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Artificial intelligence in diagnostic and interventional radiology: Where are we now? 

 

 

Abstract 

 

The emergence of massively parallel yet affordable computing devices has been a game 

changer for research in the field of artificial intelligence (AI). In addition, dramatic 

investment from the web giants has fostered the development of a high-quality software stack. 

Going forward, the combination of faster computers with dedicated software libraries and the 

widespread availability of data has opened the door to more flexibility in the design of AI 

models. Radiomics is a process used to discover new imaging biomarkers that has multiple 

applications in radiology and can be used in conjunction with AI. AI can be used throughout 

the various processes of diagnostic imaging, including data acquisition, reconstruction, 

analysis and reporting. Today, the concept of “AI-augmented” radiologists is preferred to the 

theory of the replacement of radiologists by AI in many indications. Current evidence bolsters 

the assumption that AI-assisted radiologists work better and faster. Interventional radiology 

becomes a data-rich specialty where the entire procedure is fully recorded in a standardized 

DICOM format and accessible via standard picture archiving and communication systems. No 

other interventional specialty can bolster such readiness. In this setting, interventional 

radiology could lead the development of AI-powered applications in the broader 

interventional community. This article provides an update on the current status of radiomics 

and AI research, analyzes upcoming challenges and also discusses the main applications in AI 

in interventional radiology to help radiologists better understand and criticize articles 

reporting AI in medical imaging. 
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1. Introduction 

 

During the last two decades, the rapid growth in the number of medical imaging examinations 

and the improvement of calculation capabilities led to a dramatic development of artificial 

intelligence (AI) in medical imaging [1]. AI is now implicated in all aspects of medical 

imaging whichever the modality or the organs concerned. Even if most published AI studies 

refer to diagnostic imaging, there is no doubt about the fact that AI has also a promising 

future in the field of interventional radiology (IR) [2]. Whether or not AI will overachieve or 

deceive is still unknown [3]. Bluemke et al. published a brief guide with nine essential 

questions to address when assessing an AI model in radiology [4] and similar 

recommendations were also published by Gong et al. [5]. These considerations pave the way 

for a more standardized and formalized way of publishing results. Essentially, this might 

alleviate concerns non-specialists feel about the use of specific AI-based solutions.  

 The purpose of this article was to provide an updated status of radiomics and AI 

research and upcoming challenges and also discusses the main applications in AI in IR to help 

radiologists understand and criticize articles reporting AI in medical imaging.  

 

2. Up-to-date status of AI research and upcoming challenges 

 

The emergence of AI models as useful tools in radiology results from a decade-long 

industrial effort. From the development of new computing chips to the construction of curated 

image repositories, this technological leap has been made possible by a conjunction of 

progresses at multiple levels. 

 First, the emergence of massively parallel yet affordable computing devices has been a 

game changer for research in the field. Whereas central processing units (CPU) provide a few 

dozens of compute units (cores) at most, graphics processing units (GPU) pack thousands of 

cores on a single device. Going beyond their initial use as accelerators for the rendering of 

three-dimensional (3D) scenes, GPUs can now be used for a wide range of scientific 

applications and provide the computational power of a traditional cluster at a fraction of the 

price. As a consequence, they currently power the vast majority of AI computations. Second, 



a significant investment from the web giants has fostered the development of a high-quality 

software stack. Except for a few exceptions, all AI models developed since 2017 have been 

written using accessible software libraries that are maintained by Google or Facebook and 

rely on numerical routines provided by the GPU constructor Nvidia [ 6]. Finally, in 

healthcare, the main stakeholders have catered to the needs of this new generation of image 

analysis software. Thanks to a clarification of the legal framework and significant investments 

from the public and private sectors, large datasets have been made available to researchers 

[7]. 

 This favorable environment has led to multiple breakthroughs in radiology. As 

detailed below, we may cite the improvement of acquisition and denoising pipelines, pattern 

detection with ResNets and automatic organ segmentation with U-Nets [8].  Going forward, 

the combination of faster computers with dedicated software libraries and the widespread 

availability of data has opened the door to more flexibility in the design of AI models. The 

past few years have seen the arrival of AI-specific circuits in GPUs and advances in compilers 

technology that are enabling the deployment of new types of models such as transformers, 

graph neural networks or scalable kernel machines [9, 10]. Going beyond the analysis of grid 

images and volumes, this has led to significant progress in the processing of natural language, 

3D point clouds and surfaces [11]. The subsequent interest in AI solutions has led to a 

remarkable increase in collaborations between medical doctors and AI researchers, with great 

promises for the future. 

 Nevertheless, caution should be exercised when evaluating AI methods and making 

optimistic predictions about the next decade. First, because the constraints of a clinical 

environment are seldom considered in research publications. Turning a promising AI software 

into a certified solution for radiology is an arduous and expensive process. Second, because 

the funding and maintenance of an open AI software ecosystem has been, so far, entirely 

dependent upon the goodwill of a few tech companies which are currently experiencing sharp 

fluctuations of their stock valuations. And finally, because the supply chain of hardware 

accelerators that powers the AI revolution is coming under risk. With current AI research 

relying almost exclusively on GPUs that are designed by Nvidia and manufactured by TSMC 

in Taiwan, progress in the field is tributary to a stable geopolitical environment. The global 

chip shortage caused by the COVID-19 pandemic or the recent ban imposed by the United 

States on the exports of high-end GPUs to mainland China are having significant impact on 

researchers worldwide and may well curtail optimistic growth projections. 

 



3. Radiomics 

 

Radiomics is a high-throughput data mining process used to discover new imaging 

biomarkers. It is a data-driven, hypothesis-free research field that consists of the extraction of 

large sets of quantitative imaging descriptors that can feed machine learning algorithms to 

find correlations with diagnostic, prognostic or predictive targets [12]. The exponential 

growth of radiomics research has been built on the premises that medical images contain 

biological information that cannot be analyzed by the naked eye but can be quantified using 

high throughput methods similar to those used in genomics [13].  

 Radiomics was initially studied in oncology imaging where predictive models have 

yielded encouraging performances in varying tasks such as distinguishing benign vs 

malignant lesions, predicting histopathological tumor types, genetic mutations or even 

survival [14, 15]. These results encouraged researchers to develop radiomics signatures for 

other diseases, including neurodegenerative disorders, pulmonary fibrosis or Sars-CoV-2-

induced pneumonia [16, 17, 18]. 

 Radiomics process is classically separated in seven steps: (i), data acquisition; (ii), 

lesion segmentation; (iii), preprocessing; (iiii), feature extraction; (vi), feature reduction; (vi), 

model building, and (vii), validation. Each step may be performed in different ways. This 

process may involve traditional machine learning methods, but deep learning can also be 

used, either as an end-to-end process, or only for certain steps [19]. Extracted imaging 

descriptors include shape descriptors, histogram-based features describing signal intensity 

content of voxels, and texture features describing spatial distribution of signal intensities and 

therefore tumor heterogeneity [19]. 

 The complexity of this seven-steps process is the major limitation of radiomics that 

hinders the reproducibility of studies and the clinical application [20, 21]. Guidelines have 

been developed to improve the quality of radiomics research, which every author, reader or 

reviewer of radiomics studies should keep in mind to help radiomics overcome its daemons 

[22]. Specifically, the Image Biomarker Standardization Initiative and the Radiomics Quality 

Score develop recommendations for each step of the process that should be reported in studies 

to standardize research and improve reproducibility of the results. Low-code tools such as 

autoradiomics or workflow for optimal radiomics classification have also been recently 

developed to offer clinicians with little time or experience in radiomics and programming the 

opportunity for initial exploration of imaging data using radiomics in an automated and 



standardized way. The combination of radiomics and non-radiomics data in large clinical 

trials will likely pave the way for the future of this data-driven research field [23].  

 

4. Main applications of AI in diagnostic imaging 

 

AI can be used throughout the various processes of diagnostic imaging acquisition, 

reconstruction, analysis and reporting. AI has a potential to impact all the various steps of the 

daily radiological workflow, helping radiologists dealing with a constantly increase in 

workload [24]. Studies report that, usually, an average radiologist must interpret one image 

every 3–4 seconds in an 8-hour workday to meet workload demands [25]. Therefore, errors 

are inevitable, especially under such constrained conditions. The development of AI is driven 

by the desire for greater efficacy and efficiency in clinical care. 

 First, image acquisition can be achieved more quickly using AI, with various 

techniques, such as the undersampling of the k space, the creation of synthetic images 

obtained from a single image, or the use of higher acceleration factors without compromising 

the quality of the images obtained. 

 Second, there used to be a widening gap between advancements in image acquisition 

hardware and image- reconstruction software, a gap that could potentially be addressed by 

new deep learning methods for suppressing artefacts and improving overall quality. Image 

reconstruction can be substantially improved by AI, with various advantages, such as the 

decrease of contrast doses needed, the dose optimization, the improvement of registration 

techniques or the reduction of the reconstruction time itself [26]. Overall, AI can help obtain a 

higher image quality for diagnosis. Dose optimization can be done with AI algorithms [27]. 

AI can be an optimizing tool for assisting the radiologist in choosing a personalized patient’s 

protocol, in tracking the patient’s dose parameters, and in providing an estimate of the 

radiation risks associated with cumulative dose and the patient’s susceptibility, such as age 

and other clinical parameters. Many current research works investigate the accuracy of deep 

learning-based reconstruction algorithms and their ability to recreate rare, unseen structures, 

as initial errors propagated throughout the radiology workflow can have adverse effects on 

patient outcome [28]. 

 One of the most interesting fields of clinical application of AI remains centered on 

image analysis, such as lesion detection and characterization, response to treatment or disease 

monitoring. AI might help triage exams by screening all the exams completed during a shift to 

rule out normal exams and to alert the radiologist on the most urgent exams to review. AI is a 



great aid to radiologists in the emergency setting and improves their workflow by decreasing 

reading time in some areas [29, 30]. 

 Many AI algorithms are now available in clinical practice. As their number is 

constantly evolving and increasing, online platforms are helpful to identify them, such as 

https://grand-challenge.org. Such platforms check whether the proposed AI algorithms are 

Food and Drug Administration or Commnauté Européenne marked and more importantly 

whether their performance is supported by published peer-reviewed research articles. At the 

time of the writing of this article, there were more than 200 AI software available on the 

market with a Commnauté Européenne or Food and Drug Administration approval. Among 

them, and not exhaustively, radiologists can be helped with tools providing automated 

detection and prioritization of acute intracerebral hemorrhage on non-contrast CT, aiding the 

assessment of acute ischemic stroke, automatically detecting and prioritizing acute large 

vessel occlusions on CT angiography, automatically measuring the maximum transverse 

diameter of the aorta to detect aneurysms, assisting radiologists or clinicians in the 

interpretation of chest x-ray, automatically analyzing the main anatomical structures of the 

knee and detecting lesions, detecting and characterizing lung nodules, estimating pediatric 

bone age, monitoring child growth and development from digital X-rays of the hand, 

detecting pulmonary embolism, detecting bone fractures, detecting mammogram 

abnormalities, assessing a tuberculosis risk score, providing objective cardiac ultrasound 

images analysis, providing a workflow for detection of prostate abnormalities on magnetic 

resonance imaging examination, detecting and localizing pneumothorax, pleural effusion or 

alveolar syndrome, characterizing brain tumors, detecting brain aneurysms, measuring the 

volume fraction of fat in liver tissue or liver iron concentration, providing the subject's level 

of risk of having or progressing to Alzheimer's disease dementia, labeling and volumetric 

quantification of segmented central nervous system structures, assessing (sub)clinical disease 

activity in patients with multiple sclerosis, measuring brain atrophy, calculating, quantifying 

volumetric breast density or automatic coronary artery calcium scoring [1, 3, 31]..  

 Another strength is to allow automated segmentation in clinical practice as well as in 

research to reduce the burden on radiology workflow of the need to perform segmentation 

manually. Multiple studies have been published about various organ segmentation using a 

deep learning approach, showing its interest to reduce the human reader variability as well as 

to reduce the time and exhaustion dedicated to this task. AI can also aid the reporting 

workflow, especially its standardization. It can integrate into a report data arising from 

various sources, such as quantitative data, radiomics data, volumetric data or data coming 



from computer-assisted reporting systems. It can help the linking between reports from 

various imaging modalities to increase the quality of the report and to adapt the management 

and treatment of the patient. It can help radiologists achieve this laborious and routine time- 

consuming task of generating an accurate and complete report [32]. It can improve 

communication between radiologists and referring physicians, such as in oncology. 

 Today, the concept of “AI-augmented” radiologists is preferred to the theory of the 

replacement of radiologists by AI in many indications [3]. Current evidence bolsters the 

assumption that AI-assisted radiologists work better and faster. However, the promise of 

advanced AI methods should not be overstated, as most state-of-the-art advances in the field 

of AI remain “weak AI”, where AI is trained for one task and one task only, with only a few 

applications actually exceeding human capabilities. 

 

5. Main applications in interventional radiology  

 

 Most deep learning models are based on large datasets, which are commonly available 

in diagnostic imaging. Unfortunately, IR does not generate ready-to-use multicentric labelled 

images, and this may contribute to the idea that IR might be less suited for AI applications. 

This is a question of perspective, and IR should not be opposed to diagnostic imaging. It 

should rather be compared to other interventional specialties such as surgery or endoscopy. 

With this viewpoint, IR becomes a data-rich specialty where the entire procedure is fully 

recorded in a standardized DICOM format and accessible via standard picture archiving and 

communication system systems. No other interventional specialty can bolster such readiness. 

In this setting, IR could lead the development of AI-powered applications in the broader 

interventional community, working on specific research on how to generalize and translate 

into clinical applications models trained on mono or oligo-centric routine interventions.  

 The practical use of AI in IR can be divided into three areas including pre-procedural, 

peri-procedural and post-procedural settings, even though these situations are intertwined. 

 

5.1. Pre-procedural AI towards better patient selection 

 

Better patient selection is both a challenge for interventional and non-interventional 

radiologists. This is particularly true in oncology where human-powered intelligence is put to 

work in a translational and multidisciplinary approach. Ultimately, prognostic and predictive 

biomarkers will help tumor boards make clinical decisions towards personalized strategies. 



The use of AI in generating risk profiles for patients who will benefit from IR is described on 

every level of the decision process, such as pathology [33, 34], circulating tumor DNA 

analysis [35], genomic analysis [36, 37] or response to treatment [38]. [ 

 The possibility to predict responses to interventional therapies in oncology will have to 

be rigorously evaluated. Research amongst the specific field of clinical decision assistance is 

particularly challenging when it comes to generalization. For example, following the nine-

point guide provided by Bluemke et al., the second recommendation suggests using an 

external validation set to avoid overfitting bias [4]. Practically, this means that prospective 

trials will eventually be run to show that AI-based guided approaches yield better outcomes. 

Such biomarker-based approaches are already seen in major cancer publications [39]. Not 

only should interventional radiologists train AI models, but eventually interventional 

radiologists will have to lead prospective studies validating these new biomarkers.  

 

5.2.  Peri-procedural AI to enhance intervention 

 

Enhancing the intervention is probably the most futuristic vision of how AI will help 

interventional radiologists in daily work. Interventional radiology was built on two 

elementary pillars that include a human manipulation of devices into the patient and a live 

human analysis of the images provided by different modalities. Both tasks can conceivably be 

assisted by AI.  

 The manipulation of devices is the subject of research in the field of robotics. Not only 

does robotics use AI for faster and more precise movements, but this field is also studying the 

potential of force sensors coupled with image analysis for automation. This will eventually 

shift robotics-assisted interventions towards more automatic procedures [40]. This naturally 

leads to questions regarding the connection between a manipulation (device or retreat for 

instance a guidewire or a probe) and the effect within the patient as observed on the image.  

Research on how the image is processed could lead to lower radiation exposure, shorter 

procedures and lower amount of injected contrast material [41]. Next-generation fusion, with 

real-time registration deep learning algorithms, could help interventional radiologist use pre-

operative imaging concomitantly with live fluoroscopy, similar to automated detection 

software [42]. Moreover, synthetic images can be produced from unsubstracted angiographic 

images, reducing misregistration artifacts [43, 44]. 

 

5.3. Post-procedural AI for follow-up 



 

IR techniques suffer from a lack of standardization when it comes to evaluating treatment 

response. Criteria used in diagnostic radiology are not necessarily adapted to IR and this could 

lead to suboptimal patient care and to a misrepresentation of IR success rates. The Response 

Evaluation Criteria In Solid Tumours criteria, for example, are not necessarily adapted to 

endovascular therapies in oncology and could be outperformed by AI models [45, 46, 47]. 

Precision medicine will eventually integrate molecular biology, follow-up imaging and 

clinical data for prognosticating patients and rapidly adapting treatment strategies after IR 

procedures [48]. 

 

6. Conclusion 

 

AI may enhance the future of radiology throughout every aspect of our daily patient care [1, 

3, 16, 49]. The recent structuration of research in AI for imaging enables a more rigorous 

development and evaluation of AI-powered solutions, a mandatory turning point in this new 

field.  
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