
HAL Id: hal-03949215
https://hal.science/hal-03949215v1

Submitted on 20 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic neural networks construction and causality
ranking for faster and more consistent decision making

Kenza Amzil, Esma Yahia, Nathalie Klement, Lionel Roucoules

To cite this version:
Kenza Amzil, Esma Yahia, Nathalie Klement, Lionel Roucoules. Automatic neural networks con-
struction and causality ranking for faster and more consistent decision making. International Jour-
nal of Computer Integrated Manufacturing, 2022, pp.1-21. �10.1080/0951192X.2022.2134930�. �hal-
03949215�

https://hal.science/hal-03949215v1
https://hal.archives-ouvertes.fr

Automatic neural networks construction and causality ranking for

faster and more consistent decision making

Kenza Amzila, Esma Yahiaa, Nathalie Klementb and Lionel Roucoulesa

aArts et Metiers Institute of Technology, LISPEN, HESAM Université, F-13617
Aix-en-Provence, France; bArts et Metiers Institute of Technology, LISPEN, HESAM
Université, 59046 Lille, France.

ARTICLE HISTORY

Compiled November 30, 2022

ABSTRACT
The growth of Information Technologies in industrial contexts have resulted in data
proliferation. These data often underlines useful information which can be of great
benefit when it comes to decision making. Key Performance Indicators (KPIs) act
simultaneously as triggers and drivers for decision making. When they deviate from
their targets, decisions must be rapidly and well made. Therefore, experts need
to understand the underlying relationships between KPIs deviations and operating
conditions. However, they often interpret deviations empirically, or by following
methods that may be time consuming, or not exhaustive. This article proposes a
generic neural network based approach for improving decision making, by ensuring
that decisions are consistent and made as early as possible. On the one hand, the
proposal relies on improving KPIs deviations prediction, which is made possible
thanks to the automatic construction of neural networks using neuro-evolution. On
the other hand, the decision making consistency is improved by identifying, among
the operating conditions, contextual variables that most influence a given KPI of
interest. This identification, that guide the decision making process, is based on
the analysis of the final weights of the neural network used for the KPI deviation
prediction, given the contextual variables.

KEYWORDS
Decision making; Neural networks; Neuro-evolution; Predictors’ prioritization;
Causality analysis.

1. Introduction

Nowadays, industry, as many other sectors, is facing an increasing competitiveness
due to changing market and globalization (Tsai-chi 2021). This leads to increasing
demands on process performance and products quality (Aydiner et al. 2019). With
the aim of fulfilling these demands, decision-makers are constrained to determine the
desired industrial objectives and continuously monitor them. To do so, Key Perfor-
mance Indicators (KPIs) are widely used. KPIs serve as a strong monitoring tool
that quantifies efficiency and effectiveness of processes and engaged actions, as well as
product’s performance, quality, or business goals achieving (Tambare et al. 2022; Yin,
Zhu and Kaynak 2015). Therefore, monitoring by KPI facilitates the detection of devi-
ations and unexpected evolutions of the entity being monitored (Laudon and Laudon

CONTACT K. A. Email: kenza.amzil@ensam.eu

Improving performances

Improving decision making process

Improving decision’s

consistency

Improving decision’s

timeliness

Improving alternatives’

identifying

Improving the best

alternative selection

Anticipating the moment of

awareness of the problem

Reduce the best alternative

selection time

Reducue the alternatives’

indentifying time

Figure 1. Decision making improvement aspects treated in the present paper.

2019). In this context, when deviation is observed, a decision has to be made in order
to re-establish the situation. Nevertheless, simply reporting performance informa-
tion is not enough to improve it and to take wiser decisions (Pérez-Álvarez et al. 2018).

Decision making consists in considering, when confronted with a problem, several
alternatives, and then making a choice after reflection (Keding and Meissner 2021).
Improving the decision making process involves two aspects : (i) improving the
timeliness of the decision-making process, and (ii) improving the decision’s consis-
tency. The first aspect is about reducing the time required for the decision to be
made. Indeed, decision making can be time and resource consuming, especially when
dealing with new issues. The second improvement aspect requires understanding the
original causes of the problem in order to consider feasible alternatives and select the
best one (Keding and Meissner 2021). Dealing with KPIs implies identifying, among
the contextual variables, the ones involving changes in the values or states of the
addressed KPI, and establishing the hierarchy of their respective impacts, in order
to conclude on the most effective action plan. By ”contextual variables” we mean
manipulable and measurable variables retrieved from the physical or digital world.

Concerning the first aspect, when decisions are driven by KPIs monitoring, KPIs
deviations’ forecasting can be of great help in anticipating the awareness of the need
to take a decision ; which allows anticipating actions before deviation occurs. For
the second aspect, identification of causal relationships that drive the behaviour of
the addressed KPI can be achieved using several approaches, being either empirical,
descriptive, or analytic. Among these methods, Bayesian networks are a widely used
tool for representing independences and reporting causal information for decision
making if they are built for that purpose (Misirli and Bener 2014). Bayesian Belief
Networks (BBN), also called causal Bayesian networks, are Bayesian networks
where links represent causal impacts (Hänninen and Kujala 2012). The graphical
causal structure provided by BBN makes them easy to understand, and gives an
intuitive representing of causal relationships which can be of a great help to the
experts. In this paper, we assume that the causal Bayesian structure describing causal
relationships between a given KPI of interest and the contextual data is already known.

The aim of this paper is to provide a proactive decision support for two purposes:
(i) automatic construction of forecasting models in order to enable fore-
casting for as many KPIs as available, these models will then be used in order
to trigger the decision making process before deviation occurs ; and (ii) providing
the hierarchy of the influencing factors in accordance with their respective

2

involvement in the KPI variations. The effectiveness of our approach is based on two
strong assumptions. The first assumption is about the availability of a causal graph
faithful to reality. This can be achieved by combining prior knowledge and automatic
learning in order to provide a causal Bayesian network structure that captures causal
relationships between contextual variables and the addressed KPI (Amzil et al. 2020).
This ensures that hierarchy of influencing variables would only concern causes, and
not correlated variables. The items treated herein are based on this resulting causal
structure, in the sense that only the variables causally related to the monitored KPI
are taken into account to make the prediction of feared events and to guide decision
making. The second one is about assuming that historical values or states of KPIs
of interest, and historical data related to the contextual variables, are available, and
that is possible to retrieve as much contextual data as possible, including machine,
processes, environmental, and human factor data, by using Internet of Things (IoT).
The purpose of this assumption is to enable the construction of the forecasting
model on the one hand, and to expand the research scope on the other hand. This
assumption is related to the first one, in the sense that with the availability of these
data, the causal graph would be more likely to overcome cognitive biases, and to
include factors that weren’t suspected to be involved in the treated KPI deviation.
It is also related to the first one in the sense that historical data are required for
building the causal structures. In this way, data explosion problem resulting from
the growth of Information Technologies in the context of Industry 4.0 (Klingenberg,
Borges and Antunes Jr. 2019) can be turned into a real opportunity. Hence, the
executives’ inability to cope with large amount of data and to find useful information
among it will be reduced (Laudon and Laudon 2019). This second assumption is
supported by the increasing accessibility and use of IoT in the industry, as well as its
ongoing fall in costs (Kamienski et al. 2019).

The rest of this paper is organized as follows. First, the problem is described and
an overview of related work is provided. The approach is then presented, followed
by a benchmark. A consistency analysis of results is then performed on a second
benchmark. Finally, the results are presented and discussed, before concluding and
highlighting future work.

2. Problem description and related work

2.1. Construction of models for events forecasting

When a given KPI is being monitored and a deviation from the target is discovered,
action must be taken on the most in influential element. In order to be proactive and
to reduce problem solving time by taking timely decisions, it is important to predict
the future evolution of the monitored indicator (Huang et al. 2019). The availability
of historical data makes supervised learning possible. The objective is therefore to
build a prediction model that is able to predict the KPI state or value, given an
observation of contextual variables. Since we consider that the causal structure is
available, variables related in a direct or indirect way to the addressed KPI would be
enough for serving as predictors. In this article, when we talk about predicting KPI
evolution we both mean prediction of KPI value, i.e. regression with a continuous
variable to predict; and KPI state, e.g binary classification to predict whether the
indicator will meet the target or not.

3

Several predictive data mining techniques have been developed and used in many
domains in the aim of driving prediction. In industrial contexts, different KPIs must
be monitored and predicted on the basis of available data. These indicators can
sometimes be numerous and may change over time and according to the desired
objectives. The prediction model must therefore be able to be easily built and modified
for all the indicators of interest. Depending on the KPI of interest, the contextual
variables that are causally related to it, the data types of both the KPI of interest
and its causal contextual variables, and their historical values, a prediction model
must be built individually, and its accuracy will depend on the model’s parameters.
In order for the decision making to be triggered when needed, the model built for the
prediction has to be as accurate as possible. Also, regarding the industrial contexts,
both qualitative and quantitative data have to be manipulated by the prediction
model, since the causal structure may include contextual variables with mixed types
of data.

A literature review allowed us to identify many existing methods of machine
learning. Our need for handling both quantitative and qualitative types of data
forced us to discard automatic classification methods such as decision trees, k-means,
k-medoids and its variants since they do not enable continuous variables prediction.
Moreover, learning the optimal decision trees is NP-complete according to many
aspects, and it may lead to very complex decision trees with poor generalization
capability (Bramer 2007). Logistic and linear regression are also widely used to pre-
dict, however their predictive power is limited only to the case of linear relationships
between the predictors and the variable to be explained (Tu 1996). Artificial neural
networks (ANN) have widely been used to solve complex problems. They enable
learning and modelling non-linear and complex relationships between predictors and
outputs in order to predict them, whether qualitative or quantitative. They also
owe their success to their high performance, computing efficiency, and ease of use
(Kalainathan 2019). Hence, in this paper, focus will be placed on prediction of KPIs
deviations, regarding their values or states using ANN.

Although neural networks are a very efficient forecasting technique that has been
used in many industrial applications (Dalzochio et al 2020), their building is still
subject to discussion. Indeed, the classical way of defining an ANN topology and
hyper-parameters is an iterative and blind process conducted by the ANN designer,
by adjusting them and launching the ANN learning and testing, until the learned
outputs meet the expected outputs with high accuracy. The designer must therefore
follow a recurrent process of editing, learning and testing until finding structure and
parameters that maximize accuracy. Indeed, manual construction of ANNs with good
predictive and generalization power results from an experimental approach composed
of a series of successive refinements of its hyper-parameters and structure, and this
must be conducted for each single indicator we aim to monitor, which can be time
and human resources consuming. By structure we mean the number of hidden layers,
and the number of neurons per hidden layer. By hyper-parameters we mean initial
learning rate and its set-up, activation function, the number of epochs, and the
learning algorithm. Manual construction of ANNs goes against the overall timeliness
of processes, because the KPIs to predict may change over time by depending to
other contextual variables. In this case, ANNs that used to predict KPIs have to
be updated. The KPIs to predict may also be replaced by others, according to the

4

enterprise’s new objectives. In this case, new ANNs for predicting the new KPIs have
to be built.

In the literature, many algorithms are suggested for designing ANNs, the most used
ones are the constructive, pruning or destructive algorithms (Shih-Hung and Yon-Ping
2012). Constructive algorithms, which begin with a minimal architecture, then add
neurons or connections during the training phase, suffer from the drawback that it
is difficult to decide when to add neurons or hidden connections and when to stop
the upgrading (Shih-Hung and Yon-Ping 2012). Pruning algorithms perform in the
opposite way, they begin from a large ANN then prune units using one of the existing
pruning criteria (Han, Zhang and Qiao 2017). Oppositely, these algorithms suffer
from the constraint of the starting network, usually defined by the ANN designer.
The problem of underestimating the problem may then arise, and consequently, the
starting network would be insufficient to get high accuracy.

The proposed approach aims to automatically define ANN parameters and
structure in order to easily and rapidly build or update a model for forecasting
future events related to KPIs of interest. It suggests to use an evolutionary ANN
designing method, also called neuro-evolution, based on Genetic Algorithms (GA),
and which have shown large potential in designing ANN (Mantzaris, Anastassopoulos,
and Adamopoulos 2011). Although many researchers have used GA to design ANN
(Stanley et al. 2019; Ahmadizar et al. 2015; Shih-Hung and Yon-Ping 2012), to
our best knowledge, the choice of the appropriate activation function has not been
addressed so far by these evolutionary approaches.

2.2. Hierarchy of identified causes

When deviation is predicted, the issue is to rapidly pinpoint the factors on which
it would be judicious to act. Let us consider that the KPI of interest is the Overall
Operations Effectiveness (OEE) for which the experts have already set a threshold.
Consider also that a good performing ANN has been built for forecasting the state of
the OEE (i.e. if it will exceed the threshold or not), given the actual states and values
of the contextual variables. The formula for calculating the OEE is given by 1 :

OEE =
Theorical Production Time

Actual Production time
(1)

Let us assume that the ANN used to predict the OEE state is expecting the OEE
to exceed the threshold. This deviation prediction will therefore trigger the experts’
need to make a decision, which is good for anticipating the decision making and
probably avoiding the deviation. However, the prediction of the OEE deviation is not
enough to guide the decision making. Also, the basic definition of the OEE, given by
1, is not enough to identify the elements on which direct action can be made in order
to efficiently restore the situation. Since it is not possible to act on production time
in order to re-establish the situation, this formula will not allow experts to engage an
action : they need to understand the underlying causes behind the OEE deviation.
Furthermore, when causes are known, experts can identify alternatives in order to
prevent deviation, but they yet need to select the best alternative.

5

When the causal structure is known, as it is one of our assumptions, the hierarchy
of causes related to the OEE can be given by the experts who analyse the situation
and pinpoint elements that have most contributed to the OEE deviation. However,
this process can be time and resource consuming, especially when dealing with new
issues. Besides, in the context of manufacturing, many factors may be present in the
causal structure related to the OEE, and it may be difficult to pinpoint the ones
that most influence the OEE states (Laudon and Laudon 2019). Also, the analysis of
the identified causes of a given KPI’s deviations is sometimes impacted by cognitive
biases due the decision-maker’s experience, which prevents them from increasing their
actions’ scope and discovering factors that may be more influencing than they think
(Ballard 2019; Moeuf et al. 2017).

Also, when a BN describing relationships between an addressed KPI and contextual
data is given, marginal and conditional probabilities tables associated to the causal
BN structure give the probabilities attached to nodes states, given the states of
their parents (Weber et al. 2012). In industrial contexts with complex systems, the
addressed KPI is a part of many other available variables that may explain the
KPI deviation. This results in a complex Bayesian network in which each node
may take different states and may have parents, which also may take multiple
states. This leads to very large conditional probabilities tables that may be very
difficult to interpret (Marcot 2017), especially since most people cannot interpret
information beyond four dimensions (Pollino and Henderson 2010). This hinders
the consideration of relative causal influences of the different influencing variables
(Marcot 2017). Influence levels can still be captured by conducting sensitivity
analysis on the different combinations of implicated nodes states, but this is often
time and effort consuming (Kjærulff and Van Der Gaag 2013), and therefore not
practical in a context where timely and accurate decisions must be taken to avoid
deviations. Focusing more closely on ANNs, we realize that in addition to being
able to forecast future events, the ANN final weights can be recovered and analysed
with the intention of identifying the most influential factors. The connection weights
can be considered as the equivalent of the coefficients in regression models and con-
tain the ”knowledge” acquired by a neural network after it has been trained (Tu 1996).

Therefore, in our context, and thanks to automatic construction of ANNs, it would
be more suitable to identify factor influences by interpreting final weights of a good
performing ANN. Indeed, since ANNs that have been built can provide high preci-
sion, and since they can handle different data types, their final connection weights
can then be exploited in order to provide the hierarchy of respective influences of
their entries on their output. Hence, the hierarchy of the respective influences of
contextual variables causally linked to KPI on this latter. The resulting hierarchy,
which highlights the relationships’ strengths between contextual variables and the
KPI of interest can thus be used to drive action on manipulable elements. The prob-
lem to which this article tries to answer is therefore to be able to reduce decision
making time and experts’ efforts by giving the ability (i) to easily build a model
to forecast future events related to a KPI ; and (ii) to prioritize the elements on
which action must be taken by ranking the influencing factors used in the model.
In this way, only one model (i.e. one ANN) will be used for both forecasting fu-
ture events in order to trigger the decision making process before KPI deviation
occurs on the one hand, and for providing hierarchy of contextual variables in or-
der to guide the decision making and to accelerate the best alternative se-

6

Hierarchy of causes

Hierarchy of influences

of contextual variables

causally related to OEE

Neural network with

good predictive power

Historical data on OEE state

Historical data on

contextual variables

Causal structure highlighting causal

relationships between contextual

variables and OEE status

Automatic

construction of

neural networks

ANN construction algorithm
Decision support

Features on which

action should be taken

Actual data on

contexual variables Prediction
Predicted

OEE state

Figure 2. SADT diagram describing the global process of the proposal.

lection on the other hand.

3. Proposal: Architecture of the method

Figure 2 presents the SADT diagram (stands for Structured Analysis and Design
Technique), describing the global process of our approach. On this figure, the KPI
of interest is represented by the OEE, and the contextual variables represent all
the measurable variables retrieved from physical and digital worlds. As previously
mentioned, causal structure linking the contextual variables to the OEE is supposed
to be known. First, an ANN with high accuracy is defined using an evolutionary
construction algorithm. The ANN definition is constrained by the causal structure, in
the sense that only contextual variables causally linked to the OEE can be included
in the entries of the ANN. Then, the hierarchy of the predictors, which are also the
contextual variables linked causally to the OEE, is performed. These two steps (with
grey color in the figure), represent configuration steps. That is to say that they need
to be performed beforehand so that the proposed system can be used in real time.
It means that they are performed at least once for each KPI of interest in order to
get its corresponding ANN and hierarchy of causes. These steps can then be renewed
punctually in order to update the predictive ANN and the hierarchy of causes. Once
these two elements are available, prediction of the OEE state can be launched in
real time, according to a predefined frequency, by using the ANN that have been
constructed in the first step, and based on the actual values or states of the contextual
variables. Finally, if OEE deviation is predicted, decision support is triggered, and it
is based on the hierarchy of influences of contextual variables causally linked to the
OEE state. The decision support provides, as output, the features on which action
should be taken, with a ranking in accordance to the influences hierarchy, in order to
prevent the predicted OEE deviation.

Figure 3 represents an generic explanatory scheme of the process of the proposal,
which is made up of two phases : configuration phase, which corresponds to the
two bricks of figure 2 with grey background in figure ; and utilization phase, which
corresponds to the two bricks of figure 2 with white background.

7

Automatic

construction

of ANNs

ANN structure

and hyper-

parameters

optmizing

Performing hierarchy of

causes linked to the KPI

Prediction

Decision support

Features on which

action should be

taken

Utilization phaseConfiguration phase

Historical data

Interpreting ANN final wieghts and

providing a hierarchy of influences of

contextual variables causally linked

to the addressed KPI

Running the

resulting ANN to

predict the KPI

Alerting when

deviation is

predicted

x1

x2

x3

x4

Causes

Historical data Real time data

Contexual variablesKPI of interest

Figure 3. Explanatory scheme of the process of the proposal: Configuration and utilization phases for guiding

decision making processes.

4. Proposal: Building ANNs and ranking the predictors

4.1. 4.1. Neuro-evolution for neural network construction

In this article, focus is placed on multilayer perceptron (MLP) neural networks,
which have been shown to be efficient for many industrial applications such as
manufacturing process control, process and machine diagnosis, machine maintenance
analysis, and planning (Hagan et al 2014). As shown in figure 4, multilayer perceptron
neural networks are composed of a series of layered neurons that transform inputs into
outputs through hidden layers, by means of an activation function and connection
weights between neurons. Input neurons are represented by x1; ...;xn, where n is the
number of the inputs, hidden neurons are represented by hij where i is the layer
number and j is the hidden neuron index in the ith layer. Y represents the output.
Neurons of the different layers are interconnected and a weight is assigned to each
connection, the weights are represented by wkl where k is the connection departure
neuron and l is the arrival neuron.

Figure 4. Multilayer artificial neural network with single output.

Our approach suggests to use an evolutionary ANN designing method, also called
neuro-evolution. For each KPI of interest, the aim is to find an ANN maximis-
ing the prediction accuracy. Figure 5 illustrates the best ANN searching process
for the prediction of the OEE state, given the contextual variables : different
ANNs with different structures and hyper-paramters have to be trained and tested ;
the one with the best accuracy is then selected for the prediction of future OEE states.

8

Figure 5. Best ANN searching process for the prediction of the OEE state.

Figure 6. Artificial neural networks evolution process.

The developed GA aims to automate this processes. It is launched with the aim
of constructing an ANN by optimizing, through generations, the number of hidden
layers, the number of neurons per hidden layer, the learning algorithm, the choice of
the activation function, and the initial learning rate as well as and its set-up. Figure
6 shows an overview of the proposed ANNs automatic creation and evolution process.
The principal GA file aims to create a population of ANNs genotypes, with a specific
coding that enables the evolution operations application (i.e. crossover and mutation).
The ANNs genotypes of the population are then transformed to real ANNs in order to
be trained and tested. The testing results of the created ANNs (i.e. their accuracies) are
then sent to the GA file which performs the selection of best ANNs, as well as crossover
and mutation operations, in order to generate the ANNs genotypes population of the
next generation. The ANNs genotypes of the next generation follow the same process,
until reaching the maximum generations number. The number of generations and the
population size are pre-set by the user. It should be noted that whatever the KPI of
interest, the procedure remains the same.

4.1.1. Initial population generating

The initial population is made up of a set of randomly generated and fully connected
ANNs, encoded in genotypes, each genotype is composed of binary chromosomes. The
generated ANNs are composed of one to five hidden layers. The choice of this interval
is based on the recommendations available in the literature (Yu and Seltzer 2011). In
general, ANNs with two hidden layers are enough for approaching functions with any
kind of shape (Panchal et al. 2011). However, the optimal number of hidden layers
depends on the number of input and output units, the number of training samples,
the amount of noise in the sample data set, and the training algorithm (Sheela and
Deepa 2013). In our proposal, to avoid having too many starting networks with more
than two hidden layers, and to avoid falling into over-learning, the number of hidden
layers per generated neural network is randomly defined according to the following
probability distribution: a probability of 0.3 for the generated ANNs to have one
hidden layer, 0.4 to have two hidden layers, 0.2 to have three hidden layers, 0.05 to

9

Table 1. Artificial neural network genotype description.

Chromosome Hyper-parameter Transformation rule

0000000000000000 Hyper-parameters beginning
0001000000000010 Hidden layers number Binary to decimal conversion.
0010000000000011 Activation function Binary to decimal conversion, each activation function cor-

responds to an integer code number going from 0 to 6.
0011000000110010 Number of epochs Binary to decimal conversion, the decimal number is then

multiplied by 10 and rounded off to the nearest multiple of
50.

0100000011010110 Learning rate Binary to decimal conversion, the decimal number is then
divided by 104.

0101000000000001 Learning algorithm Binary to decimal conversion, each learning algorithm cor-
responds to an integer code number going from 1 to 3.

0110000000000000 Learning rate set-up Binary to decimal conversion, 0 corresponds to constant
learning rate and 1 to adaptive learning rate.

1000000000000000 Hidden layers beginning
1001000000000110 1st hidden layer number of units Binary to decimal conversion.
1010000000000100 2nd hidden layer number of units Binary to decimal conversion.

have four hidden layers, and 0.05 to have ve hidden layers. These probabilities were
fixed given the fact that ANNs with up to two hidden layers are able to approximate
most of non linear complex problems (Karsoliya 2012). Activation functions for each
ANN are obtained randomly from a uniform discrete distribution on the following:
identity, binary step, sigmoid, hyperbolic tangent, rectified linear unit, softplus,
and bent identity. The training algorithm is selected in the same way among the
classical Stochastic Gradient Descent (SGD), the quasi-Newton Limited memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS), and Adaptive Moment estimation
(Adam algorithm). A learning rate between 10−4 and 0.4 (Smith 2018) is applied
for ANNs using a stochastic gradient descent learning algorithm, i.e. SGD or Adam.
It may be either constant, or adaptive by remaining constant as long as the loss is
decreasing, and by decreasing as soon as the loss does not decrease for two consecutive
epochs. The number of epochs is chosen between 200 and 1200 from a uniform
discrete distribution on multiples of 50. The number of hidden units per hidden layer
is chosen between one and 30 using a uniform discrete distribution. For each ANN, all
of these hyper-parameters are encoded in a binary genotype of binary chromosomes
as explained in table 1. A mask is applied on the chromosomes in order to prevent
them from taking unexpected values and to ensure that they stay in the defined
intervals. The first four bytes starting from the left encode the hyper-parameter
encoded by the chromosome, e.g 0001 for the chromosome that specifies the hidden
layers number, 0010 for the chromosome that specifies the activation function, etc.
The remaining twelve bytes define the value of the hyper-parameter. The genotype is
split into two groups, the first group that begins with 0 starting from the left encodes
hyper-parameters applied to the ANN, and the second group that begins with 1
starting from the left encodes parameters applied to the each hidden layer. Table 1
describes the coding of a network composed of two hidden layers with respectively six
and four hidden units, using a sigmoid activation function, a constant learning rate
of 500 epochs, and SGD optimizer.

In order to maintain the similarity trait essential to the good functioning of the

10

Figure 7. Activation functions codes and characteristics.

genetic algorithms, the activation function, which is considered as qualitative, should
be encoded in a way that the offspring activation function should partially inherit
some aspects from the parents. For this purpose, the assignment of codes for each
activation function should be done in such a way that the crossover generates offspring
whose activation function is coherent with ones of its parents. Therefore, their codes
were sorted as shown in figure 7 according to their characteristics. Each activation
function have similarities with its neighbours. Usefulness of this sorting will be further
explained when introducing the crossover step.

The resulting ANN genotypes are then transferred one by one into another file that
transforms them into phenotypes (i.e. real ANNs) by decrypting the codes according
to the initial definitions. Learning and predicting phases are then launched for each of
them.

4.1.2. Evaluation and selection

Individuals are selected to generate the offspring based on their performances. The
fitness to optimize is simply the mean accuracy, given by 2, in case of classification
problems.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP , TN , FP , FN stand respectively for true positives, true negatives, false
positives and false negatives; and the coefficient of determination R2, given by 3, in
case of predicting continuous values.

11

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(3)

where ŷi is the predicted value, yi is the correct value, and ȳ is the mean of all of
the correct values. Elitist selection is applied and elements maximizing the fitness are
chosen for breeding.

4.1.3. Crossover and mutation

The next generation will be composed of the selected individuals of the previous gen-
eration, in addition to offspring individuals resulting from the crossover between the
selected individuals of the previous generation. Every two parents generate one off-
spring according to the following rules:

• Hidden layers and units numbers: 0.5 probability of performing a single point
crossover, 0.5 probability of taking one of the two parents whole chromosome
with the same probability;

• Epochs number and learning rate: single point crossover. A mask is mapped to
avoid applying learning rate with an incompatible algorithm;

• Learning algorithm and learning rate set-up: taking one of the two parents whole
chromosome with the same probability, a mask is applied to avoid setting the
learning rate if there is none;

• Activation function: an arithmetic crossover is performed by converting to deci-
mal and then randomly selecting an integer in the range [c1− 0.5(c2− c1); c2 +
0.5(c2− c1)] ; where c1 and c2 are the smallest and largest codes of the parents’
activation functions. The offspring has 0.5 probability of having the activation
function corresponding to the selected code, 0.5 of having the activation func-
tion of one parent. This interval enables getting a code between the two parents’
codes, but also a neighbour code beyond the interval of the two parents’ codes,
i.e. on the right of the largest code and on the left of the smallest one. The
selection interval is reduced to the range of possible values if it is wider;

• Learning rate: this step is performed after the chromosomes of the training algo-
rithm have crossed. If the algorithm resulting from this crossing is the LBFGS,
the crossing of the chromosomes of the learning rate does not take place, and
this chromosome takes a string of bits all at 0, translating that no rate is applied.
If the algorithm resulting from the crossover is SGD or Adam, the crossover of
the learning rate chromosomes takes place, and the resulting chromosome has a
probability of 0.5 to take over the entire chromosome from one of the two par-
ents, with equal chances, and a probability of 0.5 of carrying out an arithmetic
crossing making it possible to obtain a learning rate corresponding to the average
of the learning rates of the two parents in the case where both parents apply a
learning rate. In case only one parent has a learning rate, the descendant takes
the same rate;

• Configuration of the learning rate: this step is performed after the crossing of
the chromosomes of the learning rate. If the chromosome resulting from this
crossover is different from a string of 0, the crossover of the chromosomes of
the learning rate configuration takes place, and the resulting chromosome has a
probability of 0.5 to take the learning rate configuration of the first parent, and
0.5 to take that of the second parent. We note that when we speak of a string

12

Figure 8. Output of a single neuron.

of 0, we are referring to the modifiable string of the chromosome (i.e. the entire
chromosome, except the first four bits starting from the left).

In order to enrich the exploration, a mutation is randomly applied, with a rate
of 0.005 to a chromosome gene among those allowed to mutate. At the end of these
operations, a new population is thus generated, it is composed of the best performing
ANNs of the previous population and their offspring. The process is repeated until
maximizing the fitness.

4.2. Predictors prioritization

4.2.1. Methodology

Thanks to a neural network capable of correctly predicting the addressed KPI, experts
are capable of anticipating deviations and must therefore take action in advance in
order to prevent them. To do so, they need to identify factors that most influence
the KPI so that they can act as effectively as possible. As previously mentioned,
data used to forecast may contain some that have more significant influence than
the decision-maker thinks. For this issue, an action prioritization can be provided by
ranking the predictors, based on the final weights of the ANN that has been used
to predict, as we suggest in this section. It should be noted that whatever the KPI
of interest, the procedure remains the same, as long as a good predictive ANN is
available for the KPI of interest.

The ANN weights represent the strength of connections between units of the ANN,
and highlight the degrees of importance of the inputs values (Han et al. 2015). Figure
8 shows how inputs are transformed to provide the output in a single neuron ANN.
A weighted sum is first performed, then the activation function is applied on it and
summed with the bias value to give the output Y as:

Y = f(

n∑
i=1

(wixi + b) (4)

where xi is the ith input value, wi is the connection weight between xi and the
output , and b is the bias.

When dealing with a multilayer perceptron ANN, the same formula is applied for
computing each hidden layer unit value, which then behave as inputs for the next layer,
and so on. In our ranking method, we only exploit inputs and final weights values.
Bias values are not used, since biases act in our case like additional neurones, one per
layer. We therefore consider that their influence as equally distributed on the hidden
neurons of the same layer. Their considering in our prioritization proposition will hence
make the method more complex without changing the final ranking. Moreover or two
neurons with the same value, the one with the biggest weight value will automatically
most increase the weighted sum and hence the output, if the used activation function
is increasing. Therefore, the equivalences given by 5 and 6 can be established.

13

n∑
i=1

wixi −
n∑

j=1

wjxj >

n∑
k=1

wkxk −
n∑

l=1

wlxl ⇐⇒ f(

n∑
i=1

wixi) > f(

n∑
j=1

wjxj) (5)

n∑
j=1

wjxj −
n∑

i=1

wixi >

n∑
k=1

wkxk −
n∑

i=1

wixi ⇐⇒

f(

n∑
j=1

wjxj)− f(

n∑
i=1

wixi) > f(

n∑
k=1

wkxk)− f(

n∑
j=1

wixi)

(6)

In the case of a neural network without a hidden layer, if the output Y given by
4 increases, this means that f(

∑n
i=1wixi) has increased, since an increasing function

is used. In this work, only increasing activation functions are supported. As seen in
the previous section, all neural networks that can be built use a strictly increasing
activation function. Therefore, we can omit the activation function in the evaluation
of the influence of inputs on the output. Besides, the objective of our study is to
evaluate the influence degree of the inputs, without specifying the direction of the
relationship. Therefore, we consider the absolute values of the weights rather than
their signed values. Moreover, the updating of weights in each epoch is based on the
error value, and the objective of the learning algorithm is to minimize this error by
modifying the weights. For each estimation, the quadratic error is given by 7.

e(W) = (ŷi − y)2 (7)

The cost function after the training with a given W weights matrix is:

E(W) =
1

N

N∑
i=1

(ŷi − y)2 (8)

where N is the training sample size, which is constant. The objective being to
minimize (ŷi − y)2, where ŷi = f(

∑n
j=1wjxji) if we neglect the intercept, with n the

number of inputs, and xji the jth input value of the observation i. Thus, the error
function depends on both weights and inputs values. For the standard gradient descent
learning algorithm, the weights are updated as following:

Wt = Wt−1 − λ∇E(Wt−1) (9)

where Wt−1 is the weights matrix of the previous epoch. For the stochastic gradient
descent learning, the weights are optimized after each observation as following:

Wt = Wt−1 − λ∇e(Wt−1) (10)

For the Quasi-Newton optimization, e.g BFGS algorithm, weights are updated as
following:

Wt = Wt−1 − µHt−1∇E(Wt−1) (11)

14

where Ht−1 is an approximation of the Hessian matrix of the cost function.

Therefore, the gradient of the error is always involved in the weights updating, which
clearly means that the values of the inputs are also involved, since the error function
depends on ŷi, which depends on the inputs values. It is thus intuitive to conclude
that for two predictors x1 and x2 with exactly the same influence on the output, if x1
varies within a range of very large values, and x2 within a range of very small values
compared to x1, the weights assigned to x1 would have an absolute value much smaller
than the ones assigned to x2. The variation ranges of the two final weights matrices
W1 and W2 will be inversely correlated with the variation ranges of the inputs x1 and
x2. Therefore, the formula we use in order to allocate an influence degree to each input
i is given by 12, which corresponds to the contribution of an input i in the output
variations.

Ri = |µi

σi
(

m∑
j=1

wij∑n
i=1 |wij |

∗
m∏
k=1

wjk∑m
j=1wjk

)| (12)

where i is the input for which we are evaluating the strength of its association to
the output, n is the number of the ANN inputs, m denotes the number of hidden
neurons connected to the input i, wxy denotes a connection weight between a neuron
x and a neuron y, µi and σi denote the mean and the standard deviation of the values
of input i. The standard deviation is used to take into account the dispersion of the
values of the input, indeed, an input with relatively small values and which takes by
moment very large values may have a large mean value which is not representative of
the sample. The inverse of the coefficient of variation 1

CV = µ
σ is then used, the bigger

its value is, the smallest is the dispersion.

An influence degree is hence attributed to each input, and the ones that have the
biggest Ri values are the ones that influence the most the KPI being predicted. But
yet, the causal structure has to be taken into account in order to balance this ranking,
as we will see in section 6. Thanks to this ranking, and after balancing it according to
the causal structure ; when a KPI deviation is predicted, an action on the entity that
corresponds to the variable with the highest influencing degree would be more likely
to allow the deviation avoidance.

4.3. Validation process of the prioritization degrees

In order to ensure that the prioritization is correct for a given KPI, it should be
compared on different ANNs that all perform good predictions of the KPI, and which
obviously provide different final weights matrices since they have different structures
and hyper-parameters. The suggested neural network construction method can be
used to build several ANNs giving high prediction performances for the same KPI.
The genetic algorithm is therefore run several times if needed, in order to provide
ANNs with different structures and hyper-parameters, but with approximately the
same performance. The resulting ANNs will then certainly have different numbers and
values of weights. The ranking method can then be applied on each of these ANNs’ final
weights. Normally, the same order should be returned for all of these well performing
ANNs. This process is shown in figure 9. Moreover, inputs can be successively omitted

15

Good

performance

Bad

performance

Good

performance

Good

performance

ANNs 1, 3, and 4

ANN 4

ANN 3

ANN 2

ANN 1

Nodes ranking given

ANN1 weights

Ranking

comparision

Nodes ranking given

ANN3 weights

Nodes ranking given

ANN4 weights

Figure 9. Validation process of the prioritization degrees.

one by one, and new ANNs can then be built for each case. The prediction performance
should significantly decrease for the ANNs built without the top ranked inputs, and
should not be much altered when omitting the last ranked inputs from the model.

5. Proposal validation

An academic industrial case study dealing with the OEE related to an assembly
operation has been built in order to implement the proposed methodology and to
evaluate the experiments’ correctness. It is based on a representative summary data
sample. Since our approach only deals with variables causally related to the KPI
(i.e. to the OEE in this case study), and since we consider that a causal structure is
available, the studied data sample has been obtained from a data simulation based on
a causal Bayesian network in order to deal with a meaningful and realistic dataset.
First, a causal structure has been defined, as well as its corresponding probability
tables in order to generate a causal Bayesian network using pgmpy and bnlearn

python libraries. Then, data have been sampled, based on the causal links and on
the probability tables previously set, using the same libraries. In this use case, the
authors consider that OEE deviation is causally related to the following discrete
variables: waste, slow down, tool unavailability, the ambient temperature in the
shop-floor, the used assembly guide, and the chosen scheduling of the assembly tasks.
The expected output is a classification of whether the OEE will deviate or not. Figure
10 illustrates the causal Bayesian network structure describing causal links between

16

Figure 10. Causal Bayesian network structure describing causality links between contextual variables and

OEE state.

Assembly guite (1) Assembly guite (2)

Waste (no) 0.1 0.9

Waste (yes) 0.9 0.1

Temperatre (high) 0.5

Temperature (normal) 0.5

Scheduling (1) 0.5

Scheduling (2) 0.5

Assembly guide (1) 0.5

Assembly guide (2) 0.5

Temperature (notmal) Temperature (high)

Slow down (no) 0.1 0.9

Slow down (yes) 0.9 0.1

Scheduling (1) Scheduling (2)

Tool unavailability (no) 0.1 0.9

Tool unavailability (yes) 0.9 0.1

Tool

unavailability

(no)

Tool

unavailability

(no)

Tool

unavailability

(no)

Tool

unavailability

(no)

Tool

unavailability

(yes)

Tool

unavailability

(yes)

Tool

unavailability

(yes)

Tool

unavailability

(yes)

Waste (no) Waste (no) Waste (yes) Waste (yes) Waste (no) Waste (no) Waste (yes) Waste (yes)

Slow down (no) Slow down (yes) Slow down (no) Slow down (yes) Slow down (no) Slow down (yes) Slow down (no) Slow down (yes)

OEE (normal) 1 0.86 0.9 0.2 0.7 0.15 0.1 0

OEE (Deviation) 0 0.14 0.1 0.8 0.3 0.85 0.9 1

Figure 11. Probability tables associated with the OEE causal graph.

contextual variables and the OEE state. The probability tables associated to this
causal structure are given by figure 11.

First, the genetic algorithm was developed and launched in order to provide
an ANN with high predictive performance. Table 2 shows the accuracy evolution
between ANNs constructed in the initial population, and ANNs constructed in the
last population. The best performing network gives an accuracy of 0.8786% and
its normalized confusion matrix is given in figure 12. The final ANNs built by the
genetic algorithm provide good accuracies. Indeed, given the probabilities set for the
OEE’s status, the assertion that the OEE will or will not deviate can be certain at an
average probability of 0.87625.

The general ranking, when predicting with all of the 6 causes is given by table
3. In order to ensure that this ranking is correct, the method described in figure 9
has been performed. The second best ANN of the last population was thus selected
and the resulting ranking is described in table 4. Obviously, this ANN has a different

17

Table 2. ANNs accuracy evolution between the first and the last population.

First population accuracies Last population accuracies

0.48836666666666667 0.8785666666666665
0.5108666666666667 0.8686666666666667
0.4902666666666667 0.8745333333333334
0.48673333333333335 0.87648
0.7764666666666666 0.8757333333333334
0.6852 0.8738666666666667
0.7964666666666666 0.8782333333333333

Figure 12. Prediction normalized confusion matrix of ANN resulting from the genetic evolution.

18

Table 3. Inputs general ranking.

Ranking Ranking score Input

#1 16.945206257137187 Tool unavailability
#2 10.060149902028803 Waste
#3 9.808118368056034 Slow down
#4 9.500956633913196 Temperature
#5 9.232680220598699 Assembly guide
#6 9.14470575536555 Scheduling

Table 4. Inputs general ranking using the second best ANN.

Ranking Ranking score Input

#1 14.600708117842089 Tool unavailability
#2 12.892838321870572 Waste
#3 11.623951703243291 Slow down
#4 8.885434822003866 Temperature
#5 8.862161240203546 Assembly guide
#6 8.805144359822698 Scheduling

structure, hyper-parameters, and weights from the first one. The resulting ranking
gives the same prioritization. In this case, if a deviation of the OEE is predicted
during the utilization phase, focus should preferably be placed on the analysis of the
tool unavailability, if we only consider direct causes.

The ranking analysis has to take into account the level of a cause among other
causes. The scores of direct causes can directly be interpreted, however, the analysis
of the indirect causes ranking has to take into account the ranking of its related
direct causes and its related descending indirect causes. In this case study, tool
unavailability, waste and slow down are the direct causes, and assembly guide,
scheduling, and temperature are at the first indirect causes level.

In order to illustrate the direct causes influences, a series of four ANNs has
been built and its ANNs have been compared using the areas under the Receiver
Operating Characteristic (ROC) curves. ROC curve is a technique for visualizing
and selecting classifiers based on their performance (Hoo, Candlish and Teare 2017).
The performance is evaluated by calculating the area under the curve (AUC). AUC
is a very widely used measure of performance for classification and diagnostic rules
(Airola et al. 2011). A first ANN has been built using all direct causes. The three
remaining ANNs were built by omitting, one by one, and successively, one of the three
direct causes initially used inputs. Then, the authors compared the performances
of the predictions that have been run, by superimposing their ROC curves, and
the performances of each prediction have been evaluated by calculating the AUCs.
From the ROC curves in figure 13, one can clearly see that when altering the most
influencing direct factor, i.e. Tool unavailability, the prediction is more altered than
when altering Slow down or Waste.

19

Figure 13. ROC curves when predicting with all direct causes, and when omitting one input at a time.

Table 5. Direct causes ranking.

Ranking Ranking score Input

#1 14.196932965129683 Tool unavailability
#2 12.500569730345381 Waste
#3 11.050863041452459 Slow down

Concerning the comparison of the indirect causes between each other, their
descending nodes scores have to be taken into account. In fact, considering the
analysis of the scores given by table 3, and taking only direct scores into account,
one can conclude that Tool unavailability has a contribution of 46% on the OEE
state prediction, Waste contributes to 27,3%, and Slow down to 26.7%. The scores
of the first level indirect causes should take into account these contributions. Hence,
they should be weighted by their descending causes contributions, which gives the
following scores when comparing the first level indirect causes : 9.14 × 0.46 = 4.2044
for Scheduling, since it is the parent of Tool unavailability, 9.23 × 0.27 = 2.49 for
Assembly guide, since it is the parent of Waste, and 9.5×0.26 = 2.47 for Temperature,
since it is the parent of Slow down. This brings the Scheduling to the top of the
indirect causes ranking, and Temperature to its bottom.

6. Comparison with Bayesian sensitivity analysis

Remaining with the study case presented above, the objective of this section is to
compare the resulting influences ranking with contribution percentages resulting from
Bayesian sensitivity analysis. Indeed, the authors aim to evaluate the consistency of
the proposal results, that are based on final learned ANN weights, with sensitivity
analysis results, that are based on conditional probabilities tables associated to the
original Bayesian network. This section also highlights difficulties and mistakes related
to the interpretation of the conditional probabilities tables associated to a BN.

The general ranking has already been given by table 3. Two more ANNs have been
built : a first one with the direct causes only, and a second with the indirect causes
only. Tables 5 and 6 give the rankings of respectively the direct and indirect causes
taken separately, given one built ANN. As shown in these tables, the rankings are
coherent with the analysis the authors did in the previous section.

6.1. Predictors contributions based on a Bayesian sensitivity analysis

In order to correctly conclude on the predictors contributions ranking based on prob-
abilities tables, without falling into misinterpretations, a sensitivity analysis has to be
conducted. The resulting contributions will serve as a reference to verify the consis-

20

Table 6. Indirect causes ranking.

Ranking Ranking score Input

#1 12.290120535676731 Scheduling
#2 9.69051603768232 Assembly guide
#3 9.6223850678669 Temperature

Figure 14. OEE state direct contributions according to Bayesialab.

tency of our resulting rankings. Bayesialab 1 software contains the sensitivity analysis
functionality and can provide us with a complete analysis that responds to the problem
of ranking the influencing factors. Since our objective is to be able to engage actions on
root cause if possible, we first start by performing direct contributions of the OEE, in
order to further investigate the contributions of causes of the most influencing direct
cause. Direct contributions on OEE state, according to Bayesialab sensitivity analysis
are presented in figure 14. The last column of figure 14 shows that Tool unavailability
has more impact on OEE (40.08%) than Waste and Slow down (respectively 30,16%
and 29.75%).

In order to compare in a meaningful way the Bayesialab results to the ones
provided by the approach proposed in this paper, the rankings must be expressed
in percentages. Direct causes contributions percentages according to the ranking
approach proposed in this paper can be derived from table 5, by dividing each
cause’s score by the sum of scores of direct causes. Therefore, contributions of direct
causes, according to our approach are : Tool unavailability contributes to 37.61%,
Waste contributes to 33.11%, and Slow down 29.38%. These results are consistent
with the result provided by the Bayesialab analysis, and contributions percentages
provided by our approach are close to ones provided by the Bayesialab analysis,
even though they are not the same. This gaps are due to the fact that final weights
on which the ranking is based are issued from an ANN which still has a margin of
error. Indeed,the proposed method relies on final connection weights of ANN, but
one has to keep in mind that this ANN is not 100% accurate, it hence has learned
some errors in the training phase where ANN did not see all of the dataset samples,
but only the training set samples. This leads to very representative weights matrix
when accuracy is high enough, but nearly never faithful to 100% of reality interactions.

In the same way, indirect causes influences can be taken separately in order to
compare their influences. Indirect contributions on OEE state, according to Bayesialab
sensitivity analysis are presented in figure 15. The last column of figure 15 shows that
Scheduling has more impact on OEE (39.99%) than Assembly guide and Temperature
(respectively 30.19% and 29.81%). These contributions are in accordance with the

1www.bayesia.com

21

Figure 15. OEE state indirect contributions according to Bayesialab.

Figure 16. Effects of all causes on the OEE according to Bayesialab.

ranking given by table 6, which gives contribution to 38.9% for Scheduling, 30.65%
for Assembly guide, and 30.45% for Temperature. The Baysialab ranking results are
also consistent with the analysis driven in the last paragraph of section 5 based on
the general ranking given by table 3.

So far in this section, the authors have deal with direct causes and indirect causes
separately. Let us now consider the whole ranking of the effects of all causes on
the OEE state. The analysis of the general ranking is important for the alternative
selection phase of the decision making process. In fact, decision makers may want to
compare causes with different levels, especially when they judge that acting on a given
root cause would be effort or resource consuming, and that it would be interesting to
compare its descendent(s) with another root cause(s). Figure 16 shows, in the fourth
column, the respective effects of each cause on the OEE. When comparing with the
authors’ methodology, one must consider the absolute value of these effects, since the
authors do not deal in the present scope with the influencing directions of the causes on
the addressed KPI. In order to compare these contributions with our ranking analysis,
we first bring the effects values of the sensitivity into percentages, which gives the fol-
lowing contributions : 22.28% for Tool unavailability, 17% for Scheduling, 16.76% for
Waste, 16.53% for Slow down, 13.4% for Assembly guide, and 13.22% for Temperature.

Since the general ranking given by table 3 involves direct and indirect causes
together, the causal structure plays a key role in its analysis. In fact, weights are
attributed in order to minimise the error in the output, but given the causal structure,
it is obvious that weak weights would be attributed to connections related to a causal
parent of another input which has already been given a high weight. For example,
since Tool unavailability highly contributes to the OEE state change, its parent
Scheduling is no more important for the prediction, if and only if Tool unavailability
is present in the dataset ; but this does not mean that Scheduling is not highly
related to the OEE in a causal way. Therefore, when dealing with prioritization
between causes of different levels, the causal structure is indispensable for analysing
the ranking given by the proposed methodology. In our case study, this means that

22

in the general ranking, we shall first calculate the contributions of causes of different
levels separately given the scores of the general ranking given by table 3. These
contributions will then allow us to scale all of the scores, in order to provide the
final contributions of all causes of mixed levels. Concerning the direct causes, we
already got, in the previous section the following contributions percentages : Tool
unavailability contributes to 37.61%, Waste contributes to 33.11%, and Slow down
29.38%. The ranking of indirect scores given by table 3 has to be weighted with the
contributions of direct causes related to each indirect cause, before comparing the
indirect causes contributions between each other, as previously explained. Hence, the
new weighted scores of indirect causes are: 4.2044 for Scheduling, 2.49 for Assembly
guide, and 2.47 for Temperature. The reverse operation must then be done in order
to take into account the contributions of indirect causes of level one. The ranking
of direct scores, given by table 3, has to be weighted with the contributions of
indirect causes related to each direct cause. First, the contributions of indirect causes
should be compared to each other, independently from the direct causes. These
contributions can be retrieved from table 3 by dividing each indirect cause score by
the sum of indirect cause scores, which gives : 9.5 ÷ (9.5 + 9.23 + 9.14) = 34.09%
for Temperature, 9.23 ÷ (9.5 + 9.23 + 9.14) = 33.12% for Assembly guide, and
9.14 ÷ (9.5 + 9.23 + 9.14) = 32.8% for Scheduling. The new weighted scores of
indirect causes are : 16.94 × 0.328 = 5.554 for Tool unavailability since it is the
descendent of Scheduling, 10.06× 0.3312 = 3.332 for Waste since it is the descendent
of Assembly guide, and 9.81× 0.3409 = 3.344 for Slow down since it is the descendent
of Temperature.

Once the general ranking scores are weighted given the causal structure, their
contribution percentages can be retrieved by dividing each weighted score by the sum
of all other weighted scores, which gives the following final contributions: 25.96%
for Tool unavailability, 19.65% for Scheduling, 15.63% for Slow down, 15.57% for
Waste, 11.64% for Assembly guide, and 11.54% for Temperature. This ranking and
contribution percentages are very close to the ones given by the effects analysis
provided by Bayesialab. Positions of Waste and Slow down in the proposed general
ranking analysis and Bayseialab Analysis are reversed. However the values of Waste
and Slow down contributions are very close to each other in both analyses (15.63%
for Slow down and 15.57% for Waste in the proposed general ranking analysis, and
16.76% for Waste, 16.53% for Slow down, in the Bayesialab analysis). This reversing
is therefore not critical, since it held at less than 0.03%.

Given this final ranking, causes of different levels involved in the OEE state can
be compared to each other. For example, if we compare Scheduling, Waste, and Slow
down, Scheduling proves to be more influential than the Waste or Slow down, even
though it is an indirect cause. In order to make sure of this assertion, an ANN taking
as predictors only Scheduling, Waste, and Slow down has been built using the ANN
construction GA. Three more ANNs have also been generated by omitting one of
these three predictors one by one. Figure 17 illustrates the impact of omitting each of
Scheduling, Waste, and Slow down from the predictors. The ROC curves and the AUCs
shown in this figure show that omitting scheduling has larger impact than omitting
Waste or Slow down.

23

Figure 17. Comparison of the predictive power contribution of Scheduling, Waste, and, Slow down.

6.2. Discussion

Despite the little changes in percentages resulting from our proposal, the ranking val-
ues give the exact order with coherent tendencies. Our initial objective being to inform
decision makers about the most relevant causes to act on, we consider that the proposal
gives results that are able to fulfil this function, and that it offers generecity and easy
applicability on different KPIs. We hence fulfilled genericity criteria, indispensable in
industrial contexts where KPIs are likely to evolve and to be numerous. Furthermore,
we believe that the proposed method can be considered as being convenient since
it addresses the ease and rapidity of use, that are also important in industrial con-
texts where decision makers do not have time or the required background to interpret
probabilities tables. Also, the decision maker would not need to spend much time for
getting used to the tool handling, since he will only need to inject historical data
of the variables present in the causal structure in order to learn a good forecasting
ANN and to get the scores ranking of the causes and root causes. We also showed
that decision makers can either decide by choosing an alternative related to one cause
among other causes of the same level, or to one cause among others of several levels.
Also, usability is fulfilled since the prediction using the learned ANN will enable a
proactive decision making in order to handle a potential deviation before it occurs, by
acting on the most inuflencing cause(s). Furthermore, ANNs can give high prediction
accuracy and can handle both quantitative and qualitative data. Besides, for future in-
ternal developments, there will be no need for purchasing software that provide causal
contributions.

7. Conclusion and future work

In this article, we introduced neural a network based decision making approach for
supervision in the context of the Industry 4.0. In this context, the availability of data
can be profitable in the sense that we exploit it to take decisions beyond the beliefs
arising from the experience. The main idea was to collect as much data as possible
in order to predict a given KPI. The prediction is based on an ANN that also serves,
thanks to its final weights, for prioritizing the influencing factors. This ANN is built
using an evolution process based on genetic algorithms, which provided genericity to
our proposal since we can easily define ANN structure and hyper-parameters for pre-
dicting any KPI. A ranking method based on ANN final weights was then presented in
order to provide decision aid that pinpoints causes on which actions should preferably
be engaged. The contributions results are coherent with Bayesian Sensitivity analysis,
and present the advantage of being easily retrieved without manipulating the algo-
rithm. This prioritization can also serve to better exploit data sources, by using the
last ranked inputs’ sensors for other aims rather than supervising a KPI that it impacts
a little or not at all. Future work should be centred on utilization phase in real time,
by exploiting the ANNs and the prioritization of contributors of a given KPI, in order
to raise alarms and suggest actions in real time and before deviation occurs. This will
hence need a real industrial environment and its corresponding real historical data.
Furthermore, the proposal should also be enriched by adding a cause ranking enrich-
ment component which consists of exploiting the feedback after each decision made

24

and action taken. This can be done by evaluating the effect of an action on a given
cause, on the process, and then balancing the cause ranking. This balancing will then
either support the ranking and increase its level of confidence, or disapprove it and
decrease its level of confidence. Finally, the results computing in order to rank causes
from different levels shall be automated and integrated to the ranking algorithm.

References

Ahmadizar, Fardin, Soltanian Khabat, Akhlaghiantab Fardin and Tsoulos Ioannis. 2015. “Arti-
ficial neural network development by means of a novel combination of grammatical evolution
and genetic algorithm.” Engineering Applications of Artificial Intelligence 39: 1–13.

Airola, Antti, Pahikkala Tapio, Waegema Willem, De Baets Bernard and Salakoski Tapio.
2015.“An experimental comparison of cross-validation techniques for estimating the area
under the ROC curve”. Computational Statistics & Data Analysis 55 (4) : 1828–1844.

Amzil, Kenza, Yahia Esma, Klement Nathalie and Roucoules Lionel. 2020. “Causality learning
approach for supervision in the context of Industry 4.0”. Paper presented at tenth Joint
Conference on Mechanics.

Aydiner, Arafat Salih, Tatoglu Ekrem, Bayraktar Erkan, Zaim Selim and Delen Dursun. 2021.
“Business analytics and firm performance: The mediating role of business process perfor-
mance”. Journal of business research. 96: 228–237.

Ballard, Andrew. 2019. “Framing bias in the interpretation of quality improvement data:
evidence from an experiment”. International Journal of Health Policy and Management. 8:
307.

Bramer, Max. 2007. Principles of Data Mining.
Dalzochio, Jovani, Kunst Rafael, Pignaton Edison, Binotto Alecio, Sanyal Srijnan, Favilla Jose

and Barbosa Jorge. 2020. “Machine learning and reasoning for predictive maintenance in
Industry 4.0: Current status and challenges” Computers in Industry 123: 103298.

Hagan, Martin T., Demuth Howard B., Hudson Beale Mark and De Jesús Orlando. 2014.
Neural Network Design, second edition.

Han, Hong-Gui, Zhang Shuo and Qiao Jun-Fei. 2017. “An adaptive growing and pruning
algorithm for designing recurrent neural network”. Neurocomputing 242: 51–62.

Han, Song and Pool Jeff, Tran John and Dally William. 2015. “Learning both weights and
connections for efficient neural network”. Advances in neural information processing systems
: 1135–1143.

Hänninen, Maria and Kujala Pentti. 2012. “Influences of variables on ship collision probability
in a Bayesian belief network model.” Reliability Engineering & System Safety 102: 27–40.

Hoo, Zhe Hui, Candlish Jane and Teare Dawn. 2017. “What is an ROC curve?”
Huang, Binbin, Wang Wenbo, Ren Shan, Zhong Ray Y and Jiang Jingchao. 2019. “A proac-

tive task dispatching method based on future bottleneck prediction for the smart factory.”
International Journal of Computer Integrated Manufacturing. 32 (3):278-293.

Kalainathan, Diviyan. 2019. “Generative Neural networks to infer Causal Mechanisms : Algo-
rithms and applications.” PhD diss. Université Paris-Saclay.

Kamienski, Carlos, Soininen Juha-Pekka, Taumberger Markus, Dantas Ramide, Toscano At-
tilio, Salmon Cinotti Tullio, Filev Maia Rodrigo and Torre Neto André. 2019. “Smart water
management platform: Iot-based precision irrigation for agriculture.” International journal
of communication systems 19 (2): 276.

Karsoliya, Saurabh. 2012. “Approximating number of hidden layer neurons in multiple hidden
layer BPNN architecture”. International Journal of Engineering Trends and Technology 3
(6): 714–717.

Keding, Christoph and Meissner Philip. 2021. “Managerial overreliance on AI-augmented
decision-making processes: How the use of AI-based advisory systems shapes choice be-
havior in R&D investment decisions”. Technological Forecasting and Social Change 171 :

25

120970.
Kjærulff, Uffe and Van Der Gaag Linda C. 2013. “Making Sensitivity Analysis Computa-

tionally Efficient”. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE PROCEEDINGS :
317–325.

Klingenberg, Cristina Orsolin, Borges Marco Antônio Viana and Antunes Jr José Antônio
Valle. 2019. “Industry 4.0 as a data-driven paradigm: a systematic literature review on
technologies”. Journal of Manufacturing Technology Management.

Laudon, Jane P. and Laudon Kennetch C. 2019. “Management Information Systems: Managing
the Digital Firm.”

Mantzaris, Dimitrios, Anastassopoulos George and Adamopoulos Adam. 2011. “Genetic al-
gorithm pruning of probabilistic neural networks in medical disease estimation”. Neural
Networks 24 (8): 831–835.

Marcot, Bruce G. 2017. “Common quandaries and their practical solutions in Bayesian network
modeling”. Ecological Modelling 358: 1–9.

Misirli, Ayse Tosun and Bener Ayse Basar. 2014. “Bayesian networks for evidence-based
decision-making in software engineering.” IEEE Transactions on Software Engineering 40
(6):533-554.

Moeuf, Alexandre, Pellerin Robert, Lamouri Samir, Tamayo-Giraldo Simon and Barbaray
Rodolphe. 2017. “The industrial management of SMEs in the era of Industry 4.0.” Interna-
tional Journal of Production Research 56 (3): 1–19.

Panchal, Gaurang, Ganatra Amit, Kosta Y P and Panchal Devyani. 2011. “Behaviour Analysis
of Multilayer Perceptronswith Multiple Hidden Neurons and Hidden Layers”. International
Journal of Computer Theory and Engineering 3 (2): 332–337.

Pérez-Álvarez, José Miguel, Maté Alejandro, Gómez-López Maŕıa Teresa and Trujillo Juan.
2018. “Tactical Business-Process-Decision Support based on KPIs Monitoring and Valida-
tion”. Computers in Industry 102 : 23–39.

Pollino, Carmel A. and Henderson Christian. 2010. “Bayesian networks: A guide for their
application in natural resource management and policy”. Ecological Modelling 14.

Sheela, K. Gnana and Deepa Subramaniam N. 2013. “Review on methods to fix number of
hidden neurons in neural networks”. Mathematical Problems in Engineering 2013.

Shih-Hung, Yang and Yon-Ping Chen. 2012. “An evolutionary constructive and pruning al-
gorithm for artificial neural networks and its prediction applications”. Neurocomputing 86:
140–149.

Smith, Leslie N. 2018. “A disciplined approach to neural network hyper-parameters: Part
1–learning rate, batch size, momentum, and weight decay”.

Stanley, Kenneth O, Clune Jeff, Lehman Joel and Miikkulainen Risto. 2019. “Designing neural
networks through neuroevolution”. Nature Machine Intelligence 1 (1): 24-35.

Tambare, Parkash, Meshram Chandrashekhar, Lee Cheng-Chi, Ramteke Rakesh Jagdish and
Imoize Agbotiname Lucky. 2022. “Performance Measurement System and Quality Manage-
ment in Data-Driven Industry 4.0: A Review.” Sensors 22 (1): 1424-8220.

Tsai-Chi, Kuo, Hsu Ni-Ying, Yi Li Tzu and Chao, Chin-Jung. 2021. “Industry 4.0 enabling
manufacturing competitiveness: Delivery performance improvement based on theory of con-
straints.” Journal of Manufacturing Systems 60:152-161.

Tu, Jack V. 1996. “Advantages and disadvantages of using artificial neural networks versus
logistic regression for predicting medical outcomes.” Journal of Clinical Epidemiology 49
(11):1225–1231.

Weber, Philippe, Medina-Oliva Gabriela, Simon Christophe and Iung Benôıt. 2012. ‘Overview
on Bayesian networks applications for dependability, risk analysis and maintenance areas”.
Engineering Applications of Artificial Intelligence 25 (4): 671–682.

Yin, Shen, Zhu Xiangping and Kaynak Okyay. 2015. “Improved PLS focused on key-
performance-indicator-related fault diagnosis.” IEEE Transactions on Industrial Electronics
62 (3) : 1651–1658.

Yu, Dong and Seltzer Michael L. 2011. “Improved bottleneck features using pretrained deep
neural networks”. Paper presented at the twelfth annual conference of the international

26

speech communication association.

27

