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Abstract

With the rise of multi-core processors with a large number of cores the need of shared memory reduction that perform
efficiently on a large number of core is more pressing. Efficient shared memory reduction on these multi-core processors will
help share memory programs being more efficient on these one. In this paper, we propose a reduction combined with barrier
method that uses SIMD instructions to combine barriers signaling and reduction value read/write to minimize memory/cache traffic
between cores thus, reducing barrier latency. We compare different barriers and reduction methods on three multi-core processors
and show that proposed combining barrier/reduction method are 4 and 3.5 times faster than respectively GCC 11.1 and Intel
21.2 OpenMP 4.5 reduction.

Keywords

Barrier, Butterfly barrier, Reduction, Synchronization primitives, SIMD, Shared memory

I. INTRODUCTION

The Intel microprocessor with MIC (Many Integrated Core) architecture coupled with hyper-threading has up to 72 physical
cores and can have up to 4 threads per core. This processor was one of the first many core processors and represents the actual
trend of strong number of core increase in current microprocessors. As a result, the core synchronization can very quickly
become a bottleneck, causing a negative impact in application performance. Among available synchronization mechanisms,
barriers and reductions are certainly the most widely used. The barriers are parts of the code where threads expect each
other. The reductions are mechanisms where threads will exchange values and apply associative operations on its to get the
same scalar value at the end. Usually, to perform a reduction operation we need a barrier. It can be before and/or after the
reduction operation, or by combining the reduction with a barrier. In the first case, all the time spent in the barrier is wasted
but absolutely necessary. In the second case, we take advantage of the fact that all threads are synchronized in the barrier to
also compute the reduction operation, which adds an extra cost to the barrier latency. We consider this second case. In order
to have an efficient reduction operation, we must have a good barrier. On modern architectures, reducing the barrier latency is
one of the major challenges for achieving high parallel scalability of scientific applications. The algorithm design has followed
the hardware evolution. Many studies proposing novel algorithms taking into account the special features of microprocessor
architectures. Within barriers we can generally observe three phases. The first phase is the initialization phase and the second
is the "checking" or "incoming" phase. These first two phases are common to the barriers which we will study here. The third
phase is the "Notification" or "outgoing" phase. This last one was used in [11] to classify the barriers into two categories :
"Algorithms performing Phase 3" and "Algorithms Omitting Phase 3". We will keep these terminologies for the rest of the
article. We will first study the proposed barriers in the literature before discussing reduction operations.
The best known barrier and perhaps the oldest barrier is the centralized barrier. Its principle is that the thread increment a
global counter when they reach the barrier and then spin on a global flag until the flag is changed by the last one to reach
the barrier. This method of thread synchronization creates a lot of hot-spots in the code. Hot-spot occurs when a large number
of processors try to access the same global variable at the same time. It is shown that it degrades seriously the performance
of barriers and cause memory contentions, [15]. At the end of the 80’s, the butterfly algorithm [4] and Software combining
tree algorithm [20] were published with the aim of reducing hot-spots memory during the barrier. On his original version,
the butterfly algorithm performs pairwise synchronization per step with shared array of flags. It is known to be very efficient
for a number of threads equal to a power of two and it is commonly used in this context event if a version for a number of
threads equal to a non-power of two was also proposed in [4]. The software combining tree algorithm is based on a binary
tree. The last threads reaching a node of the tree decrements a global counter of the node. This method greatly reduces the
number of simultaneous access to a global counter, unlike the centralized barrier, by using counters local to the nodes. But the
threads must go down the tree until one reaches the root and then go up the tree from the root to the leaves, see Figure 1. The
software combining tree barrier works well as the number of threads increases and for any number of threads. Based on [4; 9],
the dissemination barrier and the tournament barrier were presented in [10]. The dissemination barrier is an improvement of
the butterfly barrier. It has the same performance as the butterfly barrier for a number of threads equal to a power of two
and scales very well for non-power of two. In a follow-up, [13] have reviewed four barriers from [4; 10; 20] and proposed a



new tree-based barrier. By using a local variable for thread busy-waiting, they showed an improvement in reducing the barrier
latency. On the other hand, their experimental results showed that the dissemination barriers are the most efficient. Other
studies and algorithms have appeared to improve and gain a few more percent [1; 8; 11; 14]. Nevertheless a major move in
the domain, for shared memory systems, was proposed by [7] with the multi-level tree barrier. This barrier is a combining
tree barrier that handles more than two threads per node and can change the size of the group thread following the level in
the tree. This approach is competitive because it uses SIMD instructions to wake-up groups of threads at each level. This
method shows a speed up of up to 2.84 times regarding to the OpenMP barrier with Intel compiler 2013 in the EPCC micro-
benchmark [5]. The democratization of SMT (Simultaneous Multi-Threading) technique in modern processor architectures is
forcing developers to adapt their algorithms in order to take into account the evolution brought on the hardware side. In [17],
a new algorithm named hybrid is introduced. It consists of first synchronizing all the threads running in the same physical
core with a centralized barrier and then using a dissemination barrier for inter-core synchronization. This algorithm showed 3
times less overhead than the OpenMP barrier with Intel compiler 2014. Another interesting approach is to synchronize threads
according to their location in a Non-Uniform Access Memory (NUMA) node. In the first step, the threads on the same NUMA
node will synchronize and then in each group, the last thread reaching the root will be designated to continue to the next step.
In the second step, the threads designated in the different NUMA nodes will synchronize with each other. This method has
been developed in [21]. So we see that the recent methods that show good performance on large numbers of threads proceed
in two steps by mixing two different methods of synchronization. We use the same approach to design the Extended Butterfly
barrier. During our preliminary evaluation, we found that the most efficient barrier was the butterfly barrier for a number of
threads equal to a power of two. Using this idea of threads group synchronization, we therefore propose a hybrid barrier as
[17] but with a butterfly barrier for inter-group synchronization and a centralized barrier inside the group. We are focused on
the butterfly algorithm because its communication patterns are essential for the reduction operation part.
Coming back to the reduction. The operation to reduce values is common in parallel algorithms. It consists of applying an
associative operation to a set of local values to get a scalar value or an array. The simplest case is to reduce values using
operations as sum or multiplication, max, min. In large systems with NUMA, these reduction operations are very critical
because the communication between the different memory modules can be very expensive. Reduction combined with a barrier
has widely been studied. In [6], authors proposed to combine a reduction operation with a multi-degree combining tree barrier.
It exposes a speed-up up to 1.56 times over the reduction of ICC 2013 OpenMP 4.0. However, despite an effort to optimize
communication and exploit specificities of different processors, the majority of articles do not address the subject of unused
spaces in cache lines (payload) when reduction operation is combined with a synchronization barrier in shared memory. This
payload is necessary to avoid false sharing during the barrier. A reduction operation combined with a tournament barrier
proposed in [18], uses this payload by transporting the reduction values and the synchronization flag on the same cache
line. This article was the first to propose to handle the payload cache line in barrier synchronization during the reduction
operation combined with a barrier. This new method shows a speed up of up to 1.53 times over the default OpenMP reduction
with compiler GCC 4.5 in the 312.swim_m SPEC OMP2001 benchmark. This approach is adopted in our Extended Butterfly
reduction. Also we use read/write SIMD instructions to work with the whole cache line at once.

In this work, an algorithm of a reduction operation combined with a barrier for processors for a large number of threads is
proposed. The solution adopted uses a modification of the Butterfly barrier called Extended Butterfly barrier and a method
to transport the reduction values with the flag of synchronization which can handle up to 7 double per thread. This method
is simplified and optimized by using SIMD instructions to write the 8 double (synchronization flag and reduction values)
atomically. The paper is structured as follows: Section II we present a state of the art on barrier algorithms. Our new barrier
will be described in Section III. Then, we will discuss about reduction operations in Section IV and the specificities of Extended
Butterfly reduction. Finally, in Section V, the experimental results obtained on different multi-core system processors (Intel
Skylake X (SKL), AMD Milan (MILAN) and Intel Knights Landing (KNL)) will be presented.

II. RELATED WORK

In this section, we will go into more detail about the working of some barriers from the literature.

A. Sense-reversing centralized barrier

A naive centralized barrier algorithm used a global synchronization flag and a global counter. The first P− 1 threads reaching
the barrier will increase the counter and move into busy-wait mode. The last thread will release them by toggling the global
flag then each thread will decrease the counter and the last thread will reinitialize the flag. The sense-reversing method consists
in using local synchronization flags which will be initialized as the global synchronization flag and each thread will spin on
its local flag. The first P− 1 threads will decrease the counter and spin until their local flag is equal to the global flag. The
last thread reaching the barrier will set the global counter to P and the global flag to the value of the local flag. This will
release all busy-waiting threads and prepare the barrier for its next use. The sense-reversing centralized barrier proposed in
[13, Algorithm 7] reduces the number of atomic add operations compared to the naive centralized barrier ([13, Algorithm 6]).



It gives good performance for small numbers of threads but is not efficient for large numbers of threads. This barrier needs P
steps to complete the synchronization.

B. Software combining tree barrier

Figure 1: Example of communication schemes in combining tree barrier with 7 threads. The colored thread is the last to reach
the node and will designate to continue in the next node.

"Divide and rule" is the main principle applied in this case. The threads are gathered in groups of at most k members. Within
each node of the tree, a centralized barrier is used and the last thread to reach the node (colored in Figure 1) will be able
to continue to the next node while the other is on busy wait. And so on until the last thread reaches the root node, resets
the counter. Then the threads will wake up from the root to the leaves (see the outgoing phase of Figure 1). The algorithm
is presented in [13, Algorithm 8]. It reduces the serialization effect intrinsic to the sense-reversing centralized barrier by
distributing the atomic operations out through the nodes. In addition, to reducing hot-spot memory better than the centralized
barrier, it has a logarithmic growth. More recently, the combining tree algorithm in [7] allows for different group sizes from
one level of the tree to another and uses a SIMD instruction to release the group in each node (Multi-Degree SIMD Combining
Tree Barrier).

C. Centralized linear barrier

Figure 2: Example of communication scheme in the centralized linear barrier with 7 threads.

Threads coming into the barrier will signal their presence by reversing their synchronization flag and then they will go into
a busy-wait. During the incoming phase, the master thread checks if all the threads have arrived in the barrier then, in the
outgoing phase, it updates all the flags to release the busy-waiting threads. Figure 2 shows how the information is handled by
the master thread. This barrier contrasts with the sense-reversing centralized barrier by choosing a thread to check the incoming
and outgoing phase of the barrier. This avoids the use of the atomic operations, which turn out very efficient for small number
of threads.

D. Butterfly barrier

This barrier has been widely commented in the literature [4; 11; 19]. Thread communication is performed two by two at each
step. The thread i at step r notifies its incoming to the thread

(
(i+ 2r−1)%2r

)
+ s, i ∈ J0,P − 1K, r ∈ J0, log2(P)K and

s = (i− (i%2r−1)) if i > 2r or s = 0 otherwise. This type of barrier only needs log2(P) steps to finalize the synchronization.
Its main constraint is that it only efficient for a number of threads equal to a power of two. A version for any number of
threads is proposed in [4]. For P threads, P not a power of two and if T is the next power of two greater than P. The method
consists to simulate the presence of the T-P threads missing by ones of the P threads participating in the barrier. This is
not efficient for a large number of threads. The Extended Butterfly barrier proposes another way to synchronize a number of
threads different to a power of two with this butterfly barrier. For the remainder, the butterfly barrier will refer to the version
with a number of threads equal to a power of two.



Figure 3: Example of communication schemes in butterfly barrier with 8 threads.

E. Dissemination barrier

Figure 4: Example of communication schemes in the dissemination barrier with 7 threads.

Threads need dlog2(P)e steps to finalize the synchronization. At step r in the barrier, the thread i will notify its thread partner
(i + 2r)%P with i ∈ J0,P − 1K, r ∈ J0, dlog2(P)eK. It has been studied in [11; 13; 17]. This barrier works very well for
any number of threads. However, the dissemination barrier needs to create redundant communication paths for a number of
threads different of a power of two to ensure that all threads have reached the step r before the next step r+ 1. So as for the
non-power of two butterfly barrier, it simulates the presence of the missing T-P threads by ones of the P threads participating
in the barrier.Nevertheless, this barrier is one of the most efficient in our state of the art. It has the same logarithmic growth
as the butterfly barrier with an almost constant cost between two powers of two.

For the remainder of the article, we will discuss about our contributions which are focused on two propositions. The Extended
Butterfly barrierand an optimized reduction based on the Extended Butterfly barrier.

III. EXTENDED BUTTERFLY BARRIER

Figure 5: Example of communication schemes in Extended Butterfly barrier with 7 threads.

In this part, we will describe our barrier. During initialization, threads are statically assigned to a group lead by a master. The
master thread is the thread designated as the one that will do the butterfly phase. It is also in charge of waking up the other
threads of the group at the end of this second phase. In order to minimize the cost of the synchronization in the groups, we
decided to limit the group size to 2 threads. The total number of groups is equal to the previous power of two lesser than P i.e



nb_group = 2(blog2 Pc). As the incoming phase of the linear centralized barrier, each thread of each group will signal to its
master its arrival in the barrier. The masters will then start a butterfly synchronization. At the end of this second phase, each
master will be able to release its busy-waiting team. Assuming that the incoming and outgoing phase count for two steps in
the barrier then we will have exactly blog2(P)c + 2 steps in the barrier. Figure 5 shows the communication patterns of the
Extended Butterfly barrier for P = 7. If the number of participating threads is equal to a power of two then we do not need
to create groups. In this case the synchronization will consist in running a butterfly barrier and the threads will need log2(P)
steps to complete the synchronization. To perform a reduction operation combined with a barrier, it is necessary that the barrier
guarantee non-redundant communication paths between the threads. When the ancestors of the current thread are exactly equal
to the threads participating in the barrier (including the current thread) then we qualify the communication as non-redundant.
The thread ancestors are all the partners of the current threads. Figure 8 illustrates the ancestors of the thread T0 for reduction
operations with five threads. The non-redundancy property is true for linear centralized barrier, combining tree barrier, butterfly
barrier and Extended Butterfly barrier but not for the dissemination barrier. For a non-power of two threads, some threads
communicate several times with the same ancestors during the synchronization. This means that the dissemination barrier is
not suitable for the combining reduction operation.

IV. REDUCTION COMBINED WITH A BARRIER

Algorithm 1 Simple master reduction

Require: global array : data_thread, global_red;
Require: processor private value : val_red;

1: data_thread[tid]=val_red;
2: barrier();
3: if tid==0 then
4: global_red=0;
5: for i=1; i<NTHREAD; ++i do
6: global_red +=data_thread[i];
7: end for
8: end if
9: barrier();

A reduction operation consists in applying an associative operation on each private values hold by each thread in order to have
a result that will be known by all. Let’s take the case of a reduction operation with a sum, as shown in Algorithm 1. Each
thread stores its value in the vector data_thread and waits for the whole group to finish this step. Then, the threads will
scan the array to sum up the values in the array. This naive reduction needs two synchronization barriers. Note, Algorithm 1
can be improved if each thread reduces the values into a local variable then the master thread updates the global variable. In
this case, the second barrier (line 1) is useless because all threads will have the result of the reduction operation in a local
variable if they need to use it right after otherwise the result will be stored in the global variable by the master thread for
further use.
As its name suggests, the reduction operation combined with a barrier is performed at the same time as the threads run through
the barrier. This gives the advantage that only one barrier is needed to both synchronize the threads and reduce the values. For
example, [6] uses the combining tree barrier to compute the reduction operation and the authors in [18] use the tournament
barrier. However during the thread synchronization, we have to be careful about the communication between threads, especially
about the sharing of specific variables.

A. False sharing

A phenomenon that needs to be taken into account for the efficiency of barriers is the false sharing of the synchronization
flags. This problem occurs when a shared data is modified and updated frequently by several cores. To comply with the spatial
locality property this cached data will be loaded on the same cache line. The false sharing hides behind the two principles
of data locality (spatial and temporal). To avoid the false sharing several techniques exist. Concerning the synchronization
variables, they must be stored in memory aligned on a cache line boundary. This ensures that two synchronization variables
will not share the same cache line.
This payload has a small memory penalty as most of the cache line will not be used, see Figure 6. One of the main goals of
this work is to use this available space on the cache lines to store the partial reduction. Figure 7 illustrates this idea.
In the literature, only [18] proposes this method: transporting reduction values on the same cache line as the synchronization
flag. Their method is to use a "container" in each node to store both the flag and the variable to be reduced. Since the size of
the container is exactly the size of a cache line, the flag takes 1 bit and the remaining space is used for the reduction value.



Figure 6: Example of core’s cache line with payload unused.

Figure 7: Example of core’s cache line transporting flag and reduction values (e.g., 8x64 bits real numbers).

When the flag and partial reduction value fit the size of the container, the path referred to as "fast path" will be taken. If the
size of the reduction data-type exceeds the capacity of the container then a new variable will be created to store the reduction
value. This way is referred to as "slow path". However, the challenge with this method is that if the flag and partial reduction
value exceed the size of the container by 2 bits. The solution found to use the "fast path" is to exclude the 2 bits of exponent
from partial reduction value. A packing function check whether it is possible to neglect the exponent bits and then using the
"fast path"; if not, the "slow path" will be used to reduce the values. For more details, we refer to [18]. In our method, we
rely on SIMD read/write operations to transport flags and partial reduction values at the same time that allows us to reduce
up to 7 doubles for each thread.

1) During the reduction operation, we do not use a global variable to share the reduced values.
2) These values are local to each thread and will be updated as thread progress in the barrier.
3) SIMD instructions are used by the current thread to atomically update the cache line data of its partner thread.

In addition, we take advantage of the MESI cache coherency protocol. When a thread T1 modifies a data D owned by another
thread T2 then before using D, T2 must update its entire cache line. In theory, when threads communicate in the barrier, they
can exchange synchronization flags and reduction values without extra cost. But it is essential that the read/write of the whole
cache lines is done atomically.

B. SIMD write atomicity

In Intel and AMD’s reports about their respective processor architectures, it is not clear about the atomicity of SIMD
instructions. In [2], it is explained that load/store instructions of more than 8 bytes is not guaranteed to be atomic. Similarly
[3] informs users that, except for the list of instructions detailed in [12], "AVX and FMA instructions do not introduce any
new guaranteed atomic memory operations". To ensure that the threads can see the change of the flag and the update of the
values to be reduced, we need atomic SIMD write operations. By atomic we mean that a SIMD write is performed in one
non-uninterruptible step. So the threads that notices a change in the vector is guaranteed that the entire vector is updated. This
atomicity is usually not guaranteed beyond 64 bits writes on x86 processors. Nevertheless, we make a simple test to check
if we have some atomic behavior for SIMD writes. This test consists of a master thread performing a SIMD write with a
synchronization flag at the beginning and some specific values. A reading thread will expect flag state changes then checks
specific values on the rest of the vector. If the reading thread does not see the specific values in the vector after the flag state
change, the test is marked as failed. The threads are bound to two different cores of the same socket and the test is performed
multiple times for different cache lines. We show in Table I the failure ratio for 106 tests over 1000 cache lines for different
x86 processors. We see that all processors seem to have atomic SIMD writes at least up to 128 bits. Ivy Bridge processor does
not have atomic 256 bits SIMD writes unlike the other processors. The Skylake-X and KNL processors seem to have SIMD
write atomicity up to 512 bits which corresponds to an entire cache line.

data size 128 bits 256 bits 512 bits
Ivy-Bridge (E5-2680 v2) 0.0 3E-9 Not supported
Rome (Epyc 7H12) 0.0 0.0 Not supported
Milan (Epyc 7763) 0.0 0.0 Not supported
SkyLake-X (Xeon Gold 6140) 0.0 0.0 0.0
KNL (Xeon Phi 7290) 0.0 0.0 0.0

Table I: Failure ratio from one million tests over 1000 cache lines between 2 threads on 2 cores inside the same socket.

These results show a level of atomicity of load/store SIMD instructions that is not explicitly guaranteed in manufacturer docu-
mentation, for example on AMD MILAN. The number of simultaneous reduction values we can "transport" with synchronization
flag is limited by the level of atomicity. On Ivy-Brige we can transport up to 3 floats (3×32 bits + flag) while we can only
transport 1 double (1×64 bits + flag). These observations are similar to those obtained by [16].



C. Effect of redundant communications in reduction

We have introduced in Section III the non-redundant property. Let’s take an example (Figure 8) to illustrate the problem for
a reduction operation combined with a barrier.

(a)
Dissemination
barrier

(b) Extended Butter-
fly barrier

Figure 8: Example of reduction operation with a sum involving 5 threads. We represent the ancestors of T0 from dissemination
barrier (8a) and Extended Butterfly barrier (8b). The solid lines indicate to the communication between the partner threads
and the dotted lines symbolize the thread waiting.

If we use the reduction operation combined with the dissemination barrier, the value of T0 at the end is incorrect because
of the redundancy of the communications (Figure 8a). The reduction operation in this example should result in a value of 5
(each thread having an initial value of 1). However, the result in the example is 8 because of the redundancy phenomenon. In
Figure 8a, we can observe the tree showing the ancestors of T0 that T0, T3 and T4 appear twice. This does not respect the
definition of non-redundancy of communication between threads introduced earlier. In contrast, the ancestors of T0 coming
from the Extended Butterfly barrier (8b) is exactly equal to the set of threads participating in the barrier. We have the same
observation for the other threads (T1 to T4). The property of non-redundancy is mandatory for a reduction operation combined
with a barrier. However, for operations such as min/max, this property is not necessary. Indeed, the search for max or min
does not take into account the number of times a thread value is encountered during communications. So a reduction operation
combined with the dissemination barrier for the min/max search is possible. Nevertheless, our goal is to propose a reduction
operation that can work with all operations supported by OpenMP reduction.

D. Algorithm

Algorithm 2 describes each step of the reduction operation with a sum and with AVX512 enabled. If the number of threads
is a power of 2, all threads perform a reduction operation combined with the butterfly barrier (Algorithm 6) automatically. In
the case of the AVX512 is enabled on an x86 processor, we will store the flag and the reduction values in a 512-bit container
and then using the _mm512_store instruction to atomically write the entire container to the vector of the current partner thread.
For AVX2 or non-AVX, the partner thread vector will be updated in 2 packets of 256 bits or 4 packets of 128 bits. Starting
by storing the packets with the reduction values first and then finish with the packet with the synchronization flag, the partner
thread will see the change in its synchronization flag and will exit its busy-wait mode with the updated reduction values. To
summarize, at each step of the synchronization:

1) The threads will send the container with the reduction values and the synchronization flag to its partner.
If AVX512 is enabled then the _mm512_store instruction is used.
Else if AVX2 is enabled then the _mm256_store instruction is used by sending 2 packets of 256 bits and the last

packet will contain the synchronization flag.
Else AVX is not enabled then the _mm128_store instruction is used by sending 4 packets of 128 bits and the last

packet will contain the synchronization flag.
2) The threads will perform the reduction operation.
In the next section, we will compare the performances of the reduction algorithms to the reduction of OpenMP 4.5.



Algorithm 2 Extended Butterfly reduction with a sum for avx512.

1: Type enum {WAIT,GO}
2: Type union {
3: volatile avx512dVec simdVec
4: volatile double val[8]
5: volatile int64 flag[8]
6: } CacheLine byte_aligned(64)
7:
8: Type union {
9: avx512dVec simdVec

10: double val[8]
11: int64 flag[8]
12: } NvCacheLine
13:
14: Type struct {
15: Boolean isMaster;
16: int idGroup // id of the group
17: int numGroup //total number of group
18: int sizeGroupe
19: CacheLine flag[2][blog2(P)c]
20: } GroupThread
21:
22: int N // Number of values to be reduce (at most equal to 7 for avx512 with double)
23: GroupThread groupOfThread[P ]
24: groupOfThread[:].flag[0][:].flag[0] = 1
25: groupOfThread[:].flag[1][:].flag[0] = 0
26: CacheLine flag[P ]
27: flag[:].flag[0] = GO
28: int nStep = log2(groupOfThread[tid].numGroup) // Number of step for the butterfly
29:
30: thread private: int sense = 0
31: thread private: int parity = 1
32: thread private: double val[N] // values to reduce
33: thread private: int tid = omp_get_thread_num()
34:
35: call reduce_linear_centralized //see Appendix
36: if groupOfThread[tid].isMaster then
37: call reduce_butterfly //see Appendix
38: end if
39: call bcast_linear_centralized
40: //Prepare the barrier for the next use
41: if parity == 1 then
42: sense = !sense
43: end if
44: parity = 1-parity

V. EXPERIMENTAL RESULTS

In this section, we evaluate the behavior of our algorithms. We present and discuss the results on reduction operations. We
first evaluate our methods using synthetic tests where we measure the average clock cycle spent in a barrier and in a reduction
operation. Then, we compare the overheads of the Extended Butterfly reduction relative to OpenMP reduction using the EPCC
micro-benchmark suite [5]. The algorithm 3 describes how to compute the overheads of the barriers and reduction operations.
The functions are called a predefined number of times in a loop and a global number of cycles is measured. Then an average
is calculated.



Algorithm 3 Synthetic test of reduction operation

1: NTEST //Set the number of tests
2: start = getclock();
3: #pragma omp parallel
4: {
5: for j = 0; j < NTEST; ++j do
6: #pragma omp for reduction(+:aaaa) schedule(static,1)
7: for i=0; i<nthreads; ++i do
8: val_red+=1;
9: end for

10: end for
11: }
12: times =(getclock()-start); //get the clock cycle
13: times /=(double) NTEST;

A. Test environment

Supercomputer IFPEN (ENER) IFPEN TGCC* (TOPAZE)

Processor type Intel Xeon Gold 6140
(SKL)

Intel Xeon Phi 7290
(KNL)

AMD EPYC Milan 7763
(MILAN)

# processor / node 2 1 2
# core / processor 18 72 64

Freq (GHz) 2.6 1.5 2.45
Compiler Intel 2021.2 Intel 2021.2 GCC 11.1

OpenMP version 4.5 4.5 4.5

Table II: Information about test environment.

The tests were performed on three different microprocessors : Intel Xeon Gold 6140 (SKL), Intel Xeon Phi 7290 (KNL) and
AMD EPYC Milan 7763 (MILAN) (see table II for more details). The codes were compiled with GCC 11.1 and Intel 21.2 except
on the MILAN processor. Due to compatibility problems between the Intel compiler binaries and MILAN, we compiled the
codes only with GCC 11.1 on MILAN. The aim is to observe the behavior of our reduction operation on processors with a large
number of physical cores. For the experiments, hyperthreading was not enabled and the tests were performed on one socket of
the node. The KNL processor was configured on All2All cluster mode and flat memory mode. Concerning the binaries from
GCC compiler, the environment variable OMP_PROC_BIND is set to true and the OMP_WAIT_POLICY is set to ACTIVE.
For the binaries from Intel compiler, the variable KMP_AFFINITY was set to compact with granularity=fine and the
variables KMP_PLAIN_*_PATTERN were set to hyper. The Intel "hyper" configuration provides the best performances for
Intel OpenMP reduction and barrier.

B. Results of barriers and reductions

In this section we present results from the synthetic test. Each algorithm (barrier or reduction) is called 104 times and we
report the average number of cycles per iteration in the loop. Figure 9 compares the different barriers introduced before. Lower
the values are, better are the performances. We can see that three barriers stand out : the dissemination barrier (in brown), the
linear centralized barrier (in green) and the Extended Butterfly barrier (in blue). The dissemination barrier is not usable for the
reduction operation, it is used as a reference (as the best barrier to our knowledge). The Extended Butterfly barrier is the best
of the three, better than the dissemination barrier. In section IV-C, we have seen that the dissemination barrier cannot be used
to perform a reduction operation with the method proposed here. Indeed, the redundant communications of some threads at
some steps will distort the final result and it is quite difficult to identify these communications. However, we have implemented
a reduction operation combined with the linear centralized barrier.
Let’s consider now the results of the linear centralized, Extended Butterfly and OpenMP barriers which are represented by
the hatched part of the histograms in Figures (10,11,12). Lower the values are, better are the performances. The barrier and
reduction overheads have been measured separately. For a number of threads (less than 30), the linear centralized and extended
butterfly barrier do not show a big difference on MILAN processor even if the linear centralized barrier seems to perform better
(especially for a number of threads less than 16). However, these two barriers are both much faster than the barriers from
OpenMP 4.5 with the GCC 11.1 and Intel 21.2 compiler. For a large number of threads, Extended Butterfly barrier has the
best results (see Figure 11,12) far ahead of GCC 11.1/Intel 21.2 OpenMP barriers and linear centralized barrier.
Now we focus on the performance of our reduction operations which correspond to the histograms (hatched and darker part)
Figures (10,11,12). Similarly to the barrier case, our Extended Butterfly reduction outperforms the Intel 21.2/GCC 11.1 OpenMP



Figure 9: Comparative result of the barriers with the synthetic test using the GCC 11.1 compiler on MILAN processor.

Figure 10: Comparative result of the reduction operations with the synthetic test using the Intel 21.2 compiler on SKL processor.

Figure 11: Comparative result of the reduction operations with the synthetic test using the Intel 21.2 compiler on KNL processor.

Figure 12: Comparative result of the reduction operations with the synthetic test using the GCC 11.1 compiler on MILAN
processor.



for reduction and the reduction operation with linear centralized barrier on the three processors. By combining the
reduction operation with a barrier, the reduction inherits the same properties as the barrier on which it is based. As can be
seen in Figure 11, the reduction operation combined with linear centralized barrier also has a linear growth which makes it not
efficient for a large number of threads. Then there is the reduction operation cost (loading values and operations). However, by
taking into account the effect of the MESI protocol and by using SIMD instructions to write on the vectors of the reduction
values, we minimize the cost related to the reduction of the values.

Figure 13: The synthetic tests of the reduction operation for 1, 3 and 7 values on SKL processor with the Intel 21.2 compiler.

In the case where the reduction operation is performed on several values, i.e. an array with at the most 7×64 bits for the
reductions values and 1×64 bits for the flag (see Figure 7). The Figure 13 shows the average cycle consume for 1, 3 and 7
double. A minor additional cost appears between AVX/AVX2 and AVX512 (see Figure 13). However, the Extended Butterfly
reduction cost stays below the 2000 average cycles on SKL processor, which is 5.5 times less than the cost of the Intel
21.2 OpenMP reduction (see Figure 11). In the next step, we decided to test our functions on a known benchmark like the
EPCC microbenchmark.

C. EPCC Benchmark
The idea of the EPCC benchmark is to execute in loops, a large number of times, the OpenMP 4.5 directives in order

to make the creation time of these directives significantly measurable. Algorithm 4 describes how the benchmark stresses
reduction in the parallel section. Another function computes a reference time (delaylength) which takes into account in
the cost of the delay() call. The overhead measurement is obtained by looking at the difference between the actual parallel
execution time and the reference execution time [5]. The computation of the barrier and reduction overheads is quite similar to
our synthetic tests. However, the benchmark imposes a delay between each iteration in the inner loop to simulate a calculation
before the reduction operation. This is more realistic than our synthetic test.

Algorithm 4 Reduction overhead with the EPCC benchmark

1: for k=0; k<=OUTERLOOPS ; ++k do
2: start = getclock();
3: for j = 0; j < INNERLOOPS; ++j do
4: #pragma omp parallel reduction(+:aaaa)
5: {
6: delay(delaylength);
7: aaaa+=1;
8: }
9: end for

10: times[k]=(getclock()-start)*1.0e6;
11: times[k]/=(double) INNERLOOPS;
12: end for

Figure 14 shows the evolution according to the number of threads of the ratio between Extended Butterfly reduction and
reduction operation of GCC 11.1 and Intel 21.2 OpenMP for respectively MILAN and SKL, KNL. So, higher the speed up are,
lower the overheads are. The Extended Butterfly reduction has around 4 times less overhead than the GCC 11.1 OpenMP
reduction. Moreover, the Extended Butterfly reduction performs around 2 times and 3.5 times less overhead than Intel
21.2 OpenMP reduction respectively on SKL and KNL processors.

VI. CONCLUSION

Our goal was to have a reduction operation combined with an efficient barrier for a large number of threads. To achieve this
objective, we needed a barrier that would be efficient for a large number of threads. We first studied and implemented different



Figure 14: Representation of the overhead speed-ups of Extended Butterfly reduction relative to OpenMP 4.5 reduction on
SKL, KNL and MILAN. Overheads computed with the EPCC benchmark.

barriers from the literature. We then proposed a new barrier (Extended Butterfly barrier) based on the butterfly barrier and
efficient for any number of threads. Our synthetic tests have shown that the Extended Butterfly barrier is the best for a large
number of threads. It greatly outperforms the Intel 21.2 and GCC 11.1 OpenMP barriers. Then we proposed a method for the
reduction of values combined with a barrier by transporting the values to be reduced with the synchronization flag. Thus, the
reduction values are directly available in the thread cache line and are updated at each step of the barrier. This method has been
used in the reduction operation combined with the linear centralized barrier and the Extended Butterfly reduction. We have
optimized the reduction operation by using SIMD instructions for reading/writing cache lines containing the reduction values
and the synchronization flag for each thread atomically. Figure 14 shows that Extended Butterfly reduction has in average 2
times and 3.5 times less overheads than Intel 21.2 OpenMP reduction on SKL and KNL. For example, with 72 cores on KNL,
Extended Butterfly reduction are 5.4 times faster than Intel 21.2 OpenMP reduction and with 64 cores on MILAN, Extended
Butterfly reduction are 5.9 times faster than GCC 11.1 OpenMP reduction.
As future work, we will continue testing on applicative benchmark based on Krylov solvers such as CG or BiCGStab. It
would be interesting to configure the Extended Butterfly reduction to manage hyperthreading. Also the processors use different
topology in core interconnect (KNL and SKL are similar but not MILAN) thus it could be interesting to determine the impact on
barrier and reduction operation latency. We foresee that with increasing number of cores, the topology impact can be significant.
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APPENDIX

ALGORITHM : REDUCE_LINEAR_CENTRALIZED

Algorithm 5 Incoming phase in Extended Butterfly barrier

1: procedure reduce_linear_centralized
2: if groupOfThread[tid].isMaster then
3: for i in members of group do
4: Repeat until (flag[i].flag[0]==WAIT)
5: for j in range(0,N-1) do
6: val[j]+=flag[i].val[j+1]
7: end for
8: end for
9: else

10: NvCacheLine localFlag;
11: localFlag.flag[0]=WAIT
12: for j in range(1,N) do
13: localFlag.val[j] = val[j-1]
14: end for
15: flag[tid].simdVec = localFlag.simdVec
16: end if

ALGORITHM : REDUCE_BUTTERFLY

Algorithm 6 Butterfly phase in Extended Butterfly barrier

1: procedure reduce_butterfly
2: NvCacheLine localFlag
3: for step in range(0,nStep-1) do
4: int partner = getpartner(groupOfThread[tid].idGroup,step) // compute the partner (see the section II-D)
5: localFlag.flag[0] = sense
6: for j in range(1,N) do
7: localFlag.val[j] = val[j-1]
8: end for
9: groupOfThread[partner].flag[parity][step].simdVec = localFlag.simdVec

10: Repeat until (groupOfThread[tid].flag[parity][step].flag[0]==sense)
11: for j in range(0,N-1) do
12: val[j]+=groupOfThread[tid].flag[parity][step].val[j+1];
13: end for
14: end for



ALGORITHM : BCAST_LINEAR_CENTRALIZED

Algorithm 7 Outgoing phase in Extended Butterfly barrier

1: procedure bcast_linear_centralized
2: if groupOfThread[tid].isMaster then
3: NvCacheLine localFlag
4: localFlag.flag[0] = GO
5: for j in range(1,N) do
6: localFlag.val[j] = val[j-1]
7: end for
8: for i in members of group do
9: flag[i].simdVec = localFlag.simdVec

10: end for
11: else
12: Repeat until (flag[tid].flag[0]==GO)
13: for j in range(0,N-1) do
14: val[j] = flag[tid].val[j+1]
15: end for
16: end if
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