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Global in time collision-free flocking for the
singular Cucker-Smale model (February 2022)

A. Maupoux, G. Dufour and B. Hérissé

Abstract— Following the ideas of J. Carillo, Y-P. Choi,
P. Mucha and J. Peszek [1], we extend the result on the
absence of collision for the singular Cucker-Smale (CS)
model by proving the existence of a uniform (in time) min-
imal distance, which depends on the initial conditions and
the different parameters of the model. This result is then
applied to the optical flow control, which corresponds to
a critical value ot the exponent in the singular CS model.
Additionally we illustrate, through the implicit relation given
by our result and numerical estimates, the difficulty to ob-
tain an estimate of a lower bound on the minimal distance.
Finally, we give some insight whether this uniform bound
still holds or not for the singular CS model with additional
control terms.

Index Terms— Collision avoidance, Control, Optical flow,
Singular Cucker-Smale model, Uniform minimal distance.

I. INTRODUCTION

AGENT based models and population dynamics have been
largely studied, modelling various systems ranging from

animal groups to neuron networks or the evolution of an
embryo. In 2007, Cucker and Smale proposed and analysed
a simple second order model exhibiting flocking [2], which
means individuals tend to reach a consensus of some sort.
This is achieved by letting the force governing the system
depend on the relative values of the consensus quantities. The
most common application would be to a group of animals
(say a sheep herd or a fish school), which will align their
speed vectors over time. The original Cucker-Smale (CS)
model is given by (4). It has since received a lot of attention
: multi-cluster formation [3], multi-population [4], weighted
interactions [5], low-connected graphs [6] and so on. However,
this model does not always guarantee the absence of collisions.
This feature is of paramount importance to describe biological
behaviors such as bird flocks and applications to drone swarms
for instance. Collision avoidance has been proved for suitable
initial conditions [7], depending on the strength of interactions,
or by adding a variety of forces ; some of them are studied
in [8] and the references therein. Still, the CS model has a
major advantage over its extensions, since we have a lot of
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routines allowing us to derive bounds and decay rates, which
are detailed in the first section.

Besides, [9] observed that optical flow is a key component
of flying animals and insects to safely navigate near obstacles.
This property was used to stabilize a drone above a moving
platform, and perform a safe landing [10]. It was also used
to have flocking for nonholonomic robots [11]. Since optical
flow provides a measure of the relative velocity weighted by
the invert of the distance to obstacles in the local environment
[12], it is very similar to the term used in the CS model with a
singular communication rate ψ(r) = 1/r. Then, we can intuit
from these observations that a singular communication rate
seems more appropriate to achieve collision-free flocking.

Singular rates have been studied in [13], but in discrete
time, and in [14] is proved the existence of a minimal
distance for ψ such that there exist some positive Ψ satisfying
Ψ′(r) = −rψ(r), which is not the case for 1/r. Moreover,
only simple cases with either two individuals in dimension 3,
or any number of agents in dimension 2, were included. In [1],
the authors proved the absence of collision in finite time for
singular ψ for any initial condition. In this paper, we extend
this result by proving the existence of a uniform minimal
distance for all ψ functions that are non integrable both at the
origin and infinity, given a non-collisional initial condition.
These conditions include the optical flow case mentioned in
the preceding paragraph. The proof relies on the use of the the
flocking ability of the system, which gives a better estimate for
the relative velocities and allows for the existence of a time-
uniform minimal distance. An implicit relation giving a lower
bound for this distance can also be inferred but, depending
on the ψ function, might not give a usable solution. The
result is further extended by adding extra Lipschitz controls
over the speed and position vectors, in order to model target
tracking. We eventually provide numerical simulations for the
case ψ(r) = 1/r.

This article is organized as follows. In section II we intro-
duce the notations used throughout and some useful results on
the CS model, before tackling the main proof in section III.
We then extend the result to other models in section IV, and
illustrate numerically our estimations in section V.

II. NOTATIONS AND PRELIMINARIES

In this section, we introduce notations used throughout,
and the Cucker-Smale model is recalled. All N agents are
represented by a position xi ∈ Rd and a speed vi ∈ Rd. We
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denote by rij the relative position between agent i and j, and
simplify functions composed with rij as

rij := |xi − xj |, fij := f(rij). (1)

We will also measure super-vectors u = (u1, · · · , uN ) ∈
(Rd)N with the following quantity :

|u|2 :=

√√√√ N∑
i,j=1

|ui − uj |2, (2)

and consider a halved variant, namely we replace it with

|u|2 :=

√√√√ N∑
i<j=1

|ui − uj |2 =
1√
2
|u|2. (3)

Then the CS model writes for i = 1, · · · , N :
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1
j 6=i

ψij(vj − vi)(t), (4)

where ψ is the communication rate function. We say it
has long, respectively short, range whenever

∫∞
1
ψ(s)ds,

respectively
∫ 1

0
ψ(s)ds, is infinite. These two characteristics

are sufficient conditions for the model to exhibit flocking
and absence of collision, in the sense of the following usual
definition :

Definition 1: We say model (4) exhibits
• flocking whenever speeds align at infinity, that is

∀i, j ∈ [[1, N ]], |vi − vj |(t) −→
t→∞

0.

• no collision if

∀t ≥ 0,∀i, j ∈ [[1, N ]], rij(t) > 0.
Note that ψ(r) = 1/r satisfies both conditions, streghtening
our interest in ψ functions that are not integrable both at 0 and
infinity. In particular, we have for long ranged potentials the
existence of rM ∈ R+ that bounds the relative distances, and
gives an exponential decay rate of the speeds (see for instance
[7]). More precisely, for any t ≥ 0 :

|x|2(t) ≤ rM , |v|2(t) ≤ |v0|2 exp
(
− ψ(rM )t

)
. (5)

rM is defined as (see the proof of theorem 3 for details on
another model) the largest real satisfying :

|v0|2 =

∫ rM

|x0|2
ψ(s)ds. (6)

Additionally, we can retrieve the exponential convergence for
the position, since for any t, s ≥ 0 and i, j ∈ [[1, N ]]

|(xi − xj)(s+ t) − (xi − xj)(s)| ≤
∣∣∣∣∫ s+t

s

|vi − vj |(τ)dτ

∣∣∣∣
≤ |v0|2
ψ(rM )

e−ψ(rM )s|e−ψ(rM )t − 1|. (7)

When s goes to ∞, we then have exponential convergence of
the relative distances with the same rate as v.

On the other hand, short ranged potentials do not make
agents move away from each other, but slows them down and
makes them go in parallel directions. That is why nothing so
far prevents them to collide at infinity. We will show in the
following that we can improve the estimates used in [1] in
order to grant the existence of a uniform minimal distance
that only depends on ψ and the initial conditions.

III. EXISTENCE OF A MINIMAL DISTANCE

A. Main result

We now give the main result and its proof. We will discuss
them in the next section :

Theorem 1: Let ψ ∈ C0(R+,R+) be non integrable both at
0 and infinity 1 and decreasing. Then for any non collisional
initial condition, there exists for model (4) a lower bound
dmin > 0 on all relative distances, that is independent of
time :

∃dmin > 0, ∀t ≥ 0, min
i 6=j

rij(t) ≥ dmin.

Moreover, we have dmin ≥ d− ≥ 0 which satisfies

d− =

√
2

3N
inf
(
|Ψ|−1

( {
αLψ(d−) + C

} ))
, (8)

where Ψ is the anti derivative of ψ defined in (22), f−1({y})
is the pre-image of {y} by f , Lψ(µ) is the Lipschitz constant
of ψ on [µ,∞), and

α =
N − 2√

2

rM
ψ(rM )

|v0|2, C =
N

2
|v0|2.

Let us prove this result. Following the computations of
[1], we already know that there is no collision in finite time,
and that a unique global solution exists. From the hypothesis
on the tail of ψ, we also have flocking and the exponential
convergences given by (5) and (7). Suppose in order to get
a contradiction that there is no such minimal distance. Then
there exist a sequence of times {(tn)}N and a sequence of
indices {(i, j)n}N such that rnij(tn) converges to 0. Since
the set of available indices is finite, we can assume, up to a
subsequence, that this convergence is true for the pair (l,m).
We then study the set of indices that lead to a collision with
particle l at infinity :

L := {j ∈ [[1, N ]] | ∃{(tn)}N s.t. rlj(tn) −→
n→∞

0}. (9)

In fact, since speeds align exponentially fast, we have more
than this characterization :

Lemma 1: ∀i, j ∈ L, rij(t) −→
t→∞

0.

Proof: We start by proving that for all i ∈ L, ril(t)
converges to 0 at infinity. Suppose that there exist ε > 0 and
a sequence {(sn)}N such that ril(sn) ≥ ε for all n ∈ N.
By definition of L, there exists a sequence {(tp)}N such that
ril(tp) converges to 0. Then by integrating r′il between sn and
tp with sn ≥ tp, we have

ril(sn) ≤ ril(tp) +
|v0|2
ψ(rM )

exp(−ψ(rM )tp).

1Or any condition on the tail of ψ and initial condition to obtain flocking.
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Since the right hand side converges to 0, there exists p large
enough so that it is inferior to ε/2. It remains to take n large
so that sn ≥ tp to find ril(sn) < ε/2, which is a contradiction.
To extend the result to any pair of indices, we simply use the
triangle inequality.

We also need a separation between the set L and the rest
of agents later in the proof :

Lemma 2:

∃µ > 0, ∃T > 0, ∀t ≥ T, ∀i ∈ L,∀j /∈ L, rij(t) ≥ µ.
Proof: Since we have flocking, all rij converge at infinity.

In particular, since j /∈ L, rjl converges to some lj > 0.
Therefore, there exists some time Tj such that rjl(t) ≥ lj/2
for t ≥ Tj . Now ril converges to 0, so that there is a T̃i
allowing ril(t) ≤ lj/4 for t ≥ T̃i. We thus have for t ≥ T :=

maxk=1,··· ,N

{
Tk, T̃k

}
rij(t) ≥ rjl(t)− ril(t) ≥ lj/4 ≥ µ := min

j=1,··· ,N
lj/4.

Let us define the quantities we will control during the proof
of our theorem :

|x|L(t) :=

√∑
i,j∈L

rij(t)2, |v|L(t) :=

√∑
i,j∈L

|vi − vj |2,

(10)
which are | · |2 measurements restricted to L. Similarly to (3),
we define the | · |L variant. By our assumptions, we have that
|L| ≥ 2 and that |x|L converges to 0 as t goes to infinity,
which will be the source of the contradiction. Let us derive
two inequalities on |x|L and |v|L. We claim that

d

dt
|x|L ≤ |v|L. (11)

Indeed,

2|x|L
d

dt
|x|L =

d

dt
|x|2L = 2

∑
i,j∈L

〈xi − xj , vi − vj〉

≤ 2
∑
i,j∈L

rij |vi − vj | ≤ 2|x|L|v|L.

We now study the time derivative of |v|L for t ≥ T :

d

dt
|v|2L = AL + ÃL, (12)

where

AL =
2

N

∑
i,j∈L

k∈L\{i,j}

〈vi − vj , ψik(vk − vi)− ψjk(vk − vj)〉 ,

ÃL =
2

N

∑
i,j∈L
k/∈L

〈vi − vj , ψik(vk − vi)− ψjk(vk − vj)〉 .

For the first term, we use a standard symmetrization technique

in double sums twice, and the fact that rik ≤ |x|L for i, k ∈ L :

AL =
4

N

∑
i,j∈L

k∈L\{i,j}

ψik 〈vi − vj , vk − vi〉

= − 2

N

∑
i,j∈L

k∈L\{i,j}

ψik|vk − vi|2

≤ −2|L|
N

ψ(|x|L)|v|2L. (13)

For the second one, we first insert ±vj in vk − vi. Then we
use the fact that ψ is Lψ(µ) Lipschitz continuous on [µ,∞),
coupled with Lemma 2. We conclude by using the exponential
decay of both |vk−vj | and |x|L at rate −ψ(rM ) from (5) and
(7) :

ÃL = − 2

N

∑
i,j∈L
k/∈L

ψik|vi − vj |2︸ ︷︷ ︸
≥0

+
2

N

∑
i,j∈L
k/∈L

(
ψik − ψjk

)
〈vi − vj , vk − vj〉

≤ 2

N

∑
i,j∈L
k/∈L

Lψ(µ)rij |vi − vj ||vk − vj |

≤ 2
N − |L|
N

Lψ(µ)|v0|2 e−ψ(rM )t
∑
i,j∈L

rij |vi − vj |

≤ 2
N − |L|
N

Lψ(µ)|v0|2 e−ψ(rM )t|x|L|v|L

≤ 2|L|N − |L|
N

Lψ(µ)
|v0|22
ψ(rM )

e−2ψ(rM )t|v|L. (14)

By combining (12), (13) and (14), we find

d

dt
|v|L ≤ −C0a(t)|v|L + C1b(t), (15)

with

C0 =
|L|
N
, C1 = |L|N − |L|

N

|v0|22
ψ(rM )

Lψ(µ), (16)

a(t) = ψ(|x|L), b(t) = exp
(
− 2ψ(rM )t

)
. (17)

If we note c(t) := e−C0

∫ t
T
a(s)ds and vT := v(T ), then the

usual Gronwall estimate yields for t ≥ T :

|v|L(t) ≤
[
|vT |L + C1

∫ t

T

b(s)c−1(s)ds

]
c(t). (18)

We finally bring forth the contradiction. Let Ψ be an
antiderivative of ψ. Remark that

a(t)c(t) =
d

dt

(
− 1

C0
c(t)

)
. (19)

We have for t ≥ T thanks to (11), (18), (19) and an integration
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by part :

|Ψ(|xt|L)| − |Ψ(|xT |L)| ≤
∫ t

T

ψ(|x|L)

∣∣∣∣ ddt |x|L
∣∣∣∣ ds

≤
∫ t

T

ψ(|x|L)|v|Lds

≤
∫ t

T

a(s)c(s)

(
|vT |L + C1

∫ s

T

b(τ)c−1(τ)dτ

)
ds

= −
∫ t

T

− 1

C0
c(s)C1b(s)c

−1(s)ds

+

[
− 1

C0
c(s)

(
|vT |L + C1

∫ s

T

b(τ)c−1(τ)dτ

)]t
s=T

≤ C1

C0

∫ t

T

exp
(
− 2ψ(rM )s

)
ds+

|vT |2
C0

≤ C1

2C0ψ(rM )
e−2ψ(rM )T +

|v0|2
C0

<∞. (20)

As a result, we find a contradiction when we take the limit
t→∞, and this gives us the existence of a minimal distance
dmin.

B. Estimating the lower bound
In order to obtain the lower bound on our newly found

minimal distance, we repeat the same computations, using a
different set L. Let T be a time were the minimal distance
is realized for some rlm (regardless of whether T is finite or
not). We set

L := {j ∈ [[1, N ]] | rlj(t) →
t→T

dmin or rmj(t) →
t→T

dmin}.
(21)

We repeat the same computations, excepted that we control
|x|L with rM instead of a decreasing exponential, since |x|L
no longer converges to 0. Moreover, we work with halved
quantities | · |2 and | · |L defined in (3). This allows to gain
a factor

√
2 over the previous quantities in C1 in (15). This

manipulation does not impact (5). Moreover, we chose the
constant of Ψ so that it vanishes at |x0|L. In other words, Ψ
is precisely

Ψ(r) =

∫ r

|x0|L
ψ(s)ds. (22)

This time we can integrate all inequalities from 0, and we
obtain using |L| ≥ 2∣∣∣Ψ(|x|L(t))

∣∣∣ ≤ (N − 2√
2

rM
ψ(rM )

Lψ(dmin) +
N

2

)
|v0|2.

We invert |Ψ|, and use in |x|L the fact that for i, j ∈ L

rij ≤ (ril + rlj)1ril→dmin ∩ rlj→dmin

+(rim + rmj)1rim→dmin ∩ rmj→dmin

+(ril + rlm + rmj)1ril→dmin ∩ rmj→dmin

+(rim + rml + rlj)1rim→dmin ∩ rlj→dmin ,

where 1ril→dmin
denotes the fact that it is the index l that

realizes the minimal distance for i the definition of i ∈ L.
It remains to remark that all cases presented are disjoint and
cover all possibilities to conclude that rij(∞) ≤ 3dmin, to
find (8) when we send t to T .

The bound we obtained in theorem 1 is pessimistic, since
it takes into account pathological initial conditions. Moreover,
while the theoretical minimal distance dmin always exists and
is positive, (8) might not have positive solutions as seen in
section V, therefore leading to an absence of estimation for
dmin. We believe that it is due to the choice of L in (21). The
set chosen here is the best one we found, but others might fit as
well, leading to better estimates. In the one dimensional case,
individuals can not cross each other. One could take advantage
of this fact in order to obtain better estimates.

IV. EXTENSION TO OTHER MODELS

We now aim to generalize the result to additional command
laws of the form

v̇i(t) =
1

N

N∑
j=1
j 6=i

ψij(vj − vi)(t) + F (t, xi, vi), (23)

where F is 2γx and 2γv Lipschitz with respect to the second
and third variable respectively :

∃γx, γv > 0,∀t ≥ 0,∀u, v, w ∈ Rd,

|F (t, u, v)− F (t, w, v)| ≤ 2γx|u− w|, (24)
|F (t, u, v)− F (t, u, w)| ≤ 2γv|v − w|. (25)

Some example are studied in more details in section IV-B.

A. Generic result
We have the following result :
Theorem 2: Let ψ ∈ C0(R+,R+) be non integrable at 0

and decreasing, and F satisfy (24)-(25). Then for any non
collisional initial condition, there are no collision in finite time
for model (23). Collisions may still occur at infinity.

Remark 1: As we will see in section IV-B, eventhough
F satisfies (24)-(25), we may recover a minimal distance,
or give an example of collision at infinity for some explicit
forces. Therefore, this result is a bare minimum given by the
singularity of ψ, and more can be derived from the nature of
F .

Proof: Since we again have the same calculations, we
refer to [1] or the proof of theorem 1 for details. We no longer
have an exponential decay of speeds, so we will denote Cx
(resp. Cv(t)) a bound on |x|2 (resp. |v|2). We let Cv depend on
time to stay in the same framework as theorem 1. We suppose
there is a collision with agent l at time T , and define the set
L of agents colliding with l at T . We find similarly to (15)

d

dt
|v|L ≤ −

(
|L|
N
ψ(|x|L)− γv

)
|v|L

+

(
N − |L|
N

Lψ(µ)Cv + γx

)
Cx,

which gives after the Gronwall argument and the integration
of Ψ

|Ψ(|x|L(t))|≤ CxeγvT (N − 2)Lψ(µ)

∫ T

0

Cv(s)ds

+
N |v0|2

2
+ CxNe

γvT γxT + |Ψ(|x0|L)| .
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We take the limit t→ T to conclude.
Remark 2: We see that the addition of F brings a factor

eγvT and a shift γxT . The argument suffices to prove the
absence of collision in finite time as t goes to T , but in order to
have a minimal distance, we would like to take the limit T →
∞. For this, we need Cv ∈ L1(R+) (typically exponentially
decreasing), and a way to get rid of γv . There is no hope for
the argument to work if γx is present. That is what we will
see in the next section.

B. Applications
Let us apply the previous result on two specific command

laws, namely a control on the center of mass and on the center
of speed, respectively given by (26) and (27) :

v̇i(t) =
1

N

N∑
j=1
j 6=i

ψij(vj − vi) + γx(xtar(t)− xi), (26)

v̇i(t) =
1

N

N∑
j=1
j 6=i

ψij(vj − vi) + γv(vtar(t)− vi), (27)

where xtar and vtar are continuous position and speed targets
to reach, that may evolve through time. Both models satisfy the
hypothesis of theorem 2. As stated earlier, this result prevents
collisions in finite time, thanks to ψ’s singularity. However,
we can not ask for more without knowing the exact form of
the additional force. Indeed, we are about to see that we can
recover a minimal distance for model (27), while we have an
example of collision at infinity for model (26), even if ψ has
a heavy tail.

1) Speed center control: Here is the result for model (27) :
Theorem 3: Let ψ ∈ C0(R+,R+) be non integrable both at

0 and infinity 2 and decreasing. Then for any non collisional
initial condition, there exists for model (27) a lower bound
dmin > 0 on all relative distances, that is independent of
time :

∃dmin > 0, ∀t ≥ 0, min
i6=j

rij(t) ≥ dmin.

Moreover, we have dmin ≥ d− ≥ 0 which satisfies

d− =

√
2

3N
inf
(
|Ψ|−1

( {
αLψ(d−) + C

} ))
, (28)

where Ψ is the anti-derivative of ψ defined in (22), Lψ(µ) is
the Lipschitz constant of ψ on [µ,∞), and

α =
N − 2√

2

rM
ψ(rM ) + γv

|v0|2, C =
N

2
|v0|2.

Proof: We know from theorem 2 that a global solution
exists, without collision in finite time. In order to use the same
computations as in theorem 1 and conclude, we need to prove
that speeds align exponentially fast. We have the usual system
of differential inequalities :{

|x|′2 ≤ |v|2,
|v|′2 ≤ −(ψ(|x|2) + γv)|v|2.

(29)

2Or any condition on the tail of ψ and initial condition to obtain flocking.

Then define the energy E(t) = |v|2 + Ψ(|x|2), where Ψ is an
antiderivative of ψ, so that E′(t) ≤ −γv|v|2 ≤ 0. As a result,

|v0|2 ≥ |v(t)|2 +

∫ |x(t)|2
|x0|2

ψ(s)ds.

If |x|2 were not bounded, we would have a contradiction with
the non integrability of ψ. We deduce that for all time t,
|x(t)|2 ≤ rM , leading to |v|′2 ≤ −(ψ(rM ) + γv)|v|2 i.e. |v|2
converges exponentially fast to 0.

2) Mass center control: For model (26), we have nothing
more than theorem 2. Indeed, nothing makes agents move
away from each other, and they are attracted to a point. We
would need some repulsion force in order to prevent collisions
(see section IV-B.3). We provide here an explicit example
of collision at infinity. Let us consider the following one
dimensional simple configuration. Take two individuals, one at
position −r0 and speed v0, the other at position r0 and speed
−v0, where r0, v0 > 0. Add a frozen target at position 0. This
means we have two agents facing their objective, attracted by
it and slown down because of the alignment force. Let us note
v resp. x the difference of the speed resp. position of the two
agents. By the choice of the configuration, we have x ≥ 0 and
v ≤ 0. These quantities solve

v̇(t) = −ψ(x(t))v(t)− γxx(t).

Let us suppose there exists a minimal distance δ. Then for all
t ≥ 0,

v̇(t) ≤ −ψ(δ)v(t)− γxδ.

We now consider the following dichotomy : either for all time
t, v(t) ∈ [− γxδ

ψ(δ) , 0), or there exists some time t0 > 0 such that
v(t0) < − γxδ

ψ(δ) , which implies that v(t) ≤ − γxδ
ψ(δ) for t ≥ t0.

In both cases, we have the existence of some c > 0 and t∗ > 0
such that v(t) ≤ −c for t ≥ t∗, which contradicts the fact that
x is lower bounded. We conclude there is no minimal distance,
and that particles collide at infinity.

3) Attraction and repulsion: We have seen that model (26)
needs a repulsion force of some sort to prevent collisions at
infinity. That is why our last example will be the CS model
with an attraction-repulsion force, also called three zone model
(3ZM). It is given by

v̇i(t) =
1

N

N∑
j=1
j 6=i

ψij(vj − vi) +
1

N

N∑
j=1
j 6=i

αij
xj − xi
rij

. (30)

If αij(t) = ϕ′ij(t), we retrieve the usual attraction-repulsion
term deriving from some potential ϕ. The most common
example would be ϕ(r) = (r − η)2/2, for some η > 0.
Unfortunately, we do not have a general collisionless result.
We can prove there are no collision for well prepared initial
conditions (see [8] for instance), and we can retrieve theorem
2 with the same computations as before. In order to make the
proof for the minimal distance we studied work, we need a
few other elements that are yet to be proved. Indeed, if we
repeat the calculations with the same L defined in (9), we get

|Ψ(|x|L(t))| ≤ |Ψ(|x0|L)|+ 1

C0

(∫ t

0

b(s)ds+ |v0|2
)
, (31)



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

for some constant C0, where

b(t) :=
N − |L|
N

Lψ(µ)|x|LCv(t) +
2|L|
N

FL(t),

FL(t) :=

√∑
i∈L
|Fi|2,

Fi :=

N∑
k=1

αik
xk − xi
rik

.

That is enough to conclude that there are no collision in finite
time, but in order to establish the existence of a minimal
distance, insights on the integrability of both Cv and FL are
still needed. Whether these properties are guaranteed without
any more assumption on the model is a topic which is still
under investigation.

V. APPLICATION TO OPTICAL FLOW, NUMERICAL
SIMULATIONS

In this last section, we perform some numerical experiment
for ψ(r) = 1/r. This choice is motivated by the fact that it
modelizes a system where individuals recover the information
from their neighbors through optical flow, as discussed in the
next subsection. We then discuss the application of theorem 1
to this case, before presenting the numerical results.

A. From optical flow to the singular CS model
Optical flow is a dense measure of the velocities of all

visible objects in the environment captured in the image
surface of an agent’s onboard visual sensor (e.g., an insect
eye or a robot camera). Consider that the image surface is a
non-rotating sphere [10], then the velocity of a point Pij on
agent j projected onto the image surface of agent i gives the
optical flow equation

ṗij =
(
Id − pij p>ij

) vj − vi
|Pij |

, (32)

where pij = Pij/|Pij |.
Equation (32) provides only a velocity information of di-

mension (d − 1) since it is a projected measure on a surface
sphere. To recover a full dimensional information, it can be
integrated over the set of visible points Pij on the agent j
(we assume here that agents have a non-empty volume), as
described in [10], to extract a weighted measure

wij =
vj − vi
rij

.

Consider now that the dynamics of each agent can be
modeled as a double integrator:{

ẋi(t) = vi(t),

v̇i(t) = ui(t),

where, for i = 1, . . . , N , ui ∈ Rd is a control input. For all i,
consider that agent i applies the following control:

ui(t) =
1

N

N∑
j=1
j 6=i

k wij , (33)

where k > 0 is a constant gain parameter. Then, the derivative
of vi(t) verifies the equation of the singular CS model with
ψ(r) = k/r:

v̇i(t) =
1

N

N∑
j=1
j 6=i

k

rij
(vj − vi)(t). (34)

B. Theoretical results for ψ(r) = 1/r

Since ψ(r) = 1/r satisfies the hypothesis of theorem 1, we
know there exists some minimal distance between agents, and
we can compute the bound given by (8). If we rewrite the last
inequality in the proof of theorem 1 we have :

3|L|√
2
dmin exp

( α

d2min
+ C

)
≥ |x0|L ≥ 3σ

|L|√
2

with

σ =
1

3
min
i 6=j

rij(0), C =
N

2
|v0|2,

α =
N − 2√

2
|v0|2

(
|x0|2 exp(|v0|2)

)2
,

since L1/r(s) = 1/s2, |Ψ(s)| = | log(s/|x0|L)|, |x0|L ≥
mini6=j rij(0)|L|/

√
2 and rM = |x0|2 exp(|v0|2) (according

to (6)). Therefore we take d− as the smallest real satisfying

d− = σ exp

(
− α

d2−
− C

)
. (35)

We see that α is large, and is responsible for the high
sensitivity of d− on |x0|2, |v0|2 and N . In particular we are
going to prove that (35) has no positive solution, for this
particular choice of ψ, when parameters start to grow. Indeed,
we want to solve d = a exp(−c/d2) with a, c > 0. Let
f(s) := exp(−h/s2) with h := c/a2. Then our problem is
equivalent to

f(s) = s. (36)

Remark that
d

ds
f(s) =

2h

s3
f(s).

We observe a phase transition as h goes from +∞ to 0, where
we start with no positive solution to (36), to a pair of solutions.
The transition is characterized by ḟh0(s0) = 1 and fh0(s0) =
s0 . These two equations yield h0 = 1/2e. Therefore, as soon
as

α ≥ σ2 exp(−2C)h0, (37)

d− is not defined.
We perform experiments with the following initial condi-

tion. We equally space N agents on a circle of radius R
centered at the origin of the plane. For speeds, we take v0 =
−(λ/R)x0, λ ≥ 0, which means that speeds point towards
the center of the circle, and are of amplitude λ. Therefore, we
look at a case where all individuals can be sent toward the
center of the circle, which yields a small theoretical minimal
distance. It thus allows to see if the bound given by (8) is
good under such non advantageous initial conditions. We do
our simulations on the interval [0, 5] using an explicit RK2
scheme, with a time step of 0.001. We fix R = 1 and try
different values of λ and N .
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Fig. 1. Minimal distance measured in experiments dmin and its
theoretical lower bound dthmin in terms of the number of agents (above),
with the condition of existence α− σ2 exp(−2C)h0 ≤ 0 (below).

C. Experiments

1) First experiment : λ = 0: We take λ = 0, so that α =
C = 0. In Fig.1, we plot in the top part the minimal distance
at equilibrium from the simulation dmin, as well as the bound
(35) dthmin, in term of N for N = 2, · · · , 7. In the bottom part,
we plot the condition of existence (37) : as long as the quantity
is negative, our lower bound exists. In this case, (35) reduces
to dthmin = mini6=j rij(0)/3 = dmin/3, since individuals are
not moving. Therefore dmin/d

th
min = 3, so that the bound

stays of the same order for large groups of agents. However,
taking λ = 0 means individuals already are polarized, and the
minimal distance is known. As mentioned above, it will get
incredibly worse for λ > 0.

2) Second experiment : λ > 0: We now take λ = 0.001,
so that all agents are launched toward the same position. In
Fig.2, we plot the same data as above. We see that even for a
small λ, dthmin is not defined, since condition (37) is not met.
As it gets worse as |x0|2, |v0|2 and N increase, it is clearly
not suited as a realistic practical estimate.

3) Third experiment : using experiment-specific constants: In
the previous experiment, it is known that the group of agents is
contracting. Therefore we can replace rM = |x0|2 exp(|v0|2)
with maxi 6=j rij(0) in order to improve our estimation. The
resulting plot is given in Fig.3. We see that the change of
constant helped, but is not enough. It means estimations need
to be reworked.

VI. CONCLUSION

In this paper we proved that there always exists a uniform
minimal distance between individuals subject to a singular
Cucker-Smale model (4) if the alignment rate ψ also provides
flocking. In consequence, we showed that a swarm whose

Fig. 2. Minimal distance measured in experiments dmin and its
theoretical lower bound dthmin in terms of the number of agents (above),
with the condition of existence α− σ2 exp(−2C)h0 ≤ 0 (below).

Fig. 3. Minimal distance measured in experiments dmin and its
theoretical lower bound dthmin in terms of the number of agents (above),
with the condition of existence α− σ2 exp(−2C)h0 ≤ 0 (below).

individuals use optical flow as a control law is collisionless
for all time given that these individuals are small enough. The
extension to more complex control laws with additional effects
has also been investigated, covering repulsion or attraction
effects, or speed / mass center control of the swarm. Deriving
an efficient estimate of a lower bound for this minimal distance
still remains a challenge. Some other extensions to more forms
of control overs speeds which also exhibits an exponential
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convergence rate to equilibrium, such as leadership, are also
worthy of investigation since they might be prone to preserve
the uniform minimal distance. These points will be the focus
of future work.
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