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Abstract. In order to have a full control on their processes, companies need to
ensure real time monitoring and supervision using Key Performance Indicators
(KPI). KPIs serve as a powerful tool to inform about the process flow status and
objectives’ achievement. Although, experts are consulted to analyze, interpret, and
explain KPIs’ values in order to extensively identify all influencing factors; this
does not seem completely guaranteed if they only rely on their experience. In this
paper, the authors propose a generic causality learning approach for monitoring and
supervision. A causality analysis of KPIs’ values is hence presented, in addition to
a prioritization of their influencing factors in order to provide a decision support.
A KPI prediction is also suggested so that actions can be anticipated.

Keywords: Industry 4.0 - Monitoring and supervision - Key performance
indicators - Causality - Artificial intelligence - Machine learning - Decision
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1 Introduction

Over the last decades, the industrial world has known a wide emergence of Informa-
tion Technologies that have led to a convergence towards a new industrial revolution
commonly called Industry 4.0. This latter aims at exploiting the growing technologies
as a backbone to integrate objects, humans, machines, and processes [1], in order to
better overtop customers’ requirements increasingly stringent about costs, quality and
deadlines. All of this requires making right decisions at the right moment. Thus, the
three following features should be considered [2]: (i) horizontal integration, which aims
to optimize the value chain by connecting it beyond the company’s perimeter; (ii) verti-
cal integration of systems and subsystems, with production management tools through
hierarchical levels, (iii) end-to-end integration of engineering across the value chain.
The main enablers of vertical integration are real time monitoring and supervision [3].
Monitoring is achieved by collecting data to inform about the systems’ current state,
and does not have any direct action on decision making, while supervision must provide
functions that may affect the con- duct of the monitored system, such as parameteriza-
tion, re-planning, or optimization, based on the current state [4]. Supervision must also
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be able to recognize and report abnormal situations, so that stakeholders can take well-
founded decisions. Also, deviations should be detected preferably before they happen, so
that actions can be taken on the factors that have caused it. In this context, KPIs serve as
a strong monitoring mean [5] that quantifies processes and engaged action effectiveness
[6]. The purpose of this paper is to provide an approach to conduct prediction and diag-
nosis in order to detect abnormal situations and identify their causes. For this, the focus
will be on analyzing KPIs’ values, by exhaustively identifying and prioritizing the root
factors that affect them. Significant researches [7-10] confirm that the analysis of KPIs’
values, and the identification of their influencing factors, often performed by experts in
an empirical and descriptive way, do not allow exhaustive and exact identification of all
direct and indirect causes of each KPI deviation. These empirical analyses conducted
by following some specific problem solving approaches, may omit many factors that
affect the investigated KPI, and mutual influence between the identified factors may
not be noticed. Hence, this kind of analysis remains subjective and only represents the
known part of reality, often leaving a hidden part we totally ignore [11]. Besides, KPIs
may change over time and have new influencing factors. These reflections have led us to
make our hypothesis, which is to take in consideration all available data, since experts
may omit certain factors, mistakenly judging them as being uninvolved in the evolution
of the KPIs’ values. Thus, we propose to build a causal learning approach in order to
identify and prioritize influencing factors. This approach is based on the strong assump-
tion of collecting data from as many sources as possible, including physical world and
information systems, by instrumenting as much as we can the systems to be monitored,
as well as their environments, so that our analysis can exhaustively high- light all the
leading causes among this data. The proposed approach can be applied in the production
context as well as in other engineering contexts.

The rest of this article is organized as follows. In Sect. 2, we describe the global
approach of the proposal, focusing on data analysis. Section 3 summarizes a use case
and discuss the first results. Conclusion and future work are given in Sect. 4.

2 Methodology of the Proposal

The goal of the methodology is to be able to identify all the affecting factors of a given
KPI, and to prioritize them in order to provide decision support by identifying actions
which are more relevant to engage for improving the KPI value. These actions will have
a more pronounced added value if they are taken before deviation occurs, hence the
interest in predicting the KPI's values. The diagram shown in Fig. 1 describes the bricks
that make up data analysis that will lead us to our goal.

(i) Causal analysis based on Bayesian Networks (BN), which aims at identifying the
factors affecting the addressed KPI. The BN form a class of multivariate statistical models
that has become popular as an analytical framework in causal studies, where causal
relations are encoded by the structure of the network [12—14]. How- ever, the construction
of the BN’s structure is itself based on the experts’ a priori knowledge. To cope with this,
several algorithms exist to learn the structure [15] (constraint based algorithms, and score
based algorithms), and to compute the structure’s associated conditional probabilities.
(ii) Prediction: in order to anticipate actions to be taken on the factors identified by
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the causal analysis, the KPI value should be predicted and, if any deviation is detected,
actions are engaged at the right time. In our case, this prediction is made possible by
means of Artificial Neural Networks (ANN). ANN are used to solve complex problems
and enable learning and modeling nonlinear and complex relationships between inputs
and outputs. (iii) ANN parameters’ definition: in order to predict one given KPI, the
optimal structure of the ANN must be defined and must meet a reasonable computing
time with good prediction results. For our case, a multilayer perceptron ANN is used,
and for having a good compromise computing time/prediction accuracy, the authors
followed, for one single KPI, an experimental approach to adjust the ANN’s parameters
(e.g. number of layers, learning rate, etc.). Since many KPIs need to be predicted, an
optimal ANN structure needs to be defined for each KPI, thus, we need to provide
greater genericity to our proposal in order to avoid following the same long experimental
approach for each single KPI prediction ANN structure. For this, the authors suggest,
in this brick, to adjust the ANN parameters using an optimization algorithm, so that
optimal ANN for any KPI prediction can easily be generated.

(iv) Prioritization of the impacting factors: causal analysis provides us with the
existing causality links between the factors and the addressed KPI, and mutual influences
between the factors themselves so that we can go through the causality links until the root
cause. In case of deviation, it would be wise to prioritize the impacting factors identified
in (i). For this issue, weights of the used ANN are employed, since the weights represent
the strength of connections between units of the ANN, and highlight the degrees of
importance of the values of inputs [16]. (v) Decision support: given the outputs of
precedent steps, a decision support can be pro- vided in case of deviation to adjust the
implicated factors by priority order.

Neural Network model

Optimization algorithm

Fig. 1. SADT diagram representing the functions of the data analysis.

3 Use Case and Results

To implement the proposed methodology of data analysis, the authors have constructed a
representative summary dataset to validate that the experiments are correct. This dataset
respects, in a very flexible way, a certain amount of causality rules that have been
previously defined to be compared with the resulting causality links.

The use case addresses one KPI: the production cycle time. The rest of the dataset
is made of variables that may affect, or not, the addressed KPI: the day of the week, the
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time slot, the month, the indoor temperature, the operator’s heart rate, his stress level,
the defaults number, and the training level. The goal is to identify, among this dataset,
variables that affect the production cycle time, and to prioritize them. To build a realistic
and more relevant use case, the authors have made sure that the dataset does not follow
these rules in an exclusive way. Basically, this KPI is calculated using two information:
the remaining time for production, and the number of produced units. Given this, if
deviation is detected, both information do not give answers neither to understand how
did this happen nor to trace back to root causes. The above-presented approach was
applied to this use case.

(i) Causality analysis: we used a constraint based algorithm (Peter and Clarck (PC)
algorithm) to define the structure of the BN that will allow identifying the causal links. PC
algorithm is a constrained based algorithm that begins with a complete undirected graph,
and removes the edges between pairs which are not statistically significantly related by
performing conditional independence (CI) tests, then it looks for the V-structures and
directs the edges using two other rules (see [17] for more information). This algorithm
was modified by adding one more constraint, in order to avoid having meaningless
causality links (e.g. defaults that may cause day change is a meaningless link). The
steps of this constraint verification are: (1) identify and define variables that can not
be changed (e.g. the current hour or day), and (2), remove the edges which go to the
nodes representing these variables. The final resulting graph corresponds to the starting
assumptions (Fig. 2.a), but does not show a causality link between temperature and
cycle time, even if the data was constructed assuming that (ii) Prediction and (iii)
ANN parameters’ definition: the KPI prediction was implemented using a multilayer
perceptron ANN, with a K-fold cross validation. The predicted value is either 1 or O
according to whether or not the cycle time will deviate or not, the prediction is 92%
accurate (Fig. 2.b). The ANN that gave us these predictions is made up of 5 hidden
layers. This ANN’s parameters were found using an experimental approach, since the
parameters’ optimization algorithm is still being under development. Concerning (iv)
the impacting factors prioritization, ANN’s weights used for the prediction were
employed to give a ranking of all available factors, and the ranking corresponds to the
starting assumptions. Fig. 2.c shows that we obtain the same prioritization even if the
prediction models’ structures are different (conditioned on the fact that they have a
predictive power upper than 85% in our case). The figure shows three lists, all with the
same nodes ranking (4-0-3-1-2-5-6). To prove that this ranking is consistent, we have
created a new dataset with the same rules and assumptions as the first one. First, we
have used this dataset to test our prediction model; the resulting prediction accuracy was
89%. Then, we have replicated the same dataset five times, and each time, we changed
the values of one influencing variable individually (day (1), temperature (3), stress (4),
training (7), or defaults (6)), to evaluate the impact of each of these influencing variables.
Each time, we replaced one variable (e.g. stress) by random values in the same range of
variation as the initial values, letting the other variables as they were. Then, we predicted
our KPI with the new dataset, using the same model that we have previously built, then
we evaluated the prediction. We predicted five times, in addition to the first prediction,
in order to see the impact of each of the five influencing variables. Finally, we compared
the performances of each of the five predictions that have been run, by superimposing
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their receiver operating characteristic (ROC) curves, and we evaluated the performance
of each prediction by calculating the area under the curve (Fig. 3.a). We can see that the
curves reflect the ranking, and that the ranking of the areas under the curves corresponds
to the ranking of the variables in the obtained list. Fig. 3.b shows the results obtained by
repeating the same operation, but this time, instead of replacing the concerned variable
values by random values in their range of variation, the concerned variable was treated
as if its values were missing, and replaced the initial values with their mean, then we
predicted the KPI. We have repeated the same operation for the five variables. ROC
curves are obviously different from the ones in Fig. 3.a, but the ranking is the same.
To better see the gaps between the curves, we only represented the four curves that do
not intersect in Fig. 3.b, from where we can easily see the gaps between the prediction
qualities even without calculating the areas under the curves.

(@) (b)

Normalized confusion matrix
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Fig. 2. Results: (a) causal graph, (b) prediction results, (c) factors prioritization.
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Fig. 3. Results: (a) ROC curves by replacing each time one variable by random values in its
variation range, (b) ROC curves by replacing each time one variable by its values’ mean.

4 Conclusion and Future Work

In this paper, we presented a causality learning approach for KPI supervision. The main
idea was to collect as much data as possible in order to conduct an exhaustive data
analysis. This analysis is based on BN structure learning, KPI prediction using ANN,
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and influencing factors prioritization. The proposal is actually in its early phases of
development and many aspects need to be addressed, like the test and benchmarking of
other algorithms and tools of learning BN structure. Moreover, we should enrich our
causality learning with results of decisions taken by considering the impacting factors
and their ranking proposed by the supervision system, to see if the KPI is evolving in
the right sense, and hence to validate the analysis robustness. Also, a complete use case
should be implemented using real industrial data to validate the proposed methodology
performance beyond the constructed use case.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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