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Abstract

This work deals with the discretization of single-phase Darcy flows in fractured and de-
formable porous media, including frictional contact at the matrix-fracture interfaces. Frac-
tures are described as a network of planar surfaces leading to so-called mixed-dimensional
models. Small displacements and a linear poro-elastic behavior are considered in the ma-
trix. One key difficulty to simulate such coupled poro-mechanical models is related to the
formulation and discretization of the contact mechanical sub-problem. Our starting point
is based on the mixed formulation using facewise constant Lagrange multipliers along the
fractures representing normal and tangential stresses. This is a natural choice for the
discretization of the contact dual cone in order to account for complex fracture networks
with corners and intersections. It leads to local expressions of the contact conditions and
to efficient semi-smooth nonlinear solvers. On the other hand, such a mixed formulation
requires to satisfy a compatibility condition between the discrete spaces restricting the
choice of the displacement space and potentially leading to sub-optimal accuracy. This
motivates the investigation of two alternative formulations based either on a stabilized
mixed formulation or on the Nitsche’s method. These three types of formulations are
first investigated theoritically in order to enhance their connections. Then, they are com-
pared numerically in terms of accuracy and nonlinear convergence. The sensitivity to the
choice of the formulation parameters is also investigated. Several 2D test cases are con-
sidered with various fracture networks using both P1 and P2 conforming Finite Element
discretizations of the displacement field and an Hybrid Finite Volume discretization of
the mixed-dimensional Darcy flow model.

Keywords: Contact mechanics, Coulomb friction, Stabilized mixed method, Nitsche’s method,
Poromechanics, Discrete Fracture Matrix model.

∗BRGM, Orléans, laurence.beaude@brgm.fr
†Université de Bourgogne, Institut de Mathématiques de Bourgogne, 21078 Dijon, France – Center for

Mathematical Modeling and Department of Mathematical Engineering, University of Chile and IRL 2807 –
CNRS, Santiago, Chile – Departamento de Ingeniería Matemática, CI2MA, Universidad de Concepción, Casilla
160-C, Concepción, Chile, franz.chouly@u-bourgogne.fr
‡Université Côte d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice

Cedex 02, France, mohamed.laaziri@univ-cotedazur.fr
§Université Côte d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice

Cedex 02, France, roland.masson@univ-cotedazur.fr

1



1 Introduction

Coupled flow and geomechanics in fractured porous media play an important role in many sub-
surface applications. This is typically the case of CO2 storage, for which fault reactivation that
can result from CO2 injection must be avoided to preserve the storage integrity. On the other
hand, in enhanced geothermal systems, fracture conductivity must be increased by hydraulic
stimulation to produce heat while avoiding the risk of induced seismicity. Such processes cou-
ple the flow in the porous medium and the fractures, the poromechanical deformation of the
porous rock and the mechanical behavior of the fractures.

Their mathematical modeling is typically based on mixed-dimensional geometries representing
the fractures as a network of codimension one surfaces. The model combines first the mixed-
dimensional flow model, coupling typically a Poiseuille flow along the network of fractures
with the Darcy flow in the surrounding porous rock called the matrix [22, 2626, 4242, 4545, 33, 5353,
5050, 1616, 1717, 1414, 2727, 1919, 4747, 77]. The second ingredient of the model is based on poromechanics,
coupling the rock deformation with the Darcy flow in the matrix domain. Let us refer to the
monograph [2525] as a reference textbook on this topic. In the following we will assume small
strains and porosity variations as well as a poro-elastic mechanical behavior of the porous
rock. The third ingredient of the fully coupled model is related to the mechanical behavior
of the fractures given the matrix mechanical deformation and the matrix and fracture fluid
pressures. It is typically based on contact mechanics governing the contact and slip conditions
[4343, 5656, 5454]. Note also that fractures are assumed to pre-exist and that fracture propagation
is not addressed here.

The modeling and numerical simulation of such mixed-dimensional poromechanical models
have been the object of many recent works [2828, 2929, 3030, 66, 5151, 99, 1010, 1212, 1313]. In terms of
discretizations, they are mostly based on conservative finite volume schemes for the flow and
use either a conforming finite element method [2828, 2929, 3030, 1212] or a finite volume scheme for
the mechanics [66, 5151]. Note that the saddle point nature of the coupling between the matrix
fluid pressure and the displacement field requires a compatibility condition between both
discretizations, as in [66, 5151, 99, 1010, 1212], or alternatively additional stabilization terms to get
the stability of the pressure solution in the limit of low rock permeability, incompressible fluid
and small times.

The contact mechanics formulation is a key ingredient to efficiently handle the non-linear
variational inequalities of the contact fracture model. It is typically either based on a mixed
formulation with Lagrange multipliers to impose the contact conditions as in [2828, 66, 5151, 1212] or
on a consistent Nitsche’s penalization method as in [3030] (see also [1818] for a recent alternative
approach based on PDE control). Again, if a mixed formulation is used, a compatibility
condition must be satisfied between the Lagrange multiplier and displacement field spaces
[66, 5151, 1212] or a stabilization must be specifically designed [2828].

Nitsche’s method has been considered only recently to discretize contact and friction con-
ditions, despite the fact that it has gained popularity for other boundary conditions. The
Nitsche’s method orginally proposed in [4646] aims at treating the boundary or interface con-
ditions in a weak sense, with appropriate consistent terms that involve only the primal vari-
ables. It differs in this aspect from standard penalization techniques which are generally
non-consistent [4343]. Moreover, no additional unknown (Lagrange multiplier) is needed and,
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therefore, no discrete inf–sup condition must be fulfilled, contrarily to mixed methods (see,
e.g., [3737, 5454]). In some previous works [3636, 3939] it has been adapted for bilateral (persistent)
contact, which still corresponds to linear boundary conditions on the contact zone. We remark
furthermore that an algorithm for unilateral contact which makes use of Nitsche’s method in
its original form is presented and implemented in [3636], In [2222, 2424] a new Nitsche-based Finite
Element method was proposed and analyzed for Signorini’s problem, where a linear elastic
body is in frictionless contact with a rigid foundation. Conversely to bilateral (persistent)
contact, Signorini’s problem involves non-linear boundary conditions associated to unilateral
contact, with an unknown actual contact region. The extension to the Tresca friction model
is analysed in [2020] and to the Coulomb friction model in [2323]. Following the pioneering paper
of R. Stenberg [5252], various recent works have been dedicated to improve our understanding of
the link between Nitsche’s and stabilized mixed methods: see [3333] for domain decomposition,
see [3232, 3434] for frictionless contact and [3535] for Tresca friction. Very few works exist related to
Nitsche’s method for contact and friction in the context of fracture mechanics. Let us mention
however [2929], where the iterative method of [3636] is adapted for the approximate solution of
contact in fractures.

Moreover the Nitsche-based Finite Element method encompasses symmetric and nonsymmet-
ric variants depending upon a parameter called θ. The symmetric case of [2222] is recovered
when θ “ 1. When θ ‰ 1 positivity of the contact term in the Nitsche’s variational formulation
is generally lost. Nevertheless some other advantages are recovered, mostly from the numerical
viewpoint. Namely, one of the variants (θ “ 0) involves a reduced quantity of terms, which
makes it easier to implement and to extend to contact problems involving non-linear elastic-
ity. In addition, this nonsymmetric variant θ “ 0 performs better in the sense it requires less
Newton iterations to converge, for a wider range of the Nitsche’s parameter, than the variant
θ “ 1, see [4949]. Concerning the skew-symmetric variant θ “ ´1, the well-posedness of the
discrete formulation and the optimal convergence are preserved irrespectively of the value of
the Nitsche’s parameter.

This work investigates both mixed and Nitsche’s formulations of the contact mechanics for
mixed-dimensional poro-elastic problems. We focus on the mixed formulation based on a
facewise constant approximation of the Lagrange multipliers. This allows to deal readily
with fracture intersections, corners and tips still leading to local expressions of the discrete
contact conditions and efficient non-linear solvers based on semi-smooth Newton algorithms
[5454]. On the other hand, the mixed formulation requires an inf-sup compatibility conditions
between the displacement and the Lagrange multiplier discrete spaces which is typically not
satisfied for the first order Finite Element discretization. Following [4444, 4141], this restriction
can be circumvented using a stabilized mixed formulation based on an extension to contact
boundary conditions of the pioneer work [44]. Furthermore, exploiting their facewise constant
approximation, the Lagrange multipliers can be eliminated. It leads to a new Nistche type
method (called hereafter the mean-Nitsche’s method) based on face average tractions and
displacement jumps, bridging the gap between the Nitsche method introduced in [2424, 2020, 2323]
and the mixed formulation (see also the related works [3232, 3434, 3535]). The links between the
mixed and mean-Nitsche’s formulations of the contact mechanics are carefully investigated
in this work. Then, a numerical comparison of the three approaches is performed, both in
terms of accuracy and in terms of robustness of the non-linear solvers based on semi-smooth
Newton algorithms. The stand alone mechanical problem with Coulomb frictional contact at
matrix fracture interfaces is first considered on 2D test cases with various fracture networks.
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Both the P1 and P2 Finite Element approximations of the displacement field are tested. We
also investigate the sensitivity of the algorithms to their parameters, namely the Nitsche’s and
mean-Nitsche’s stabilization and θ parameters, as well as the parameters of the semi-smooth
Newton algorithm for the mixed formulation. Finally, the three formulations of the contact
mechanics are compared on a coupled poro-elastic 2D test case with a network of fractures
based on the test case presented in [66].

The remainder of the paper is organized as follows. In Section 2, the mixed-dimensional
poro-elastic model is described starting with the geometry and function spaces in Subsection
2.12.1 followed by the physical model coupling the flow, the poro-elastic and the Coulomb fric-
tional contact models in Subsection 2.22.2. The three discretizations of the contact mechanical
model are presented in Section 3. The mixed formulation is first recalled in Section 3.1, then
we introduce the stabilized mixed discretization and carefully investigate its mean-Nitsche’s
equivalent formulation in Subsection 3.2 as well as its links with the mixed formulation. The
Nitsche’s discretization introduced in [2424, 2020, 2323] is recalled in Subsection 3.3. Section 4
compares the performance of the three discretizations on stand alone contact mechanical test
cases with various fracture networks. In Section 5, the comparison is extended to a coupled
mixed-dimensional poro-elastic test case. Section 6 draws the conclusions and perspectives of
this work.

2 Mixed-dimensional poromechanical model with contact me-
chanics

First we present the geometrical setting and then we provide the poromechanical model in
strong form.

2.1 Mixed-dimensional geometry and function spaces

In what follows, scalar fields are represented by lightface letters, vector fields by boldface
letters. We use the overline notation v to distinguish an exact (scalar or vector) field from
its discrete counterpart v. We let Ω Ă Rd, d P t2, 3u, denote a bounded polytopal domain,
partitioned into a fracture domain Γ and a matrix domain ΩzΓ. The network of fractures is
defined by

Γ “
ď

iPI

Γi,

where each fracture Γi Ă Ω, i P I is a planar polygonal simply connected open domain.
Without restriction of generality, we will assume that the fractures may only intersect at their
boundaries (Figure 11), that is, for any i, j P I, i ‰ j it holds Γi X Γj “ H, but not necessarily
Γi X Γj “ H.

The two sides of a given fracture of Γ are denoted by ˘ in the matrix domain, with unit
normal vectors n˘ oriented outward from the sides ˘. We denote by γa the trace operators
on the side a P t`,´u of Γ for functions in H1pΩzΓq and by γBΩ the trace operator for the
same functions on BΩ. The jump operator on Γ for functions u in pH1pΩzΓqqd is defined by

JuK “ γ`u´ γ´u,

4



Figure 1: Illustration of the dimension reduction in the fracture aperture for a 2D domain Ω
with three intersecting fractures Γi, i P t1, 2, 3u, with the equi-dimensional geometry on the
left and the mixed-dimensional geometry on the right.

Figure 2: Conceptual fracture model with contact at asperities, d0 being the fracture aperture
at contact state.

and we denote by
JuKn “ JuK ¨ n` and JuKτ “ JuK´ JuKnn`

its normal and tangential components. The tangential gradient and divergence along the
fractures are respectively denoted by ∇τ and divτ . The symmetric gradient operator � is
defined such that �pvq “ 1

2p∇v ` p∇vqtq for a given vector field v P H1pΩzΓqd.

Let us denote by d0 : Γ Ñ p0,`8q the fracture aperture in the contact state (see Figure 22).
The function d0 is assumed to be continuous with zero limits at BΓzpBΓXBΩq (i.e. the tips of
Γ) and strictly positive limits at BΓX BΩ.

Let us introduce some relevant function spaces. H1
d0
pΓq is the space of functions vΓ P L

2pΓq

such that d
3{2

0 ∇τvΓ belongs to L2pΓqd´1, and whose traces are continuous at fracture intersec-
tions BΓi X BΓj (for pi, jq P I ˆ I, i ‰ j) and vanish on the boundary BΓ X BΩ. The weight
d

3{2

0 in the definition of H1
d0
pΓq accounts for the fact that df ě d0 can vanish at the tips and

that only the L2pΓqd´1 norm of d
3{2

f ∇τpf will be controlled, where pf is the fracture pressure
along the fractures. The space for the displacement is

U0 “ tv P pH
1pΩzΓqqd : γBΩv “ 0u,

endowed with the norm }v}U0 “ }∇v}L2pΩqd . The space for the pair of matrix/fracture
pressures is

V 0 “ V 0
m ˆ V

0
f with V 0

m “ tv P H
1pΩzΓq : γBΩv “ 0u and V 0

f “ H1
d0
pΓq.

For v “ pvm, vf q P V 0, let us denote the jump operator on the side a P t`,´u of the fracture
by

JvKa “ γavm ´ vf .
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Finally, for any x P R, we set x` “ maxt0, xu and x´ “ p´xq`.

2.2 Problem statement

The primary unknowns of the coupled model in its strong form are the matrix and fracture
pressures pω, ω P tm, fu and the displacement vector field u. The coupled problem is formu-
lated in terms of flow model, contact mechanics model together with coupling conditions. The
flow model is a mixed-dimensional model assuming an incompressible fluid. It accounts for
the volume conservation equations and for the Darcy and Poiseuille laws defining respectively
the velocity fields qm in the matrix and qf along the fractures:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Btφm ` div pqmq “ 0 in p0, T q ˆ ΩzΓ,

qm “ ´
Km

η
∇pm in p0, T q ˆ ΩzΓ,

Btdf ` divτ pqf q ´ qm ¨ n
` ´ qm ¨ n

´ “ 0 in p0, T q ˆ Γ,

qf “ ´
1

12

d
3
f

η
∇τpf in p0, T q ˆ Γ.

(1a)

In (1a1a), the constant fluid dynamic viscosity is denoted by η, the matrix porosity by φm
and the matrix permeability tensor by Km. The fracture aperture, denoted by df , yields the
fracture conductivity 1

12d
3
f via the Poiseuille law.

The quasi static contact mechanical model accounts for the poromechanical equilibrium equa-
tion with a Biot linear elastic constitutive law and a Coulomb frictional contact model at
matrix–fracture interfaces:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

´div
´

�puq ´ b pmI
¯

“ f on p0, T q ˆ ΩzΓ,

�puq “ E
1`ν

´

�puq ` ν
1´2ν pdiv uqI

¯

on p0, T q ˆ ΩzΓ,

T`puq `T´puq “ 0 on p0, T q ˆ Γ,

Tnpuq ď 0, JuKn ď 0, JuKn Tnpuq “ 0 on p0, T q ˆ Γ,

|Tτ puq| ď ´F Tnpuq on p0, T q ˆ Γ,

pBtJuKτ q ¨Tτ puq ´ F Tnpuq|BtJuKτ | “ 0 on p0, T q ˆ Γ.

(1b)

In (1b1b), b is the Biot coefficient, E and ν are the effective Young modulus and Poisson ratio,
F ě 0 is the friction coefficient, and the contact tractions are defined by

$

’

’

’

’

&

’

’

’

’

%

Tapuq “ p�puq ´ b pmIqna ` pfn
a, a P t`,´u,

Tpuq “ T`puq,

Tnpuq “ T`puq ¨ n`,

Tτ puq “ T`puq ´ pT`puq ¨ n`qn`.

The complete system of equations (1a1a)–(1b1b) is closed by means of coupling conditions. The
first equation in (1c1c) below accounts for the linear poroelastic state law for the variations of
the matrix porosity φm, with M denoting Biot’s modulus. The second one stands for the
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matrix–fracture transmission conditions for the Darcy flow model. Following [2626, 4545] they
account for the normal flux continuity at each side a of the fractures combined with a two-
point approximation of the normal flux in the width of the fractures with Λf denoting the
fracture normal transmissibility. The third equation in (1c1c) is the definition of the fracture
aperture df .

$

’

’

’

&

’

’

’

%

Btφm “ b div Btu`
1

M
Btpm on p0, T q ˆ ΩzΓ,

qm ¨ n
a “ Λf JpKa on p0, T q ˆ Γ, a P t`,´u,

df “ d0 ´ JuKn on p0, T q ˆ Γ.

(1c)

As shown in Figure 22, due to surface roughness, the fracture aperture df ě d0 does not vanish
except at the tips. The open space is always occupied by the fluid, which exerts on each side
a of the fracture the pressure pf appearing in the definition of the contact traction T

a.

The strong formulation of the mixed-dimensional poromechanical model solves for the fluid
pressures pm, pf and the displacement field u, satisfying the mixed-dimensional Darcy flow
model (1a1a) coupled to the contact mechanical model (1b1b) given the closure laws (1c1c). Let us
refer to [1111] for a weak formulation of this coupled model in the frictionless case. From the
physical point of view, the fluid pressures act as a source term in the matrix and as a boundary
condition along the fractures on the mechanical model, while the displacement field acts on
the fluid flow via the porosity and fracture aperture changes throught the accumulation and
conductivity terms (note that Km can also depend on φm).

The following initial conditions are imposed on the pressures and matrix porosity

ppωq|t“0 “ p0,ω, pφmq|t“0 “ φ
0
m,

and normal flux conservation for qf is prescribed at fracture intersections not located on the
boundary BΩ.

Following [5454] and [1212], the quasi static poromechanical model with Coulomb frictional contact
is formulated in mixed form using a vector Lagrange multiplier λ : Γ Ñ Rd at matrix–fracture
interfaces. Denoting for r P t1, du the duality pairing of H´1{2pΓqr and H1{2pΓqr by x¨, ¨yΓ, we
define the dual cone

Λpλnq “
!

µ P pH´1{2pΓqqd : xµ,vyΓ ď xFλn, |vτ |yΓ for all v P pH1{2pΓqqd with vn ď 0
)

.

The Lagrange multiplier formulation of (1b1b) then formally reads, dropping any consideration
of regularity in time: find u : r0, T s Ñ U0 and λ “ pλn,λτ q : r0, T s Ñ Λpλnq such that for all
v : r0, T s Ñ U0 and µ “ pµn,µτ q : r0, T s Ñ Λpλnq, one has

$

’

&

’

%

ż

Ω

´

�puq : �pvq ´ b pmdivpvq
¯

dx` xλ, JvKyΓ `
ż

Γ
pf JvKn dσ “

ż

Ω
f ¨ v dx,

xµn ´ λn, JuKnyΓ ` xµτ ´ λτ , JBtuKτ yΓ ď 0.

(2)

Note that, based on the variational formulation, the Lagrange multiplier satisfies λ “ ´T`puq “
T´puq. Note also that the Tresca friction model, frequently used to derive well-posedness and
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error estimates, is obtained by freezing the slip threshold ´FTnpuq to a given non-negative
function g. The mixed formulation (22) still applies provided that Fλn is replaced by the fixed
threshold g in the above definition of the dual cone.

3 Mixed, stabilized mixed and Nitsche’s discretizations of the
contact mechanical model

Let Uh denote a family of Finite Element subspaces of U0, indexed by h coming from a family
of simplectic (to fix ideas) meshesMh of the domain Ω. The meshMh is assumed conforming
to the fracture network and we denote by FΓ the subset of faces of the mesh such that

Γ “
ď

σPFΓ

σ.

The family of meshesMh is assumed to be shape regular in the sense that the shape regularity
parameter SR “ maxh maxKPMh

hK
ρK

is bounded, where hK denotes the diameter of the cell
K and ρK is the radius of the inscribed ball in K.

The subspace Mh Ă L2pΓq denotes the set of piecewise constant functions on the partition FΓ

and we set Mh “ pMhq
d. For λ in Mh, we will still use the decomposition λ “ pλn,λτ q with

λn “ λ ¨n`, λτ “ λ´λnn
`, and identify λτ to an element of pMhq

d´1 based on an orthogonal
basis local to each planar fracture. We denote by λσ the constant value of λ P Mh on the
face σ P FΓ and by λn,σ and λτ,σ its normal and tangential components. The orthogonal
projection from L2pΓq to Mh is denoted by π0

F . By abuse of notations, the same notation
will be used for the orthogonal projection from pL2pΓqqd to Mh. For a face σ P FΓ, the face
average projection will be denoted by π0

σ in both cases.

After Euler implicit time integration and using an iterative coupling algorithm between the
flow and the contact mechanical subproblems, we end up solving at each time step and each
iterative coupling step the following static contact mechanical problem at given matrix and
fracture pressures and previous time step displacement field un´1:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´div
´

�puq ´ b pmI
¯

“ f in ΩzΓ,

T`puq `T´puq “ 0 in Γ,

Tnpuq ď 0, JuKn ď 0, JuKn Tnpuq “ 0 in Γ,

|Tτ puq| ď ´F Tnpuq in Γ,

pJu´ un´1Kτ q ¨Tτ puq ´ F Tnpuq|Ju´ un´1Kτ | “ 0 in Γ.

(3)

In what follows, we will set un´1 “ 0 for simplicity.

The following notations will be used. For all x P R, we set

rxsR´ “ minp0, xq, rxsR` “ maxp0, xq “ ´r´xsR´ .

For all x P Rd´1 and α ě 0, we denote by rxsα the orthogonal projection of x on the ball
Bp0, αq Ă Rd´1 where Bp0, αq is the closed ball of origin 0 and radius α, such that

rxsα “

"

x if |x| ď α,
αx{|x| otherwise.
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3.1 Mixed discretization with facewise constant Lagrange multipliers

We focus in this work on mixed formulations based on facewise constant Lagrange multipliers
which allows to readily deal with fracture intersections, corners and tips and leads to local
expressions of the discrete contact conditions and efficient semi-smooth Newton solvers. On
the other hand, they require to assume that the following uniform inf-sup condition between
the space Uh of displacement fields and the space Mh of Lagrange multipliers is satisfied:
there exists c‹ independent on the mesh such that

inf
µPMh

sup
vPUh

ż

Γ
µ ¨ JvKdσ

}v}U0}µ}H´
1
2 pΓqd

ě c‹ ą 0. (4)

Let us define the discrete dual cone of normal Lagrange multipliers as

Λh “ tλn PMh |λn ě 0 on Γu,

and the discrete dual cone of vectorial Lagrange multipliers given λn P Λh as

Λhpλnq “ tµ “ pµn,µτ q P Mh |µn ě 0, |µτ | ď Fλn on Γu.

Note that the friction coefficient will be assumed to be facewise constant on the partition FΓ.

The mixed discretization of the static contact mechanical model reads: find pu,λ “ pλn,λτ qq P
Uh ˆΛhpλnq such that

$

’

’

’

&

’

’

’

%

ż

Ω

´

�puq : �pvq ´ b pmdivpvq
¯

dx`

ż

Γ
λ ¨ JvKdσ `

ż

Γ
pf JvKn dσ “

ż

Ω
f ¨ v dx,

ż

Γ
pµ´ λq ¨ JuKdσ ď 0,

(5)

for all pv,µq P Uh ˆΛhpλnq. Note that the variational inequality in (55) is equivalent to the
contact conditions between λσ and π0

σJuK local to each face σ P FΓ (see e.g. Lemma 4.1 of
[1212]).

Let us denote by PΛhpλnq the projection on the convex set Λhpλnq. It is such that

PΛhpλnqξ “
´

rξnsR` , rξτ sλn

¯

, (6)

for all ξ “ pξn, ξτ q P Mh. Let us recall that PΛhpλnqξ is the unique γ P Λhpλnq such that
ż

Γ
pµ´ γq ¨ pξ ´ γqdσ ď 0 for all µ P Λhpλnq. (7)

Then, noticing that the variational inequality in (55) is equivalent to λ P Λhpλnq such that
ż

Γ

”

pµn ´ λnq
´

βsm
n π0

FJuKn ` λn ´ λn
¯

` pµτ ´ λτ q ¨
´

βsm
τ π0

FJuKτ ` λτ ´ λτ

¯ı

dσ ď 0,
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for all µ P Λhpλnq with constant (possibly facewise constant) parameters βsm
n ą 0, βsm

τ ą 0,
we deduce from (77) that

λ “ PΛhpλnq

´

βsm
n π0

FJuKn ` λn, β
sm
τ π0

FJuKτ ` λτ

¯

.

It results from (66) that the variational inequality in (55) is also equivalent to the following
equations for each σ P FΓ

#

λn,σ ´ rλn,σ ` β
sm
n π0

σJuKnsR` “ 0,

λτ,σ ´ rλτ,σ ` β
sm
τ π0

σJuKτ sFσrλn,σ`βsm
n π0

σJuKnsR`
“ 0,

(8)

which are the basis of the semi-smooth Newton algorithm used in the numerical section for
the solution of the mixed discretization.

The well-posedness and convergence analysis of such mixed discretizations for frictionless
contact is analysed in, e.g., [55, 3737, 4040, 5555] (see also [3838, 5454] for Tresca friction). It readily
extends to the case with pressure source terms.

3.2 Stabilized mixed discretization with facewise constant Lagrange mul-
tipliers and its equivalent Nitsche’s formulation

In order to circumvent the inf-sup condition (44), we consider in this subsection the follow-
ing stabilized mixed formulation in the spirit of [4444, 4141]. Exploiting their facewise constant
approximation, the Lagrange multipliers can be eliminated leading to a Nitsche’s type dis-
cretization with face averaging. It results that this stabilized mixed formulation can also be
useful when Uh ˆMh satisfies the inf-sup condition in order to eliminate the Lagrange mul-
tipliers. In that case, we will prove that the stabilized mixed solution converges to the mixed
solution at the limit of large stabilization parameters.

3.2.1 Stabilized mixed discretization

Let us fix a parameter θ P R and two non-negative functions βn and βτ on Γ typically set to
β0
n
hσ

and β0
τ
hσ

on each face σ of Γ, where hσ is the diameter of the face σ. By abuse of notations,
in the following, h will also denote the facewise constant function of L2pΓq with value hσ on
each face σ P FΓ.

Let us introduce the following notations for the surface tractions with zero pressures
$

’

&

’

%

T0pvq “ �pvqn`,

T 0
npvq “ T0pvq ¨ n`,

T0
τ pvq “ T0pvq ´ pT0pvq ¨ n`qn`.

The stabilized mixed discretization of the static contact mechanical model reads: find pu,λ “
pλn,λτ qq P Uh ˆΛhpλnq such that

10
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’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ż

Ω

´

�puq : �pvq ´ b pmdivpvq
¯

dx`

ż

Γ
λ ¨ JvKdσ `

ż

Γ
pf JvKn dσ

´

ż

Γ

θ

βn
pλn ` Tnpuqqπ

0
FT

0
npvqdσ ´

ż

Γ

θ

βτ
pλτ `Tτ puqq ¨ π

0
FT0

τ pvqdσ “

ż

Ω
f ¨ v dx,

ż

Γ
pµ´ λq ¨ JuKdσ

´

ż

Γ

1

βn
pµn ´ λnqpλn ` Tnpuqqdσ ´

ż

Γ

1

βτ
pµτ ´ λτ q ¨ pλτ `Tτ puqqdσ ď 0,

(9)

for all pv,µq P Uh ˆΛhpλnq.

3.2.2 Equivalent Nitsche’s formulation

The following Proposition states that, thanks to their facewise constant approximations, the
Lagrange multipliers can be eliminated from the stabilized mixed formulation.

Proposition 3.1. The variational inequality in (99) with λ P Λhpλnq is equivalent to the
following equations:

$

’

&

’

%

´λn “ rπ0
F

´

Tnpuq ´ βnJuKn
¯

sR´ ,

´λτ “ rπ0
F

´

Tτ puq ´ βτ JuKτ
¯

s´

´F

”

π0
F

´

Tnpuq´βnJuKn

¯ı

R´

¯. (10)

Proof. The inequality in (99) is equivalent to
ż

Γ

”

pµn´λnq
´

´π0
F pTnpuq´βnJuKnq´λn

¯

`pµτ ´λτ q ¨
´

´π0
F pTτ puq´βτ JuKτ q´λτ

¯ı

dσ ď 0.

We deduce from (77) that the variational inequality in (99) is equivalent to

λ “ PΛhpλnq

´

´π0
F pTnpuq ´ βnJuKnq,´π0

F pTτ puq ´ βτ JuKτ q
¯

,

concluding the proof from (66).

From (1010), we can eliminate the Lagrange multipliers leading to the following equivalent
Nitsche’s type formulation: find u P Uh such that

11



ż

Ω

´

�puq : �pvq ´ b pmdivpvq
¯

dx`

ż

Γ
pf JvKn dσ

´

ż

Γ

θ

βn
Tnpuq ¨ π

0
FT

0
npvq dσ ´

ż

Γ

θ

βτ
Tτ puq ¨ π

0
FT0

τ pvq dσ

`

ż

Γ

1

βn

”

π0
F

´

Tnpuq ´ βnJuKn
¯ı

R´

´

θT 0
npvq ´ βnJvKn

¯

dσ

`

ż

Γ

1

βτ

”

π0
F

´

Tτ puq ´ βτ JuKτ
¯ı

´

´F

”

π0
F

´

Tnpuq´βnJuKn

¯ı

R´

¯ ¨

´

θT0
τ pvq ´ βτ JvKτ

¯

dσ

“

ż

Ω
f ¨ v dx,

(11)

for all v P Uh. Due to the face averaging, this formulation will be termed mean-Nitsche’s
method in the following. Note that it is not consistent in the usual Nitsche’s sense since the
exact solution u does not satisfy (1111). It is only consistent as a mixed formulation in the sense
that pu,λq satisfies (99).

Let us consider the Tresca friction model obtained by freezing the slip threshold ´FTnpuq to
a given non-negative function g. The stabilized mixed and mixed discretisations of the Tresca
model are obtained by replacing Λhpλnq by Λhpπ

0
Fgq and the mean-Nitsche’s formulation is

derived by replacing ´F
”

π0
F

´

Tnpuq ´ βnJuKn
¯ı

R´
by π0

Fg in (1111).

The well-posedness analysis of the mean-Nitsche’s formulation is similar to the one for the
Nitsche’s discretization from [2020] for the Tresca model. It results that the stabilized mixed
method is also well-posed for the Tresca model. For the Coulomb frictional model, an existence
result can also be derived for the mean-Nitsche’s formulation (and stabilized mixed method)
following [2323].

An a priori error estimate can be derived starting from the stabilized mixed formulation for
the Tresca friction model. Assuming the inf-sup condition to hold, this estimate is robust in
the limit of large penalization parameters β0

n and β0
τ as opposed to what is achieved in the

general case for the stabilized mixed discretization [4141] and the Nitsche’s method [2020].

Proposition 3.2. Let us set β0 “ β0
n “ β0

τ for the sake of simplicity. Let us assume that the
Tresca threshold g is constant and that the unique solution pu,λq of (22) for the static contact
mechanical model with Tresca friction is in H3{2`νpΩzΓqd ˆ HνpΓqd. Then, the following a
priori error estimate holds for the unique solution pu,λq P Uh ˆΛhpgq of (99) assuming that
the Nitsche’s parameter β0 is large enough:

}u´ u}U0 ` c}h
1{2pλ´ λq}L2pΓqd ď Ch1{2`ν{2

´

}u}H3{2`νpΩzΓqd ` }λ}HνpΓqd

¯

, (12)

with c “ 1
β0 , 0 ă ν ď minp1, k ´ 1{2q where k is the degree of approximation of Uh, and

C is a constant independent on h, u and λ but depending on β0 and on the shape regularity
parameter SR. Furthermore, if the inf-sup condition (44) holds, we can take c “ 1 and the
constant C is independent on (still large enough) β0.
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Proof. In the general case, the proof of the a priori error estimate is a simple adaptation to
the Tresca friction model of the analysis carried out in [4141] for the frictionless model. The
degeneracy of the error estimate for large values of the penalization parameters stems from
the estimation of the term

ż

Γ
pλ´ λq ¨ pJuK´ JIhuKqdσ, (13)

where Ih is the Lagrange interpolation operator onto Uh. In [4141], (1313) is estimated from the
Young inequality as
ż

Γ
pλ´ λq ¨ pJuK´ JIhuKqdσ ď α

1

β0
}h1{2pλ´ λq}2L2pΓqd `

1

4α
β0}h´1{2pJuK´ JIhuKq}2L2pΓqd ,

for all α ą 0 providing the non-robust term β0}h´1{2pJuK´ JIhuKq}2
L2pΓqd

which is responsible
for the dependence of C on β0 in (1212).

This can be fixed from the inf-sup condition (44). To show this, let us substract the variational
equalities (22) and (99) with test function v P Uh. Taking into account that λ “ ´Tpuq, we
obtain

ż

Γ
pλ´ λq ¨ JvKdσ “ ´

ż

Ω
�pu´ uq : �pvqdx`

ż

Γ

θ

βn
pλ´ λ`T0pu´ uqq ¨ π0

FT0pvqdσ.

Let C denote in the following a generic constant independent on h and β0. Using that
}h1{2T0pvq}L2pΓqd ď C}v}U0 for all v P Uh (see Lemma 3.2 of [2020]), we deduce that

sup
vPUh

ż

Γ
pλ´ λq ¨ JvKdσ

}v}U0

ď C
´

}u´u}U0 `
1

β0
}h1{2pλ´λq}L2pΓqd `

1

β0
}h1{2T0pu´uq}L2pΓqd

¯

.

(14)

Using the bound }h1{2µ}L2pΓqd ď C}µ}H´1{2pΓqd for all µ P Mh, and the inf-sup condition (44),
we obtain the estimate

}h1{2pµ´ λq}L2pΓqd ď C}µ´ λ}H´1{2pΓqd ď C sup
vPUh

ż

Γ
pµ´ λ` λ´ λq ¨ JvKdσ

}v}U0

,

ď C
´

}µ´ λ}H´1{2pΓqd ` sup
vPUh

ż

Γ
pλ´ λq ¨ JvKdσ

}v}U0

¯

.

It results that

}h1{2pλ´ λq}L2pΓqd ď C
´

}µ´ λ}H´1{2pΓqd ` }h
1{2pµ´ λq}L2pΓqd ` sup

vPUh

ż

Γ
pλ´ λq ¨ JvKdσ

}v}U0

¯

.

(15)
Combining (1515) with (1414) we obtain that the following abstract estimate holds for large enough
β0:

}h1{2pλ´ λq}L2pΓqd ď C
”

}u´ u}U0 ` inf
µPMh

´

}µ´ λ}H´1{2pΓqd ` }h
1{2pµ´ λq}L2pΓqd

¯

13



` inf
vPUh

´

}u´ v}U0 ` }h
1{2T0pu´ vq}L2pΓqd

¯

.

Setting v “ Ihu and µ “ π0
Fλ, we obtain the estimate

}h1{2pλ´ λq}L2pΓqd ď C
´

}u´ u}U0 ` h
1{2`νp}u}H3{2`νpΩzΓqd ` }λ}HνpΓqdq

¯

,

with 0 ă ν ď minp1, k ´ 1{2q. Using

}h´1{2pJuK´ JIhuKq}L2pΓqd ď Ch1{2`ν}u}H3{2`νpΩzΓqd ,

and the Young inequality, we deduce that, for all α ą 0, we have the estimate
ż

Γ
pλ´ λq ¨ pJuK´ JIhuKqdσ ď α}u´ u}2U0

` Cp
1

α
` 1qh1`2νp}u}2

H3{2`νpΩzΓqd
` }λ}2HνpΓqdq

¯

,

which, combined with the analysis in [4141], yields a robust error estimate w.r.t. large enough
β0.

3.2.3 Convergence to the mixed solution

The following proposition states a first order error estimate in 1
β0 between the discrete solutions

of the stabilized mixed (99) and mixed (55) discretizations of the Tresca friction model.

Proposition 3.3. Let us set β0 “ minpβ0
n, β

0
τ q assumed to be large enough. Let us denote

respectively by puβ,λβq P Uh ˆΛhpπ
0
Fgq and pu,λq P Uh ˆΛhpπ

0
Fgq the unique solutions of

the stabilized mixed (99) and mixed (55) discretizations of the Tresca friction model. Assuming
the inf-sup condition (44) to hold, we have the following error estimates:

}u´ uβ}U0 ` }h
1{2pλ´ λβq}L2pΓqd ď

C

β0
, (16)

with C independent of h and β0
n, β0

τ but depending on the shape regularity parameter SR and
the physical data.

Proof. We denote by C a generic non-negative constant independent on β0
n, β0

τ and h but
possibly depending on the shape regularity parameter SR and the physical data. The well-
posedness of the stabilized mixed discretization (99) can be derived from its equivalent mean-
Nitsche’s formulation (1111) using the same techniques as in [2020]. It results that for β0 large
enough, there exists a unique solution uβ P Uh to (1111) and a constant C such that

}uβ}U0 ď C. (17)

Using the inf-sup assumption (44), the bound }h1{2µ}L2pΓqd ď C}µ}H´1{2pΓqd for all µ P Mh,
and the variational equality in (99), we obtain that

}h1{2λβ}L2pΓqd ď C sup
vPUh

1

}v}U0

”

´

ż

Ω

´

�puβq : �pvq ´ b pmdivpvq
¯

dx´

ż

Γ
pf JvKn dσ
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`

ż

Γ

θ

βn
pλβ,n ` Tnpuβqqπ

0
FT

0
npvqdσ `

ż

Γ

θ

βτ
pλβ,τ `Tτ puβqq ¨ π

0
FT0

τ pvqdσ `

ż

Ω
f ¨ v dx

ı

.

Then, using that }h1{2T0pvq}L2pΓqd ď C}v}U0 for all v P Uh, we obtain the estimate

}h1{2λβ}L2pΓqd ď C
´

1` }uβ}U0 `
1

β0
}h1{2λβ}L2pΓqd

¯

.

It results that for β0 large enough, we have

}h1{2λβ}L2pΓqd ď C. (18)

Taking the difference between the variational equalities in (99) and (55), we obtain that
ż

Ω

´

�puβ ´ uq : �pvq `
ż

Γ
pλβ ´ λq ¨ JvKdσ

´

ż

Γ

θ

βn
pλβ,n ` Tnpuβqqπ

0
FT

0
npvq ´

ż

Γ

θ

βτ
pλβ,τ `Tτ puβqq ¨ π

0
FT0

τ pvq “ 0.

(19)

Setting v “ uβ ´ u in (1919), using the bounds (1818), (1717), }h1{2T0puβq}L2pΓqd ď C}uβ}U0 and
}h1{2π0

FT0pvq}L2pΓqd ď C}v}U0 , we obtain the estimate

}uβ ´ u}2U0
ď C

´

ż

Γ
pλ´ λβq ¨ pJuβK´ JuKqdσ `

1

β0
}uβ ´ u}U0

¯

. (20)

Let us set µ “ λ in the variational inequality of (99). From the bound }h1{2pλβ`Tpuβqq}L2pΓqd ď

C, we obtain the inequality
ż

Γ
pλ´ λβq ¨ JuβKdσ ď

C

β0
}h1{2pλ´ λβq}L2pΓqd .

Combining this inequality with the variational inequality of (55) for µ “ λβ , we obtain the
estimate

ż

Γ
pλ´ λβq ¨ pJuβK´ JuKqdσ ď

C

β0
}h1{2pλ´ λβq}L2pΓqd . (21)

Combining the estimates (2020) and (2121), we get that

}uβ ´ u}2U0
ď
C

β0

´

}uβ ´ u}U0 ` }h
1{2pλ´ λβq}L2pΓqd

¯

. (22)

From the inf-sup condition (44) and (1919), we get the estimate

}h1{2pλ´ λβq}L2pΓqd ď C
´

}uβ ´ u}U0 `
1

β0

¯

. (23)

Combining the estimates (2222) and (2323) with the Young inequality concludes the proof of
(1616).

For the Coulomb frictional model we can state the following Proposition.
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Proposition 3.4. Let β0
ą 0 be large enough. For β0 ě β

0, there exists a solution puβ,λβq P
Uh ˆ Λhpλβ,nq to (99) with }uβ}U0 ` }h

1{2λβ}L2pΓqd ď C, C independent of β0
n, β

0
τ and h

but depending on the shape regularity parameter SR and the physical data. Furthermore, any
sequence of such solutions with β0 going to infinity admits a subsequence which converges to
pu,λq P Uh ˆΛhpλnq solution of (55).

Proof. The existence of a solution to the mean-Nitsche’s formulation (1111) can be established as
in [2323] for β0 large enough using the Brouwer fixed point theorem based on the Tresca friction
solution. By construction the solution is bounded in the sense that there exists C independent
of β0

n, β
0
τ and h but depending on the shape regularity parameter SR and the physical data

such that }uβ}U0 ď C. Then, the bound on the Lagrange multiplier }h1{2λβ}L2pΓqd ď C

follows as in the previous proof from the inf-sup assumption and for β0 large enough. For any
sequence of such solutions with β0 Ñ `8, we can extract a subsequence which converges to
pu,λq P Uh ˆMh. From (1010), we have

$

’

’

&

’

’

%

λn “ ´ lim
β0Ñ`8

rπ0
F

´

Tnpuβq ´ βnJuβKn
¯

sR´ ,

λτ “ ´ lim
β0Ñ`8

rπ0
F

´

Tτ puβq ´ βτ JuβKτ
¯

s´

´F

”

π0
F

´

Tnpuβq´βnJuβKn

¯ı

R´

¯

from which we deduce that λ P Λhpλnq. Let µ “ pµn,µτ q P Λhpλnq. The sequence µβ “
pµβ,n,µβ,τ q P Λhpλβ,nq such that

µβ,σ “

$

&

%

pµn,σ,µτ,σ “ 0q if Fσλn,σ “ 0,

pµn,σ,
µτ,σ
Fσλn,σ

Fσλβ,n,σq else,

converges to µ. Then, passing to the limit in the stabilized mixed variational formulation
(99) with pv,µβq as test functions shows that pu,λq satisfies the mixed formulation (55) which
concludes the proof.

3.3 Nitsche’s discretization

We follow the Nitsche’s formulation introduced in [2020] for Tresca and in [2323] for Coulomb
frictional models. It can be obtained by dropping the face averaging operators in (1111): find
u P Uh such that for all v P Uh, one has

ż

Ω

´

�puq : �pvq ´ b pmdivpvq
¯

dx`

ż

Γ
pf JvKn dσ

´

ż

Γ

θ

βn
Tnpuq ¨ T

0
npvq dσ ´

ż

Γ

θ

βτ
Tτ puq ¨T

0
τ pvq dσ

`

ż

Γ

1

βn

”

Tnpuq ´ βnJuKn
ı

R´

´

θT 0
npvq ´ βnJvKn

¯

dσ

`

ż

Γ

1

βτ

”

Tτ puq ´ βτ JuKτ
ı

´

´F

”

Tnpuq´βnJuKn

ı

R´

¯ ¨

´

θT0
τ pvq ´ βτ JvKτ

¯

dσ

“

ż

Ω
f ¨ v dx,

(24)
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The well-posedness of (2424) for the Tresca friction model is shown in [2020] to hold for Nitsche’s
parameters such that

p1` θq2
ˆ

γn
β0
n

`
γτ
β0
τ

˙

ď C, (25)

for any given C ă 4 with

γn “ sup
vPUh

}h
1
2T 0

npvq}
2
L2pΓq

ż

Ω
�pvq : �pvqdx

, γτ “ sup
vPUh

}h
1
2 T0

τ pvq}
2
L2pΓq

ż

Ω
�pvq : �pvqdx

. (26)

For θ “ ´1, this condition reduces to β0
n ą 0 and β0

τ ą 0 showing the additional robustness
of the Nitsche’s method for this value of the parameter. This well-posedness analysis readily
extends to the mean-Nitsche’s method replacing T 0

npvq and T0
τ pvq by π0

FT
0
npvq and π0

FT0
τ pvq

in the above definitions. An existence result for the Coulomb friction model is also derived in
[2323] using the Brouwer fixed point theorem based on the Tresca friction solution.

Optimal a priori error estimates in the natural norm have been established in [2222] for friction-
less contact (see also [2020] for Tresca friction and [2121] for an overview of the results). They are
readily adapted to the poromechanical model with pressures source terms.

4 Numerical experiments for the Contact Mechanical model

The objective of this numerical section is to compare the accuracy, the convergence and the
efficiency in terms of non-linear convergence of the mixed, stabilized mixed and Nitsche’s
methods described in the previous section. We restrict this study to triangular meshes using
both P1 and P2 conforming Finite Element approximations Uh of the displacement field. Hence
we consider the Pk Nitsche’s discretization for k P t1, 2u and the inf-sup stable P2 ´ P0 mixed
discretization using facewise P0 Lagrange multipliers. We also consider the Pk ´ P0 stabilized
mixed discretizations with degree k P t1, 2u Finite Element approximation of the displacement
field and facewise P0 Lagrange multipliers. They are formulated as Nitsche’s methods by
elimination of the Lagrange multipliers and termed Pk mean-Nitsche’s discretizations in the
following.

The non-linear systems are solved using a semi-smooth Newton algorithm. For the Nitsche’s
and mean-Nitsche’s methods it just amounts to derive the functions rxsR´ , x P R, and rxsα,
x P Rd´1 as piecewise linear functions in dimension d “ 2. The semi-smooth Newton algorithm
of the P2´P0 mixed discretization is based on the equivalent semi-smooth formulation of the
contact conditions (88). The non-linear stopping criteria is given for all discretizations by a
relative norm of the residual set to 10´6 or a maximum Newton increment of 10´10 on the
displacement field. At each Newton iteration, the linear system is solved using SuperLU
4.3 as a sparse direct solver. In the following tables reporting the numerical behavior of
the numerical methods, d.o.f denotes the number of geometrical degrees of freedom with 2
physical unknowns for each d.o.f., NZ is the number of geometrical non zero elements of the
Jacobian system (each non zero element being a 2 ˆ 2 matrix), Newton is the number of
semi-smooth Newton iterations and CPU denotes the total CPU time in seconds.
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The computation of the errors and the plots along the fractures are based on continuous
facewise Pk reconstructions of the displacement jumps and discontinuous facewise Pk´1 re-
constructions of the surface tractions for the degree k approximation of the displacement. A
relaxation of the Newton increment can be used to obtain a more robust non-linear conver-
gence. It is based on the prescription of a maximum Newton increment of the displacement
field degree of freedom (d.o.f.) and component wise.

Note also that the Simpson rule is used for the numerical integration of the non-linear terms in
the Nitsche’s formulation on each fracture face. Higher order quadratures like Newton Cotes 7
and Gauss Legendre 5 have also been tested with a slight gain in accuracy but a significantly
higher number of non-linear iterations.

4.1 Unbounded domain with single fracture under compression

This example was presented in [4848, 2828, 2929]. It consists in a 2D unbounded domain containing
a single fracture and subject to a compressive remote stress σ̄ “ 100MPa (cf. Figure 33). The
fracture inclination with respect to the horizontal direction is ψ “ 20˝, its length is 2` “ 2 m,
and the friction coefficient is F “ 1{

?
3. The same values of Young’s modulus and Poisson’s

ratio as in [2828] are used here, i.e. E “ 25 GPa and ν “ 0.25. The analytical solution in terms
of normal surface traction and of the jump of the tangential displacement field, is given by

λn “ ´Tnpuq “ σ̄ sin2 ψ, |JuKτ | “
4p1´ νq

E
pσ̄ sinψpcosψ ´ F sinψqq

a

`2 ´ p`2 ´ τ2q, (27)

where 0 ď τ ď 2` is a curvilinear abscissa along the fracture. Note that since λn ą 0, we
have JuKn “ 0 on the fracture. Boundary conditions are imposed on u at specific nodes of
the mesh, as shown in Figure 33, to respect the symmetry of the expected solution. For this
simulation, we sample a 320ˆ 320 m2 square, and carry out uniform refinements at each step
in such a way to compute the solution on meshes containing 100, 200, 400, and 800 faces on
the fracture (corresponding, respectively, to 12 468, 49 872, 199 488, and 797 952 triangular
elements). The initial mesh is refined in a neighborhood of the fracture; starting from this
mesh, we perform global uniform refinements at each step, i.e. we do not refine further near
the fracture.

The Nitsche’s parameters are fixed to βn0 “ 104 GPa and β0
τ “ 103 GPa and θ “ ´1 for all

Nitsche’s and mean-Nitsche’s methods. The motivations behind these choices are postponed
to paragraph 4.3.14.3.1.

Figure 44 shows the comparison between the analytical and numerical normal surface tractions
Tn and jumps of the tangential displacement on the fracture JuKτ . These solutions are com-
puted on the coarsest mesh with 100 fracture faces. As in [2828], the normal surface traction Tn
presents some oscillations in a neighborhood of the fracture tips. As already explained in [2828],
this is due to the sliding of faces close to the fracture tips (notice that all fracture faces are in
a contact-slip state).

Figure 55 shows the convergence properties of the 5 numerical methods. Because of the oscil-
lations of the approximation Tn close to the fracture tips, as in [2828], we consider the central
90% of the fracture size to compute the norm of the error. Notice also that, since JuKn “ 0,
the relative error on the normal jump on the fracture is not defined.
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For this test case, the accuracy of the discretizations depends mainly on the degree of approx-
imation of the displacement field. In particular, except for the normal displacement jump, the
P2 Nitsche’s, mean-Nitsche’s and mixed methods provide very closed solutions and convergence
behavior. The same holds for the P1 Nitsche’s and mean-Nitsche’s methods.

A much better accuracy is obtained for P2 than for P1 discretizations of the displacement field.
The order of convergence is of order 1 on the displacement jumps for all methods. This is
related to the low regularity of JuK close to the tips (cf. the analytical expression (2727)). The
rate of convergence for the surface tractions is roughly equal to the degree of approximation
(2 for P2 and 1 for P1), which is likely related to the fact that Tnpuq is constant. Sub-figure 55
(d) compares the errors for the Nitsche’s P1 and P2 methods as a function of the number of
non-zero elements in the Jacobian matrices. It shows that for a scalable linear solver, the best
performance is obtained for the P2 approximation.

Note also that, for the rather high chosen Nistche parameters β0
n and β0

τ , the solutions of the
P2 mean-Nitsche’s and mixed methods almost fully match with a higher value of the error on
the normal displacement jump compared with other methods due to stronger oscillations at
the tips. The lowest errors on the normal displacement jump are obtained for the Pk Nitsche’s
methods k P t1, 2u. It was expected since they would provide, for such vanishing exact solution
Tnpuq and assuming exact quadrature, an error on the normal displacement jump that will
tend to 0 with Nitsche’s parameter β0

n going to infinity.

In Table 11, we give an insight into the computational performance of the semi-smooth Newton
algorithms for the 5 numerical methods.

Nitsche P2 mean-Nitsche P2 mixed P2 ´ P0 Nitsche P1 mean-Nitsche P1

d.o.f. 400 k 400 k 400 k 100 k 100 k
NZ 4 622 k 4622 k 4603 k 707 k 707 k

Newton 2 2 2 4 2
CPU (s) 288 286 293 31 17

Table 1: Performance of the semi-smooth Newton algorithm for the 5 numerical methods for
the example of Section 4.14.1. Triangular mesh with 199 488 cells and 400 fracture faces.
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(a)
X

Y

Z

(b)

Figure 3: Unbounded domain containing a single fracture under uniform compression (a) and
mesh including nodes for boundary conditions (�: ux “ 0, �: uy “ 0), for the example of
Section 4.14.1.

(a) (b)

(c) (d)

Figure 4: Comparison of the coarse mesh (with 100 fracture faces) numerical and analytical
(labeled as REF) solutions in terms of JuKτ (a) and (b) and Tn (c) and (d), for the example
of Section 4.14.1.
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(a) (b)

(c) (d)

Figure 5: Relative and absolute L2 errors between the numerical and analytical solutions in
terms of JuKn, JuKτ and Tn, for the example of Section 4.14.1. The sub-figures (a),(b),(c) plot the
errors as a function of h and the sub-figure (d) plots the errors as a function of the number of
non-zero elements of the Jacobian matrices.

4.2 Cross shaped fracture network

This test case considers the DFM model exhibited in Figure 66 with a cross shaped fracture
network immersed in the domain Ω “ p0, 1 mq2. Young’s modulus and Poisson’s ratio are
homogeneous and fixed to E “ 4 GPa and ν “ 0.2. The friction coefficient is fixed to F “ 0.5.
Regarding boundary conditions, the left and right boundaries are free, the bottom boundary
is clamped and a Dirichlet boundary condition is imposed on the top boundary defined by
upxq “ r0.004 m,´0.0002 msJ.

We compare in the following the accuracy, convergence and numerical performances of the
5 numerical methods. The Pk Nitsche’s and mean-Nitsche’s methods, k P t1, 2u, use the
parameters β0

n “ 1000 GPa, β0
τ “ 40 GPa and θ “ ´1. The motivations behind these choices

is postponed to paragraph 4.3.14.3.1. The parameter of the semi-smooth Newton algorithm of the
P2 ´ P0 mixed method is fixed to βsm “ 1 GPa.

No analytical solution is available for this test case. We therefore investigate the convergence of
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our discretizations by computing a reference solution on a fine mesh made of 896ˆ44 “ 229 376
triangular elements and 28 “ 256 fracture faces using the P2 Nitsche’s method with the Newton
Cotes 7 points quadrature formula for the numerical integration of the non-linear terms. The
meshes m P t0, ¨ ¨ ¨ , 3u used for the convergence plots have 896ˆ 4m triangular cells and 2m`4

fracture faces.

As exhibited in Figure 66 (b) and (c), for the chosen boundary conditions, both fractures are
in full contact mode, the horizontal fractures being in slip mode and the vertical fractures
exhibiting a transition between stick mode at the center and slip mode around the tips. The
comparison below focuses on the normal and tangential displacement jumps and surface trac-
tions along the vertical fractures which are more challenging due to the stick slip transitions.

(a)

(b) (c)

Figure 6: (a) square domain p0, 1 mq2 containing a cross shaped fracture network and its
coarsest triangular mesh with 3584 cells and 32 fracture faces. (b) and (c) fine mesh refer-
ence solutions for the displacement tangential jump JuKτ and normal and tangential surface
tractions ´Tn and ´Tτ along the vertical and horizontal fractures.

Figure 77 compares the coarse mesh m “ 0 and reference solutions along the vertical fractures.
It shows the higher accuracy provided by degree 2 compared with degree 1 approximations
especially for the surface tractions. The Pk mean-Nitsche’s and P2´P0 mixed methods exhibit
oscillations of the normal and tangential displacement jumps in the regions where these jumps
vanish. These oscillations of amplitudes reducing with the mesh size are due to the fact that
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the contact conditions are only imposed on the mean values of the displacement jumps and
surface tractions over each fracture face. This is not the case of the Pk Nitsche’s methods.
Consequently the P2 Nitsche’s discretization is clearly the most accurate of all the 5 numerical
methods for this test case.

(a) (b)

(c) (d)

Figure 7: Comparison of the coarse mesh m “ 0 and fine mesh reference (in black line and
labeled as REF) solutions in terms of JuKτ (a), JuKn (b), ´Tτ (c) and ´Tn (d) along the
vertical fractures, for the example of Section 4.24.2.

Figure 88 plots the convergence of the L2 errors along the vertical fractures for the displacement
jumps and surface tractions. It shows again the higher accuracy provided by the degree
2 approximations with higher convergence rates for the tangential displacement jumps and
surface tractions. The mixed and mean methods behave roughly speaking in the same way than
the full Nitsche’s discretizations of same degree, except for the vanishing normal displacement
jump due to the previously mentioned higher oscillations induced by the face averaging of the
contact conditions.

Figure 99 plots the convergence of the errors as a function of the number of Jacobian non-
zero elements for the Pk Nitsche’s methods of degree k P t1, 2u. It shows that the degree 2
approximation is more efficient especially for the surface traction.
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(a) (b)

(c) (d)

Figure 8: Relative and absolute L2 errors between the mesh i P t0, ¨ ¨ ¨ , 3u and fine reference
solutions in terms of JuKτ (a), JuKn (b), Tτ (c) and Tn (d) along the vertical fractures for the
example of Section 4.24.2.

Figure 9: Relative L2 error between the mesh i P t0, ¨ ¨ ¨ , 3u and fine reference solutions in
terms of JuKτ and Tτ along the vertical fractures as a function of the number of non-zero
elements of the Jacobian matrices for the example of Section 4.24.2.
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Table 22 exhibits the numerical performances of the 5 numerical methods on mesh m “ 3. The
semi-smooth Newton solvers behave roughly in the same way except the P1 Nitsche’s method
which requires an adaptive relaxation of the Newton step to obtain convergence. This issue
can also be solved using the lower order trapezoidal rather than Simpson quadrature formula
for the integration of the non-linear terms yielding almost the same accuracy and only 6 semi-
smooth Newton iterations. A factor from 5 to 10 is observed in CPU time between degree
2 and 1 approximations. It is expected to be significantly reduced by using more scalable
preconditioned iterative linear solvers which is out of the scope of this work.

Nitsche P2 mean-Nitsche P2 mixed P2 ´ P0 Nitsche P1 mean-Nitsche P1

d.o.f. 115 k 115 k 116 k 29 k 29 k
NZ 1331 k 1331 k 1325 k 204 k 204 k

Newton 7 6 6 20 8
CPU (s) 140 120 115 22.5 12

Table 2: Performance of the semi-smooth Newton algorithm for the 5 numerical methods for
the example of Section 4.24.2. Triangular mesh m “ 3 with 896ˆ 43 cells and 27 fracture faces.

4.3 Rectangular domain with 6 fractures

As a more complex example to illustrate the behavior of our approach, we consider the test
case presented in [66, Section 4.1], where a 2ˆ 1m domain including a network Γ “

Ť6
i“1 Γi of

six fractures is considered, cf. Figure 1010. Fracture 1 is made up of two sub-fractures forming
a corner, whereas one of the tips of fracture 5 lies on the boundary of the domain.

We use the same values of Young’s modulus and Poisson’s ratio, E “ 4 GPa and ν “ 0.2, and
the same set of boundary conditions as in [66], that is, the two vertical sides of the domain are
free, and we impose u “ 0 on the bottom side and u “ r0.005,´0.002sJ m on the top side.
The friction coefficient is Fipxq “ 0.5

`

1` 10 expp´Dipxq
2{0.005 m2q

˘

, with i P t1, . . . , 6u the
fracture index, x P Γi a generic point on fracture i and Dipxq the minimum distance from x
to the tips of fracture i (the bend in fracture 1 is not considered as a tip).

To investigate the convergence of the 5 numerical methods, we consider a family of 5 uniformly
refined meshes m P t0, ¨ ¨ ¨ , 4u with 2855ˆ 4m triangular cells and 88ˆ 2m fracture faces. The
finest mesh m “ 4 is used for the reference solution computed by the P2 Nitsche’s method
with the Newton Cotes 7 points quadrature for the integration of the non-linear terms.
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Figure 10: Two-dimensional, 2 ˆ 1m domain containing six fractures. Fracture 1 comprises
two sub-fractures making a corner and fracture 5 has a tip on the boundary. The contact
state of each fracture obtained by the simulation on the fine mesh is also shown.

(a) (b)

Figure 11: Scaled normal (a) and tangential (b) displacement jumps for the fine mesh reference
solution (the normal jumps of the fractures 2,3,4,5 in full contact mode and the tangential
jump of fracture 4 in full stick mode are not plotted). Example of Section 4.34.3.

4.3.1 Choice of the Nitsche’s parameters β0
n, β0

τ and θ

This choice is guided by both the robustness of the non-linear convergence and the accuracy.
As a rule of thumb, the larger the Nitsche’s penalization parameters, the better from the point
of view of accuracy. The condition (2525) provides lower bounds to guarantee the stability of
the Tresca friction model. This condition is restrictive for θ “ 0, 1 but not for θ “ ´1. For
this test case, we obtain roughly for all meshes the following values of the eigenvalues γn and
γτ defined by (2626): γn “ 35 GPa, γτ “ 11 GPa for both the P2 Nitsche’s and mean-Nitsche’s
methods, and γn “ 11 GPa, γτ “ 3 GPa for both the P1 Nitsche’s and mean-Nitsche’s meth-
ods. For Coulomb friction, the existence result from [2323] is based on a fixed point Brouwer
theorem related to the Tresca friction solution and assumes additional large enough conditions
on the Nitsche’s parameters to obtain the continuity of the fixed point function.
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Figure 1212 exhibits the number of semi-smooth Newton iterations as a function of pβ0
n, β

0
τ q for

the P2 Nitsche’s method with θ “ 1, 0,´1. It also plots the number of semi-smooth Newton
iterations for the P2´P0 mixed method as a function of the semi-smooth Newton parameters
pβsm
n , βsm

τ q. A relaxation with maximum variation of 10´4 on the displacement field is used
for the Nitsche’s methods. The simulations are performed on the coarsest mesh m “ 0.

The mixed method is remarkably robust w.r.t. the semi-smooth Newton parameters. The
semi-smooth Newton fails to converge for the Nitsche’s method when the parameter β0

τ is
larger than say 1012 whatever β0

n and θ “ 1, 0,´1. This limitation is not observed for large
values of the parameter β0

n and has not been observed for frictionless contact. This observation
motivates the use of two distinct values of these parameters in the following.

The combination of the Tresca stability criteria and the observed non-linear convergence shows
that θ “ ´1 is the most robust choice w.r.t. to the range of admissible Nitsche’s parameters.
This motivates the choice of θ “ ´1 with β0

n “ 1000 GPa and β0
τ “ 100 GPa in the following

numerical experiments.

Similar conclusions are obtained for the P1 Nitsche’s and P1 mean-Nitsche’s methods. The
case of the P2 mean-Nitsche’s method differs in the sense that it converges to the P2 ´ P0

mixed method when minpβ0
n, β

0
τ q tends to `8. As a result, it can be checked to be robust for

large values of both parameters.

(a) (b)

(c) (d)

Figure 12: (a),(b),(c) for respectively θ “ 1, 0,´1 and the P2 Nitsche’s method on the coarsest
mesh, number of semi-smooth Newton iterations as a function of pβ0

n, β
0
τ q. (d) for the P2´P0

mixed method on the coarsest mesh m “ 0, number of semi-smooth Newton iterations as a
function of pβsm

n , βsm
τ q. Example of Section 4.34.3.
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4.3.2 Convergence of the P2 mean-Nitsche’s method to the P2´P0 mixed method

Figure 1313 checks numerically the convergence of the P2 mean-Nitsche’s solution to the mixed
solution. To fix ideas we restrict ourselves to the case β0

n “ 2.5β0
τ “ β0. The mesh m “ 1

is used for these computations. As expected, we observe for sufficiently large values of β0 a
convergence of order 1 of the mean-Nitsche’s solution to the solution of the mixed method on
the same mesh.

(a) (b)

Figure 13: Convergence of the relative L2 error of the displacement jump (a) and the surface
traction (b) along each fracture between the mesh 1 solutions of the mixed and P2 mean-
Nitsche’s methods as a function of the parameter β0 “ β0

n “ 2.5β0
τ . Example of Section 4.34.3.

4.3.3 Comparison of the 5 numerical methods

In this paragraph, we compare the numerical convergence on the four meshes m P t0, ¨ ¨ ¨ , 3u
of the 5 numerical methods using the fine mesh reference solution. In accordance with the
previous paragraphs, the Nitsche’s parameters are fixed to β0

n “ 1000 GPa, β0
τ “ 100 GPa

and θ “ ´1.

Figures 1414 and 1515 plot the convergence of the relative L2 errors on respectively the displace-
ment jumps and surface tractions along each fracture, excluding fracture 4 for the jump and
fracture 6 for the surface traction the solution of which vanish at convergence. The conclusions
are similar as in the previous test cases, showing a more accurate approximation of the P2

compared with the P1 approximations of the displacement field. Among the methods of same
degree of approximation for the displacement field, the Nitsche’s methods are more accurate in
singularity regions than mean-Nitsche’s/mixed methods based on face averaging (particularly
for fracture 1 in this test case) while they are very closed in smooth regions. This can be
checked in Figure 1616 plotting the coarse mesh m “ 0 displacement jumps along fracture 1,3
and 6. It is shown that the mean-Nitsche’s/mixed methods are oscillating in singularity zones
(transition zones for fractures 1 and 3) due to the face averaging. The higher accuracy of
degree 2 methods is also clearly observed.

The performance of the non-linear solvers are exhibited in Table 33 on the mesh m “ 3. A
relaxation of the Newton step is used for the Nitsche’s and mean-Nitsche’s methods while it
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happens to be useless for the mixed method (here using βsm
n “ βsm

τ “ 1 GPa) which is the most
efficient and robust in terms of non-linear convergence. Note that the non-linear convergence
of the Nitsche’s and mean-Nitsche’s methods improve for smaller values of the parameters β0

n

and β0
τ . For β0

n “ 100 GPa and β0
τ “ 20 GPa, the number of Newton iterations reduces to

10,9,12,10 for respectively the P2 Nitsche’s, mean-Nitsche’s and the P1 Nitsche’s and mean-
Nitsche’s methods, with similar accuracy except some rather small additional oscillations in
singularity zones for both Nitsche’s methods. Much lower values β0

n “ 0.1 GPa and β0
τ “ 0.01

GPa have also been tested with additional robustness of the non-linear solver but at the
expense of a loss of accuracy except for the P2 mean-Nitsche’s method which is the most robust
both in terms of accuracy and non-linear convergence w.r.t. to the Nitsche’s parameters.

(a) fracture 1 (b) fracture 2

(c) fracture 3 (d) fracture 5

(e) fracture 6

Figure 14: Convergence of the relative L2 error of the displacement jump along fractures
1,2,3,5,6 for the 5 numerical methods. Example of Section 4.34.3.
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(a) fracture 1 (b) fracture 2

(c) fracture 3 (d) fracture 4

(e) fracture 5

Figure 15: Convergence of the relative L2 error of the surface traction along fractures 1,2,3,4,5
for the 5 numerical methods. Example of Section 4.34.3.
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(a) (b)

Figure 16: Scaled normal (a) and tangential (b) displacement jumps for respectively fractures
1 and 6, and for fracture 3, on the coarse mesh m “ 0 for the different discretizations (the P2

mean-Nitsche’s basically matches with the mixed solution, hence it is not plotted). Example
of Section 4.34.3.

P2 Nitsche P2 mean-Nitsche mixed P2 ´ P0 P1 Nitsche P1 mean-Nitsche
d.o.f. 368 k 368 k 369 k 93 k 93 k
NZ 4261 k 4261 k 4230 k 654 k 654 k

Newton 13 12 10 14 20
CPU (s) 1390 1385 1150 85 122

Table 3: Performance of the semi-smooth Newton algorithm for the 5 numerical methods for
the example of Section 4.34.3. Triangular mesh m “ 3 with 2855ˆ 43 cells and 88ˆ 23 fracture
faces.

5 Coupled poromechanical simulation

The objective of this section is to compare the efficiency of the Nitsche’s and mixed for-
mulations to simulate the fully coupled poromechanical model. The flow component (1a1a) is
discretized in space by a mixed-dimensional Hybrid Finite Volume (HFV) scheme [11, 1717]. The
P2 approximation of the displacement field is prefered to guarantee the inf-sup stability of the
pressure displacement coupling in order to avoid the development of pressure spurious modes
that can occur for incompressible problems approaching the undrained conditions. The P1

approximation would require an additional stabilization as described e.g. in [1515]. At each
time step, the coupled non-linear system is solved using a fixed-point method on the function

gp : p Ñ
Contact Mechanics

Solve

u Ñ
Darcy

Solve

rp,

with p “ ppm, pf q, accelerated by a Newton–Krylov algorithm [88] in order to obtain at con-
vergence the fully coupled poromechanical solution. At each evaluation of the fixed point
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function gp, the Darcy linear problem at given fracture aperture and porosity is solved using a
GMRes iterative solver preconditioned by AMG while the contact mechanical model at given
pressure p is solved using a semi-smooth Newton method as in the previous section.

As in in [66, Section 4.3], this test case basically adds the fluid flow to the mechanical test case
of Subsection 4.34.3. Regarding the mechanical model, compared with Subsection 4.34.3, the only
changes are related to the friction coefficient fixed here to F “ 0.5 and to the following time
dependent Dirichlet boundary conditions

upt,xq “

#

r0.005 m,´0.002 msJ 4t{T if t ď T {4,

r0.005 m,´0.002 msJ otherwise,
x on the top boundary.

To fully exploit the capabilities of the HFV flow discretization, we consider the following
anisotropic permeability tensor in the matrix:

Km “ Km ex b ex `
Km

2
ey b ey,

ex and ey being the unit vectors associated with the x- and y-axes, respectively.

The permeability coefficient is set to Km “ 10´15 m2, the Biot coefficient to b “ 0.5, the Biot
modulus to M “ 10 GPa, the dynamic viscosity to η “ 10´3 Pa¨s. The initial matrix porosity
is set to φ0

m “ 0.4 and the fracture aperture corresponding to both contact state and zero
displacement field is given by

d0pxq “ δ0

a

arctanpaDipxqq
a

arctanpa`iq
, x P Γi, i P t1, . . . , 6u,

where Dipxq is the distance from x to the tips of fracture i, δ0 “ 10´4 m, a “ 25 m´1 and
`i is a fracture-dependent characteristic length: it is equal to Li{2 (Li being the length of
fracture i) if fracture i is immersed, to Li if one of its ends lies on the boundary, and to the
distance of a corner from tips, if it includes a corner. Note that the above expression behaves
asymptotically as

a

Dipxq when x is close to fracture tips, which is in agreement with [3131,
Remark 3.1].

The normal transmissibility of fractures is set to Λf “
df
6η . The initial pressure in the matrix

and fracture network is p0
m “ p0

f “ 105 Pa. Notice that the initial fracture aperture differs
from d0, since it is computed by solving the mechanics given the initial pressures p0

m and p0
f .

The final time is set to T “ 2000 s and the time integration uses an Euler implicit scheme
with a uniform time stepping and 20 time steps. Concerning boundary conditions, for the
flow, all sides are assumed impervious, except the left one, on which a pressure equal to the
initial value 105 Pa is prescribed.

Figure 1717 exhibits the contact state along the fractures at times t “ T {4 for which the pressures
reach their maximum values and at final time t “ T for which the pressures are almost back
to their initial value as shown in Figure 1818 for the matrix pressure. Given the Biot coefficient
b “ 0.5, this pressure decrease explains the switch from slip to stick state along the fractures
at times larger than T {4. Note that the fracture pressure basically matches with the traces of
the matrix pressure due to the high conductivity of the fractures.
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Figure 1919 plots the mean aperture as a function of time for the different meshes and the mixed
and Nitsche’s formulations. It shows that the Nitsche’s method has a better convergence in
space to the reference solution. It has been checked that the solution obtained with the
mean-Nitsche’s formulation is almost the same than the one of the mixed solution as expected
for the inf-sup stable P2 ´ P0 approximation. Other mean quantities like the mean matrix
and fracture pressures and the mean porosity as functions of time do not exhibit significant
differences between both formulations. At the fracture scale, we can still observe the higher
accuracy of the Nitsche’s method in singularity regions.

Finally, Figure 2020 plots the total number of semi-smooth Newton iterations for the contact
mechanical model as a function of time. It shows that both the Nitsche’s and mean-Nitsche’s
methods perform rather well compared to the mixed method which is the most efficient in terms
of non-linear convergence. Note that the total number of fixed point function gp evaluations
is the same for all methods and both meshes and is equal to 190 for 20 time steps with a tight
stopping criteria of 10´5 on the relative residual.

(a) (b)

Figure 17: Contact state along the fractures (blue: open, green: stick, red: slip) for the
reference solution computed on the mesh m “ 3 at times t “ T {4 (a) and t “ T (b) . Example
of Section 55.

(a) (b)

Figure 18: Matrix over pressures (compared with the initial pressure) in Pa for the reference
solution computed on the mesh m “ 3 at times t “ T {4 (a) and t “ T (b) . Example of
Section 55.
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(a) (b)

Figure 19: Mean aperture as a function of time for the mixed (a) and Nitsche’s (b) formula-
tions. The reference solution is computed using the mesh m “ 3. Example of Section 55.

(a) (b)

Figure 20: Total number of semi-smooth Newton iterations for the contact mechanical model
as a function of time for the mixed, Nitsche’s and mean-Nitsche’s formulations using the
meshes m “ 0 (a) and m “ 1 (b). Example of Section 55.

6 Conclusion

We investigated in this work mixed and Nitsche’s formulations of the Coulomb frictional con-
tact mechanics in mixed-dimensional poro-elastic models. We focused on mixed formulations
based on facewise constant approximations of the Lagrange multipliers. This allows to deal
efficiently with fracture intersections, corners and tips but on the other hand requires an inf-
sup compatibility conditions between the displacement and the Lagrange multiplier discrete
spaces. This restriction can be circumvented using a stabilized mixed formulation. Exploiting
their facewise constant approximation, the Lagrange multipliers can be eliminated leading
to a new so-called mean Nistche method based on face average tractions and displacement
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jumps. This mean-Nitsche’s method has two interesting features. It eliminates the Lagrange
multiplier and do not require the inf-sup condition. It is also shown to converge to the mixed
solution for large values of the Nitsche’s parameters if we assume the inf-sup condition to
hold. Several numerical experiments were performed in order to investigate and compare the
three mixed, mean-Nitsche’s, and Nitsche’s formulations, both in terms of accuracy and of ro-
bustness of the non-linear solvers. We can draw the following conclusions from our numerical
experiments.

• Nitsche’s methods are more accurate than the mixed or mean-Nitsche’s discretizations
investigated in this work. It is due to additional oscillations in singularity zones (corners,
intersections, transition zones) as a result of contact conditions based on face average
quantities for the mixed and mean-Nitsche’s methods.

• Regarding the Nitsche’s parameter θ, the choice θ “ ´1 clearly outperforms the other
choices θ “ 0, 1 in terms of sensitivity of the non-linear convergence and accuracy to the
Nitsche’s parameters β0

n and β0
τ .

• The parameters β0
n and β0

τ show a different behabior in terms of non-linear convergence
which justifies the use of two a priori distinct parameters. The non-linear convergence
is clearly much more sensitive to the parameter β0

τ (in particular for large values) than
what is observed for β0

n.

• The P2 approximations of the displacement field outperforms the P1 approximations in
terms of accuracy for a given mesh. The final trade-off between cost and accuracy will
depends on the scalability of the linear solver.

• As predicted by the analysis, the P2´P0 mean-Nitsche’s method allows to eliminate the
Lagrange multipliers while providing almost the same results as the mixed method in
terms of accuracy.

• The mixed method is the most robust in terms of non-linear convergence and sensitivity
of the non-linear convergence to the semi-smooth Newton parameters.

In terms of perspectives, we intend to extend the discretization of mixed-dimensional poro-
elastic models to polytopal meshes including non-matching meshes at matrix fracture inter-
faces. We would also like to investigate the well-posedness of the discrete coupled mixed-
dimensional poro-elastic model. An existence result has been proved in [1212] in the case of the
mixed formulation based on a discrete energy estimate for the coupled model. This type of
result is however still open in the case of the Nitsche’s formulation of the contact mechanical
model.
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