compares the solution in = 0 obtained by the reference computation (with variations in ) and the initialization computation (without variations in ) applied to the wave equation and, more particularly, for the second case of section V.B. Moreover, the result of the projection through the improved One-Way is given in black markers. We can see that the imposed solution of the One-Way methods consists in a pure plane wave while the solution given by the reference computation presents a more complex result due to the reflections inside the domain. Finally, we can also see that the projection of the reference result by the One-Way method gives an accurate approximation of its rightgoing part. 

One-Way resolution

The different One-Way computations will be done by setting the variables according to the "origin" line ( = 0) obtained at the initialization full wave computation. Thus, even if the new formulation of the OW presented in this paper would have been able to project this wave (i.e. the first computation is not necessary), both methods will have exactly the same initialization to facilitate the comparison.

The axial marching algorithm will be applied between = 0 and = . It is based on the use of 1 order upwind Discontinuous Galerkin scheme (DG), as it ensures a quasi-explicit unconditionally stable computation for the transport equation [START_REF] Pietro | Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications[END_REF]. Figure 7 shows the 2 relative error (compared to a full wave simulation) computed at the outlet of a One-Way Euler Equation using a shear flow as base flow. The results of the DG computations with an increasing number of stations are compared to the ones obtained by the well-known 4 ℎ order Runge-Kutta (RK) algorithm. It can be noticed that the values for the RK march are not plotted for < 300, as the simulation is not stable for these cases. The counterpart of using this DG marching method is the computational cost that is approximately twice the one required by the 4 ℎ order Runge-Kutta. However, for a Euler One-Way computation, the time spent for the spatial iterations only represents around 10% of the total CPU time and therefore, the increase in computational time is not that important, keeping in mind the advantages brought by the DG method, especially in the case of complex flows.

Finally, the transverse discretization will be done between = -0.5 and = 0.5 by first-order finite elements for all the simulations, and the number of iterations for the Bremmer method is enough to ensure a good convergence on the result. The same can be said about the choice of ± values and the number of coefficients.

B. Application to the wave equation

To get first numerical results, the Bremmer method and the True Amplitude One-Way method presented in this paper are applied to the 2D wave equation with an inhomogeneous speed of sound in the medium of propagation. This expression of the wave equation with a variable speed of sound is a text-book case and it is not valid for the propagation of acoustic waves. Firstly, the second-order equation is recast in the following first-order form:

                   ˆ ˆ = 0 1 -2 ( , ) - 2 2 0 ˆ ˆ in Ω ˆ = 0 on Γ ⊥ , (80) 
with ˆ = ˆ , = 5 the angular frequency and ( , ) the speed of sound that depends on and . The computational domain is denoted by Ω while the transverse boundaries [0, ] × 0.5 and [0, ] × -0.5 are designated by Γ ⊥ .

Two cases are simulated here with several media of propagation. Case 1 features three different speeds of sound leading the problem to become 2D (Figure 8). On the other hand, case 2 is composed of four different media of propagation (Figure 10). It can be noted that the speed of sound is smoothed between each medium for the transition to be C ∞ and that in both cases, homogeneous Neumann boundary conditions are imposed in the transverse direction. The mesh used for the One-Way simulations features a total of 200 points in the transverse direction and 5000 points along the -axis.

Figure 9 depicts the linear extraction of the real part of acoustic pressure for the four kinds of simulations studied here on the case 1. We can see that the Numerical One-Way and the True Amplitude one are pretty close to each other at the beginning, before the variation. After this variation, while the NOW method gives the good wavelength, the resulting maximum amplitude is overshoot by 20%. On the contrary, the True Amplitude version gives an accurate wave at the 29 outlet of the computational domain since it is really close to the full-wave results. As expected, the Bremmer series converges on the reference simulation before and after the variation, considering it takes into account the rightgoing as well as the reflected leftgoing waves.

In the same way, Figure 11 shows the real part of the pressure along the -axis at = 0 for case 2. The improvement brought by the Bremmer series over a simple Numerical One-Way appears clearly. The difference is especially notable between = 10 and = 35, where the set of reflected waves is the most important as the waves will bounce between the first discontinuity and the second one and back and forth endlessly. As this case includes a non negligible impact of the reflected waves, it is logical that both the Numerical One-Way and the True Amplitude one give a wrong outgoing wave in term of amplitude, without possibly telling which one is the best suited. This case is here to show the limitations of the One-Way formalism, which can be overcome by the use of back and forth spatial marching algorithm involved in the Bremmer series formulation. Figure 12 depicts the 2D results of the full wave simulation, the Bremmer method and the Numerical One-Way. The True Amplitude result is not shown here since its result is not more correct than the Numerical one. It can be seen to 0.8 for the first parameter and to 1 for the second. Slip boundary conditions are imposed at the top and the bottom of the vein. The mesh used for the One-Way simulations is composed of 150 points in the -axis and of 1500 points along the axial direction.

For this case, the base flow takes the form of a non-physical flow which is the composition of two flows independent in . At the inlet, we have a shear flow in while a uniform flow is imposed at the outlet. These two parts are merged by a ∞ function which is responsible of the variations in . The use of this flow is made just to show the possibilities of the methods presented here in the case of a non uniform flow in and allows to compute a full wave solution in order to qualitatively compare the results obtained. At the end, the base flow has the following expression: ¯ = -0.5 tanh -5 0.75

+ 0.5 tanh + , (82) 
with = 0.2, = 0.15 and = 0.5. Since the velocity values are dimensionless regarding the sound speed, ¯ can be seen as the Mach number. Only the axial velocity is imposed while the pressure ¯ and the transverse velocity ¯ = 0 are considered as constant. In the same way as for the wave equation, a full wave computation is carried out for a medium with constant properties along , and its result at = 0 is imposed at the inlet of the One-Way simulations. It is therefore composed of a mix of modes, even if the Kelvin-Helmholtz one takes over the others. Figure 13 depicts the 2D -dependent base flow imposed for the computations. In Figure 15 are plotted the data gathered along a line, once again at = 0, for the module of the axial velocity fluctuation. The four simulations agree on the left part of the domain, with an exponential increase of the amplitude, due to the unstable mode present in this shear flow. The differences start to appear when = 5, where the flow stabilizes.

The One-Way method gives a module with a wrong amplitude (+2.5%), as expected. The True Amplitude and Bremmer methods are staying closer to the reference values all along the computational domain, even in the area of high variation and, most importantly, at the outlet. when the number of iterations increases. Moreover, when the value of is increased, the 2 norm is dropping even faster. This is due to the fact that the amplitude of the variation has to be compared to the value of the frequency.

Therefore, for the same variation in the flow, the impact of the reflection and the transmission is less significant when the wave number is high. It can be noticed that these curves of norm do not seem to be significantly modified in the case where the spatial marching algorithm is moving on a very coarse mesh. 

Obviously the ratio of norm is stabilizing around a finite value when the number of iterations increases. This value is of 0.66 for the case = 1 and 0.42 for = 10. In either case, these values are below 1, showing that the series is converging in this case. Once again, the case with a greater starts at a lower value and reaches a smaller one than the other case.

VI. Conclusion

In this paper, we presented a new generic formulation of the One-Way equations using a numerical approach as stated by Towne & Colonius. By using the same non-reflective boundary condition along the propagation axis in both directions, we are able to reconstruct a pseudo eigenvectors matrix. Having access to this information allows us to build a OW system in the same way as the microlocal approach, but without the heavy analytical development induced by this method. Compared to the numerical approach of Towne & Colonius, this new formulation seems to present a low additional computation cost, while permitting the implementation of source terms and the projection of wave.

This formulation is also used as the base for two new formalisms that have for objective to broaden the validity domain of the One-Way method regarding the variation of the medium/flow of propagation along the privileged direction.

Therefore, thanks to the additional information given by the presented formulation, a True Amplitude formalism can be derived for a generic system, that allows to take into account the modification in amplitude of the transmitted wave. This method has been applied to the wave equation and to the linearized Euler equations and it has given satisfying results in the cases where the reflection phenomenon can be neglected.

Another formalism based on the use of Bremmer series has been presented in order to take into account the effect of stronger and numerous variations along the propagation direction. Already used for seismic problems, the series is resolved by multiple OWs performed along the propagation axis back and forth. This method has proven its accuracy for the wave equation and for the linearized Euler equations in several cases presenting strong variations.

The True Amplitude formalism and the Bremmer series have been used in the case of the wave equation and the linearized Euler equations but since their construction is only based on the numerical side, they can be applied to many other complex systems. Additional works will be carried on in order to assess the domain of validity of each of these methods in more practical and physically relevant cases.

This work was partly supported by the french "Programme d'Investissements d'avenir" ANR-17-EURE-0005 conducted by ANR
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C. Bremmer series

The second method presented here is based on the concept of Bremmer series [START_REF] Bremmer | Approximation as the First Term of a Geometric-Optical Series[END_REF], introduced for the WKB approximation in 1D and that was generalized in 2D to be coupled with the micro-local One-Way [START_REF] De Hoop | Generalization of the Bremmer Coupling Series[END_REF]. However, while the original Bremmer series method is based on the resolution of an integral equation, we will keep the OW formalism presented above to solve the system [START_REF] Gustafsson | The Bremmer Series for a Multi-Dimensional Acoustic Scattering Problem[END_REF]. The starting point of this method is to consider the wave solution of system [START_REF] Towne | A Critical Assessment of the Parabolized Stability Equations[END_REF] as an infinite sum of rightgoing and leftgoing waves such as:

The use of the Bremmer series requires to solve iteratively rightgoing and leftgoing OW equations until convergence is reached. We will initialize the computation by a simple One-Way along the privileged direction to give the first rightgoing term of this series 0 + , while the first leftgoing term 0 -is set to 0. The system to be solved between = 0 and = is the following:

This first term obtained describes a wave propagating from the inlet (left) to the outlet (right). But in the presence of discontinuities or variations of the medium/flow of propagation, this wave will create a reflected wave 1 -but it will also be affected by transmission, which will be expressed by the corrective term 1 + . These two terms of the series are obtained by performing two other One-Way space integrations in the + anddirections for 1 + and 1 -respectively.

They will be initialized to 0 each on their extremity ( = 0 for + and = for -). The equations to solve read:

and

We can continue the reasoning further down with the terms 2 + and 2 -. However, while 1 + was only the corrective term of 0 + due to transmission, the new term 2 + will be the corrective term of 1 + but it will also contain the reflected wave of 1 -. The same is also true for clearly that the presence of variations in of the medium of propagation has affected the Numerical One-Way method which, as expected, gives the right wavelength but with a spatial shift and a wrong amplitude. On the contrary, the Bremmer method captures well the shifts in wavelength and in amplitude, due to these variations in and , in the whole computational domain.

C. Application to the linearized Euler equations

The second example presented here will be based on a more complex system composed of three different equations, the linearized isentropic Euler equations, which read as follows:

with ū and ¯ denoting the base flow variables, the gas density and = the speed of sound. The and components of the velocity are denoted by the vector u while n represents the outer-pointing normal vector. Similarly to the wave equation case, the computational domain is represented by Ω while the transverse boundaries [0, ] × 0.5 and [0, ] × -0.5 are designated by Γ ⊥ . In this example, and ¯ will be considered as constant and their values will be set