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a b s t r a c t 

Clustering is inherently a process of exploratory data analysis. It has attracted more attention recently 

because much real-world data consists of multiple representations or views. However, it becomes in- 

creasingly problematic when dealing with large and heterogeneous data. It is worth noting that sev- 

eral approaches have been developed to increase computational efficiency, although most of them have 

some drawbacks: (1) Most existing techniques consider equal or static weights to quantify importance 

across different views and samples, so common and complementary features cannot be used. (2) The 

clustering task is performed by arbitrary initialization without caring about the rich structure of the 

joint discrete representation, and thus poorly executed. In this paper, we propose a novel approach called 

“Auto-Weighted Binary Multi-View Clustering Via Deep Initialization” for large-scale multi-view cluster- 

ing based on two main scenarios. First, we consider the distinction between different views based on the 

importance of samples, and therefore apply a dynamic learning strategy for the automatic weighting of 

views and samples. Second, in the context of initializing binary clustering, we develop a new CNN feature 

and use a low-dimensional binary embedding by exploiting the efficient capabilities of Fourier mapping. 

Moreover, our approach simultaneously learns a joint discrete representation and performs direct clus- 

tering using a constrained binary matrix factorization; the optimization problem is perfectly solved in a 

unified learning model. Experimental results conducted on several challenging datasets demonstrate the 

effectiveness and superiority of the proposed approach over state-of-the-art methods in terms of accu- 

racy, normalized mutual information, and purity. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In data mining, machine learning, and image processing appli- 

ations, data is usually represented by multiple feature sets. In par- 

icular, in image analysis, each image can be described by differ- 
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nt visual descriptors, such as HOG, SIFT, GIST, and LBP, etc. This 

ype of data is called multiview data, and each feature represen- 

ation corresponds to a view. These views have certain common 

nd complementary information. These two pieces of information 

re important for the success of multi-view learning [1] . Existing 

echnologies for multi-view learning can be broadly divided into 

upervised and unsupervised learning. This work focuses on one 

f the unsupervised learning techniques, namely clustering. 

Most partitioning algorithms are only suitable for data with a 

ingle view. Even concatenating all views into a single view and 

hen applying the most advanced clustering algorithms to that sin- 

le view may not improve clustering performance due to redun- 

ancy of information, resulting in overfitting. 
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Unlike traditional single-view clustering algorithms, multi-view 

lustering (MVC) methods [2,3] can be broadly divided into three 

ain classes: (1) common feature subspace (combination by pro- 

ection), such as using CCA [4] to minimize the cross-correlation 

rror and then grouping the data using one of the clustering al- 

orithms (e.g., k -means); (2) multi-view spectral clustering (com- 

on eigenvector matrix [5] and/or common graph similarity ma- 

rix [6] ), which constructs multiple graphs to characterize the geo- 

etric structure followed by data partitioning using one of the ex- 

ant clustering methods; (3) multi-view NMF clustering (common 

ndicator matrix) [7] based on matrix factorization by splitting the 

eature matrix into a centroid matrix and cluster assignment ma- 

rix. With the recent flourish, hashing techniques, also known as 

inary code learning [8–10] have become increasingly important 

n big data analysis, resulting in fast Hamming distance computa- 

ion and much lower memory requirements. Numerous multi-view 

ash approaches have emerged, especially for visual search and 

ast object detection, Wang et al. [8] , Zhang et al. [11] . The hashing

pproach embeds the high-dimensional real-valued feature vectors 

nto low-dimensional binary codes through a series of projections 

hat can exchange information between multiple views without af- 

ecting the intrinsic aspects of the original space. 

Despite significant progress in terms of fast computation and 

artially satisfactory results, most of the existing multi-view learn- 

ng algorithms have three drawbacks: 

1. Most of the existing models consider equal or static weights 

with additional parameters to estimate the contribution of each 

view, resulting in unsatisfactory representation learning. 

2. Most of the existing models consider all samples equally in the 

clustering process. 

3. The proposed methods lack a feasible and informative initial- 

ization of the binary codes of the clustering task, resulting in a 

poor local optimum. 

To solve the above problems, a novel multi-view clustering 

ethod is developed in this paper: Auto-Weighted Binary Multi- 

iew Clustering Via Deep Initialization (AW-BMVC). As a roadmap, 

e can divide the work motivation into two areas: Data Discov- 

ry and Analysis Model. The first area aims to exploit the rich 

ttributes associated with real-world visual applications, different 

iews and/or modalities, and how to integrate them into a unified 

inary representation. This integration drives us to make features 

ore understandable and linearly separable by exploring non- 

inear structures thanks to kernel advantages. The second track 

nvolves three mutual analysis steps: view diversity, sample vari- 

nce, and clustering initialization. Here, the algorithm is automat- 

cally stimulated to implicitly measure the degree of importance 

f each view and explicitly determine the weight of each sam- 

le based on the learning loss. The intuition behind the automat- 

cally weighted strategy is first to reduce the impact of noisy and 

utlier views/samples by causing the model to make a good esti- 

ate of the importance of each view/sample based on the small- 

st learned loss error for the views and an explicit weight esti- 

ate for the samples; as a result of the automatically weighted 

cenario, additional manually adjusted parameters are avoided. The 

rick of automatic and adaptive weighting is also used in several 

ecent machine learning algorithms. Binary embedding of samples 

nterprets the mapping (embedding) from the kernelized higher- 

imensional real space of features to the lower-dimensional Ham- 

ing space (Common Binary Codes). The advantage is twofold. 

irst, the Common Binary Codes avoid the noise that normally af- 

ects the real-valued features in the different views. Second, by us- 

ng the common binary data representation, the optimization steps 

an be made more efficient since some steps can be greatly sim- 

lified. The last and most important step in this area is to develop 

 new efficient strategy to bring the clustering model to the best 
2 
ptimal point. We should emphasize that the bottleneck for most 

ultiview clustering approaches is the “fusion capability” that bet- 

er approximates multiview data in a unified representation, tak- 

ng into account how to fully exploit the different information that 

ultiview data possess. 

The following are the main elements of our contribution: 

1. To exploit the heterogeneity of data with multiple views, we 

introduce an automatically weighted strategy to control the 

pairwise importance of each sample and each view separately. 

View weights are implicitly derived from the square root of the 

view objective function, while sample weights are explicitly es- 

timated. 

2. We propose an objective function whose optimization allows 

the joint estimation of the following entities: the common bi- 

nary code of the data, the two sets of weights, the view-based 

mapping from the nonlinear representation to the common bi- 

nary code space, the binary centroids, and the cluster assign- 

ment matrix. 

3. Deep features are extracted from the Vgg16 network to obtain 

a good initialization for the proposed optimization. This feature 

is mapped to a low-dimensional Hamming space using a bidi- 

rectional FFT technique “BD-FFT”. We use the generated binary 

vectors to initialize our iterative clustering algorithm. 

4. Based on the presented objective function and alternating 

optimization scheme, the proposed method can outperform 

many state-of-the-art multiview clustering techniques, includ- 

ing those with real values. 

The rest of the paper is as follows: Section 2 focuses on the 

ey concepts and some related work. Section 3 provides a detailed 

nderstanding of the proposed work. Performance analysis through 

xtensive experiments is discussed in Section 4 . In Section 5 , we 

onclude the paper with a future study. 

. Preliminaries and related work 

.1. Notations 

In this paper, matrices are shown in bold uppercase letters and 

ectors are shown in bold lowercase letters. All notations used are 

ummarized in Table 1 . 

.2. Related work 

Multi-view clustering (MVC) is an exciting topic in machine 

earning and has been explored using various strategies. 

Before diving into related work, we present an anthology of 

VC methods. The fact that a considerable number of multi-view 

pproaches can be classified into the following categories: Spectral 

lustering [12] , Graph-based Clustering [13] , and Subspace Cluster- 

ng [14] . 

Here we briefly describe some interesting works: 

• RMSC [15] : This method started with the construction of a 

graph for each view. Then, according to the low-rank constraint 

and sparse decomposition, a joint transition probability matrix 

was used as the crucial input to the standard Markov chain 

method for clustering. This method is not suitable for large 

datasets. It overlooks the flexible structure of the local mani- 

fold, which cannot satisfy the agreement between views. 
• DiMSC [16] : It is a self-representation based subspace cluster- 

ing; it describes each data point with the data collection it- 

self on the original view directly and learnes diversity between 

multiple views by means of the Hilbert-Schmidt independence 

criterion (HSIC) to estimate the diversity across different repre- 

sentations. Later, a spectral clustering strategy is used to obtain 
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Table 1 

Summary of the main notations. 

Notation Description Notation Description 

n Number of samples (·) T Transpose operator 

c Number of clusters I Identity matrix 

V Number of views h (·) Discrete hash function 

m Number of anchors l Binary code length 

d v Data dimensionality for view v B = [ b 1 , . . . , b n ] ∈ {−1 , +1 } l×n The common binary codes of the n samples 

X 1 , . . . ., X M where X v ∈ R d v ×n A set of V data matrices U 

v ∈ R l×m The mapping matrix for the v th view 

x v s s th sample from the v th view α View-weighting vector 

a v 1 , a 
v 
2 , . . . , a 

v 
m A set of selected anchors from the v th view W ∈ R n ×n Sample-weighting matrix (a diagonal matrix) 

�v ∈ R m ×n Nonlinear Radial Basis Function mapping for view v β, γ , λ, ρ Regularization parameters 

σ Kernel width C ∈ {−1 , +1 } l×c Clustering binary centroids 

sgn (·) Signum operator G ∈ { 0 , 1 } c×n Clustering assignment 

|| · || F Frobenius norm 1 Column vector of ones 

T r(·) Trace of a matrix 
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the partitioning result. This method focuses on merging infor- 

mation rather than improving the ability to represent features. 
• AWP [17] : It presented spectral embedding of kernels from dif- 

ferent views in parallel with the Procrustes analysis technique 

to learn a unified cluster indicator matrix that fits all spec- 

tral embeddings. Despite the low computational cost compared 

to other graph- based methods, this work requires a post- 

processing step based on spectral rotation to obtain cluster la- 

bels. 
• WMSC [12] : In this method, a normalized Laplacian matrix was 

created for each view, followed by a combined joint Laplacian 

matrix approximated based on the learned weights to discrimi- 

nate the contribution of each corresponding view. Spectral clus- 

tering was performed to obtain the predicted labels, taking into 

account the principle of spectral perturbation, which aims to 

minimize the clustering ability between each selected view and 

the joint clustering. This method is based on the following prin- 

ciple: the proximity of the subspaces spanned by the eigen- 

vectors is measured by the canonical angle between these sub- 

spaces to capture the difference in cluster ability. 
• OMSC [18] : It was proposed to learn the affinity matrix for each 

view and the consensus graph in the intrinsic space simultane- 

ously, thus assigning a projection matrix for each view to map 

the constructed affinities in a low-dimensional space. In addi- 

tion, dynamic view weighting was provided to quantify the im- 

portance of each view. Without applying a clustering algorithm, 

an implicit partitioning result was generated by permuting the 

consensus affinity matrix into a new form in which it ensures 

the grouping of the data into a number of connected compo- 

nents based on the Laplacian rule and Ky Fan’s theorem. This 

method is very sensitive to hyperparameters. 
• LMVSC [19] : Multiple anchor graphs were created to reduce 

time complexity. Then, the double stochastic similarity ma- 

trix was computed, and the eigenvalue decomposition was per- 

formed on this small graph. K -means was applied to the em- 

bedded space to achieve the final clustering. In this work, 

the nonlinear high-order correlation between the consensus 

latent subspace and the different view-spaces is not well 

explored. 
• NESE [20] : This model constructs graphs from different views 

and then considers a spectral embedding. These constructed 

view-based graph matrices and the spectral representation are 

simultaneously combined, inspired by a learning model of sym- 

metric matrix factorization, to iteratively estimate a consistent 

non-negative embedding that directly reveals a joint partition- 

ing result. Unlike AWP, this method estimates the clustering la- 

bels directly without post-processing. However, it suffers from 

the effects of noise and outliers since complementary informa- 

tion is merged into a non-negative embedding matrix. 
3 
• GMC [13] : It combines graph construction, graph fusion, and 

data clustering into a single framework, in which the graph of 

each view and the unified graph of all views are learned by 

mutual reinforcement, and the unified graph with a rank con- 

straint directly partitions the data points into clusters. In this 

method, a weight is automatically assigned to each graph ma- 

trix to obtain a unified graph matrix. 
• SMVSC [14] : In this method, a graph filtering technique was 

introduced to obtain a smooth representation. First, a graph 

was created for each view using the probabilistic neighborhood 

method. Then, a graph filter was applied to these graphs, fol- 

lowed by a selection of representative anchors. By concatenat- 

ing different filtered graphs, a joint anchor graph fusion was 

created. Finally, an eigenvalue decomposition of this matrix was 

performed, and clustering was invoked using K -means. This is 

an alternative approach to LMVSC that uses graph filtering to 

achieve a smooth representation in each view. 
• Co-FW-MVFCM [21] : It introduced a feature- and view- 

weighted scheme by integrating two steps: local and collabo- 

rative learning. The local step targeted the partitioning of each 

view and the collaborative step shared the information about 

the membership of multiple views. Finally, global clustering 

was achieved by aggregating the weighted partition matrices 

from different views. The problem with this model is that there 

are no clear criteria for selecting the optimal exponent param- 

eter to control the view weights. 

However, there are few studies that have looked at the cluster- 

ng of large binary data. Gong et al. [22] have developed a method 

or binary clustering in a view that consists of two separate steps, 

amely binary code generation and binary k -means clustering. The 

ain drawback is that the binary code is generated using a data- 

ndependent method, iterative quantization (ITQ). The work de- 

cribed in Gong et al. [9] adopted a two-level clustering breaks the 

ink between binary representation and data partitioning. To accel- 

rate large-scale clustering of single views, Shen et al. [23] com- 

ined binary structural SVM and conventional k -means in an opti- 

ization algorithm. Neither method can be applied to large-scale 

VC, and the characteristics of multi-view data have not been 

horoughly investigated. In the meantime, the binary codes gen- 

rated byShen et al. [23] obtained unsatisfactory results due to 

he lack of a complete joint representation. Zhang et al. [7] have 

eveloped an interesting approach called Binary Multi-view Clus- 

ering (BMVC) to overcome a major problem related to multi- 

iew clustering, which requires less computation time and storage 

ost. 

BMVC has uncovered two essential elements: collaborative dis- 

rete representation learning and binary clustering structure learn- 

ng in a common model. By considering only the complementary 
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eatures, this framework has considered encoding multi-view fea- 

ures into a common compact binary code. This model provides a 

on-negative normalized vector to weight the views with an addi- 

ional adjustable parameter to balance the importance of the dif- 

erent views. 

This method suffered from the proper distinction between 

hared and individual information, which can lead to the loss of 

ocal structure preservation in binary code learning. As an alter- 

ative working solution to the above problem, the HSIC method 

as jointly learned a common binary representation and robust 

iscrete cluster structures [11] . The former decomposes each pro- 

ection into a combination of shareable and individual projec- 

ions across multiple views to capture the underlying correlations; 

he latter can greatly improve the computational efficiency and 

obustness of clustering. However, the above work is very sen- 

itive to the initialization of the binary clustering process, and 

ven the performance degrades when trying to get rid of the 

xtra parameter and learn the weighting factor of each view 

utomatically. 

To address the above shortcomings, we drew inspiration from 

he BMVC framework. Our outstanding work, which falls into the 

ategory of multiview NMF clustering, characterizes the relation- 

hip between views based on samples using the learning strat- 

gy of automatic weighting of samples and automatic weighting 

f views. In the present work, the clustering was performed based 

n a joint binary matrix factorization over a bit balance constraint 

9] , which is a typical requirement of binary code learning. In 

articular, the initialization of the discrete representation plays 

 crucial role in driving the iterative binary clustering optimiza- 

ion towards the optimal point solution. Together with this con- 

ept of initialization, we developed an efficient solution that inte- 

rates a new deep feature of Vgg16. Finally, these features are en- 

oded by a set of compact binary codes using the bidirectional FFT 

echnique [24] . 

. The proposed approach 

In this section, we provide a detailed description of the new 

ulti-view clustering method, which we call Auto-Weighted Bi- 

ary Multi-View Clustering Via Deep Initialization (AW-BMVC). It 

onsists of two common learning objectives: a common discrete 

epresentation driven by the auto-weighted sampling strategy and 

he auto-weighted view strategy; and at the same time, the global 

bjective function is initialized with a good binary matrix repre- 

entation. In short, Fig. 1 illustrates the diagram of the proposed 

ramework. 

.1. Anchor-based representation 

Considering an RBF (Radial Basis Function) that could evidently 

rrange different views into a single tensor with fixed dimen- 

ionality and well explore the high-order latent structure within 

ultiple views by projecting them into a higher dimensional 

pace. 

We consider a multi-view dataset consists of V representations 

i.e. V views) for n instances, which are designated by a set of ma- 

rices { X 

1 , . . . ., X 

V } ; where X 

v ∈ R 

d v ×n , is the data matrix of the

 th view, and d v is the dimensionality of data features from the 

 th view. It is assumed that data samples in each view are zero-

entered, i.e. 
∑ 

s x 
v 
s = 0 , to maintain the balance of the data. 

The first step is to encode data using non-linear RBF mapping. 

his encoding is given by the following mapping: 

(x 

v 
s ) = 

[
exp 

(
−|| x 

v 
s − a v 1 || 2 
σ v 

)
, . . . , e xp 

(
−|| x 

v 
s − a v m 

|| 2 
σ v 

)]T 

(1) 
4

here σ v is the kernel width for the v th view, �(x v s ) ∈ R 

m rep-

esents m-dimensional non-linear embedding for the s th sample 

rom the v th view, { a v 
1 
, a v 

2 
, . . . , a v m 

} is a set of m selected anchors

rom v th view. One approach is to think of anchors as being sta- 

istically representative of that wider dataset. We get these an- 

hors using the K -medoids technique, by leveraging its robustness 

o noise [25] , rather than random sampling or K-means. 

Remark: We fix the number of selected anchors for each view 

o m = 10 0 0 based on the outlined experiments in Zheng et al.

7] . It should also be noted that the influence of the kernel width 

arameter σ v is critical, as it determines the extent of smoothing 

26] and often requires a lot of manual investigation. Empirically, a 

niversal adaptive scaling is established where the global width for 

ach view can be set to the average of all the Euclidean distances 

etween the samples and their corresponding anchors. 

.2. Common discrete representation 

The main goal of our unsupervised method is to perform direct 

lustering in much lower-dimensional Hamming space using the 

ommon binary codes. In particular, compression of multiple views 

s performed. To mitigate this, hashing has been introduced as a 

opular approach for a computationally efficient similarity preserv- 

ng technique. 

We consider a discriminative hashing function to be learned for 

ach view in which we aim to quantize each �(x v s ) into a discrete 

epresentation as follows: 

in 

 

v , b s 

V ∑ 

v =1 

n ∑ 

s =1 

|| b s − U 

v �(x 

v 
s ) || 2 = min 

U v , B 

V ∑ 

v =1 

|| B − U 

v �(X 

v ) || 2 F (2) 

 s = h 

v 
s (�(x 

v 
s ) ; U 

v ) = sgn (U 

v �(x 

v 
s )) (3) 

here B = [ b 1 , ..., b n ] is the common binary codes from different

iews (i.e., x v s , ∀ v = 1 , ..., V ), �(X 

v ) is the matrix nonlinear repre-

entation of all samples in view v , �(X 

v ) = [ �(x v 
1 
) , . . . , �(x v n )] , U 

v 

s the mapping matrix, sgn (·) is the element-wise sign operator. 

ote that although the model in Eq. (2) is linear, the overall map- 

ing from data space to the common binary code space is nonlin- 

ar due to the use the nonlinear mapping �(X 

v ) . 

.3. Sample-view auto-weighting 

It is acknowledged that different views depict the same subject 

rom various measurements hence, the projection { U 

v } V v =1 
ought 

o capture consensus information that maximizes the similarities 

etween different views, as well as the disparity that discrimi- 

ates individual characteristics. Therefore, to characterize the re- 

ationship between views, implicit automatic view weighting will 

e adopted. On the other hand, explicit sample weighting coeffi- 

ients will be estimated in global optimization. This strategy allows 

nterchangeably highlighting the vital samples and promoting the 

omplementary information between different views that yields a 

ull common discrete representation. 

To step further, from the information-theoretic point of view, 

t is required to maximize the information carried by each bit of 

he binary codes [27] . Based on this concept, an additional regu- 

arizer is adopted for the binary codes B using the maximum en- 

ropy principle [9] . Thus, our goal is to maximize the variance of 

he matrix B given by : 

 ar[ B ] = 

1 

n 

V ∑ 

v =1 

v ar[ U 

v �(X 

v )] = 

1 

n 

V ∑ 

v =1 

‖ U 

v �(X 

v ) ‖ 

2 

= 

1 

n 

V ∑ 

v =1 

tr((U 

v �(X 

v ))(U 

v �(X 

v )) T ) (4) 
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Fig. 1. The flowchart of the proposed method. Common discrete representation, Binary clustering initialization, Sample & view auto-weighting, and binary matrix factoriza- 

tion are integrated into a unified learning framework. 
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This additional regularization on B can ensure balanced par- 

ition and reduce the redundancy of the binary codes [11] . We 

ormulate the relaxed regularization as a common discrete repre- 

entation learning problem: 

in F 
(
U 

v , B , W 

)
= 

V ∑ 

v =1 

(
‖ 

(
B − U 

v �
(
X 

v 
s 

))
W ‖ 

2 
F + β ‖ U 

v ‖ 

2 
F 

− γ

n 

tr 

((
U 

v �
(
X 

v 
))(

U 

v �
(
X 

v 
))T 

))
s.t. B ∈ { −1 , 1 } l×n 

, 
∑ 

s 

w s = 1 , w s > 0 , (5) 

here β and γ are two regularization parameters. 

The second term is a regularizer that controls the parameter 

cales (contribute to the stable solution). W = diag(w 1 , w 2 , . . . , w n )

s the diagonal sample-weighting matrix. By learning the weights 

or samples, the important ones will get a large weight. 

Motivated by recently proposed auto-weighted techniques [28] , 

e propose the novel formulation where no view weight factors 

re explicitly defined. 

Here we replace the above objective function with a new one 

hat is the square root of the term to be minimized. As such, the 

roblem can be reformulated as follows: 

min 
 

v , B , W 

= 

V ∑ 

v =1 

√ 

‖ B − U 

v �( X 

v ) W ‖ 2 
F 

+ β ‖ U 

v ‖ 2 
F 

− γ

n 
tr 
(
U 

v �( X 

v ) ( U 

v �( X 

v ) ) 
T 
)

s.t. B ∈ { −1 , 1 } l×n 
, 
∑ 

s 

w s = 1 , w s > 0 (6) 

As in many multi-view algorithms, this form of criterion will 

mplicitly provide a weight for each view. Therefore, minimizing 
5 
q. (6) is equivalent to minimizing the following: 

min 
 

v , B , W 

= 

V ∑ 

v =1 

αv 
(
‖ (B − U 

v �
(
X 

v 
))

W ‖ 2 F + β‖ U 

v ‖ 2 F −
γ

n 
tr 
(
U 

v �
(
X 

v 
))(

U 

v �
(
X 

v 
))T 

)
s.t. B ∈ { −1 , 1 } l×n 

, 
∑ 

s 

w s = 1 , w s > 0 , (7) 

here the auto-weight αv is given by the following expression: 

v = 

1 

2 
√ || (B − U 

v �(X 

v )) W || 2 
F 

+ β|| U 

v || 2 
F 

− γ
n 

tr(U 

v �(X 

v ))(U 

v �(X 

v )) T 

(8) 

.4. Binary matrix factorization and overall objective function 

AW-BMVC considers the factorization of the learned discrete 

epresentation B directly into two matrices; the binary clustering 

entroids C and the discrete clustering indicators G with some spe- 

ific constraints using: 

in 

C , g s 
|| b s − C g s || 2 F 

.t. C 

T 1 = 0 , C ∈ {−1 , 1 } l×c , g s ∈ { 0 , 1 } c , 
c ∑ 

i 

g is = 1 

(9) 

here C and g s are the clustering centroids and the assignment 

ector for the sample s , respectively. The clustering centers con- 

traint ( C 

T 1 = 0 ) grants the balance condition to maximize the in-

ormation of each bit. Writing Eq. (9) for all samples, we got the 

ollowing factorization problem: 

in 

C , G 
|| (B − C G ) W || 2 F 

.t. C 

T 1 = 0 , C ∈ {−1 , 1 } l×c , G ∈ { 0 , 1 } c×n , 

c ∑ 

i =1 

G is = 1 

(10) 
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So, the overall joint AW-BMVC is formulated as: 

min F 
(
U 

v , B , C , G , W , α
)

= 

V ∑ 

v =1 

αv 
[ 
‖ (B − U 

v �
(
X 

v 
))

W ‖ 2 F + β ‖ U 

v ‖ 2 F 

− γ

n 
tr 

((
U 

v �
(
X 

v 
))(

U 

v �
(
X 

v 
))T 

)] 
+ λ‖ ( B − C G ) W ‖ 2 F 

s.t. C 

T 1 = 0 , 
∑ 

s 

w s = 1 , w s > 0 , 

B ∈ { −1 , 1 } l×n 
, C ∈ { −1 , 1 } l×c 

, G ∈ { 0 , 1 } c×n 
, 

c ∑ 

i =1 

G is = 1 , (11) 

here λ is the regularization parameter. 

We should draw attention to the presence of sample auto- 

eighted matrix W for the binary clustering learning part, this 

ould make sense about conserving information and upholding 

he inter-relationship equilibrium between the discrete represen- 

ation and the binary clustering learning. 

.5. Optimization 

Basically, the solution of the problem (11) is a challenging com- 

inatorial optimization problem due to the discrete constraints and 

he nonlinearity of the objective function. Therefore, an alternat- 

ng optimization scheme is applied to decompose the problem 

nto small subproblems and update it alternately with respect to 

ne variable while fixing the other remaining variables. Therefore, 

e define each step to iteratively update the mapping matrix U 

v , 

he discrete representation B , the binary cluster centroids C and 

he indicator G , the sample auto-weighting W and the view auto- 

eighting αv , respectively. 

• Step 1: Update U 

v , v = 1 , . . . , V . 

By fixing other variables, the optimization formula for U 

v is 

in F 
(
U 

v 
)

= ‖ 

(
B − U 

v �
(
X 

v 
))

W ‖ 

2 
F + β ‖ U 

v ‖ 

2 
F 

− γ

n 

tr 

((
U 

v �
(
X 

v 
))(

U 

v �
(
X 

v 
))T 

)
(12) 

By computing the derivative of the objective function with re- 

pective to U 

v , and setting it to 0, we can obtain the following so-

ution: 

 

v = B W W �(X 

v ) T · Q (13) 

here Q = 

[
�(X 

v ) WW�(X 

v ) T − γ
n �(X 

v ) �(X 

v ) T + β I 
]−1 

. 

• Step 2: Update B . 

The optimization formula for B is 

in 

B 
= 

V ∑ 

v =1 

αv 
(‖ 

(
B − U 

v �
(
X 

v 
))

W ‖ 

2 
F 

)
+ λ‖ ( B − CG ) W ‖ 

2 
F 

= 

V ∑ 

v =1 

αv tr 

((
BW − U 

v �
(
X 

v 
)

W 

)T (
B W − U 

v �
(
X 

v 
)

W 

))

+ λ tr 
(
( B W − C G W ) 

T 
( B W − C G W ) 

)
= tr 

[ 

B 

T 

( 

V ∑ 

v =1 

αv WW 

T + λ WW 

T 

) 

B 

] 

− 2 

tr 

[ 

B 

T 

( 

V ∑ 

v =1 

αv U 

v �
(
X 

v 
)
W W + λ C G W W 

) ] 

+ cons 

s.t. B ∈ { −1 , 1 } , (14) 
6 
here cons indicates a constant value w.r.t. B . 

The solution for B is given by: 

 = sgn 

( 

V ∑ 

v =1 

αv U 

v �(X 

v ) W W + λ C G W W 

) 

(15) 

• Step 3: Update C and G . 

The regularized optimization formula for C and G taking into 

ccount the discrete constraints will be given by: 

in F (C , G ) = || (B − CG ) W || 2 F + ρ|| C 

T 1 || 2 
.t. C ∈ {−1 , 1 } l×c , G ∈ { 0 , 1 } c×n , 

∑ 

i 

g is = 1 , 
(16) 

We iteratively optimize the cluster centroids following the 

daptive discrete proximal linearized minimization (ADPLM) tech- 

ique [10] , by maintaining the discrete constraints during the op- 

imization process. 

Update C . 

With G fixed we have the following minimization problem: 

in F (C ) = −2 tr 
[
(BW ) T (CGW ) 

]
+ ρ|| C 

T 1 || 2 + cons (17) 

The derivative of the obtained functional with respect to C is 

iven as follows: 

F (C ) = −2 B W (G W ) T + 2 ρ E C s.t. C ∈ {−1 , 1 } l×c , (18) 

here ∇F (C ) is the gradient of F (C ) and E is l × l square matrix

f ones. 

Based on the rule of ADPLM, we update C in the p + 1 th itera-

ion by 

 

p+1 = sgn 

(
C 

p − 1 

μ
∇F (C 

p ) 
)

(19) 

here 1 
μ is a step size. We set μp ∈ (L, 2 L ) , where L is the Lipschitz

onstant. 

Update G . 

in F (G ) = || (B − C G ) W || 2 F (20) 

Every column in G ∈ { 0 , 1 } c×n represents the hard cluster as-

ignment for sample s (i.e., the vector g s ). It is given by: 

 

p+1 
is 

= 

{
1 i = arg min k H(b s , c 

p+1 

k 
) 

0 otherwise 
(21) 

here H(b s , c k ) is the Hamming distance between the s th binary

ode b s and the k th cluster centroid c k . 

• Step 4: Update the Sample weighting matrix W . 

W is the diagonal sample weight matrix. It is initialized by 

 1 = . . . = w s = . . . = w n = 

1 
n . It is updated using the following: 

in F (W ) = 

V ∑ 

v =1 

αv (|| (B − U 

v �(X 

v )) W || 2 F ) + λ|| (B − CG ) W || 2 F 

s.t. 

n ∑ 

s =1 

w s = 1 , w s > 0 , (22) 

The loss function (22) is simplified by adopting the following 

ntermediate matrices: 

P 

v = [ p 

v 
1 
, . . . , p 

v 
n ] = B − U 

v �(X 

v ) 

M = [ m 1 , . . . , m n ] = B − C G 

 (W ) = 

V ∑ 

v =1 

αv 

( 

n ∑ 

s =1 

w 

2 
s || p 

v 
s || 2 

) 

+ λ
n ∑ 

s =1 

w 

2 
s || m s || 2 − ε 

( 

n ∑ 

s =1 

w s − 1 

)

(23) 

∂F ( W ) 

∂w s 
= 0 ⇒ 

V ∑ 

v =1 

αv 2 w s ‖ p 

v 
s ‖ 

2 + 2 λw s ‖ m s ‖ 

2 − ε = 0 (24) 
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Table 2 

Datasets used in our experiments. “dim” refers to the feature dimension. 

Dataset #Samples #Views Feature descriptors #Classes 

Caltech101-7/20 1474/2386 6 48-dim Gabor features 7/20 

40-dim Wavelet moments 

254-dim Centrist features 

1984-dim HOG 

512-dim GIST 

928-dim LBP 

NUSWIDE-Obj 30,000 5 65-dim Color Histogram 31 

226-dim Color moments 

145-dim Color correlation 

74-dim Edge distribution 

129-dim Wavelet texture 

Scene-15 4485 3 20-dim GIST 15 

59-dim PHOG 

40-dim LBP 

i

t

i

t

4

4
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s

d
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1

C

a
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i
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m

m

p

w

(  

(  

(

t

4

b

i

1 https://data.caltech.edu/records/20086 . 
2 https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/ 

NUS-WIDE.html . 
3 https://figshare.com/articles/dataset/15-Scene _ Image _ Dataset/7007177 . 
⇒ 2 w s 

[ 

V ∑ 

v =1 

αv || p s || 2 + λ || m 

v 
s || 2 

] 

= ε (25) 

⇒ 2 w s A s = ε (26) 

here A s = 

V ∑ 

v =1 

αv ‖ p 

v 
s ‖ 2 + λ‖ m s ‖ 2 

⇒ w s = 

ε 

2 A s 
(27) 

n 
 

s =1 

w s = 1 ⇒ ε = 

1 ∑ n 
s =1 

1 
2 A s 

(28) 

⇒ w s = 

1 ∑ n 
s =1 ( 

1 
2 ·A s ) 

2 A s 
(29) 

• Step 5: Update the View weight αv , v = 1 , . . . , n . 

These are initialized by αv = 

1 
v , ∀ v = 1 , ..., V . 

With fixed U 

v , B , W ; αv can be optimized using Eq. (8) . 

Algorithm 1 summarizes the proposed framework. 

Algorithm 1: Auto-weighted binary ulti-view clustering via 

deep initialization (AW-BMVC). 

Input: Multi-view data X 

v ∈ R 

d v ×n , and Selected anchors 

A 

v ∈ R 

d v ×m , v = 1 , ..., V , Parameters β, γ , λ, # of clusters c, # 

of iterations r & t , Length of binary codes l. 

Output: Binary representation B , Cluster centroid C , Cluster 

indicator G . 

Initialization: Initialize view weights αv = 

1 
V , Initialize 

sample weights w s = 

1 
n , Initialize binary representation B (see 

section (3.6)). 

Compute anchor-based representation �(X 

v ) , v = 1 , ..., V 

using (1). 

repeat 
Update U 

v using (13).Update B using (15). 

repeat 
Update C using (19). 

Update G using (21). 

until convergence or reach r iterations ; 

Update W using (29).Update α using (8). 

until convergence or reach t iterations ; 

.6. Binary clustering initialization 

The solution to our iterative clustering problem depends heav- 

ly on the initial setup of the binary matrix to be factorized. The 

ffect of an improper initialization is interpreted as the clustering 

lgorithm getting stuck in a bad local minimum. 

Various Convolutional Neural Networks (CNN) architectures 

ave been found to perform better than innovative hand-crafted 

eature detectors in detecting object features [29] . Under this 

oncept, we introduce new deep method called Bidirectional-Fast 

ourier Transform “BD-FFT”, which provides effective representa- 

ive codes using Fourier decomposition [24] . 

We use the rich feature representation of a pre-trained Visual 

eometry Group model VGG16; the first task is to forward our im- 

ge dataset and retrieve features from the second FC layer (4096 

eurons). Each of these neurons is sensitive to a particular fea- 

ure [30] . The second task is to create a frequency domain rep- 

esentation as a sequence of sorted frequencies using bidirectional 

FT. In this transformation, we treat each deep feature vector as 

 one-dimensional signal. Based on this idea, the coefficients cor- 

esponding to “l” low frequencies were selected and transformed 
7

nto binary codes [24,31] , with the threshold set to the mean of 

he frequency coefficients. 

Note that the deep features are not used as an additional view 

n the proposed criterion (11) , but only to obtain a good initializa- 

ion of the matrix B . 

. Performance analysis 

.1. Experimental setup 

.1.1. Datasets 

We perform experiments on four public multiview image 

atasets commonly used to benchmark clustering algorithms, in- 

luding Caltech101-7, Caltech101-20 1 [32] , NUSWIDE-Obj 2 [33] , 

nd Scene-15 3 [34] . Multi-view features are extracted to de- 

cribe each image. Table 2 exhibits a detailed description of these 

atasets. Caltech101 contains 9144 images grouped into 101 ob- 

ects. By tracking the earlier work in Wang et al. [28] , we select

he frequently used object recognition dataset with 7 categories. 

474 images from the data are assembled to produce the so-called 

altech101-7. In addition, 2386 images affiliated with 20 classes 

re selected. This dataset is called Caltech101-20. Six different fea- 

ures were selected for both Caltech101-7 and Caltech101-20. 

NUSWIDE-Obj includes 30,0 0 0 images distributed amongst 31 

lasses. Five popular descriptors are used for this dataset. 

Scene-15, formed by 4485 images grouped into 15 categories of 

ndoor and outdoor scenes. Features are extracted from each image 

o form three views. 

.1.2. Evaluation metrics and competitors 

We validated the proposed approach using the three most com- 

only used external evaluation criteria [35] : Accuracy (ACC), Nor- 

alized Mutual Information (NMI), and purity. We support our 

roposal by comparing it with eleven state-of-the-art algorithms 

hich are precisely described in the related work section (2.2) : 

RMSC) [15] , (DiMSC) [16] , (AWP) [17] , (WMSC) [12] , (BMVC) [7] ,

OMSC) [18] , (LMVSC) [19] , (NESE) [20] , (GMC) [13] , (SMVSC) [14] ,

Co- FW-MVFCM) [21] . We run the compared algorithms based on 

he prescribed optimal parameter setting of each work. 

.2. Parameter sensitivity 

The proposed model is parameterized so that its behavior can 

e tuned with three hyperparameters: β, γ , and λ. These regular- 

zation parameters are expected to contribute to a stable solution. 

https://data.caltech.edu/records/20086
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177
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Fig. 2. Variability of accuracy with respect to β and γ parameters on: (a) Caltech101-7, (b) Caltech101-20, (c) NUSWIDE-Obj, (d) Scene-15. 

Table 3 

Best parameter tuning. 

Datasets β γ λ

Caltech101-7(20) 1e −05 10 1e −09 

NUSWIDE-Obj 1e −05 2 1e −09 

Scene-15 1e −05 10 1e −09 
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Table 4 

The running time (seconds) of different clustering approaches on the Caltech101-7 

dataset. 

Method Time (s) Method Time (s) 

RMSC-2014 92.08 LMVSC-2020 135.79 

DiMSC-2015 355.77 NESE-2020 63.18 

AWP-2018 7.76 GMC-2020 92.81 

WMSC-2018 7.73 SMVSC-2021 236.32 

BMVC-2018 6.18 Co-FW-MVFCM-2021 1864.57 

OMSC-2019 107.55 AW-BMVC(Ours) 15.23 

4

a

l

i

a  

t

p

 

o

p

p

o

m

m

e analyzed the effects of these parameters by setting λ to 1e −9 

nd empirically varying the values of β and γ from the grid {1e −5, 

e −4, 1e −3, 1e −2 1e −1 2, 4, 6, 10}. 

The variability of clustering accuracy for the four datasets and 

or different configurations of β and γ is shown in Fig. 2 . 

We should mention here that the sensitivity across the 

altech101-7/20 datasets is also dependent on the number of se- 

ected anchors, which is recommended to be less than 10 0 0 an- 

hors; this comes from the numerical perturbation, that will be ad- 

ressed in the convergence analysis (section (4.6) P.30). We obtain 

xcellent clustering performance when working with low values 

f β ( β = 1 e − 5 ) and relatively high values of γ ( γ = 10 ). Clus-

ering performance is relatively stable when 1 e − 5 < β < 1 e − 2 ;

 < γ < 10 ; otherwise, we run the risk of losing effectiveness out- 

ide the optimal range. 

The summary of the best parameter setting for the three pa- 

ameters is given in Table 3 , which shows that despite the sensi- 

ivity mentioned above, we obtained very good clustering results 

or all tested datasets with only one tuning of γ in a small search 

ange. 
8 
.3. Computational complexity 

In the proposed work, the problem of binary code learning was 

ddressed as an interesting research approach to solve the prob- 

em of large-scale clustering of multiple views. The total complex- 

ty of AW-BMVC is O (nlm 

2 V ) t when five optimization operations 

re considered: U 

v , B , C , G , W , and α, . This calculation goes beyond

he complexity of deep feature extraction, which is a part of the 

reprocessing step. 

It can be observed that l � n and m � n where n is the number

f data samples, and the small number of iterations “t”, since the 

roposed model converges rapidly; consequently, the time com- 

lexity can be summarized to O (n ) , which depends linearly on n . 

We fulfill our running time experiments using Matlab R2019b 

n PC machine with 2.39 GHz, i-5-2430M CPU and 6 GB RAM 

emory. In Table 4 , we give the running time of the different 

ethods on Caltech101-7. 
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Table 5 

Ablation experimental results. SAW: Sample Auto-Weighted. VAW: View Auto-Weighted. BCI: Binary Clustering Initialization. 

Removing or adding a component Dataset 

SAW VAW BCI Caltech101-7 Caltech101-20 NUSWIDE-Obj Scene-15 

ACC ✗ ✗ ✗ 0.2856 0.2355 0.1680 0.2312 

NMI 0.1079 0.1864 0.1621 0.1466 

Purity 0.5916 0.4392 0.2872 0.2580 

ACC ✔ ✗ ✗ 0.2904 0.2921 0.1875 0.1739 

NMI 0.1645 0.2149 0.1082 0.1062 

Purity 0.6832 0.4715 0.2383 0.1835 

ACC ✗ ✔ ✗ 0.3209 0.3814 0.1336 0.2446 

NMI 0.2065 0.4932 0.1457 0.2062 

Purity 0.7123 0.7318 0.2721 0.2999 

ACC ✗ ✗ ✔ 0.5122 0.5159 0.1874 0.5032 

NMI 0.4935 0.6830 0.1935 0.43.22 

Purity 0.8718 0.8688 0.3081 0.55.74 

ACC ✔ ✔ ✗ 0.3141 0.2200 0.1695 0.2881 

NMI 0.1583 0.1898 0.1676 0.2080 

Purity 0.6784 0.4484 0.2714 0.3097 

ACC ✔ ✗ ✔ 0.4274 0.6144 0.1598 0.433 

NMI 0.2746 0.4900 0.1552 0.3986 

Purity 0.7822 0.6174 0.2811 0.4384 

ACC ✗ ✔ ✔ 0.5102 0.4736 0.1853 0.4932 

NMI 0.4931 0.6659 0.1957 0.3564 

Purity 0.8718 0.8395 0.3137 0.54.62 

ACC ✔ ✔ ✔ 0.9022 0.8734 0.2190 0.5634 

NMI 0.8733 0.8180 0.2156 0.5089 

Purity 0.9022 0.8873 0.322 0.5884 
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It can be seen that DiMSC (355.77 s), OMSC (107.55 s), LMVSC 

135.79 s), SMVSC (236.32 s) and Co-FW-MVFCM (1864.57 s) are 

elatively time-consuming methods (more than 100 s) compared 

o other approaches. As you can see from this table, our method 

chieves clustering results within 15.23 s in only t = 3 iterations 

or the Caltech101-7 dataset, which is due to the self-weighted 

erm of the sample that slightly increases the time cost. The AWP, 

MSC and BMVC methods show better time efficiency, but our ap- 

roach achieves the best clustering results. 

.4. Ablation study 

Our proposed method consists of three core modules: (Auto- 

atic sample weighting; Automatic view weighting; and Initializa- 

ion of binary clustering). In Table 5 , we report the performance on 

wo tested datasets when each module is removed or added. 

Note that the combination of these three indispensable compo- 

ents leads to the all-out proposal, whose dominance is evidenced 

y the bold results, while the removal of these components leads 

s back to the BMVC framework [7] (the first row in Table 5 ). 

We note that merging the two variants sample and view auto- 

eighted without considering the binary clustering initialization 

art can result in a massive performance drop; accordingly, the BCI 

odule plays an important role in improving the clustering perfor- 

ance. Furthermore, attempting to separate either auto-weighted 

omponent from the binary clustering initialization variant reduces 

he capacity of the model. 

.5. Clustering initialization analysis 

To further investigate the impact of different initialization sce- 

arios of the binary codes on our proposed optimization algo- 

ithm, we conducted a group of experiments on all datasets. 

lgorithm 1 was used with three initialization scenarios for the 

atrix of binary codes B : A random binary matrix, non-linear PCA, 

nd Deep-FFT. In the first scenario, we generate a random binary 

atrix; the second scenario shows a non-linear PCA technique 

dopted by the BMVC method [7] ; the third technique refers to 

eep-FFT, which is our proposed initialization scenario. As can be 
9

een in Table 6 , the obvious worst results are obtained by the bi-

ary random matrix, which is completely independent of the data. 

he non-linear PCA method exposes homogeneous but sub-optimal 

coring metrics. We conclude that this is due to performing the 

igenvalue decomposition over an embedded view. In particular, 

ompared to the previous two scenarios, we can draw a conclu- 

ion about our initialization approach that achieves a significant 

mprovement in clustering results as we consider a new deep fea- 

ure extraction that explicitly improves the optimization process. 

.6. Convergence analysis 

Figure 3 shows the objective function value for each itera- 

ion on four datasets. The alternating iterative optimization strat- 

gy is used to iteratively update each variable: the mapping ma- 

rix U 

v , the discrete representation B , the binary cluster centroids 

 , the cluster indicator matrix G , the auto-weighted sample W , 

nd the auto-weighted view α. The subproblems U 

v and B arising 

rom Eqs. (12) to (14) guarantee a closed form optimal solutions 

iven by Eqs. (13) and (15) , respectively. The subproblem C in 

q. (17) has an analytical solution using ADPLM [10] , Eq. (20) ef- 

ectively shows its optimal solution, followed by the obvious solu- 

ion for G in Eq. (21) , which is similar to the K-means learning

cheme. The solution for the automatic weighting of samples in 

q. (29) as well as the automatic weighting of views in Eq. (8) are

he exact minimum points. As a result, the loss values of the glob- 

lly adopted objective function F (U ; B ; C ; G ; W ;α) in Eq. (11) de-

rease rapidly and reach the minimum point after about t = 5 iter- 

tions, along with verifying the monotonic bound, which is a suf- 

cient condition for convergence. 

Numerical perturbation on Caltech101-7/20 Another phenomenon 

hat may reveal the stability dilemma occurred when we experi- 

ented with the Caltech101-7/20 datasets in particular. A numer- 

cal perturbation occurred that resulted in a rapid and transient 

rop in the objective function to its minimum value. Subsequently, 

 sudden rise and/or stall was observed as the computation of the 

 

v mapping matrices became ill-conditioned. For a small dataset 

uch as Caltech-7 ( n = 1474 ), the number of anchors may be up-

er bounded. Therefore, an experimental extension is achieved and 



K. Houfar, D. Samai, F. Dornaika et al. Pattern Recognition 137 (2023) 109281 

Table 6 

Clustering initialization study. RI: Random Initialization. PCA: One-view PCA Initialization. Deep: Deep-FFT Initialization. 

Variant 

RI PCA Deep RI PCA Deep RI PCA Deep RI PCA Deep 

Dataset Caltech-7 Caltech-20 NUSWIDE-Obj Scene-15 

ACC 0.2863 0.2924 0.9022 0.2393 0.2200 0.8734 0.1508 0.1956 0.2190 0.1445 0.2453 0.5634 

NMI 0.0622 0.2103 0.8733 0.1471 0.1898 0.8180 0.0785 0.1500 0.2156 0.0476 0.1536 0.5089 

Purity 0.5733 0.6934 0.9022 0.4510 0.4484 0.8873 0.2041 0.2634 0.3220 0.1521 0.2660 0.5884 

Fig. 3. Objective function as a function of iteration number on all datasets. The number of anchors m is set to 10 0 0. 

Fig. 4. Objective function as a function of iteration number on all datasets. The number of anchors m is set to 700. 

Fig. 5. ACC and NMI variation versus the number of anchors on the Scene-15 dataset. 

t

t

m

t

t

a  

T

o

n

he numerical perturbation problem is solved by simply reducing 

he number of selected anchors to less than 10 0 0 anchors, where 

 = 700 anchors are experimented and validated (see Fig. 4 ). 

Figure 5 illustrates the clustering performance as a function of 

he number of anchors using the Scene-15 dataset. As can be seen, 
10 
he clustering performance can be affected by this number. The 

ccuracy varies between 0.4939 ( m = 400 ) and 0.56 6 6 ( m = 700 ).

here are no specific criteria for determining the optimal number 

f anchors, but we can admit that this depends strongly on the 

umber of samples. As an example for Scene-15, if the number of 
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Table 7 

The clustering performance comparisons on challenging datasets.“–” indicates unavailable results due to out of memory. 

Methods 

Caltech101-7 Caltech101-20 NUSWIDE-0bj Scene-15 

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity 

RMSC-2014 [15] 0.4037 0.3544 0.8026 0.4035 0.5073 0.7360 0.1473 0.1421 0.2624 0.3482 0.3483 0.3797 

DiMSC-2015 [16] 0.5611 0.4221 0.8318 0.4728 0.4935 0.7347 0.1330 0.1363 0.2165 0.2555 0.2083 0.2758 

AWP-2018 [17] 0.5685 0.4710 0.8554 0.4953 0.559 0.7594 0.1440 0.1123 0.2446 0.3429 0.3366 0.4035 

WMSC-2018 [12] 0.5943 0.496 0.8588 0.5310 0.5893 0.7682 0.1382 0.1344 0.2475 0.4370 0.4341 0.4807 

BMVC-2018 [7] 0.2856 0.1079 0.5916 0.2355 0.1864 0.4392 0.1680 0.1621 0.2872 0.2312 0.1466 0.258 

OMSC-2019 [18] 0.0257 0.1770 0.9545 0.0255 0.3108 0.9241 0.0678 0.2530 0.4465 0.0084 0.3133 0.8403 

LMVSC-2020 [19] 0.7266 0.5193 0.7517 0.5306 0.5271 0.5847 0.1181 0.1063 0.1363 0.3134 0.3297 0.3551 

NESE-2020 [20] 0.4857 0.4614 0.8548 0.6085 0.6045 0.7556 – – – 0.4312 0.4042 0.4822 

GMC-2020 [13] 0.6919 0.6056 0.8846 0.4564 0.3845 0.5549 0.1192 0.1128 0.1205 0.1400 0.1105 0.1464 

SMVSC-2021 [14] 0.7354 0.5204 0.8487 0.5692 0.5190 0.6442 0.1254 0.1123 0.1587 0.3583 0.3433 0.3861 

Co-FW-MVFCM-2021 [21] 0.4016 0.2819 0.7944 0.3051 0.3887 0.5746 0.1673 0.0913 0.2209 0.2856 0.2822 0.3257 

AW-BMVC(Ours) 0.9022 0.8733 0.9022 0.8734 0.8180 0.8873 0.2190 0.2156 0.3220 0.5634 0.5089 0.5884 
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nchors is less than 500 a degradation in clustering performance is 

bserved. However, when m is greater than 500, the performance 

eaks and becomes stable. 

.7. Comparison with state-of-the-art multi-view methods 

To validate the superiority of the proposed algorithm, we per- 

ormed extensive experiments with 11 state-of-the-art comparison 

ethods. Table 7 shows the performance of all the competing clus- 

ering methods for the four datasets. In this table, the best cluster- 

ng performance is highlighted in bold. 

According to Table 7 , the OMSC method shows unbalanced per- 

ormance, noticeable at extremely low ACC, in contrast to the su- 

erior NMI and Purity for all datasets; this approach may require 

pecial adjustment. 

Based on the results depicted in Tables 4 and 7 , we can draw

he following observations. Analytically, the SMVSC and LMVSC 

ethods require quite a long runtime, but have the second best 

esults. This is due to the smooth representation task achieved by 

he graph filtering in SMVSC and the anchor graph technique in 

MVSC. The three methods WMSC, AWP and DiMSC achieve the 

hird best results respectively. The first approach features lower 

unning time and reveals the trick of minimizing the cluster- 

ng ability between two groups of eigenvectors, the Laplacian for 

ach view and the Laplacian of the consensus matrix. The sec- 

nd approach uses the Procrustes analysis technique to achieve 

he clustering assignment and avoids the eigenvalue decomposi- 

ion in each iteration step, which makes it more efficient. The 

hird method is the second most time consuming because it has 

he property of self-expression for each view in the original space. 

oreover, it may require expanding the fusibility study towards a 

ull diversity estimation. The NESE method is quite time efficient 

nd gives good results even for small data sets. It takes advantage 

f consistent non-negative embedding, but needs to better address 

he problem of diversity of multiple views by specifying the de- 

ree of contribution of each view. BMVC is computationally very 

fficient thanks to its simultaneous binary representation and bi- 

ary clustering. Three major weaknesses of this framework have 

een effectively tackled by our proposed approach (automatic view 

eighting, automatic sample weighting, and binary clustering ini- 

ialization). RMSC performs poorly due to the two separate steps 

f consensus graph learning and clustering structure learning. The 

orst performing method is Co-FW-MVFCM, which has a very long 

untime due to the a priori partitioning of the individual views and 

he shared information between the individual members. The tech- 

ical treatment of feature reduction by thresholding each view is 

nadequate, as is the empirical exponent parameter to handle the 

istribution of each view. 
11 
In terms of general clustering metrics, most baselines perform 

etter than other competing methods for a given dataset. For ex- 

mple, BMVC is better for large datasets such as NUSWIDE-Obj. 

MSC is better for the Scene-15 dataset, NESE for Caltech101-20, 

nd GMC for Caltech101-7. We can deduce that AW-BMVC achieves 

uperior performance on the four benchmark image datasets: 

altech101-7, Caltech101-20, NUS-WIDE-obj, and Scene-15 in three 

valuation indices and outperforms the results of the other 

ethods. 

. Conclusion 

In this work, we introduced a large-scale method called Auto- 

eighted Binary Multi-View Clustering Via Deep Initialization 

AW-BMVC) to learn a common discrete representation of multi- 

iew data while optimizing binary clustering based on matrix fac- 

orization. Thanks to the advantages of self-weighted samples and 

iews as the first component in this system, which demonstrates 

ts ability to discriminate between views based on important sam- 

les and obtain a complete joint discrete representation. We have 

lso placed great emphasis on a new deep representation tech- 

ique to address the clustering initialization problem. As a result, 

ur binary clustering initialization strategy proved to be positive 

or final clustering with excellent performance. Accordingly, fast 

onvergence was achieved within a few iterations. Empirical re- 

ults on several well-known datasets have confirmed the superi- 

rity of our approach over considerable state-of-the-art multi-view 

lustering methods. 

However, for the scientific integrity of the proposed approach 

hree unavoidable accompanying flaws must be mentioned: (1) It 

s pretty obvious as long as the preferred number of anchors is 

xed to 10 0 0 samples, the thing that makes the model selective 

s it doesnt deal with datasets any less. (2) Despite the effort s 

o make the model autonomously learn view and sample weights, 

e still have the weary manually tunable regularization parame- 

ers( β , γ , λ) for its stability, on which the clustering performance is 

ighly dependent. (3) The choice of pre-trained deep Vgg16 as a 

art of binary matrix initialization technique restricts the scope of 

valuation for handling only image datasets. Extending our work to 

ext datasets through variants of viable binary clustering initializa- 

ion methods is considered promising and it serves as a solution 

o one of the most important mentioned weaknesses. 
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