
HAL Id: hal-03948786
https://hal.science/hal-03948786

Preprint submitted on 20 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A conservative finite volume cut-cell method on an
adaptive Cartesian tree grid for moving rigid bodies in

incompressible flows
Arthur R. Ghigo, Stéphane Popinet, Anthony Wachs

To cite this version:
Arthur R. Ghigo, Stéphane Popinet, Anthony Wachs. A conservative finite volume cut-cell method on
an adaptive Cartesian tree grid for moving rigid bodies in incompressible flows. 2021. �hal-03948786�

https://hal.science/hal-03948786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Graphical Abstract1

A conservative finite volume cut-cell method on an adaptive Cartesian tree grid2

for moving rigid bodies in incompressible flows3

Arthur R. Ghigo, Stéphane Popinet, Anthony Wachs4

5

Highlights6

A conservative finite volume cut-cell method on an adaptive Cartesian tree grid7

for moving rigid bodies in incompressible flows8

Arthur R. Ghigo, Stéphane Popinet, Anthony Wachs9

• Development of a second-order accurate conservative finite volume cut-cell method for10

moving rigid bodies in an incompressible flow.11

• Robust and second-order accurate computation of gradients normal to the embedded12

boundaries.13

• Robust and efficient treatment of small cut-cells as well as submerged and emerged cells.14

• Extension of the method to adaptive Cartesian quad/oc-tree grids.15

• Implementation in the open-source software Basilisk.16

• Validation test suite to verify the convergence and accuracy of the method.17

A conservative finite volume cut-cell method on an adaptive18

Cartesian tree grid for moving rigid bodies in incompressible flows19

Arthur R. Ghigoa,b, Stéphane Popinetd, Anthony Wachsa,c
20

aDepartment of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T21

1Z4, Canada22

bPIMS-CNRS, University of British Columbia, 4176-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada23

cDepartment of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall,24

Vancouver, BC V6T 1Z3, Canada25

dInstitut Jean Le Rond ∂’Alembert, Sorbonne Université, Centre National de la Recherche Scientifique, Paris26

F-75005, France27

Abstract28

We present here a conservative finite volume cut-cell method for fixed and moving rigid bod-
ies immersed in incompressible flows, implemented in the open-source software Basilisk. The
method is constructed starting from a uniform Cartesian grid, in which we embed a discrete
representation of a rigid body that intersects underlying cells to form irregular fluid control
volumes, or cut-cells. In each cell, we then discretize the incompressible Navier-Stokes equa-
tions using a fractional-step projection method and insure that at each time step, the finite
volume discretization scheme remains spatially second-order and conservative in cut-cells by
carefully computing gradients normal to the embedded boundaries, even in degenerated cases.
To avoid stability issues due to the well-documented problem of small cut-cells, we use a simple
and efficient flux redistribution technique to extend the range of influence of small cut-cells to
their neighboring cells. We also provide a time history to emerged cells through a field value
reconstruction in the direction normal to the embedded boundaries. We then robustly extend
our conservative finite volume cut-cell method for moving boundaries to adaptive Cartesian tree
grids by constructing specific restriction and prolongation operators between two consecutive
levels of a tree grid in the vicinity of a cut-cell. Finally, we a use a simple first-order in time
explicit weak fluid-solid coupling strategy to describe the motion of freely moving particles. We
successfully test the method on a series of validation test cases ranging from fixed, moving with
a prescribed motion to freely moving 2D cylinders and spheres for a wide range of Reynolds
(0 ≤ Re ≤ 1000) and Galileo numbers (0 ≤ Ga ≤ 250). In particular, by dynamically refining
the mesh near the embedded boundaries, we are able to fully resolve boundary layers at a
fraction of the computational cost of uniform grid computations. However, while the method
is accurate, conservative, robust and efficient, we show that a low-amplitude pressure noise is
generated when using mesh adaptation in the limit case of very high Reynolds numbers.

Keywords: Particle-laden flow; Embedded boundary; Cut-cell method; Conservative Finite29

Volume; Adaptive Cartesian tree grid; Validations30

Email address: arthur.ghigo@math.ubc.ca (Arthur R. Ghigo)
URL: http://basilisk.fr/sandbox/ghigo/ (Arthur R. Ghigo)

Preprint submitted to Computers and Fluids August 20, 2021

1. Introduction31

Incompressible particle-laden flows are ubiquitous in biological and geophysical phenom-32

ena as well as industrial processes. For example, the transport of sediments in rivers and the33

subsequent erosion of river beds are central to many problems as diverse as fish habitat preser-34

vation or operational strategy of hydroelectric dams. Fluidized beds are another example of a35

fluid-particle system widely used in the chemical industry to enhance heat and mass transfers.36

Unfortunately, analytical approaches to these problems are generally limited to asymptotic37

cases. There has therefore been in the past two decades a growing interest for numerical meth-38

ods capable of solving fluid-structure interaction related problems such as particle-laden flows.39

While a large body of knowledge already exists on particle-laden flow dynamics, the complex-40

ity of the dominant fluid-particle momentum transfers is the primary reason why a complete41

understanding of this class of multiphase flow problems still escapes researchers and engineers.42

Indeed, particles exchange momentum through hydrodynamic interactions with the surround-43

ing fluid and through collisions with neighbouring particles. When the suspension cannot be44

regarded as dilute anymore, particles also strongly disturb the flow field around neighbouring45

particles, leading to rich and complex multi-body and flow dynamics. The problem is further46

complexified by a distribution of particle sizes and/or a distribution of particle shapes (de facto47

including non-spherical particle shapes) and additional transfers such as heat or mass. A well-48

established way of modelling particle-laden flows involves recognizing their multiscale nature49

and lack of scale separation. Accordingly, specific numerical models are designed to describe50

fluid-particle dynamics at different scales: micro-scale particle-resolved simulation (PRS) at the51

particle scale, meso-scale Euler-Lagrange at the scale of a large group of particles, and macro-52

scale Euler-Euler at the scale of the flow. PRS constitutes the foundation of this multiscale53

analysis and the knowledge learnt from PRS is then transferred to the higher scale Euler-54

Lagrange and Euler-Euler models to improve their accuracy. Therefore, it is indispensable that55

PRS supplies high fidelity data that can be fully trusted.56

In the quest for high fidelity, efficient and fast computational methods for incompressible57

flows laden with rigid particles, and more generally for incompressible flows with moving rigid58

boundaries, a wide variety of methods have been designed over the past three decades. They59

differ (i) in the way they spatially discretize the governing equations in the absence of rigid60

boundaries, ranging from conventional methods such as, e.g., finite difference, finite volume, fi-61

nite element and spectral element, to non-conventional methods such as, e.g., lattice-Boltzmann62

(LB) and Smooth Particle Hydrodynamics, and (ii) in the way they treat the hydrodynamic63

coupling on the rigid boundaries, leading to well known techniques such as, e.g., immersed64

boundary (IB) [1, 2, 3, 4, 5, 6, 7], ghost cell (GC) [8, 9, 10, 11, 12, 13], distributed Lagrange65

multiplier/fictitious domain (DLM/FD) [14, 15, 16] and bounce-back scheme (BBS) [17, 18].66

Some of the aforementioned techniques are specific to a given spatial discretization scheme67

(for example BBS in LB) while other techniques can be combined with different spatial dis-68

cretization schemes (for example IB is combined to, e.g, finite volume, finite difference and69

LB), resulting in a very wide spectrum of PRS methods. We refer the interested reader to the70

following recent reviews on grid-based methods for PRS of particle-laden flows [6, 19, 20].71

A common classification of grid-based PRS methods for particle-laden flows relies on dis-72

tinguishing body-conforming methods from non body-conforming methods [20]. However, this73

classification does not provide much insight on the numerical characteristics of grid-based PRS74

2

methods. It is therefore helpful to present them instead in light of their ability to satisfy the75

following properties:76

1. the description of rigid boundaries is sharp, i.e., the method properly captures the gradient77

discontinuity at the boundary between the fluid and the rigid body, and additionally the78

correct rigid body motion is imposed on the grid points inside the rigid body;79

2. the method is strictly mass, momentum and energy conservative in the sub-domain oc-80

cupied by the fluid, a property essential for the prediction of discontinuous phenomena81

but also for stability in fluid–structure interaction methods [21, 22];82

3. provided the spatial discretization scheme is at least second-order away from rigid bound-83

aries, the treatment of moving rigid boundaries does not deteriorate the spatial accuracy84

in the vicinity of the moving rigid boundaries.85

4. the method can be extended to adaptive grids without any major difficulty.86

Body-conforming methods [23, 24, 25, 26, 27] may seem appealing at first as they naturally87

satisfy the four properties previously listed, provided that the spatial discretization scheme88

is intrinsically conservative and second-order accurate. Unfortunately, their performance is89

hindered by the computational overhead associated with the resolution of additional equations90

for the motion of the mesh, the complicated re-meshing process itself and the costly projection91

step of the solution onto the new grid. As problems of increasing complexity are now being92

tackled, e.g., problems involving a large collection of moving rigid bodies of arbitrary shape93

and/or a large computational domain, which require highly scalable computational methods94

on large supercomputers, large mesh deformations in body-conforming methods render these95

methods less competitive. Consequently, researchers have favored over the past 15-20 years96

non body-conforming methods based either on a fixed (often uniform) Cartesian grid or on97

an adaptive Cartesian grid. Note however the recent work of [28, 29] where the authors used98

an overset grid method, using a combination of both static grid and body-conforming grid99

methods, to perform PRS of particle-laden flows.100

In non body-conforming methods, the complex numerical machinery required to keep track101

of the deforming mesh is traded for a (relatively) simple grid management (in the case of102

adaptive grids) or no grid management at all (in the case of fixed grids). However, this comes103

at the expense of introducing either a velocity reconstruction at the rigid boundaries or an104

additional body force distributed along the rigid boundaries in the momentum conservation105

equation to impose the hydrodynamic coupling between the fluid and the rigid bodies. The IB106

method based on discrete direct forcing (DF) using regularized Dirac delta functions [5, 30, 31,107

32, 33, 34, 35] is probably the most popular PRS method in the literature but is also notoriously108

non-sharp. Indeed, the regularized Dirac delta kernel used to distribute the additional body109

force defined on the rigid boundaries is constructed with a compact support that symmetrically110

spans multiple cells on both sides of the rigid boundaries and consequently smooths any gradient111

discontinuity at the rigid boundaries. Note that in [7], the authors recently suggested an112

improvement of the DF/IB method in the form of one-sided IB kernels that is equivalent to a113

sharp treatment of the rigid boundaries. The standard DF/IB method is non-conservative in114

the domain occupied by the fluid as cells cut by the rigid boundaries are not treated in any115

specific manner in the fluid conservation equations (in particular the mass conservation does not116

account at all for the presence of rigid boundaries). Note also that the standard DF/IB method117

forces the no-slip boundary condition on the particle surface but often does not force any rigid118

body motion in the particle volume, leading to nonphysical fictitious fluid motion inside rigid119

3

particles. Recently, in [36], the authors added volume forcing to the DF/IB method proposed in120

[5], in the spirit of the DLM/FD method to improve the spatial accuracy of the DF/IB method121

applied to the problem of inertial settling of a single ellipsoid. The GC method, the BBS based122

LB method and the DLM/FD method all deliver the right rigid body motion in the particle123

volume. The GC and BBS-LB methods exclude the degrees of freedom and simply assign124

the right velocity values in the particle volume while the DLM/FD method employs a volume125

forcing. The GC method as well as the implementation of the DLM/FD method in [37] provide126

a sharp description of the rigid boundaries and properly capture the gradient discontinuity127

at the rigid boundaries but are again not strictly conservative in the domain occupied by the128

fluid. Other PRS methods are also sharp and pseudo-body conforming [38, 39] in the sense129

that they use a fixed Cartesian grid and adapt the finite difference approximation stencil of the130

gradient in the vicinity of the rigid boundaries to incorporate the Dirichlet no-slip condition131

at the rigid boundaries. Again, these methods are not strictly conservative in the domain132

occupied by the fluid. Finally, in most of the aforementioned PRS methods, the treatment of133

the immersed rigid boundaries disrupts the second-order accuracy of the conservation equation134

spatial discretization scheme in the absence of immersed rigid boundaries and the overall spatial135

accuracy is generally between first-order and second-order, depending on the flow problem.136

The most efficient PRS solvers using any of the computational methods discussed previ-137

ously are implemented on a uniform Cartesian grid. LB methods are well known to be highly138

parallelizable and finite difference/finite volume based methods combined to efficient geometric139

or algebraic multigrid solvers are also very fast and scale very well on a large number of cores.140

Indeed, spectacular massively parallel computations of particle-laden flows have been reported141

in the recent literature, e.g., in [40] with a IB/LB method, 115, 200 spheres and 4.83 billion142

lattice nodes and in [41] with a DF/IB finite volume method, 1, 053, 648 spheres and 3.6 billion143

cells. However, certain classes of particle-laden flow problems are not amenable to uniform fixed144

Cartesian grid PRS methods. Examples include but are not limited to flows laden with particles145

of complex shape, high Reynolds number flows with thin momentum boundary layers around146

particles, lubrication-dominated dense suspension flows with highly localized zones of spatially147

rapidly varying flow field, dilute to very dilute inertial particle-laden flows in large domains and148

particle-laden flows with a highly heterogeneous particle microstructure. These flow configu-149

rations all feature large sub-domains where the flow field spatially varies relatively slowly and150

locally requires less spatial resolution. Body-conforming methods that intrinsically use an un-151

structured grid and require constant re-meshing are naturally capable of performing local mesh152

refinement [25, 27], but at a large computing cost as discussed previously. Adaptive Cartesian153

grid methods offer a powerful alternative to dynamic unstructured re-meshing. There currently154

exists two types of adaptive Cartesian grid methods: (i) block-refined or patched adaptive155

Cartesian grid methods [42, 43, 44] in which entire cuboid sub-domains of uniform grid size are156

patched at different levels of refinement on the primary coarse grid and (ii) adaptive Cartesian157

tree grid methods [45, 46, 47, 48, 49, 50] in which individual cells live on different levels of158

refinement. Extending the implementation of any PRS methods from a uniform fixed Carte-159

sian grid to a block refined adaptive Cartesian grid in which each rigid body is fully contained160

within a single block of cells at the same level of refinement is straightforward as within each161

block, the implementation of the numerical method to impose the no-slip boundary condition162

on the rigid boundaries is completely similar to the implementation on a uniform Cartesian163

grid. The extension to genuine adaptive Cartesian tree grids is much more challenging. When164

4

implemented on a uniform Cartesian grid, PRS methods that describe the rigid boundaries by165

a set of Lagrangian discrete points require a quasi-homogeneous distribution of these points166

on the rigid boundaries [5, 16]. This quasi-homogeneous distribution is constructed such that167

Lagrangian points are approximately equidistant by α∆ where α ∈ [1, 2] and ∆ is the constant168

grid size. The linear relationship between the inter-point distance and the local grid size as169

well as the homogeneity of the distribution are key to the accuracy of the computed solution170

[5, 51, 16]. Various constructions can be adopted depending on the rigid body shape: (i) ex-171

plicit for a sphere [5, 16] and simple polyhedrons [16], (ii) solution of a time-dependent problem172

of charged particles constrained to the body surface for spheroids [5, 36], and (iii) vertices of173

an unstructured triangulation of the body surface. On a Cartesian tree grid with a local grid174

size that presumably varies along the body surface, the inter-point distance (or equivalently175

the surface density of Lagrangian points) would need to match the local grid size, leading to176

a non-homogeneous Lagrangian point distribution over the rigid boundary and thus rendering177

the Lagrangian point construction very challenging if not overly complicated. Conversely, PRS178

methods that describe rigid boundaries on the Eulerian grid only extend more naturally to179

variable cell size Cartesian grids like Cartesian tree grids. In our previous work, we adopted180

an intermediate solution when extending our DLM/FD method on Cartesian tree grids [52] by181

enforcing a uniform grid in a narrow band spanning 3 cells on both sides of each rigid boundary.182

While computationally efficient, this strategy does not take full advantage of the local mesh183

refinement capabilities of a genuine Cartesian tree grid.184

Our objective in this work is to propose a Cartesian grid embedded boundary method,185

also referred to in the literature as a cut-cell method, coupled to an adaptive mesh refinement186

technique (AMR) to compute efficiently and with second-order spatial accuracy the motion of187

particles of arbitrary shape in an incompressible flow. Indeed, cut-cell methods are a sub-class188

of non body-conforming methods [53] that satisfy the four properties listed previously. They are189

constructed starting from a uniform Cartesian grid, in which the embedded (rigid) boundaries190

intersect underlying cells to form irregular fluid control volumes. The regular structure of191

Cartesian grid allows for fast solution algorithms and a simple domain decomposition of the192

grid suitable for adaptation and parallel computing. To the best of our knowledge, cut-cell193

methods have mostly been applied to compressible flows with moving rigid bodies [49, 22, 54].194

When the flow is incompressible or nearly incompressible, cut-cell methods have been mainly195

applied to fixed boundary problems [55, 56]. In the case of moving boundaries, we note the196

work of [57, 58] using a pressure-free projection method on both a uniform and an adaptive197

Cartesian grid and the work of [59, 58] to couple the cut-cell method to a two-fluid solver.198

The Cartesian grid embedded boundary method for incompressible flows with fixed and199

moving rigid boundaries we present here satisfies the four key properties listed previously.200

Indeed, we discretize the incompressible Navier-Stokes equations using a fractional-step projec-201

tion method and insure that at each time step, the finite volume discretization scheme remains202

spatially second-order and conservative in cut-cells by carefully imposing second-order accu-203

rate boundary conditions on both 2D and 3D embedded (rigid) boundaries. In particular, we204

follow and extend the work of [60, 61] to robustly compute gradients normal to the embedded205

boundaries, even in degenerated cases. To avoid stability issues due to the well-documented206

problem of small cut-cells, we use a simple and efficient flux redistribution technique, initially207

suggested in [62], to extend the range of influence of small cut-cells to their neighboring cells.208

We also provide a time history to emerged cells through a field value reconstruction in the209

5

direction normal to the embedded boundaries. Finally, we take advantage of the conserva-210

tive properties of the method, enhancing the stability and convergence properties of fluid-solid211

coupling strategies [21, 22], and use a simple first-order in time explicit weak fluid-solid cou-212

pling strategy to describe the motion of freely moving particles. We implement our method in213

the open-source software Basilisk [45, 50] and extend its use the adaptive Cartesian tree grids214

available in Basilisk by constructing specific restriction and prolongation operators between two215

consecutive levels of a tree grid in the vicinity of a cut-cell. We also benefit from the techniques216

already existing in Basilisk to dynamically manage tree grids and balance the computational217

load between processes in parallel computing [70]. Finally, the methodology proposed here and218

implemented in Basilisk is open-source and available to the entire research community.219

This rest of the paper is organised as follows: in Section 2, we introduce the mathematical220

model describing the coupled motion of an incompressible flow and a rigid body; in Sections 3221

and 4, we present the Cartesian grid embedded boundary method we implement in the software222

Basilisk on both uniform and tree grids; in Section 5 we describe the numerical method we use223

to solve the Navier-Stokes equations and the motion of a rigid body; in Section 6, we present224

several 2D and 3D validation test cases where we demonstrate the accuracy, robustness and225

efficiency of our Cartesian grid embedded boundary method for solving fixed and moving rigid226

body problems. Finally, we present our conclusions and perspectives in Section 7.227

2. Mathematical model228

We consider a Newtonian fluid of constant density ρ, constant dynamic viscosity µ, filling229

a domain Ω of boundary δΩ. A moving rigid body Γ ≡ Γ (t), of boundary δΓ ≡ δΓ (t) and230

constant density ρΓ, is embedded in the domain. In the following, we briefly recall the governing231

equations for the coupled motion of the fluid and the rigid body.232

2.1. Governing equations for the fluid233

The motion of the fluid is governed by the incompressible Navier-Stokes equations, given in
an Eulerian frame of reference x = [x, y, z]ᵀ by:

ρ (∂tu + u · ∇u) = −∇p+∇ · (2µD) , ∀x ∈ Ω/Γ

∇ · u = 0, ∀x ∈ Ω/Γ,

(1a)

(1b)

where u ≡ u (x, t) is the fluid velocity, p ≡ p (x, t) is the fluid pressure and D is the deformation234

tensor defined as Dij ≡ (∂iuj + ∂jui) /2.235

We supply system (1) with the following no-slip boundary condition for the velocity u on236

the rigid boundary δΓ:237

u = uΓ, ∀x ∈ δΓ, (2)

where uΓ ≡ uΓ (x, t) is the velocity of the rigid body Γ. We specify boundary conditions for238

u on the boundary δΩ on a case-by-case basis. No boundary conditions for the pressure p are239

required at this point due to the orthogonality of the pressure gradient with the divergence-free240

velocity [63].241

6

2.2. Rigid body dynamics242

The motion of the rigid body Γ is characterized in an Eulerian frame of reference by the243

rigid body velocity vΓ ≡ vΓ (x, t):244

vΓ = uΓ + ωΓ × (x− xΓ) , ∀x ∈ Γ, (3)

where xΓ ≡ xΓ (t) is the position of the center of mass of the rigid body Γ and uΓ ≡ uΓ (t)
and ωΓ ≡ ωΓ (t) are respectively the translation velocity of and the angular velocity about the
center of mass xΓ. These variables satisfy the following equations of motion [64]:

dxΓ

dt
= uΓ

duΓ

dt
=

FΓ

ρΓVΓ

+

(
1− ρ

ρΓ

)
g

d

dt
(IΓωΓ) = TΓ,

(4a)

(4b)

(4c)

where VΓ and IΓ are respectively the volume and moment of inertia tensor of the rigid body
Γ and g is the gravity acceleration vector. For the sake of simplicity, we do not include here
the time evolution equation for the angular position θΓ of the rigid body as we consider only
freely moving spherical particles in the following. The vectors FΓ ≡ FΓ (t) and TΓ ≡ TΓ (t)
respectively represent the hydrodynamic force and torque (about the center of mass xΓ) exerted
by the fluid on the rigid body Γ:

FΓ = −
∫
δΓ

(−pI + 2µD) · nΓ dS

TΓ = −
∫
δΓ

(x− xΓ)× (−pI + 2µD) · nΓ dS,

(5a)

(5b)

where nΓ ≡ nΓ (x, t) is the inward (pointing from the fluid towards the rigid body) unit normal245

vector to the rigid boundary δΓ.246

The remaining unknown is the location and shape of the rigid boundary δΓ, which we247

describe using a user-defined distance function Φ (x− xΓ) to guarantee a topologically and248

analytically coherent representation of the rigid boundary δΓ. This allows us to define the rigid249

body Γ, the rigid boundary δΓ and the fluid domain Ω/Γ as follows:250

• Γ = {x ∈ Ω |Φ (x− xΓ) ≤ 0};251

• δΓ = {x ∈ Ω |Φ (x− xΓ) = 0};252

• Ω/Γ = {x ∈ Ω |Φ (x− xΓ) > 0}.253

3. Cartesian grid embedded boundary method on a uniform grid254

In this section, we present in detail the Cartesian grid embedded boundary method, also255

known as cut-cell method, that we implement on a uniform Cartesian grid in Basilisk. In256

particular, we describe how we modify the finite volume discretization of the divergence and257

gradient operators, respectively ∇· and ∇, to account for the presence of the rigid body Γ in a258

conservative, robust and accurate manner. This method is therefore not only designed to solve259

the Navier-Stokes equations (1) and can be more generally applied to any system of partial260

differential equations solved using a finite volume method.261

7

3.1. Uniform Cartesian grid in Basilisk262

We discretize the computational domain Ω using a uniform Cartesian grid, denoted Ω∆ in263

the following. The grid is composed of square (cubic in 3D) cells and the length of a cell edge264

is denoted ∆. As illustrated in Figure 1, each cell has direct neighbors in each direction d (four265

in 2D, six in 3D) and each of these neighbors is accessed through a face of the cell, noted Fd.266

�

<latexit sha1_base64="NhuWbvCMsqWqgJIASkawTkopGJk=">AAADfnicfVJNT9tAEH3BtKX0A2iPvVhEVD3QNEZUcES0hx6pRAISoMrebNKF9Qf2GilC/Ide4Z/xD9p/0bcTU1FQspbtt2/mzczOTlJYU7lu97Y1F8w/efps4fnii5evXi8tr7zpV3ldKt1Tuc3LwySutDWZ7jnjrD4sSh2nidUHydkXbz+40GVl8mzfjQt9ksajzAyNih2p/vFXbV38Y7nd7XRlhY9B1IA2mrWXr7QiHGOAHAo1UmhkcMQWMSo+R4iwgYLcCS7JlURG7BpXWKS2ppemR0z2jN8Rd0cNm3HvY1aiVsxi+ZZUhlijJqdfSeyzhWKvJbJnZ8V2GGJbYhrmKITx2VQTuZYqfaTwXhbHCAU5jwe0l8RKlHfnDkVTSS3+rLHYf4unZ/1eNb41/pCbXuU+O+crHDJ/dq++6QrvMWIFhtafok1oS8jbGTrvlc60V8yeynnGfAdYl1vxtzvmP/m39z6OmdelIwWRxnnT0Tvb9BNPpsP3bMwISrqdTOaEUxk9nMHHoL/RiTY7n79vtnd2m/lcwDus4gM7uYUdfMMeeox8il+4xk2A4H3wMfg0cZ1rNZq3+G8F238BFRWzKw==</latexit>

Fd

<latexit sha1_base64="7oXhOv+T6IdKlVigaltv+mzu0AQ=">AAADhXicfVLbbtNAED2pgZZyaQuPvFhESDyUKK7C5Y0KJMRjkZq2UhtV680mXXV9qb1Giqp+B6/wWfwB/AVnJy4qVMlats+emTMzOztp6Wzt+/2fnZXozt17q2v31x88fPR4Y3PryUFdNJU2Q124ojpKVW2czc3QW+/MUVkZlaXOHKbnH4P98Kupalvk+35WmlGmprmdWK08qdFJpvyZVu7y09Xp+HSz2+/1ZcW3QdKCLtq1V2x1EpxgjAIaDTIY5PDEDgo1n2Mk2EFJboRLchWRFbvBFdapbehl6KHInvM75e64ZXPuQ8xa1JpZHN+KyhgvqCnoVxGHbLHYG4kc2GWxPSZ4JzEtc5TChGy6jdxIlSFSfCOLZ4SSXMBj2itiLcrrc8eiqaWWcFYl9l/iGdiw161vg9/kFle5z86FCifMn9+ob7EieExZgaX1TLQpbSl5t0QXvLKl9prZMznPjO8Y23Ir4XZn/Kd/98HHM/O2dKQkMrhoO3ptW3zi+XSEns0YQUu30/mccCqT/2fwNjjY6SWD3usvg+7uh3Y+1/AMz/GSnXyLXXzGHoaMfIFv+I4f0Wr0KhpEb+auK51W8xT/rOj9H04HtmI=</latexit>

d = top

d = rightd = left

d = bottom

Figure 1: Representation of a 2D cell and its neighbors in Basilisk.

The principal variables, here the velocity u and the pressure p, are collocated at the center of267

each cell (see Figure 2a). Transported or diffused variables such as the velocity u are therefore268

interpreted as the volume-averaged values over the cell volume, whereas the pressure should269

be seen as a point-value estimate at the center the cell. Variables can also be staggered at the270

center of a face, the middle of an edge or on the vertices of a cell (see Figures 2b, 2c and 2d).271

When writing discrete operations on the grid Ω∆, we distinguish these last three discretization272

using the superscripts f , e and v and use the following Basilisk indexing, introduced in [50] and273

illustrated in Figure 2 for a 2D grid:274

• [0, 0] = [] for the current cell, i.e. s [0, 0];275

• [1, 0] = [1] for its right neighbor, i.e. s [1, 0];276

• [-1, 0] = [-1] for its left neighbor, i.e. s [-1, 0];277

• [0, 1] for its top neighbor, i.e. s [0, 1];278

• [0, -1] for its bottom neighbor, i.e. s [0, -1].279

As examples, the discretization of the gradient of the cell-centered scalar s:280

• in the x-direction and defined at the center of the cell, denoted ∇xs [], writes:281

∇xs [] =
s[1]− s[-1]

2∆
, (6)

• in the y-direction and defined on the top face of the cell, denoted ∇f
ys [0, 1], writes:282

∇f
ys [0, 1] =

s[0, 1]− s[]

∆
. (7)

We choose this notation system in order to match the notation system used in Basilisk and283

presented in detail here: http://basilisk.fr/Basilisk%20C#stencils.284

8

http://basilisk.fr/Basilisk%20C#stencils

uf
y [−1,1] le

y [0,1]

le
y [0,0]

le
x [0,0] le

x [1,0]

Φv [0,1]

Φv [0,0]

Φv [1,1]

Φv [1,0]

Edge − centered indexing of l(c) Vertex indexing of Φ(d)

p [0,0] p [1,0]p [−1,0]

p [−1,1] p [0,1] p [1,1]

p [−1, − 1] p [0, − 1] p [1, − 1]

(a) Cell − centered indexing of p (b)

uf
y [0,0] uf

y [1,0]uf
y [−1,0]

uf
y [0,1] uf

y [1,1]

uf
x [0,0] uf

x [1,0]

uf
x [1, − 1]uf

x [0, − 1]

uf
x [0,1] uf

x [1,1]
Face − centered indexing of u

Figure 2: Stencils in Basilisk and their respective indexing on a 2D grid: (a) cell-centered; (b) face-centered f ;
(c) edge-centered e (identical to face-centered in 2D); (d) vertex v.

3.2. Integral description of rigid boundary δΓ285

The Cartesian grid embedded boundary method is constructed starting from the uniform286

Cartesian grid Ω∆ described previously, in which we embed a discrete representation of the rigid287

body Γ. Therefore, as shown in Figure 3a, the discrete rigid boundary, denoted δΓ∆, intersects288

underlying cells to form irregular fluid control volumes in each cell cut by the boundary. In289

such cells, the geometry of the irregular fluid control volume, denoted V , is characterized by290

the following Volume-of-Fluid (VOF) quantities, also referred to as the embedded fractions and291

represented in Figure 3b:292

• the volume fraction 0 ≤ c ≤ 1 of the cell, such that the effective volume occupied by the293

fluid in the cell is:294

V = c∆D, (8)

where D is the number of space dimensions. A cell can therefore be: (i) a full cell with295

c = 1; (ii) a solid cell with c = 0 or (iii) a cut-cell with 0 < c < 1.296

• the area fraction 0 ≤ f fd ≤ 1 of the face Fd, such that the effective area occupied by the297

fluid on the face is:298

Afd = f fd ∆D−1. (9)

Note that we also refer to Afd as the partial face occupied by the fluid on the (full) face299

Fd, i.e. we use the notation Afd for both the partial face and its surface area and denote300

mf
d its centroid (see Figure 3c).301

This integral description of the geometry of the discrete rigid boundary δΓ∆ allows us to302

represent rigid bodies of arbitrary shape. We cannot however represent thin bodies of width303

smaller than the cell size ∆ or multiple bodies separated by less than the cell size. These304

restrictions can be lifted using for example the “multi-cut-cell” method presented in [65, 22].305

However, the implementation of such a method for the incompressible Navier-Stokes equations306

(1) is beyond the scope of this study and will be addressed in future works.307

In the following section, we detail the computation of the embedded fractions c and f fd start-308

ing from the distance function representation of the rigid boundary δΓ introduced in Section309

2.2.310

9

b

<latexit sha1_base64="p0UrIUEZlQ6/o48HDsBXDLHPPLQ=">AAADgnicfVLLTtxAEKzFJAHy4nHkYrGKFEVotQYicsgBhQtHIrGAeCjyzM4uI/yKPUZaIf6Ca/Jf+QP4C2p6TUSCdseyXVPd1d3T06pIbOW63T+tmWD2xctXc/MLr9+8ffd+cWn5sMrrUpuezpO8PFZxZRKbmZ6zLjHHRWniVCXmSF3uevvRlSkrm2cHblSY8zQeZnZgdexInZylsbtQg2t182Ox3e10ZYXPQdSANpq1ny+1IpyhjxwaNVIYZHDECWJUfE4RYQMFuXNckyuJrNgNbrBAbU0vQ4+Y7CW/Q+5OGzbj3sesRK2ZJeFbUhniAzU5/Upiny0Uey2RPTsttsMAXySmZY5CGJ9NN5FrqdJHCp9kcYxQkPO4T3tJrEX5eO5QNJXU4s8ai/1OPD3r97rxrXFPbnKVB+ycr3DA/NmT+iYrvMeQFVhaL0SraFPkkyk675VOtVfMnsp5Rnz7WJdb8bc74l/93Xsfx8zr0pGCyOBn09FH2+QTj6fD92zECFq6rcZzwqmM/p/B5+BwoxNtdT5/32rvfGvmcw6rWMNHdnIbO9jDPnqMnOEWv/A7mA0+BVGwOXadaTWaFfyzgq8Pice1NQ==</latexit>

b

<latexit sha1_base64="p0UrIUEZlQ6/o48HDsBXDLHPPLQ=">AAADgnicfVLLTtxAEKzFJAHy4nHkYrGKFEVotQYicsgBhQtHIrGAeCjyzM4uI/yKPUZaIf6Ca/Jf+QP4C2p6TUSCdseyXVPd1d3T06pIbOW63T+tmWD2xctXc/MLr9+8ffd+cWn5sMrrUpuezpO8PFZxZRKbmZ6zLjHHRWniVCXmSF3uevvRlSkrm2cHblSY8zQeZnZgdexInZylsbtQg2t182Ox3e10ZYXPQdSANpq1ny+1IpyhjxwaNVIYZHDECWJUfE4RYQMFuXNckyuJrNgNbrBAbU0vQ4+Y7CW/Q+5OGzbj3sesRK2ZJeFbUhniAzU5/Upiny0Uey2RPTsttsMAXySmZY5CGJ9NN5FrqdJHCp9kcYxQkPO4T3tJrEX5eO5QNJXU4s8ai/1OPD3r97rxrXFPbnKVB+ycr3DA/NmT+iYrvMeQFVhaL0SraFPkkyk675VOtVfMnsp5Rnz7WJdb8bc74l/93Xsfx8zr0pGCyOBn09FH2+QTj6fD92zECFq6rcZzwqmM/p/B5+BwoxNtdT5/32rvfGvmcw6rWMNHdnIbO9jDPnqMnOEWv/A7mA0+BVGwOXadaTWaFfyzgq8Pice1NQ==</latexit>

V

<latexit sha1_base64="Sgoy4SppTfIUo19Xc134RhINw9g=">AAADg3icfVLbbtNAED2pKZRyaQuPvFhESEhUURwFwQtSBS88FqlJK6UVWm826arrC/YaKar6GbzCd/EH8BecnbioUCVr2Z49Z87M7OykpbO17/d/djaiO5t3723d337w8NHjnd29J+O6aCptRrpwRXWSqto4m5uRt96Zk7IyKkudOU4vPgT++KupalvkR35RmrNMzXM7s1p5QpPTTPlzrdzl+Orzbrff68uKbxtJa3TRrsNir5PgFFMU0GiQwSCHp+2gUPOZIMEAJbEzXBKraFnhDa6wTW1DL0MPRfSC3zl3kxbNuQ8xa1FrZnF8KypjvKCmoF9FO2SLhW8kckDXxfaY4a3EtMxRChKy6TZyI1WGSPGNLJ4RSmLBnpKvaGtRXp87Fk0ttYSzKuF/iWdAw163vg1+E1td5RE7FyqcMX9+o77ViuAxZwWW7LloU3IpcbdGF7yytXzN7JmcZ8F3in25lXC7C/7Tv/vg45l5XzpS0jL40nb0mlt94uV0hJ4tGEFLt9PlnHAqk/9n8LYxHvSSYe/1p2H34H07n1t4hud4yU6+wQE+4hAjmZJv+I4f0Wb0KhpEw6XrRqfVPMU/K3r3B8/gtZs=</latexit>

n̄Γ FΓ

fΓ
f f
x [0,0] f f

x [1,0]

f f
y [0,0]

f f
y [0,1]

Φv [0,0] Φv [1,0]

Φv [1,1]Φv [0,1]

c [0,0]
Ff

x [0,0] Ff
x [1,0]

∇ ⋅ F

Ff
y [0,0]

Ff
y [0,1]

m f
y

m f
x

(a) (b) (c)

Fluid

Solid
δΓΔ

Figure 3: Graphical representation of the Cartesian grid embedded boundary method on a 2D grid: (a) Cartesian
grid Ω∆ cut by the discrete rigid boundary δΓ∆ to form irregular control volumes V; (b) Geometric and VOF
quantities in a cut-cell ; (c) Conservative discretization of ∇ · F in a cut-cell.

3.3. Computation of the embedded fractions in a cut-cell311

We first select a representation of the discrete rigid boundary δΓ∆ in each cut-cell. As312

illustrated in Figure 3a, we simply choose a piecewise continuous contour, which satisfies in313

each cut-cell the following equation for a line (a plane in 3D):314

n̄Γ · x = α, (10)

where n̄Γ is the inward unit normal vector to the discrete rigid boundary and α is the intercept.315

Using the distance function Φ (x− xΓ) sampled on the vertices of each cell of grid Ω∆, we316

then compute the geometric quantities n̄Γ and α in each cut-cell, along with their corresponding317

volume fraction c and area fraction f fd of each face Fd of the cut-cell. We detail this procedure318

in the following, and consider first a 2D cut-cell such as the one presented in Figure 3b:319

1. For each vertex of the cut-cell, here for instance the bottom left vertex:320

we evaluate Φv [], where Φ (x− xΓ) is the distance function we use to represent the rigid321

boundary δΓ in Section 2.2.322

2. For each face Fd of the cut-cell, here for instance the bottom face:323

if Φv [] · Φv [1] < 0, the face is cut by the rigid boundary δΓ and we compute the corre-324

sponding area fraction f fd = f fy [] using a linear interpolation of the vertex values of Φ:325

326

f fy [] =
1− sign (Φv [])

2
+ sign (Φv [])

Φv []

Φv []− Φv [1]
. (11)

3. Following [66, 60], we express the circulation along the closed boundary of the fluid control327

volume V in the cut-cell:328 ∫
δV

n dA = 0⇔
∑
d

f fd nfd + n̂Γ = 0, (12)

where nfd is the outward unit normal vector to the face Fd and n̂Γ is the inward (non-unit)329

normal vector to the discrete rigid boundary. Using equation (12), we derive the following330

10

expression for n̂Γ:331

n̂Γ =

[
f fx []− f fx [1]
f fy []− f fy [0, 1]

]
. (13)

We then normalise n̂Γ to obtain n̄Γ. Note that equation (13) is the exact expression for332

the volume-averaged normal vector to the discrete rigid boundary δΓ∆ in the cut-cell.333

4. For each face Fd of the cut-cell, here for instance the bottom face:334

if 0 < f fd = f fy [] < 1, we compute the value of the face intercept αd as:335

αd = n̄Γ · xd, (14)

where xd is the position of the intersection of the discrete boundary with the face Fd. For336

the bottom face, we have:337

xd =

[
sign (Φv [])

(
f fy []− 0.5

)
−0.5

]
. (15)

We then compute α as the arithmetic average of all face intercepts αd. Note here that338

the position vector xd is defined in a coordinate system with origin the center of the cell339

and in which the cell size is unity.340

5. Finally, we compute the volume fraction c using the well-established functions detailed in341

[67, 68], which account for the different ways a square (cubic in 3D) cell can be cut by a342

line (plane in 3D):343

c = V (n̄Γ, α) . (16)

The generalisation of the previous algorithm to 3D is relatively straightforward. Indeed,344

noticing that a 2D cell is a face of a 3D cell, we compute the area fraction f fd of each face Fd of345

a 3D cut-cell as we would compute the volume fraction of a 2D cut-cell. We then apply steps 3346

to 5 of the previous algorithm to compute the volume fraction c of the 3D cut-cell, with small347

modifications to account for the third dimension. Complete details of the implementation of348

the previous algorithm and its extension to 3D can be found here: http://basilisk.fr/src/349

fractions.h#computing-volume-fractions-from-a-levelset-function.350

Given the geometric quantities n̄Γ and α in a cut-cell, we also compute the area fraction351

fΓ and the coordinates of the centroid b of the discrete rigid boundary δΓ∆ in the cut-cell352

(see Figure 3b). Complete details can be found here: http://basilisk.fr/src/embed.h#353

utility-functions-for-the-geometry-of-embedded-boundaries.354

3.4. Discrete operators in a cut-cell355

Given the embedded fractions c, f fd and fΓ in a cut-cell, we can now write the following356

conservative finite volume approximation of the divergence of a flux F in the cut-cell [60, 61],357

also illustrated in Figure 3c:358

∇ · F ≈ 1

c∆D

∫
V
∇ · F dV =

1

c∆D

∫
δV

F · n dA

≈ 1

c∆

(∑
d

f fd F
f
d + fΓFΓ

)
,

(17)

11

http://basilisk.fr/src/fractions.h#computing-volume-fractions-from-a-levelset-function
http://basilisk.fr/src/fractions.h#computing-volume-fractions-from-a-levelset-function
http://basilisk.fr/src/fractions.h#computing-volume-fractions-from-a-levelset-function
http://basilisk.fr/src/embed.h#utility-functions-for-the-geometry-of-embedded-boundaries
http://basilisk.fr/src/embed.h#utility-functions-for-the-geometry-of-embedded-boundaries
http://basilisk.fr/src/embed.h#utility-functions-for-the-geometry-of-embedded-boundaries

where n is the outward unit normal vector to the boundary δV of the fluid control-volume V359

in the cut-cell. Both F f
d = Ff · nd and FΓ = FΓ · n̄Γ are the discrete counterparts of F · n and360

respectively represent the finite volume flux through the face Fd and through the discrete rigid361

boundary δΓ∆ in the cut-cell. As in [60, 61], the flux F f
d is defined at the centroid mf

d of the362

partial face Afd (of the full face Fd). Similarly, the flux FΓ is defined at the centroid b of the363

discrete rigid boundary δΓ∆.364

When solving the incompressible Navier-Stokes equations (1), the discrete fluxes F f
d and FΓ365

typically correspond to the nonlinear advection flux u ⊗ u or the viscous flux 2µD. In order366

to evaluate these fluxes in a cut-cell of the grid Ω∆, we therefore introduce the following three367

quantities:368

1. ∇Γs = ∇s|δΓ∆
· n̄Γ, the embedded face gradient of a cell-centered scalar s, defined at the369

centroid b of the discrete rigid boundary δΓ∆ in the cut-cell;370

2. ∇f
ds = ∇s|Fd

·nd, the face gradient of a cell-centered scalar s, defined at the centroid mf
d371

of the partial face Afd in the cut-cell;372

3. sfd , the face value of a cell-centered scalar s, defined at the centroid mf
d of the partial face373

Afd in the cut-cell.374

In the following, we detail the computation of these three quantities using only values of the375

cell-centered scalar s in what we refer to as available cells. Available cells simply correspond376

to cells that are within the fluid domain, i.e. full cells (c = 1) and cut-cells (0 < c < 1). If the377

discrete rigid boundary δΓ∆ is moving, available cells are cells that are within the fluid domain,378

excluding emerged cells that have not yet been properly initialized. We define emerged cells in379

Section 5.5.380

3.4.1. Computation of the embedded face gradient of a cell-centered scalar381

We detail here the computation in a cut-cell of the embedded face gradient ∇Γs, defined at382

the centroid b of the discrete rigid boundary δΓ∆ in a cut-cell. Two cases arise, depending on383

the nature of the boundary condition for s imposed at the centroid b.384

Neumann boundary condition. If a Neumann boundary condition gΓ is imposed, then the em-385

bedded face gradient ∇Γs simply writes:386

∇Γs = gΓ. (18)

Dirichlet boundary condition. If a Dirichlet boundary condition sΓ is imposed, we compute387

the embedded face gradient ∇Γs following the methodology presented in [60, 61]. We use the388

following second-order discretization of the gradient in the direction of the normal vector −n̄Γ,389

also illustrated in Figure 4a:390

∇Γs =
1

d2 − d1

(
(sΓ − s1)

d2

d1

− (sΓ − s2)
d1

d2

)
. (19)

To maintain second-order accuracy, we compute the quantities s1 and s2 using a third-order391

quadratic (biquadratic in 3D) interpolation along the direction orthogonal to the principal392

12

direction of the normal vector −n̄Γ and at a positive distance d1 and d2 from the centroid b.393

Without loss of generality, we consider the 2D configuration presented in Figure 4, where the394

principal direction of the normal vector −n̄Γ is the positive x-direction and d1 = 1−bx
−n̄Γ,x

and395

d2 = 2−bx
−n̄Γ,x

. We then compute s1 and s2 using values of s taken from the 3× 2 (3× 3× 2 in 3D)396

stencil represented in Figure 4b, itself part of the 5× 5 (5× 5× 5 in 3D) stencil of the cut cell:397

s1 = (s [1] (y1 − 1) + s [1, 2] (y1 + 1.))
y1

2
− s [1, 1] (y1 − 1) (y1 + 1)

s2 = (s [2] (y2 − 1) + s [2, 2] (y2 + 1.))
y2

2
− s [2, 1] (y2 − 1) (y2 + 1) ,

(20)

where y1 = by + d1 [−n̄Γ,y]− 1 and y2 = by + d2 [−n̄Γ,y]− 1. Note here that the centroid b and398

the distances d1, d2, y1 and y2 are defined in a coordinate system with origin the center of the399

cell and in which the cell size is unity and that the values of s are interpreted as point-value400

estimates at the center of full cells.401

To maintain a robust computation of the embedded face gradient ∇Γs in complex geomet-402

rical configurations that can naturally occur in particle-laden flows, we use equation (19) only403

if the cells required to compute the first and second interpolants s1 and s2 in equation (20) are404

topologically connected. This means that a line unbroken by a solid cell or face connects the405

center of the current cut-cell [0, 0] to the center of all cells in the stencils of both s1 and s2, i.e.406

cells {[1] , [1, 1] , [1, 2]} and cells {[2] , [2, 1] , [2, 2]} for the 2D configuration presented in Figure407

4. If this is not the case, we face a degenerated case. This situation was not considered in408

[60, 61] and we therefore propose the following extension of the computation of the embedded409

face gradient ∇Γs in degenerated cases:410

• if the stencil for s2 is not topologically connected to the current cut-cell [0, 0], we simply411

use the following first-order discretization of ∇Γs:412

∇Γs =
sΓ − s1

d1

. (21)

In Figure 5, we present the three possible configurations for which this degenerated case413

would occur for the 2D configuration presented in Figure 4.414

• if the stencil for s1 is not topologically connected to the current cut-cell [0, 0], we face415

a pathological situation. In this case, we resort to using the cell-centered value s [] to416

compute ∇Γs. In the configuration presented in Figure 4, the embedded face gradient417

would write:418

∇Γs =
sΓ − s[]

|bx/n̄Γ,x|
. (22)

In Figure 6, we present the three possible configurations for which this degenerated case419

would occur for the 2D configuration presented in Figure 4.420

Complete details of the computation of the embedded face gradient ∇Γs and its extension to421

3D can be found here: http://basilisk.fr/src/embed.h#dirichlet-boundary-condition.422

13

http://basilisk.fr/src/embed.h#dirichlet-boundary-condition

sΓ
n̄Γ

s1

s2

d1

d2b

y1

y2

n̄Γ
b s [] s [1] s [2]

s [1,1]

s [1,2]

s [2,1]

s [2,2]
(a) (b)

Fluid

Solid
δΓΔ

Figure 4: Graphical representation of the methodology proposed in [60, 61] and implemented in Basilisk to
compute the second-order embedded face gradient ∇Γs on a 2D grid when the principal direction of the normal
vector −n̄Γ is the positive x-direction.

(a) (b) (c)

Active points

Fluid

Solid
δΓΔ

s [2]s [2,1]

s [2,2]

n̄Γ
b s [] s [1]

s [1,1]

s [1,2]

d1

sΓ

s1

n̄Γ
b s [] s [1]

s [1,1]

s [1,2]

d1

sΓ

s1

n̄Γ
b s [] s [1]

s [1,1]

s [1,2]

d1

sΓ

s1

Figure 5: Graphical representation of the extension of the methodology proposed in [60, 61] and implemented
in Basilisk to compute the embedded face gradient ∇Γs in a first type of degenerated case on a 2D grid
when the principal direction of the normal vector −n̄Γ is the positive x-direction and the stencil for s2 (cells
{[2] , [2, 1] , [2, 2]}) is not topologically connected to the current cut-cell [0, 0].

3.4.2. Computation of the face gradient of a cell-centered scalar423

We now describe the computation of the face gradient ∇f
ds, defined at the centroid mf

d of424

the partial face Afd (of the full face Fd) in a cut-cell. To match the second-order accuracy of425

the embedded face gradient ∇Γs described previously, we first define the following second-order426

simple face gradient on the face Fd, denoted ∇̄f
ds and written here for instance on the left face427

of the cut-cell:428

∇̄f
xs [] =

s []− s [-1]

∆
. (23)

We then proceed as in [60] and define ∇f
ds using a second-order linear (bilinear in 3D)429

interpolation, at the centroid mf
d of the partial face Afd , of simple face gradients ∇̄f

ds computed430

on neighboring faces located in the direction (two directions in 3D) orthogonal to the direction431

d. Without loss of generality, we consider here for instance the left face of the 2D cut-cell432

14

(a) (b) (c)

Active points

Fluid

Solid
δΓΔn̄Γ

b s []
|bx /n̄Γ,x|

sΓ n̄Γ
b s []

|bx /n̄Γ,x|

sΓ n̄Γ
b s []

|bx /n̄Γ,x|

sΓ

Figure 6: Graphical representation of the extension of the methodology proposed in [60, 61] and implemented
in Basilisk to compute the embedded face gradient ∇Γs in a second type of degenerated case on a 2D grid
when the principal direction of the normal vector −n̄Γ is the positive x-direction and the stencil for s1 (cells
{[1] , [1, 1] , [1, 2]}) is not topologically connected to the current cut-cell [0, 0].

presented in Figure 3b and compute ∇f
ds = ∇f

xs [] as follows:433

∇f
xs [] =

if f fx [0, 1] ≥ f fx [0, -1] :(

1 +mf
x,y

)
∇̄f
xs [] +mf

x,y∇̄f
xs [0, 1]

else :(
1 +mf

x,y

)
∇̄f
xs [] +mf

x,y∇̄f
xs [0, -1] ,

(24)

where mf
x =

[
0,mf

x,y

]ᵀ
, with mf

x,y =
(
1− f fx []

)
/2. Note here that the centroid mf

d is defined434

in a coordinate system with origin the full face center and in which the face size is unity.435

As for the embedded face gradient ∇Γs, we only use equation (24) if the cells required to436

define the simple face gradients ∇̄f
ds used in equation (24) are topologically connected to the437

face Fd. Otherwise, we simply set ∇f
ds = ∇̄f

ds. Indeed, using faces of the grid Ω∆ that are438

not topologically connected could prevent the convergence of the multigrid Poisson-Helmholtz439

solver [61].440

Complete details of the computation of the face gradient ∇f
ds and its extension to 3D can441

be found here: http://basilisk.fr/src/embed.h#operator-overloading.442

3.4.3. Computation of the face value of a cell-centered scalar443

We finally detail the computation of the face value sfd , defined at the centroid mf
d of the444

partial face Afd in a cut-cell. We compute sfd using equation (24), in which we substitute the445

simple face gradients ∇̄f
ds by a volume-weighted average of s in the direction d, denoted s̄fd .446

Without loss of generality, we consider here for instance the left face of the 2D cut-cell presented447

in Figure 3b and compute the volume-weighted average s̄fd = s̄fx [] as:448

s̄fx [] =

(
3
2

+ c []
)
s[] +

(
3
2

+ c [-1]
)
s[-1]

c [] + c [-1] + 3
. (25)

We use the weighted average (25) instead of a simple average, i.e. (sx [] + sx [-1]) /2, to449

prevent the occurrence of instabilities when solving the Stokes equations (1), a phenomenon450

that has also been noticed in [69] for low Reynolds number flows. These instabilities appear451

15

http://basilisk.fr/src/embed.h#operator-overloading

when using an approximate projection scheme, due to some feedback between pressure and452

velocity modes, amplified by the face gradient (24) used to compute the viscous fluxes, which453

can behave as a third-order term in cut-cells when combined with Dirichlet boundary conditions454

[60, 61] (see Section 6.1).455

More details are provided in Section 6.4 and complete details of the computation of the face456

value sfd can be found here: http://basilisk.fr/src/embed.h#operator-overloading.457

In the following section, we present the extension to quad/oc-tree grids of the Cartesian458

grid embedded boundary method previously described on the uniform Cartesian Ω∆.459

4. Extension of the Cartesian grid embedded boundary method to quad/oc-tree460

grids461

Besides the uniform Cartesian grid Ω∆, Basilisk also enables the use of tree grids, referred462

to as quadtree in 2D and octree in 3D [45, 50]. A tree grid allows for a variable resolution of the463

computational domain Ω and provides a convenient and efficient framework for adaptive mesh464

refinement (AMR). We refer the reader to [50, 70, 71, 52] for a more detailed presentation of465

tree grids in Basilisk and describe in the following only the necessary steps to extend their use466

in the presence of embedded boundaries.467

4.1. Properties of tree grids in Basilisk in the absence of embedded boundaries468

In a tree grid in Basilisk, cells are organized hierarchically starting from the root cell located469

at the base of the tree, also referred to as level l = 0. A cell of size ∆ at level l can be parent470

to up to 4 children cells (8 in 3D) of size ∆/2 located at level l + 1. Finally, a cell with no471

children is a leaf cell.472

A remarkable feature of Basilisk is that the definition of a cell on both a uniform grid Ω∆ and473

a tree grid is identical. In other words, discrete operations on both grid types are implemented474

in an identical manner. In particular, the Cartesian grid embedded boundary method presented475

previously on a uniform Cartesian grid Ω∆ can therefore be identically applied to a tree grid.476

This is achieved by guaranteeing that each cell, whether of a uniform grid Ω∆ or of a tree grid,477

has access to a 5 × 5 (5 × 5 × 5 in 3D) regular stencil (i.e. {[2] , [1] , [-1] , . . . }) [50]. Basilisk478

therefore extends the regular stencil of a cell if the cell is located near a domain boundary or a479

resolution boundary, using respectively ghost and halo cells.480

For all grid types, the regular stencil of a cell near the domain boundary δΩ is extended481

beyond the limits of the computational domain Ω using two layers of ghost cells. Cell-centered482

values in these boundary ghost cells are updated using some discrete approximation of the483

boundary conditions imposed on the boundary δΩ. The presence of embedded boundaries does484

not modify how boundary ghost cells are updated and we refer the reader to [50] for more485

details.486

For tree grids only, the regular stencil of a leaf cell inside the computational domain and near487

a resolution boundary is extended using two layers of halo cells. We call resolution boundary488

any region of a tree grid where two neighboring leaf cells are located at different levels (i.e.489

have a different size). Note that in Basilisk, the level of neighboring leaf cells cannot vary by490

more than one. As described in [50] and illustrated in Figures 7a and 8a, cell-centered values491

in resolution boundary halo cells (blue circle and red crosses in Figures 7a and 8a) are updated492

using the following second-order functions, described here for a quadtree:493

16

http://basilisk.fr/src/embed.h#operator-overloading

• a prolongation function which uses a bilinear interpolation of values defined in cells located494

at level l (large black dots and large blue circle in Figure 7a) to update the value in a halo495

cell located at level l + 1 (red crosses in Figure 7a). For a quadtree without embedded496

boundaries, the prolongation of a cell-centered scalar s from level l to level l + 1 writes:497

s [] = (9 coarse (s []) +

3 (coarse (s [child.x]) + coarse (s [0, child.y])) +

coarse (s [child.x, child.y])) /16,

(26)

where the coarse operator accesses the value in a cell located on the coarser level l and498

child . (x|y) are the coordinates of the grid point at level l+1 relative to its parent at level499

l, i.e. child . (x|y) = ±1.500

• a restriction function which uses simple diagonal averaging of values defined in children501

cells located at level l + 1 (small black dots in Figures 7a and 8a) to update the value502

in the parent halo cell located at level l (large blue circle in Figures 7a and 8a). For a503

quadtree without embedded boundaries, the restriction of a cell-centered scalar s from504

level l + 1 to level l writes:505

s [] =
1

2

(
fine (s []) + fine (s [1, 1])

2
+

fine (s [1]) + fine (s [0, 1])

2

)
, (27)

where the fine operator accesses the value in a child cell located on the finer level l + 1.506

Complete details of the implementation of the prolongation and restriction functions in507

the absence of embedded boundaries and their extension to 3D can be found here: http:508

//basilisk.fr/src/grid/multigrid-common.h.509

4.2. Properties of tree grids in Basilisk in the presence of embedded boundaries510

To use the Cartesian grid embedded boundary method presented in Section 3 on a tree grid,511

we extend the definition of:512

• the embedded fractions c and f fd in resolution boundary halo cells;513

• the prolongation and restriction functions (26) and (27), such that they use only values514

taken from available fluid cells while maintaining their second-order accuracy.515

4.2.1. Computation of embedded fractions in a halo cell516

We use prolongation and restriction functions specific to the embedded fractions to recon-517

struct the volume and area fractions c and f fd in a halo cell.518

The restriction functions defining the embedded fractions in a parent halo cell at level l519

use simple averaging of values in its children cells at level l + 1. The prolongation functions520

defining the embedded fractions in a halo cell at level l+ 1 are based on a VOF reconstruction521

of the embedded boundary normal vector n̄Γ,l and intercept αl in the corresponding parent cell522

at level l. Indeed, using the area fractions f fd,l defined on the faces Fd,l of the parent cell at523

level l, we use equation (13) to compute the corresponding normal vector n̄Γ,l and a variation524

of equation (16) to compute the intercept αl. Then, given n̄Γ,l and αl defined in a coordinate525

17

http://basilisk.fr/src/grid/multigrid-common.h
http://basilisk.fr/src/grid/multigrid-common.h
http://basilisk.fr/src/grid/multigrid-common.h

system with origin the center of the halo cell and in which the halo cell size is unity, we use526

function (16) to compute the volume fraction cl+1 in the quadrant of the parent cell matching527

the halo cell. We also use n̄Γ,l, αl and equation (10) to compute the area fractions f f,int
d,l+1 of the528

faces of the halo cell contained within the parent cell. We finally compute the area fractions529

f f,ext
d,l+1 of the faces of the halo cell that coincide with the faces of the parent cell using their530

corresponding area fractions f fd,l.531

We refer the reader to [68] for more details on the prolongation and restriction of a vol-532

ume fraction and to the following for complete details on the implementation of the prolonga-533

tion and restriction functions specific to the embedded fractions: http://basilisk.fr/src/534

embed-tree.h#volume-fraction-field-cs.535

4.2.2. Prolongation and restriction functions in the presence of embedded boundaries536

In the presence of embedded boundaries, we modify the prolongation and restriction func-537

tions (26) and (27) and define second-order operators using only values from available cells, i.e.538

cells not entirely contained within the embedded boundary and, if the discrete rigid boundary539

δΓ∆ is moving, excluding emerged cells that have not yet been properly initialized.540

Prolongation function in the presence of embedded boundaries. We detail here the extension541

of the prolongation function (26) in the presence of embedded boundaries. Without loss of542

generality, we consider the quadtree presented in Figure 7. To update the value of the cell-543

centered scalar s in the halo cell marked by a red circled cross in Figure 7, we distinguish four544

cases, depending on the number of coarse cells available (large black dots and large blue circle545

in Figure 7):546

1. if all four coarse cells are available, as in Figure 7a, we use the bilinear interpolation (26).547

2. if three coarse cells are available, excluding the diagonal coarse cell [child.x, child.y], as548

in Figure 7b, we use the following triangular interpolation:549

s [] = (2 coarse (s []) +

coarse (s [child.x]) + coarse (s [0, child.y])) /4.
(28)

3. if only three coarse cells are available, including the diagonal coarse cell [child.x, child.y],550

as in Figure 7c, we use the following diagonal interpolation:551

s [] = (3 coarse (s []) + coarse (s [child.x, child.y])) /4. (29)

4. if only one or two coarse cells are available, as in Figure 7d, we face a pathological552

situation. In this case, we compute the value of s in the halo cell using a Taylor expansion,553

where, if possible, one simple face gradient ∇̄f
ds at level l is computed per dimension,554

preferably along the faces of the parent cell that follow the natural orientation of the halo555

cell with respect to its parent cell:556

s [] = coarse (s []) +
∆

4
coarse

(
∇̄f
xs [1]

)
+

∆

4
coarse

(
∇̄f
ys []

)
. (30)

Note that in equation (30), the face gradient coarse
(
∇̄f
ys []

)
does not follow the natural557

orientation of the halo cell with respect to its parent cell represented in Figure 7d.558

Complete details of the implementation of the prolongation function and its extension to 3D559

are presented here: http://basilisk.fr/src/embed-tree.h#refinementprolongation-of-cell-centered-fields.560

18

http://basilisk.fr/src/embed-tree.h#volume-fraction-field-cs
http://basilisk.fr/src/embed-tree.h#volume-fraction-field-cs
http://basilisk.fr/src/embed-tree.h#volume-fraction-field-cs
http://basilisk.fr/src/embed-tree.h#refinementprolongation-of-cell-centered-fields

(a) (b) (c) (d)

Active points

Restriction

Prolongation

Fluid

Solid
δΓΔ

∇̄f
xs [1]

∇̄f
ys []

Figure 7: Graphical representation of the prolongation of a cell-centered scalar in the halo cell marked by a red
circled cross, in the presence of embedded boundaries.

Restriction function in the presence of embedded boundaries. Next, we describe the extension of561

the restriction function (27) in the presence of embedded boundaries. Without loss of generality,562

we consider the quadtree presented in Figure 8. To update the value of the cell-centered scalar563

s in the halo cell marked by a blue circle in Figure 8, we distinguish three cases, depending on564

the number of children cells available (black dots in Figure 8):565

1. if four children cells are available, as in Figure 8a, we use the simple diagonal averaging566

(27).567

2. if three children cells are available, as in Figure 8b, we also use diagonal averaging, but568

only along the available diagonal:569

s [] =

if fine (c []) > 0 and fine (c [1, 1]) > 0 :

fine (s []) + fine (s [1, 1])

2
if fine (c [1]) > 0 and fine (c [0, 1]) > 0 :

fine (s [1]) + fine (s [0, 1])

2
.

(31)

3. if less than three children cells are available, as in Figure 8c, we face a pathological570

situation. In this case, we first compute the average value of s, denoted s̄, over all571

available children cells as well as the barycenter b of the available children cells (green572

star in Figure 8c). We then use, if possible, a user-provided value of the gradient of s573

defined at the center of the cell (blue circle in Figure 8c), denoted ∇s [], and a Taylor574

expansion to improve our approximation of s in the halo cell:575

s[] = s̄− b · ∇s [] . (32)

If an a priori value of ∇s [] is not available, the restriction function in this pathological576

situation is first-order only.577

Complete details of the implementation of the restriction function and its extension to 3D are578

presented here: http://basilisk.fr/src/embed-tree.h#restriction-of-cell-centered-fields.579

19

http://basilisk.fr/src/embed-tree.h#restriction-of-cell-centered-fields

(a) (b) (c)

Active points

Restriction

Barycenter

Fluid

Solid
δΓΔ

∇s []
b s̄

Figure 8: Graphical representation of the restriction of a cell-centered scalar in the halo cell marked by a large
blue circle, in the presence of embedded boundaries.

4.2.3. Adaptive mesh refinement of quad/oc-trees in Basilisk580

Finally, we describe the adaptive mesh refinement of tree grids available in Basilisk. Indeed,581

tree grids can be dynamically updated and cells refined or coarsened based on a multi-resolution582

analysis of selected scalar fields [50, 70, 71]. In particular, mesh adaptation allows us to minimize583

the use of halo cells in regions of strong Hessian by dynamically refining the grid in these regions584

and therefore maintain overall second-order accuracy when computing gradients. Indeed, values585

in halo cells are computed with second-order accuracy and therefore lead to first-order accuracy586

for gradients.587

As an example, consider a cell-centered scalar s discretized at the grid level l and denoted sl.588

To determine if a cell must be refined, coarsened or left unchanged, we first use the restriction589

function 4.2.2 to downsample sl to the coarser level l − 1:590

sl−1 = restriction (sl) , (33)

We then use the prolongation function 4.2.2 to upsample sl−1 to the current level l:591

gl = prolongation (sl−1) . (34)

The prolongated value gl is then compared to the original value sl, and the current cell is either592

refined, coarsened or remains unchanged based on a user-defined threshold value ξadapt for the593

absolute (not relative) error ‖gl − sl‖.594

In the following section, we apply the Cartesian grid embedded boundary method presented595

previously to solve the coupled system of equations (1)–(2) and (4)–(5) describing the motion596

of a rigid body Γ in an incompressible fluid.597

5. Temporal discretization598

We describe here the temporal discretization of the coupled fluid-solid system of equations599

(1)–(2) and (4)–(5) on a uniform Cartesian grid Ω∆, for simplicity. The extension to a tree600

grid is straightforward following the methodology detailed in Section 4. Taking advantage of601

the conservative properties of the Cartesian embedded boundary method, known to enhance602

the stability and convergence properties of fluid-solid coupling strategies [21, 22], we implement603

here an first-order in time explicit weak coupling strategy, also for simplicity reasons.604

20

At any given discrete time tn, denoted with the superscript n and with ∆t the time step,605

we assume that the velocity un and the fractional step pressure pn are known in each cell. We606

also assume that the position xnΓ of the rigid body Γ as well as its translation and rotational607

velocities unΓ and ωnΓ are known. Finally, we assume that the location of the discrete rigid608

boundary δΓn∆ is known and that in each cut-cell the corresponding volume fraction cn and609

area fraction f f,nd of each face Fd of the cut-cell are also known.610

5.1. Temporal discretization of the motion of the rigid body Γ611

We first integrate system (4), describing the motion of the rigid body Γ, from time tn to
time tn+1 using the following first-order explicit time discretization:

un+1
Γ − unΓ

∆t
=

Fn
Γ

ρΓVΓ

+

(
1− ρ

ρΓ

)
g

In+1
Γ ωn+1

Γ − InΓω
n
Γ

∆t
= Tn

Γ

xn+1
Γ − xnΓ

∆t
=

unΓ + un+1
Γ

2
.

(35a)

(35b)

(35c)

Note that if we prescribe the motion of the rigid body analytically, we simply compute xn+1
Γ ,612

un+1
Γ and ωn+1

Γ using user-provided functions.613

Given the new position of the rigid body xn+1
Γ , we then update the location δΓn+1

∆ of the614

discrete rigid boundary using the distance function Φ
(
x− xn+1

Γ

)
. In each cut-cell, we finally615

compute the corresponding volume fraction cn+1 and area fraction f f,n+1
d of each face Fd of the616

cut-cell using the methodology described in Section 3.3.617

Complete details of the temporal discretization of system (4) can be found here: http:618

//basilisk.fr/sandbox/ghigo/src/myembed-particle.h, and here: http://basilisk.fr/619

sandbox/ghigo/src/myembed-moving.h#prediction.620

5.2. Hydrodynamic force and torque621

In order to update the position and velocities of the rigid body Γ using system (35), we622

compute the hydrodynamic force Fn
Γ and torque Tn

Γ exerted by the fluid on the discrete rigid623

boundary δΓn∆ using equations (5) discretized with second-order accuracy.624

In each cut-cell, we compute the pressure contribution to the force and torque by linearly625

interpolating the pressure pn from the center of the cell to the centroid bn of the discrete rigid626

boundary δΓn∆ in the cut-cell.627

We then compute the viscous contribution to the force and torque using equation (19),628

assuming that the velocity un is constant along the discrete rigid boundary δΓn∆, i.e. ∇u|δΓn
∆
·629

t̄nΓ = 0, where t̄nΓ is the tangential vector to the discrete rigid boundary in the cut-cell.630

Complete details can be found here: http://basilisk.fr/src/embed.h#surface-force-and-vorticity.631

5.3. Temporal discretization of the Navier-Stokes equations632

Next, we integrate the incompressible Navier-Stokes equations (1) from time tn to time tn+1

using a fractional-step projection method [72, 68]. As in [22], we assume that the discrete rigid
boundary has been updated to its location δΓn+1

∆ and that the values of cell-centered fields in

21

http://basilisk.fr/sandbox/ghigo/src/myembed-particle.h
http://basilisk.fr/sandbox/ghigo/src/myembed-particle.h
http://basilisk.fr/sandbox/ghigo/src/myembed-particle.h
http://basilisk.fr/sandbox/ghigo/src/myembed-moving.h#prediction
http://basilisk.fr/sandbox/ghigo/src/myembed-moving.h#prediction
http://basilisk.fr/sandbox/ghigo/src/myembed-moving.h#prediction
http://basilisk.fr/src/embed.h#surface-force-and-vorticity

full and cut-cells of the domain Ω∆/Γ
n+1
∆ are known at time tn. We then obtain the following

first-order time discretization of system (1), ∀x ∈ Ω∆/Γ
n+1
∆ :

u? − un

∆t
+ An+ 1

2 = 0

ρ
u?? − u?

∆t
= ∇ · [2µD??]

∇ ·
[

∆t

ρ
∇pn+1

]
= ∇ · u??

un+1 = u?? − ∆t

ρ
∇pn+1,

(36a)

(36b)

(36c)

(36d)

where the term An+ 1
2 is an approximation of the nonlinear advection term [u · ∇u]n+ 1

2 , which633

we detail in Section 5.7.634

Following the projection method described in [45], we enforce the incompressibility con-635

straint (1b) using equations (36c) and (36d). In practice, since both the velocity u and the636

pressure p are collocated at center of each cell, we compute the divergence of the velocity637

∇ · u?? in equation (36c) using an auxiliary face velocity uf and the divergence operator (17).638

We therefore impose the incompressibility condition (1b) on the auxiliary face velocity uf639

and the cell-centered velocity u, computed using equation (36d), is then only approximately640

incompressible.641

Complete details of the temporal discretization of the Navier-Stokes equations (36) can be642

found here: http://basilisk.fr/src/navier-stokes/centered.h#time-integration.643

5.4. Discrete boundary conditions644

We supply system (36) with the following no-slip Dirichlet boundary condition for velocity
and Neumann boundary condition for pressure at time tn+1 on the discrete rigid boundary
δΓn+1

∆ :

un+1 = un+1
Γ

∇Γp
n+1 = 0.

(37a)

(37b)

Equation (37a) is the discrete equivalent of the no-slip boundary condition (2). The homo-645

geneous Neumann boundary condition for pressure (37b), used when solving equation (36c),646

is suitable for a fixed rigid body [73, 74]. When considering a moving rigid body, a suitable647

boundary condition for pressure can be obtained by projecting the Navier-Stokes equation 1a648

along the normal to the discrete rigid boundary δΓ∆ [73, 22]. Nevertheless, we have found that649

using the homogeneous Neumann boundary condition for pressure (37b) with a moving rigid650

body does not significantly affect the computed solution and we therefore use equation (37b)651

for simplicity.652

5.5. Submerged and emerged cells653

As mentioned previously, the motion on a grid Ω∆ of the rigid body Γ represented by654

embedded boundaries results in the disappearance or appearance of fluid cells, respectively655

called submerged and emerged cells (also referred to as dead and fresh cells in [74, 75]). We656

characterize these cells using the time evolution of the volume fraction c in each cell:657

22

http://basilisk.fr/src/navier-stokes/centered.h#time-integration

• submerged cell: cn > 0 and cn+1 = 0;658

• emerged cell: cn = 0 and 0 < cn+1 < 1.659

Note that we adjust the time step ∆t such that a solid cell at time tn should not become an660

emerged cell at time tn+1 with a volume fraction cn+1 = 1.661

It is well known that the disappearance (respectively appearance) of submerged (respec-662

tively emerged) cells can lead to spurious mass sources or sinks [75, 22]. We therefore handle663

these events carefully to avoid nonphysical oscillations of the velocity and pressure. The in-664

compressibility condition (1b), combined with the conservative discretization of the divergence665

operator (17), allows us to simply let submerged cells ”disappear” and emerged cells ”appear”666

from the available cells, i.e. cells that are in the domain Ω∆/Γ
n+1
∆ . This is not the case for667

the compressible Navier-Stokes equations for example, for which a conservative handling of668

submerged and emerged cells is necessary [22, 54].669

However, emerged cells of the domain Ω∆/Γ
n+1
∆ have no history at time tn, which violates670

the assumption made in Section 5.3 that the values of cell-centered fields in full and cut-cells671

of the domain Ω/Γn+1
∆ are known at time tn. Therefore, for each cell-centered scalar s, we672

estimate the value sn at the center of all emerged cells of the domain Ω∆/Γ
n+1
∆ . Following673

an approach similar to the one described in [74] and illustrated in Figure 9, we employ the674

following second-order linear extrapolation in the direction of the normal vector n̄n+1
Γ to the675

discrete rigid boundary δΓn+1
∆ to estimate the value of sn:676

sn =
sn1 d2 − sn2 d1

d2 − d1

, (38)

where the interpolants sn1 , sn2 are computed as in Section 3.4.1 using values of s taken only677

from available cells and at the positive distances d1 and d2 from the extrapolation point. If678

the stencils for sn1 or sn2 are not topologically connected to the emerged cell, we use a similar679

approach as in Section 3.4.1 to treat degenerated cases.680

Complete details of the treatment of emerged cells can be found here: http://basilisk.681

fr/sandbox/ghigo/src/myembed-moving.h#prediction.682

Fluid

Solid
δΓΔ

sn

n̄Γ

s1

s2

d1

b

y1
y2

d2

Figure 9: Graphical representation of the methodology implemented in Basilisk to extrapolate the value sn at
the center of an emerged cut-cell of a 2D grid when the principal direction of the normal vector −n̄n+1

Γ is the
positive x-direction.

In the following, we describe the numerical schemes we use to solve equations (36a), (36b)683

and (36c). We follow closely the methodology detailed in [45, 68, 50].684

23

http://basilisk.fr/sandbox/ghigo/src/myembed-moving.h#prediction
http://basilisk.fr/sandbox/ghigo/src/myembed-moving.h#prediction
http://basilisk.fr/sandbox/ghigo/src/myembed-moving.h#prediction

5.6. Multigrid solver685

We solve each component of the velocity u in equation (36b) and the pressure p in equation686

(36c) using a multigrid Poisson-Helmholtz solver. Indeed, multigrid solvers are known for being687

efficient at solving elliptic or parabolic problems such as equations (36b) and (36c), which can688

be written in a more general form as the following Poisson-Helmholtz equation:689

L (s) = b, L (s) = ∇ · (∇s) + λ s. (39)

The multigrid solver implemented in Basilisk to solve equation (39) has been described in detail690

in [50] and we recall here its essential features only.691

Given an initial guess s̃, we define the error ds = s− s̃, where s denotes the unknown exact692

solution to equation (39). We then use the linearity of the operator L to rewrite equation (39)693

as the following equivalent Poisson-Helmholtz equation:694

L (ds) = b− L (s̃) = res, (40)

where res is called the residual. We then proceed as follows:695

1. Given an initial guess s̃, we compute the residual res = b− L (s̃);696

2. If ‖res‖ ≤ ξmg, where ξmg denotes the tolerance of the multigrid solver, the initial guess697

s̃ is good enough;698

3. Otherwise, we solve equation (40);699

4. We compute an updated initial guess s̃ = s̃+ ds and go back to step 1.700

We use the multigrid solver itself only in step 3 and proceed as in [50]. We first decompose701

the error ds on successively coarser grids, using the restriction function (27), even in the presence702

of embedded boundaries. We then use a simplified prolongation function to define the error703

on successively finer grids. This simplified prolongation function is equivalent to function704

(26) if all 4 coarse cells (8 in 3D) are available. Otherwise, we use simple injection from705

the coarser level. Complete details of the simplified prolongation function can be found here:706

http://basilisk.fr/src/embed.h#prolongation-for-the-multigrid-solver.707

The error ds is then efficiently reduced on each grid, starting from the coarsest grid at level708

l = 1, using only a few iterations of simple relaxation techniques such as Jacobi or Gauss-709

Seidel. These relaxation techniques rely on the discretization of the Laplacian operator ∇· (∇)710

in each cell of the grid Ω∆. In each full cell, we proceed as in [50]. In each cut-cell, we711

simply use equation (17) to discretize the divergence operator ∇· and equations (19) and (24)712

to respectively compute the flux FΓ = ∇Γs through the discrete embedded boundary and the713

flux F f
d = ∇f

ds through each face Fd of the cut-cell. Finally, note that in practice we multiply714

equation (40) by the volume fraction c so that the resulting linear system is well-conditioned715

for any value of the volume fraction [60].716

Complete details of the multigrid Poisson-Helmholtz solver can be found here: http://717

basilisk.fr/src/poisson.h.718

24

http://basilisk.fr/src/embed.h#prolongation-for-the-multigrid-solver
http://basilisk.fr/src/poisson.h
http://basilisk.fr/src/poisson.h
http://basilisk.fr/src/poisson.h

5.7. Nonlinear advection equation719

We detail here the computation of the term An+ 1
2 used in the nonlinear advection equa-720

tion (36a). Without loss of generality, we consider here a cut-cell of the grid Ω∆, defining a721

time-dependent control volume V (t), of boundary δV (t). We then compute in this cut-cell722

the following integral form of the nonlinear advection equation for the velocity, written in723

conservative form using the incompressibility condition (1b):724 ∫ tn+ 1
2

tn
dt

∫
V(t)

(
∂u

∂t
+∇ · F

)
dV = 0, (41)

where F = u ⊗ u. Using the Leibniz integration rule and the divergence theorem, we rewrite725

equation (41) as:726

∆D (cu)t
n+ 1

2

tn −
∫ tn+ 1

2

tn
dt

∫
δV(t)

(u (uδV · n)) dA+

∫ tn+ 1
2

tn
dt

∫
V(t)

∇ · FdV = 0, (42)

where uδV is the velocity of the boundary δV (t). As the only moving boundary of the control727

volume V (t) is the discrete rigid boundary δΓ∆ (t), we rewrite equation (42) as:728

∆D (cu)t
n+ 1

2

tn −
∫ tn+ 1

2

tn
dt

∫
δΓ∆(t)

(uΓ (uΓ · n)) dA+

∫ tn+ 1
2

tn
dt

∫
V(t)

∇ · FdV = 0. (43)

Then, assuming that the velocity uΓ of the rigid body Γ is constant along the discrete boundary729

δΓ∆ (t) in the cut-cell, we obtain:730

∆D (cu)t
n+ 1

2

tn −∆D

∫ tn+ 1
2

tn

(
uΓ

dc

dt

)
dt+

∫ tn+ 1
2

tn
dt

∫
V(t)

∇ · FdV = 0. (44)

Finally, by approximating the second and third terms in equation (44) at time tn+ 1
2 and using731

equation (17) to discretize the divergence operator ∇ ·F, we rewrite equation (44) as equation732

(36a) with:733

An+ 1
2 =

cn+ 1
2 − cn
cn+ 1

2

un − u
n+ 1

2
Γ

∆t
+

1

cn+ 1
2 ∆

(∑
d

f fd F
f
d + fΓFΓ

)n+ 1
2

. (45)

The first term on the right-hand side of equation (45) accounts for the possible change of the734

volume of a cut-cell in the presence of moving embedded boundaries, while the second term on735

the right-hand side of equation (45) is simply the discretization (17) of the divergence operator736

∇ · F in a cut-cell.737

As in [45, 68], we compute the flux F
f,n+ 1

2
d through each face Fd of full and cut-cells using738

the explicit and conservative Bell-Colella-Glaz second-order unsplit upwind scheme [63]. We739

then compute the flux F
n+ 1

2
Γ through the embedded boundary δΓ

n+ 1
2

∆ simply using the no-slip740

Dirichlet boundary condition for velocity (37a). Finally, note that in practice we solve the741

nonlinear advection equation (36a) using equation (45) with values of the embedded fractions742

evaluated at time tn+1 and not time tn+ 1
2 .743

Complete details of the implementation of the Bell-Colella-Glaz numerical scheme can be744

found here: http://basilisk.fr/src/bcg.h, and of the volume correction term in equation745

(45) here: http://basilisk.fr/sandbox/ghigo/src/myembed.h#lifting-the-small-cell-cfl-restriction.746

25

http://basilisk.fr/src/bcg.h
http://basilisk.fr/sandbox/ghigo/src/myembed.h#lifting-the-small-cell-cfl-restriction

5.8. CFL condition and small cell restriction747

The principal limitation of Cartesian grid embedded boundary methods is the well-known748

small cell problem [62, 49, 22]. Indeed, the volume fraction cn+ 1
2 , that appears at the denom-749

inator of the right-hand side of equation (45), can become arbitrarily small depending on the750

intersection of the discrete rigid boundary δΓ∆ with the grid Ω∆. This translates for the explicit751

nonlinear advection equation (36a) in the following small cell CFL condition:752

∆tsc <
c

f fd

∆

|ufd |
, ∀ faces Fd, (46)

where the time step ∆tsc may become arbitrarily small if the ratio c/f fd goes to zero, rendering753

any time-dependent simulation impossible.754

Numerous strategies have been proposed to avoid this problem, including cell merging tech-755

niques, where small cells are merged with neighboring larger cells [76, 45], or special difference756

schemes that properly balance the volume fraction cn+ 1
2 in equation (45) [77]. We choose here757

to use the simple and efficient flux redistribution technique [62, 49] that algebraically expands758

the range of influence of small cells to neighboring cells to obtain a stable method.759

In each cut-cell, we first compute two approximations of the nonlinear advection term An+ 1
2760

in equation (36a):761

• a conservative but unstable term A
n+ 1

2
c using equation (45), responsible for updating the762

velocity u in large cut-cells and full cells;763

• a non-conservative but stable term A
n+ 1

2
nc , responsible for updating the velocity u in small764

cut-cells.765

Following [55], we compute in each cut-cell the non-conservative term A
n+ 1

2
nc using the follow-766

ing weighted average of the conservative term A
n+ 1

2
c , in which we do not include the volume767

correction term:768

A
n+ 1

2
nc =

∑
cell∈N

(
cn+ 1

2

)2

A
n+ 1

2
c∑

cell∈N

(
cn+ 1

2

)2 , (47)

where the neighborhood N corresponds to all full and cut-cells in the 3 × 3 (3 × 3 × 3 in769

3D) stencil of the cut-cell. We then update the velocity in each cut-cell using the following770

interpolation between A
n+ 1

2
c and A

n+ 1
2

nc :771

u? − un

∆t
+ λ

(
cn+ 1

2

)
A
n+ 1

2
c +

(
1− λ

(
cn+ 1

2

))
A
n+ 1

2
nc = 0. (48)

Following [49, 78], we compute the interpolation factor λ (c) as:772

λ (c) =

0 if
∆tsc
∆t

< 0

3

(
∆tsc
∆t

)2

− 2

(
∆tsc
∆t

)3

if 0 ≤ ∆tsc
∆t
≤ 1

1 if
∆tsc
∆t

> 1,

(49)

26

where ∆t is the time step limited by the standard CFL condition:773

∆t <
∆

|ufd |
, ∀ faces Fd. (50)

Using the interpolation factor (49) allows us to delay the apparition of small-cells while removing774

the small cell limitation as λ (c) is proportional to the volume fraction c.775

Finally, we maintain overall conservation in each cut-cell by redistributing in a conservative776

manner the following defect in momentum e:777

en+ 1
2 = cn+ 1

2

(
1− λ

(
cn+ 1

2

))(
A
n+ 1

2
c −A

n+ 1
2

nc

)
, (51)

in the 3× 3 (3× 3× 3 in 3D) stencil of the cut-cell, proportionally to the square of the volume778

fraction
(
cn+ 1

2

)2

. We therefore obtain a locally conservative and stable scheme for the nonlinear779

advection equation (36a), which verifies the standard CFL condition (50). In practice, we use780

a CFL number of 0.5 similar to that of a VOF scheme.781

Complete details of the treatment of small cells can be found here: http://basilisk.fr/782

sandbox/ghigo/src/myembed.h#lifting-the-small-cell-cfl-restriction.783

6. Numerical validation784

We now present several validation cases for the Poisson-Helmholtz, heat, Stokes and Navier-785

Stokes equations in the presence of fixed and moving rigid bodies. These test cases are part of a786

larger test suite (accessible here: http://basilisk.fr/sandbox/ghigo/src) and are selected787

to highlight specific features of the Cartesian grid embedded boundary method presented in788

the previous sections. We analyze in particular the accuracy and robustness of the method by789

comparing our results to analytical, numerical and experimental solutions from the literature.790

In each test case, we consider a square (cubic in 3D) computational domain Ω of length L0791

in which we embed a fixed or moving rigid body Γ. We characterize the spatial discretization792

using the level of refinement l, or equivalently the number of cells N in each direction. A793

uniform Cartesian grid is therefore defined by one level l and contains N = 2l cells in each794

direction, whereas a tree grid is defined by a maximum level lmax and a minimum level lmin.795

The number of leaf cells in each directions then varies between Nmin = 2lmin and Nmax = 2lmax ,796

depending on the selected scalar fields that govern the dynamic adaptation of the tree grid.797

To determine the accuracy of a computed solution, we define the p-norm of a cell-centered798

scalar s, with p = {1, 2}, as:799

‖s‖p =

∑
leaf |s []p|c [] ∆D∑

leaf c [] ∆D
, (52)

where
∑

leaf denotes the sum over all the leaf cells of the domain. We also define the∞-norm of800

s, denote ‖s‖∞, as the maximum over all leaf cells of the absolute value of s. Finally, knowing801

two solutions computed on grids respectively characterised by a maximum level l1 and l2, the802

convergence rate in any given p-norm can be estimated as:803

Op =
log (‖s1‖p/‖s2‖p)
(l2 − l1) log (2)

. (53)

If the convergence rate Op = n, this indicates nth-order accuracy, i.e., the leading term in the804

truncation error scales as O (∆n).805

27

http://basilisk.fr/sandbox/ghigo/src/myembed.h#lifting-the-small-cell-cfl-restriction
http://basilisk.fr/sandbox/ghigo/src/myembed.h#lifting-the-small-cell-cfl-restriction
http://basilisk.fr/sandbox/ghigo/src/myembed.h#lifting-the-small-cell-cfl-restriction
http://basilisk.fr/sandbox/ghigo/src

6.1. Poisson-Helmholtz equation with Dirichlet boundary conditions in a domain defined by a806

2D rhodonea curve807

To establish the second-order accuracy of the multigrid Poisson-Helmholtz solver in the808

presence of fixed embedded boundaries, we solve the following Poisson-Helmholtz equation:809

∇ · ∇s = 7r2 cos 3θ, (54)

using Dirichlet boundary conditions applied on the 2D embedded boundary defined by the810

following rhodonea curve, also illustrated in Figure 10:811

r ≤ 0.3 + 0.15 cos 6θ. (55)

This test case was originally proposed in [60], where the authors compared their results, com-812

puted using a second-order Cartesian grid embedded boundary methodology similar to the one813

described in Section (3.4.1), to the exact solution to equation (54):814

s (r, θ) = r4 cos 3θ. (56)

We solve equation (54) using the multigrid solver with a tolerance set to ξmg = 10−6.815

Following [60, 45], we evaluate the right-hand side of equation (54) at the centroid of each cell,816

whereas we evaluate the exact solution (56) at the center of each cell.817

(a) Solution s [] . (b) Error. (c) Uniform Cartesian grid with N = 128

Figure 10: Solution to the Poisson-Helmholtz equation (54) computed on a uniform Cartesian grid with N =
128 cells and using Dirichlet boundary conditions: (a) cell-centered solution; (b) cell-centered error with the
exact solution (56) and (c) uniform Cartesian grid. http://basilisk.fr/sandbox/ghigo/src/test-poisson/
neumann.c.

We first solve equation (54) on a uniform grid. We represent in Figure 10a the solution,818

computed on the uniform Cartesian grid with N = 128 cells displayed in Figure 10c, and the819

corresponding error in Figure 10b. We observe that the computed solution matches perfectly820

the contour plot of the exact solution (of Problem 1) displayed in Figure 7 of [60].821

To further assess the accuracy of the multigrid solver, we plot in Figure 11 the evolution822

with the number of cells N of the 1-norm (see Figures 11a and 11b) and ∞-norm (see Figures823

11c and 11d) of the error between the computed and exact solutions. We observe that the824

28

http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c
http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c

error in cut-cells converges for all values of N at the rate n ≈ 3, higher than the expected825

second-order accuracy of the multigrid solver. This behavior was also observed in [60] and826

was explained by a dipole behavior of the solution in cut-cells when using Dirichlet boundary827

conditions. However, even though the error in full cells first converges at the same rate n ≈ 3828

for coarser grids (32 ≤ N ≤ 256), it eventually converges at the expected convergence rate829

n ≈ 2 for finer grids (512 ≤ N ≤ 2048). Indeed, as observed in Figures 11a and 11c, the error830

for coarser grids is larger in cut-cells and therefore affects the convergence rate of the error in831

full cells.832

(a) (b)

(c) (d)

Figure 11: Evolution with the number of cells N of the error between the computed and exact solutions of the
Poisson-Helmholtz equation (54) on a uniform Cartesian grid and using Dirichlet boundary conditions: (a) and
(b): ‖error‖1 and the corresponding convergence rate; (c) and (d): ‖error‖∞ and the corresponding convergence
rate. http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c.

We now consider a static quadtree where the mesh is locally refined up to level l only around833

the embedded boundary and coarsened up to level l−2 everywhere else. We represent in Figure834

29

http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c

12a the solution, computed on the quadtree defined by Nmin = 32 and Nmax = 128 displayed835

in Figure 12c, and the corresponding error in Figure 12b. We observe that the solution closely836

resembles the one we obtain on a uniform grid in Figure 10a. We also notice in Figure 12b837

that, contrary to Figure 10b, the largest error now occurs in the core of the domain, where the838

grid is coarser.839

In Figure 13, we then plot the evolution with the maximum number of cells Nmax of the840

1-norm (see Figures 13a and 13b) and ∞-norm (see Figures 13c and 13d) of the error between841

the computed and exact solutions. We observe that the error in cut-cells and full cells converges842

at the rate n ≈ 2 (the ∞-norm of the error in cut-cells converges at an average rate n = 1.77).843

We therefore do not recover the convergence rate n ≈ 3 observed previously in cut-cells of a844

uniform grid. Indeed, due to local mesh refinement near the embedded boundary, we use values845

in halo cells to compute face gradients in cut-cells. These halo cell values are computed using846

the second-order restriction and prolongation functions defined in Section 4.2.2, which break847

the dipole behavior of the solution. Furthermore, due to the complex shape of the embedded848

boundary defined by equation (55), pathological situations for the restriction function are likely849

to arise. As a reminder, these occur when two or less cells are available for the restriction850

function. In this case, we maintain the convergence rate n ≈ 2 observed in Figure 13 by851

providing an a priori value for the gradient ∇s, derived from the exact solution (56) and used852

in equation (32).853

This test case therefore highlights that manually adapting the mesh, irrespective of the854

values of the scalar s in the computational domain, is not the correct way of refining the mesh855

on a tree grid. Indeed, in most flow configurations we cannot provide an a priori value of the856

gradient ∇s necessary here to maintain second-order accuracy. Nevertheless, we expect that857

by dynamically refining the mesh based on the multi-resolution analysis of selected scalar fields858

available in Basilisk, we will recover a convergence rate n = 2 nonetheless.859

Complete details of this test case can be found here: http://basilisk.fr/sandbox/860

ghigo/src/test-poisson/neumann.c.861

(a) Solution s []. (b) Error. (c) Static quadtree with Nmax = 128.

Figure 12: Solution to the Poisson-Helmholtz equation (54) computed on a static quadtree with Nmax = 128
and Nmin = 32 and using Dirichlet boundary conditions: (a) cell-centered solution; (b) cell-centered error with
the exact solution (56) and (c) static quadtree. http://basilisk.fr/sandbox/ghigo/src/test-poisson/

neumann.c.

30

http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c
http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c
http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c
http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c
http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c

(a) (b)

(c) (d)

Figure 13: Evolution with the number of cells Nmax of the error between the computed and exact solutions
of the Poisson-Helmholtz equation (54) on a quadtree and using Dirichlet boundary conditions: (a) and (b):
‖err‖1 and the corresponding convergence rate; (c) and (d): ‖err‖∞ and the corresponding convergence rate.
http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c.

6.2. Heat equation with Neumann boundary conditions in a 3D expanding sphere862

We now establish the second-order accuracy of the multigrid Poisson-Helmholtz solver in the863

presence of 3D and moving rigid embedded boundaries. We solve the following heat equation:864

∂ts+∇ · ∇s =
4

125π

r2 + 5(t+ 1)

(t+ 1)3
exp

(
− r2

5(t+ 1)

)
, (57)

using Neumann boundary conditions applied on the 3D moving embedded boundary defined865

by the following equation for an expanding sphere, also illustrated in Figure 14:866

r2 ≤ 0.392 + t, t ≤ 0.1. (58)

31

http://basilisk.fr/sandbox/ghigo/src/test-poisson/neumann.c

This test case was originally proposed in [61], where the authors compared their results, com-867

puted using a second-order Cartesian grid embedded boundary method similar to the one868

described in Section 3.4.1, to the exact solution to equation (57):869

s (r, θ) =
4

5π(t+ 1)
exp

(
− r2

5(t+ 1)

)
. (59)

We solve equation (57) from time t = 0 to time t = 0.1 using an implicit first-order time870

discretization with ∆t = 10−5 to minimize time discretization and splitting errors. As the871

sphere expands, we initialize the scalar s in emerged cells using the second-order extrapolation872

described in Section 5.5. At each time step, we therefore solve a discrete Poisson-Helmholtz873

equation using the multigrid solver with a tolerance set to ξmg = 10−6. Note that, following874

[61], we evaluate the right-hand-side of equation (57) at the centroid of each cell, whereas we875

compute the exact solution (59) at the center of each cell.876

(a) Solution s [] at t = 0.1. (b) Solution s [] in the plane y = −0.246. (c) Error in the plane y = −0.246.

Figure 14: Solution to the heat equation (57) at time t = 0.1, computed on a uniform Cartesian grid with N = 64
cells and using Neumann boundary conditions: (a) cell-centered solution on the embedded boundary; (b) cell-
centered solution in the x−z plane defined by y = −0.246 and (c) cell-centered error with the exact solution (59)
in the x−z plane defined by y = −0.246. http://basilisk.fr/sandbox/ghigo/src/test-heat/neumann3D.c.

We solve equation (57) on a uniform grid. As an example, we represent in Figures 14a877

and 14b the solution, computed on a uniform Cartesian grid with N = 64 cells, and the878

corresponding error in Figure 14c. We observe that in this case the largest error occurs near879

the embedded boundary.880

In Figure 15, we then plot the evolution with the number of cellsN of the 1-norm (see Figures881

15a and 15b) and ∞-norm (see Figures 15c and 15d) of the error between the computed and882

exact solutions. As in [61], we observe in full cells that the 1-norm and the ∞-norm of the883

error converge at the expected rate n ≈ 2. In cut-cells, only the 1-norm of the error converges884

at a rate n ≈ 2, whereas the ∞-norm of the error converges at an average rate n ≈ 1.33.885

This behavior is notably different from the one observed in Section 6.1, where we obtain a886

convergence rate n ≈ 3 in cut-cells. The reason is twofold: (i) when using Neumann boundary887

conditions, the convergence rate of the multigrid Poisson-Helmholtz solver reduces to n = 2 in888

cut-cells [60, 45]; (ii) as the sphere expands isotropically, neighboring emerged cells are likely889

32

http://basilisk.fr/sandbox/ghigo/src/test-heat/neumann3D.c

to appear simultaneously. In this case, the number of available cells in the stencil of these890

emerged cells is too small to use the second-order extrapolation presented in Section 5.5 and891

we use a first-order extrapolation instead. Nevertheless, we expect to recover a convergence892

rate n = 2 in both cut-cells and full cells in most flow configurations involving moving rigid893

embedded boundaries as neighboring emerged cells should not appear simultaneously.894

Complete details of this test case can be found here: http://basilisk.fr/sandbox/895

ghigo/src/test-heat/neumann3D.c.896

(a) (b)

(c) (d)

Figure 15: Evolution with the number of cells N of the error between the computed and exact solutions of
the heat equation (57) on a uniform Cartesian grid and using Neumann boundary conditions. (a) and (b):
‖error‖1 and the corresponding convergence rate; (c) and (d): ‖error‖∞ and the corresponding convergence
rate. http://basilisk.fr/sandbox/ghigo/src/test-heat/neumann3D.c.

6.3. Pressure-driven Stokes flow through a porous medium arbitrarily refined897

We now assess the robustness of the multigrid Poisson-Helmholtz solver when dealing with898

complex embedded boundaries. We consider the 2D periodic porous medium illustrated in899

33

http://basilisk.fr/sandbox/ghigo/src/test-heat/neumann3D.c
http://basilisk.fr/sandbox/ghigo/src/test-heat/neumann3D.c
http://basilisk.fr/sandbox/ghigo/src/test-heat/neumann3D.c
http://basilisk.fr/sandbox/ghigo/src/test-heat/neumann3D.c

Figure 16 and defined by the union of a random collection of disks. In this porous medium, we900

solve a Stokes flow driven by the pressure gradient g = [1, 0]ᵀ.901

To test the robustness of the treatment of arbitrary embedded boundaries with arbitrary lev-902

els of refinement, we discretize the computational domain using the randomly refined quadtree903

represented in Figure 16c and defined by Nmin = 2 and Nmax = 32. Starting from the initial904

solution u = 0 and p = 0, we solve the Stokes equations for n = 400 time steps, using the time905

step ∆t = 2 × 10−5 to minimize splitting errors. We also set the tolerance of the multigrid906

solver to ξmg = 10−3.907

(a) Velocity
√
u2
x + u2

y . (b) Pressure p. (c) Level of refinement l.

Figure 16: Pressure-driven Stokes flow in a 2D porous medium defined by the union of a random collection
of disks and computed on a randomly refined quadtree defined by Nmin = 2 and Nmax = 32: (a) norm of

the velocity
√
u2
x + u2

y; (b) pressure p and (c) arbitrarily defined levels of refinement. http://basilisk.fr/

sandbox/ghigo/src/test-stokes/porous1.c.

In Figures 16a and 16b, we observe that the Cartesian grid embedded boundary method908

handles without difficulty the complex geometry of the porous medium and that the multigrid909

solver is able to compute in each pore, whether open or closed, a solution for the norm of the910

velocity
√
u2
x + u2

y (see Figure 16a) and the pressure p (see Figure 16b). We also note that, as911

expected, the flow follows a preferred path aligned with the direction of the pressure gradient912

g.913

To further assess the performance of the multigrid solver, we plot in Figure 17 the evolution914

with the number of time steps n of several quantities related to the performance of the multigrid915

solver. In particular, we observe that the relative change in velocity ‖un+1
x − unx‖∞/‖un+1

x ‖1916

(black dots in Figure 17) rapidly converges towards zero, indicating that we obtain a steady917

solution. This is also highlighted by the near constant values of the 1-norm of the velocity ‖ux‖1918

(green lozenge in Figure 17) and the ∞-norm of the pressure ‖p‖∞ (orange plus in Figure 17).919

Finally, we notice that the ∞-norm of both the residual of the viscous Navier-Stokes equation920

(36b) ‖resu‖∞ (red cross in Figure 17) and of the pressure Poisson-Helmholtz equation (36c)921

∆t‖resp‖∞ (blue square in Figure 17) rapidly converge bellow the tolerance ξmg of the multigrid922

solver, indicating its efficiency.923

Complete details of this test case can be found here: http://basilisk.fr/sandbox/924

ghigo/src/test-stokes/porous1.c. We have also extended this test case to 3D and obtain925

34

http://basilisk.fr/sandbox/ghigo/src/test-stokes/porous1.c
http://basilisk.fr/sandbox/ghigo/src/test-stokes/porous1.c
http://basilisk.fr/sandbox/ghigo/src/test-stokes/porous1.c
http://basilisk.fr/sandbox/ghigo/src/test-stokes/porous1.c
http://basilisk.fr/sandbox/ghigo/src/test-stokes/porous1.c

similar performances (results not shown here).926

Figure 17: Evolution with the number of time steps n of several quantities related to the performance of
the multigrid solver when solving a pressure-driven Stokes flow in a 2D porous medium. In particular, we
plot the relative change in velocity ‖un+1

x − unx‖∞/‖un+1
x ‖1 (black dot) and the ∞-norm of the residual of

the viscous Navier-Stokes equation (36b) ‖resu‖∞ (red cross) and of the pressure Poisson-Helmholtz equation
(36c) ∆t‖resp‖∞ (blue square), solved using the multigrid solver. http://basilisk.fr/sandbox/ghigo/src/
test-stokes/porous1.c.

6.4. Instabilities due to “third-order” Dirichlet boundary conditions at low Reynolds number927

In Section 3.4.3, we discussed the importance of using the volume-weighted average s̄fd (25)928

when computing the face value sfd of a scalar s to prevent the occurrence of an instability when929

solving the Stokes equations. We highlight this instability here by solving the Stokes equations930

in a periodic straight channel of length L0 = 1 and width h = 1
2

in which we let a flow, initialized931

with a transverse velocity uy = 1 everywhere, return to a rest equilibrium state.932

We use a uniform Cartesian grid with N = 32 and a time step ∆t = 4× 10−5. We set the933

tolerance of the multigrid solver to ξmg = 10−7. Note that the occurrence of the instability is934

sensitive to the previously defined parameters, especially the time step ∆t.935

In Figure 18, we plot the evolution with the number of time steps n of the ∞-norm of the936

horizontal velocity ux and consider two cases: (i) in Figure 18a, we use simple averaging to937

compute face values and observe that an instability appears and that the velocity in the channel938

diverges after an initial transient decay; (ii) in Figure 18b, we use the volume-weighted average939

(25) to compute face values and observe that the velocity in the channel remains stable and940

decays towards zero.941

As mentioned in Section 3.4.3, this instability occurs when using an approximate projection942

method such as system (36), due to feedback between the pressure p and the approximately943

35

http://basilisk.fr/sandbox/ghigo/src/test-stokes/porous1.c
http://basilisk.fr/sandbox/ghigo/src/test-stokes/porous1.c

(a) Simple average. (b) Volume-weighted average.

Figure 18: Evolution with the number of time steps n of the ∞-norm of the horizontal velocity ‖ux‖∞ when
solving a Stokes flow in a periodic channel: (a) unstable case where face values are computed using simple
averaging and (b) stable case where face values are computed using the volume-weighted average (25). http:

//basilisk.fr/sandbox/ghigo/src/test-navier-stokes/uf.c.

incompressible cell-centered velocity u. However, the instability is only triggered here because944

the face gradient (24) used to compute the velocity gradient in equation (36b) behaves in cut-945

cells as a third-order term when combined with Dirichlet boundary conditions (see Section 6.1).946

We therefore use the volume-weighted average (25) to reduce the contribution of small cut-cells947

when computing face values and to dampen velocity perturbations. Note that the instability948

also disappears if we use Neumann boundary conditions on the embedded boundary or Dirichlet949

boundary conditions with first- or second-order face gradients (see equations (21) and (22)).950

Complete details of this test case can be found here: http://basilisk.fr/sandbox/951

ghigo/src/test-navier-stokes/uf.c.952

6.5. Starting flow past a fixed and moving cylinder at Re = 1000953

The results presented in Sections 6.1, 6.2, 6.3 and 6.4 show that the multigrid Poisson-954

Helmholtz solver implemented in Basilisk is second-order accurate, robust and stable. We955

now assess the accuracy of the Bell-Colella-Glaz scheme and the flux redistribution technique956

presented in Sections 5.7 and 5.8 and used to solve the non-linear advection equation (36a).957

We compute here the highly inertial starting flow around a 2D cylinder at the Reynolds958

number Re = urefd
ν

= 1000, where uref = 1 is the reference velocity and d = 1 is diameter of the959

cylinder. This is a canonical case of complex boundary layer separation [79, 80, 52], where a960

high spatial resolution is needed to properly resolve the boundary layers around the cylinder.961

In the following, we compare two cases which should be equivalent assuming a Galilean962

invariance of our method:963

1. a starting flow passed a fixed cylinder, characterized by the constant far-field velocity964

u∞ = [uref , 0]ᵀ and referred to as the fixed cylinder case;965

36

http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/uf.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/uf.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/uf.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/uf.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/uf.c

2. a cylinder impulsively started in an otherwise quiescent flow, moving at the imposed966

constant rigid body velocity uΓ = [−uref , 0]ᵀ and referred to as the moving cylinder case.967

In both cases, we consider a domain of size L0 = 18 and represent only half of the cylinder,968

initially located in the middle of the bottom boundary of the domain. We therefore impose969

symmetry boundary conditions on the bottom boundary, a slip boundary condition on the top970

boundary and an outflow boundary condition on the right boundary. On the left boundary, we971

impose the inlet velocity u∞+ uΓ. Starting from the initial condition u (t = 0) = u∞+ uΓ and972

p = 0, we then solve the Navier-Stokes equations (36) on a quadtree dynamically adapted at973

each time step based on the velocity u with an adaptation criteria ξadapt/uref = 10−3. Following974

[80], we choose the maximum level of refinement lmax = 12 (228 pt/d) to obtain a minimum975

resolution d/∆min ≈ 10
√
Re. We also set the tolerance of the multigrid solver to ξmg = 10−6.976

Finally, the time step is bounded by ∆t/ (d/uref) ≤ 10−3.977

(a) Fixed cylinder case. (b) Moving cylinder case.

Figure 19: Vorticity ωz (top half) and the corresponding spatial distribution of the level of refinement (bottom
half) at t/ (d/uref) = 3 for the impulsively started flow around a cylinder at Re = 1000. http://basilisk.

fr/sandbox/ghigo/src/test-navier-stokes/starting.c and http://basilisk.fr/sandbox/ghigo/src/

test-navier-stokes/starting-moving.c.

In Figure 19, we plot at time t/ (d/uref) = 3 for both the fixed cylinder case (see Figure978

19a) and the moving cylinder case (see Figure 19b) the vorticity ωz (top half) as well as the979

corresponding spatial distribution of the level of refinement l around the cylinder (bottom980

half). By visually comparing the vorticity structures in each case, we notice that they are981

almost identical and are in very good qualitative agreement with the vorticity plots displayed982

in Figure 16 of [79] and Figure 3 of [80]. Furthermore, we observe in both cases that the mesh983

is refined in the regions of strong vorticity while the core of the cylinder (which does not belong984

to the computational domain) and the far field regions are represented with coarser cells. This985

significantly reduces the number of cells required to compute an accurate solution (see note on986

performance bellow).987

In Figures 20 to 22, we perform a more quantitative comparison with [79, 80] by displaying988

results computed on three different adaptive quadtrees defined by the following values of the989

37

http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c

(a) Fixed cylinder case. (b) Moving cylinder case.

Figure 20: Time evolution of the hydrodynamic forces acting on the cylinder impulsively started at
Re = 1000, computed on three different adaptive quadtrees defined by the following values of the
maximum level of refinement lmax = {11 (114 pt/d) , 12 (228 pt/d) , 13 (455 pt/d)}. http://basilisk.

fr/sandbox/ghigo/src/test-navier-stokes/starting.c and http://basilisk.fr/sandbox/ghigo/src/

test-navier-stokes/starting-moving.c.

(a) Fixed cylinder case. (b) Moving cylinder case.

Figure 21: Distribution of the vorticity ωz around the cylinder impulsively started at Re = 1000, com-
puted at time t/ (d/uref) = 0.5 on three different adaptive quadtrees defined by the following values of
the maximum level of refinement lmax = {11 (114 pt/d) , 12 (228 pt/d) , 13 (455 pt/d)}. http://basilisk.

fr/sandbox/ghigo/src/test-navier-stokes/starting.c and http://basilisk.fr/sandbox/ghigo/src/

test-navier-stokes/starting-moving.c.

maximum level of refinement lmax = {11 (114 pt/d) , 12 (228 pt/d) , 13 (455 pt/d)}. In Figures990

20a and 20b, we plot respectively for the fixed and moving cylinder cases the time evolution991

of the streamwise component of the pressure and viscous forces Fp,x and Fµ,x acting on the992

38

http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c

(a) Fixed cylinder case. (b) Moving cylinder case.

Figure 22: Distribution of the vorticity ωz around the cylinder impulsively started at Re = 1000, com-
puted at time t/ (d/uref) = 2.5 on three different adaptive quadtrees defined by the following values of
the maximum level of refinement lmax = {11 (114 pt/d) , 12 (228 pt/d) , 13 (455 pt/d)}. http://basilisk.

fr/sandbox/ghigo/src/test-navier-stokes/starting.c and http://basilisk.fr/sandbox/ghigo/src/

test-navier-stokes/starting-moving.c.

cylinder. We also plot in the same figure the time evolution of the drag coefficient CD defined993

as:994

CD =
Fp,x + Fµ.x
1
2
ρurefSref

, with Sref =
d

2
. (60)

In Figures 21a and 21b and Figures 22a and 22b, we plot respectively for the fixed and moving995

cylinder cases the distribution of the vorticity ωz on the surface of the cylinder obtained at times996

t/ (d/uref) = {0.5, 2.5}. For each of these quantities, we compare our results to those presented997

in [79, 80] and observe that for both the fixed and moving cylinder cases the computed results998

converge towards the reference data as we increase the value of the maximum level of refinement999

lmax. In particular, the time evolution of the viscous force Fµ,x in Figures 20a and 20b perfectly1000

matches the reference data for all considered values of lmax. We note however that the time1001

evolution of the pressure force Fp,x in Figures 20a and 20b is noisier than the reference data1002

and that the noise is not significantly reduced when we increase the value of lmax.1003

Indeed, as the cell-centered velocity u is not exactly incompressible, the pressure p feels1004

through the term ∇·u?? in equation (36c) the history of the divergence of the velocity. And in1005

this case, the history of the divergence contains noise induced by the dynamic mesh adaptation1006

at every time step.1007

To corroborate this explanation, we plot in Figure 23 the time evolution of the hydrodynamic1008

forces obtained for parameters identical to those used to obtain the results in Figure 20 but1009

computed on the static quadtree presented in Figure 23a. We observe that in this case, for both1010

the fixed (see Figure 23b) and moving (see Figure 23c) cylinder cases, the time evolution of the1011

pressure force Fp,x no longer contains any noise. This is a clear indication that the adaptive1012

mesh refinement along with the approximate projection method are responsible for the noise1013

observed in the pressure force Fp,x in Figure 20.1014

39

http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c

Complete details of these two test cases can be found here: http://basilisk.fr/sandbox/1015

ghigo/src/test-navier-stokes/starting.c and http://basilisk.fr/sandbox/ghigo/src/1016

test-navier-stokes/starting-moving.c.1017

(a) Static quadtree with lmax = 12.

(b) Fixed cylinder case. (c) Moving cylinder case.

Figure 23: Time evolution of the hydrodynamic forces acting on the cylinder impulsively started at Re = 1000,
computed on three different static quadtrees defined by the following values of the maximum level of refinement
lmax = {11 (114 pt/d) , 12 (228 pt/d) , 13 (455 pt/d)} and illustrated in (a) for lmax = 12 (228 pt/d): (b) fixed
cylinder case, (c) moving cylinder case. http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/

starting.c and http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c.

A note on performance. Performance, ideally measured by the wall-clock runtime for a given1018

accuracy, is a key parameter in the development and evaluation of numerical methods, and1019

this is especially true for adaptive mesh refinement techniques. We therefore compare here the1020

performances of the Cartesian grid embedded boundary method for both the fixed and moving1021

cylinder cases on three different grids: (i) a uniform Cartesian grid, (ii) an adaptive quadtree1022

and (iii) a static quadtree as described above.1023

Indeed, a remarkable feature of Basilisk is that the definition of a cell on both a uniform1024

grid and a tree grid is identical. This is achieved in Basilisk by separating the low-level details1025

40

http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c

of the different grid implementations (e.g. memory layout, grid traversal strategies) from the1026

numerical scheme itself. Therefore, Basilisk provides efficient Cartesian grid and quadtree im-1027

plementations and a comparison of the performances between both grids is therefore warranted.1028

Grid Uniform Cartesian grid Adaptive quadtree Static quadtree

Case Fixed Moving Fixed Moving Fixed Moving

Wall-clock time 7685.79 14005.9 30.58 66.17 320.97 620.2
Time steps 616 818 616 907 617 899

Cells 4194304 4194304 10576 11077 78430 83194
Speed 3.36× 105 2.69× 105 1.33× 105 1.03× 105 1.51× 105 1.21× 105

Table 1: Computing times and speeds for the starting flow past a cylinder at Re = 1000, computed on one Intel
i5 processor until t/(d/uref) = 2.5 using a maximum level of refinement lmax = 11. The wall-clock time is given in
seconds (s) and the speed in points·steps/s. http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/
starting.c and http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c.

In Table 1, we summarize the performances of the fixed and moving embedded boundary1029

algorithms. In both cases, we run the simulation until t/(d/uref) = 2.5 using a maximum1030

level of refinement lmax = 11 on a single Intel i5 processor. We notice that, as expected, the1031

fixed embedded boundary algorithm is faster than its moving counterpart by a factor of ∼ 1.3.1032

However, the computational time for the moving embedded boundary algorithm is twice that1033

of the fixed one due to additional constraints on the time step (CFL = 0.5) which increase the1034

total number of time steps. Finally, we observe that the gain in number of grid points (i.e.1035

memory) obtained with adaptivity is approximately a factor of 400, while the gain in computing1036

time is roughly a factor of 200.1037

6.6. Oscillating sphere in a quiescent flow1038

We now reproduce a 3D test case taken from [81, 82, 49] and compute the inertial flow1039

induced by the forced inline sinusoidal oscillation of a sphere in an otherwise quiescent fluid.1040

The oscillating motion of the sphere is characterized by a Reynolds number Re = urefd
ν

= 401041

and a Strouhal number St = ωd
uref

= 3.2, where uref = 1 is the maximum velocity of the sphere,1042

d = 1 is the diameter of the sphere and ω is the oscillation frequency.1043

We consider a domain of size L0 = 16, where we impose slip boundary conditions on all1044

boundaries and embed the sphere in the center of the domain. Starting from the initial condition1045

u (t = 0) = 0 and p = 0, we impose the following forced horizontal motion to the sphere:1046

uΓ = uref sin (ωt) ex. (61)

We then solve the Navier-Stokes equations (36) until a periodic state is reached. We use an1047

octree dynamically adapted at each time step based on the velocity u with an adaptation criteria1048

ξadapt/uref = 10−2. We also set the tolerance of the multigrid solver to ξmg = 10−6. Finally, the1049

time step is bounded by ∆t/ (d/uref) ≤ 10−2. We observe that in this case a periodic state is1050

reached after one oscillation period T = ω/ (2π).1051

In Figure 24, we display snapshots of the mesh and vorticity in the xy-plane, taken at the1052

following phase angles θ = {0, 96, 192, 288} during the second oscillation period and computed1053

41

http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c

(a) θ = 0. (b) θ = 96. (c) θ = 192. (d) θ = 288.

(e) θ = 0. (f) θ = 96. (g) θ = 192. (h) θ = 288.

Figure 24: Snapshots of the mesh and the vorticity in the xy-plane, taken at the phase angles θ =
{0, 96, 192, 288} during the second oscillation period of a sphere oscillating in a quiescent flow at Re = 40
and St = 3.2 on an adaptive octree defined by the following value of the maximum level of refinement lmax =
9 (32 pt/d). http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/sphere-oscillating.c.

on the octree defined by the following value of the maximum of level of refinement lmax =1054

9 (32 pt/d). We observe that the mesh dynamically follows the movement of the sphere and1055

captures the resulting vorticity structures.1056

We then plot in Figure 25 the time evolution during the second oscillation period of the1057

drag coefficient CD defined by equation (60), with Sref = π d
2

4
. The results are computed1058

on three different octrees defined by the following values of the maximum level of refinement1059

lmax = {8 (16 pt/d) , 9 (32 pt/d) , 10 (64 pt/d)}. For all values of lmax, we obtain a very good1060

agreement with the reference data from [49], computed using 50 pt/d, confirming the high1061

accuracy of our method.1062

Complete details of this test case can be found here: http://basilisk.fr/sandbox/1063

ghigo/src/test-navier-stokes/sphere-oscillating.c.1064

6.7. Sphere of near-unity density ratio settling in a closed box1065

Finally, we conclude the validation of the Cartesian grid embedded boundary method im-1066

plemented in Basilisk by solving the coupled system of equations (1)–(2) and (4)–(5) describing1067

the motion of a freely moving rigid body.1068

We first investigate the settling at small to moderate Reynolds numbers of a sphere of1069

near-unity density ratio ρΓ/ρ ≈ 1 in a closed box under the action of the gravity g =1070

[0, −9.81, 0]ᵀ m/s2. This test case is inspired by the experimental and numerical work of [83],1071

where the authors characterized the flow using the Reynolds number 1.5 ≤ Re = urefd
ν
≤ 31.91072

and the particle Stokes number 0.2 ≤ St = 1
9
ReρΓ

ρ
≤ 4, with uref a reference settling velocity1073

and d = 0.015 m the sphere diameter. This test case has since then been used on numerous1074

occasions as a validation case for fluid-particle coupling methods [84, 85, 86, 16] at small to1075

moderate Reynolds numbers.1076

42

http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/sphere-oscillating.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/sphere-oscillating.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/sphere-oscillating.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/sphere-oscillating.c

Figure 25: Time evolution during the second oscillation period of the drag coefficient CD computed around
a sphere oscillating in quiescent flow at Re = 40 and St = 3.2 on three different adaptive octrees defined
by the following values of the maximum level of refinement lmax = {8 (16 pt/d) , 9 (32 pt/d) , 10 (64 pt/d)}.
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/sphere-oscillating.c.

We consider a domain of size L0 = 0.16 m, where we impose no-slip boundary conditions on1077

all boundaries and embed the sphere at a distance of 0.04 m between the bottom of the sphere1078

and the top boundary. Then, starting from the initial condition u (t = 0) = 0 and p = 0, we1079

solve the coupled system of equations (1)–(2) and (4)–(5) on an octree, dynamically adapted1080

at each time step based on the velocity u with an adaptation criteria ξadapt/uref = 10−2. We1081

also set the tolerance of the multigrid solver to ξmg = 10−4. Finally, the time step is bounded1082

by ∆t/ (d/uref) ≤ 10−3.1083

The range of Reynolds numbers considered is Re ∈ [1.5, 31.9], which we obtain by varying1084

the reference velocity uref and the viscosity ν. Similarly, the range of Stokes numbers considered1085

is St ∈ [0.19, 4.13], which we obtain by varying the density ratio ρΓ/ρ. For these low to1086

moderate Reynolds number flows, the particle experiences a period of nearly steady fall after1087

an initial acceleration. As it approaches the bottom of the box, the particle decelerates towards1088

zero and we stop the simulation when one cell is left between the sphere and the bottom wall.1089

As an illustration, we display in Figure 26 snapshots at t/ (d/uref) = 1 of the vorticity in the1090

xy-plane obtained for different combinations of the Reynolds and Stokes numbers.1091

In Figure 27, we plot the time evolution of the position xΓ,y/d (see Figure 27a) and the set-1092

tling velocity uΓ,y/uref (see Figure 27b) of the sphere for different combinations of the Reynolds1093

and Stokes numbers: [Re, St] = {[1.5, 0.19] , [4.1, 0.53] , [11.6, 1.5] , [31.9, 4.13]}. To assess the1094

accuracy of the method, the results are obtained on three different octrees defined by the follow-1095

ing values of the maximum level of refinement lmax = {7 (12 pt/d) , 8 (24 pt/d) , 9 (48 pt/d)}.1096

For each case, we compare our results to those of [83] and observe a very good agreement1097

with the reference experimental data, even when using lmax = 7 (12 pt/d). However, values of1098

lmax > 7 are required to obtained converged results for moderate Reynolds number flows.1099

The Cartesian grid embedded boundary method along with the first-order in time explicit1100

weak fluid-solid coupling strategy are therefore able to accurately capture the two-way interac-1101

tions between the fluid and the particle with a limited number of grid points.1102

43

http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/sphere-oscillating.c

(a) [Re, St] = [1.5, 0.19]. (b) [Re, St] = [4.1, 0.53].

(c) [Re, St] = [11.6, 1.5]. (d) [Re, St] = [31.9, 4.13].

Figure 26: Snapshots at time t/ (d/uref) = 1 of the vorticity in the xy-plane around a sphere of near-unity
density ratio settling in a closed box for different combinations of the Reynolds and Stokes numbers [Re, St],
computed on an octree grid defined by the following value of the maximum level of refinement lmax = 9 (48 pt/d).
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling.c.

Complete details of this test case can be found here: http://basilisk.fr/sandbox/1103

ghigo/src/test-particle/sphere-settling.c.1104

44

http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling.c

(a) Position xΓ,y/d. (b) Settling velocity uΓ,y/uref .

Figure 27: Time evolution of (a) the position xΓ,y/d and (b) the settling velocity uΓ,y/uref of a sphere of near-
unity density ratio settling in a closed box, for different combinations of the Reynolds and Stokes numbers:
[Re, St] = {[1.5, 0.19] , [4.1, 0.53] , [11.6, 1.5] , [31.9, 4.13]}, obtained on three different octrees defined by the
following values of the maximum level of refinement lmax = {7 (12 pt/d) , 8 (24 pt/d) , 9 (48 pt/d)}. http:

//basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling.c.

6.8. Heavy sphere settling in a large closed box1105

In this final validation test case, we investigate the settling at large Reynolds or Galileo1106

numbers of a heavy sphere under the action of the gravity g = [0, −9.81, 0]ᵀ m/s2. This test1107

case is inspired by the experimental work of [87], where the authors studied the motion of1108

spherical beads in a large container filled with water. More particularly, we reproduce here1109

cases 1, 2 and 4 from [87].1110

Following [5], we use a sphere of diameter d = 2/12 m, define a reference velocity uref =1111 √
|gy|d and consider the following three combinations of density ratio ρΓ/ρ and Galileo number1112

Ga =
√
|1− ρΓ

ρ
|d3|gy|/ν: [ρΓ/ρ, Ga] = {[2.56, 49.14] (case 1) , [2.56, 255.35] (case 2) , [7.71, 206.27] (case 4)},1113

which we obtain by varying the viscosity ν. Unfortunately, it is not possible to deduce from1114

the experimental results of [87] to which sphere trajectory regime these three cases belong to.1115

Indeed, the settling velocities presented in [87] have been averaged over multiple realizations of1116

the same experiment. However, according to the map of regimes of sphere trajectories in the1117

[ρΓ/ρ, Ga] plane obtained numerically in [88] and experimentally in [89], we expect that cases1118

1, 2 and 4 should display different sphere trajectory regimes.1119

In case 1, the Galileo number is low enough that the sphere should settle vertically with a1120

steady axisymmetric wake. In case 4, as the Galileo number increases, the sphere should shed1121

a single-sided chain of vortex loops, producing an unsteady side force that causes the sphere1122

to follow an unsteady oblique trajectory. In [89], the authors qualify this sphere trajectory1123

regime as the oblique trajectory regime. However, in [88], the authors further distinguish1124

between the steady, low frequency oscillating and high frequency oscillating oblique trajectory1125

regimes. For the combination of density ratio and Galileo number considered in case 4, the1126

sphere should follow, according to [88], an oblique and high frequency oscillating trajectory.1127

45

http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling.c

Finally, in case 2, the Galileo number is even larger and the sphere should follow, according to1128

[88], a chaotic trajectory. Note however that for the Galileo number considered in case 2, the1129

sphere trajectory regime is not described in [89] as a chaotic trajectory regime but rather as an1130

intermittent oblique trajectory regime. Indeed, in this regime the authors still observe in the1131

wake structure some vortex loops consistent with an oblique trajectory.1132

Instead of defining a tri-periodic domain as in [5], we take full advantage of the mesh1133

adaptation capabilities of the Cartesian grid embedded boundary method and define a very1134

large box of size L0 = 32 m as in the experiments of [87]. We therefore do not have to worry1135

about the particle being affected by the remnants of its periodic wake. We impose no-slip1136

boundary conditions on all boundaries and embed the sphere at a distance 5d from the top1137

boundary. Then, starting from an initial condition u (t = 0) = 0 and p = 0, we solve the1138

coupled system of equations (1)–(2) and (4)–(5) on an octree, dynamically adapted at each1139

time step based on the velocity u with an adaptation criteria ξadapt/uref = 5 × 10−3. We also1140

set the tolerance of the multigrid solver to ξmg = 10−4. Finally, the time step is bounded by1141

∆t/ (d/uref) ≤ 10−3.1142

(a) Vertical settling velocity uΓ,y/uref . (b) Norm of the lateral velocity
√
u2

Γ,x + u2
Γ,z/uref .

Figure 28: Time evolution of (a) the vertical settling velocity uΓ,y/uref and (b) the norm of the lateral velocity√
u2

Γ,x + u2
Γ,z/uref of a heavy sphere settling in a large domain for the following combination of density ratio

and Galileo number [ρΓ/ρ, Ga] = [2.56, 49.14] (case 1 of [87]), obtained on three different octrees defined by
the following values of the maximum level of refinement lmax = {12 (21 pt/d) , 13 (42 pt/d) , 14 (85 pt/d)}.
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c.

In Figure 28, we first present the results we obtain for case 1 of [87] using the following1143

combination of density ratio and Galileo number [ρΓ/ρ, Ga] = [2.56, 49.14]. We plot both the1144

time evolution of the vertical settling velocity uΓ,y/uref of the sphere as well as the norm of1145

its lateral velocity
√
u2

Γ,x + u2
Γ,z/uref . To assess the accuracy of the method, the results are1146

obtained on three different octrees defined by the following values of the maximum level of1147

refinement lmax = {12 (21 pt/d) , 13 (42 pt/d) , 14 (85 pt/d)}. After a transient acceleration1148

phase, we observe that we recover the expected steady vertical trajectory [89], characterized by1149

46

http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c

a constant vertical settling velocity and a zero lateral velocity. Furthermore, the final steady1150

vertical settling velocity differs by less than 5% from the experimental results of [87].1151

(a) Vertical settling velocity uΓ,y/uref . (b) Norm of the lateral velocity
√
u2

Γ,x + u2
Γ,z/uref .

Figure 29: Time evolution of (a) the vertical settling velocity uΓ,y/uref and (b) the norm of the lateral velocity√
u2

Γ,x + u2
Γ,z/uref of a heavy sphere settling in a large domain for the following combination of density ratio

and Galileo number [ρΓ/ρ, Ga] = [7.71, 206.27] (case 4 of [87]), obtained on three different octrees defined
by the following values of the maximum level of refinement lmax = {12 (21 pt/d) , 13 (42 pt/d) , 14 (85 pt/d)}.
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c.

In Figure 29, we present the time evolution of the same quantities obtained for case 4 of [87]1152

using the following combination of density ratio and Galileo number [ρΓ/ρ, Ga] = [7.71, 206.27].1153

We observe that the sphere follows the expected oblique and high frequency oscillating trajec-1154

tory [88]. Indeed, the computed lateral velocity in Figure 29b oscillates with a high frequency1155

around an average value
√
u2

Γ,x + u2
Γ,z/uref ≈ 0.38. For comparison, in [90], the authors pre-1156

dicted, using a Lattice-Boltzmann method, a steady lateral velocity upH/ug ≈ 0.1 for the1157

following combination of density ratio and Galileo number [ρΓ/ρ, Ga] = [1.5, 178.46], with1158

ug = uref

√
|ρΓ/ρ− 1|. Therefore, rescaling our results by

√
|ρΓ/ρ− 1|, we obtain the average1159

horizontal velocity
√
u2

Γ,x + u2
Γ,z/ug ≈ 0.14, which is higher than the value obtained in [90] as1160

we use a higher Galileo number. Furthermore, the final value of the vertical settling velocity1161

in Figure 29a matches the one obtained in [87]. Note however that since the Galileo number is1162

larger than in case 1, the results are converged only for lmax ≥ 13 (42 pt/d). Finally, we confirm1163

that the sphere follows an oblique and high frequency oscillating trajectory by displaying in1164

Figure 30 the iso-surfaces λ2 = −0.05 at times t/(d/uref) = {20, 40}. Indeed, we observe the1165

vortex structures characteristic of this regime [89, 88], with a double threaded vortical structure1166

near the sphere and a train of one-sided vortex loops further downstream.1167

Finally, we plot in Figure 31 similar results obtained for case 2 of [87] using the follow-1168

ing combination of density ratio and Galileo number [ρΓ/ρ, Ga] = [2.56, 255.35]. We first1169

observe that the final value of the vertical settling velocity matches the one obtained in [87]1170

for lmax ≥ 13 (42 pt/d). Furthermore, we notice that sphere no longer follows an oblique and1171

47

http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c

(a) t/ (d/uref) = 20. (b) Zoom at t/ (d/uref) = 20. (c) t/ (d/uref) = 40. (d) Zoom at t/ (d/uref) = 40.

Figure 30: Snapshots at times t/ (d/uref) = {20, 40} of the iso-surface λ2 = −0.05 around of a heavy
sphere settling in a large domain for the following combination of density ratio and Galileo number
[ρΓ/ρ, Ga] = [7.71, 206.27] (case 4 of [87]), obtained on an octree defined by the following value of the max-
imum level of refinement lmax = 13 (42 pt/d). http://basilisk.fr/sandbox/ghigo/src/test-particle/

sphere-settling-large-domain.c.

high frequency oscillating trajectory as in case 4 but rather an intermittent oblique trajectory1172

as described in [89]. Indeed, in Figure 32, we display the iso-surfaces λ2 = −0.05 at times1173

t/(d/uref) = {30, 40} and observe again a double threaded vortical structure near the sphere1174

and one-sided vortex loops downstream of the sphere. However, contrary to the vortex struc-1175

tures presented for case 4 in Figure 32, the vortex loops evolve here into vortex rings that are1176

responsible for the intermittency in the sphere’s oblique trajectory.1177

These results therefore confirm the ability of the Cartesian grid embedded boundary method1178

and the first-order in time explicit weak coupling strategy to reproduce for a considerable range1179

of Galileo numbers the dynamic behavior of a settling particle under the action of gravity in a1180

very large domain.1181

Complete details of this test case can be found here: http://basilisk.fr/sandbox/1182

ghigo/src/test-particle/sphere-settling-large-domain.c.1183

A note on performance. We compare here the performances of the Cartesian grid embedded1184

boundary method and the first-order in time explicit weak fluid-solid coupling strategy we use1185

to compute cases 1, 2 and 4 from [87] and summarize the results in Table 2.1186

In all three cases, we run the simulation, without having to restart, until t/(d/uref) = 401187

using a maximum level of refinement lmax = 12 on 48 Intel Platinum processors. Note here that1188

number of processors chosen is not optimal in terms of memory management and could have1189

been roughly reduced by a factor of 5. We notice that, as expected, the computational speeds1190

are similar in all three cases. However, we observe that the dynamic mesh adaptation of the1191

48

http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c

(a) Vertical settling velocity uΓ,y/uref . (b) Norm of the lateral velocity
√
u2

Γ,x + u2
Γ,z/uref .

Figure 31: Time evolution of (a) the vertical settling velocity uΓ,y/uref and (b) the norm of the lateral velocity√
u2

Γ,x + u2
Γ,z/uref of a heavy sphere settling in a large domain for the following combination of density ratio

and Galileo number [ρΓ/ρ, Ga] = [2.56, 255.35] (case 2 of [87]), obtained on three different octrees defined
by the following values of the maximum level of refinement lmax = {12 (21 pt/d) , 13 (42 pt/d) , 14 (85 pt/d)}.
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c.

Case from [87] Case 1: [ρΓ/ρ, Ga] = [2.56, 49.14] Case 2: [ρΓ/ρ, Ga] = [2.56, 255.35] Case 4: [ρΓ/ρ, Ga] = [7.71, 206.27]

Wall-clock time 2.40× 104 6.45× 104 15.80× 104

Time steps 40036 43325 46438
Cells 2.15× 105 9.23× 105 18.07× 105

Speed 5.91× 103 6.89× 103 6.58× 103

Table 2: Computing times and speeds for a sphere settling in a large domain at different Galileo numbers
Ga, computed on 48 Intel Platinum processors until t/(d/uref) = 40 using a maximum level of refinement
lmax = 12. The wall-clock time is given in seconds (s) and the speed in points·steps/s/cores. http://basilisk.
fr/sandbox/ghigo/src/test-navier-stokes/starting.c and http://basilisk.fr/sandbox/ghigo/src/

test-navier-stokes/starting-moving.c.

unsteady wake behind the sphere in cases 2 and 4 (see Figures 30 and 32) increases the number1192

of cells and therefore the wall-clock time compared to case 1. This is especially true for case1193

4, where the density ratio ρΓ/ρ = 7.71 is larger than in cases 1 and 2 and therefore the sphere1194

settles faster, resulting in a longer wake.1195

7. Conclusions and perspectives1196

We have presented here an adaptive Cartesian grid embedded boundary method, or cut-1197

cell method, for fixed and moving rigid bodies in an incompressible flow. To the best of our1198

knowledge, this is one of the first attempts to use a cut-cell method for moving embedded1199

boundaries in an incompressible flow. Building on and extending the work of [60, 61], [45, 50]1200

and [49, 22], in particular for the treatment of degenerated cases when computing the embedded1201

face gradient∇Γs (see Section 3.4.1), we have constructed a method that is conservative, second-1202

49

http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c
http://basilisk.fr/sandbox/ghigo/src/test-navier-stokes/starting-moving.c

(a) t/ (d/uref) = 30. (b) Zoom at t/ (d/uref) = 30. (c) t/ (d/uref) = 40. (d) Zoom at t/ (d/uref) = 40.

Figure 32: Snapshots at times t/ (d/uref) = {30, 40} of the iso-surface λ2 = −0.05 around of a heavy
sphere settling in a large domain for the following combination of density ratio and Galileo number
[ρΓ/ρ, Ga] = [2.56, 255.35] (case 2 of [87]), obtained on an octree defined by the following value of the max-
imum level of refinement lmax = 13 (42 pt/d). http://basilisk.fr/sandbox/ghigo/src/test-particle/

sphere-settling-large-domain.c.

order in space, robust and efficient. For the sake of simplicity, we have considered in this study1203

only single moving particles and chosen a simple first-order in time explicit integration scheme1204

to weakly couple the motion of a particle and the fluid. Finally, we have implemented the1205

method along with an extensive validation test suite for canonical particle-laden flow cases in1206

the open source software Basilisk and extended its use to adaptive tree grids in a robust and1207

efficient manner.1208

Our Cartesian grid embedded boundary method on quad/oc-tree adaptive grids therefore1209

opens up unprecedented opportunities for particle-resolved particle-laden flow simulations. In-1210

deed, the numerical simulation of moving rigid bodies in an incompressible flow presents many1211

numerical challenges due to the wide variety of particle shapes and sizes and to the complexity1212

of the fluid-particle momentum transfers. We can now overcome these difficulties by taking1213

full advantage of the simplicity of the Cartesian grid approach and cut-cell representation of1214

the geometry to describe moving particles of arbitrary shape. The high-order accuracy and1215

mesh adaptivity properties of the method also allow us to properly capture boundary layers1216

around moving rigid bodies while maintaining computational costs to a minimum. We were1217

therefore able to perform fluid-particle simulations at spatial resolution that were previously1218

unattainable using simple regular Cartesian grid and predict expected particle dynamics for a1219

wide range of Reynolds (0 ≤ Re ≤ 1000) and Galileo numbers (0 ≤ Ga ≤ 250) (see Sections1220

6.7 and 6.8). Furthermore, the conservative properties of the method enhance the stability and1221

convergence properties of the fluid-solid coupling [21, 22], allowing us to use an explicit weak1222

fluid-solid coupling strategy. In future works, we nevertheless plan to couple the method to the1223

50

http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c
http://basilisk.fr/sandbox/ghigo/src/test-particle/sphere-settling-large-domain.c

granular solver Grains3D [64] to compute particle-particle collisions for any particle shape with1224

second-order time accuracy. As demonstrated in Section 6.2, our method can also be straight-1225

forwardly extended to heat transfers and could therefore be used to compute high Reynolds1226

and high Prandtl numbers particle-laden flows.1227

In future works, we will improve the method to remove the small oscillations observed in1228

the pressure signal in Section 6.5 in the limit case of high Reynolds numbers (Re ∼ 1000).1229

As a reminder, these oscillations are caused by the dynamic adaptation of the mesh coupled1230

to the approximate projection of the cell-centered velocity field. Inspired by the work of [91],1231

these pressure oscillations can be removed by introducing an additional projection step and1232

defining two pressures: a standard pressure used to project the velocity as in equation (36c)1233

and an auxiliary diagnostic pressure used to compute the pressure force on the embedded1234

boundaries. This auxiliary pressure is obtained by projecting only the update (i.e. its evolution1235

in time) of the centered velocity field un+1 − un and therefore does not feel the history of1236

divergence of the centered velocity field, which includes the noise induced by adaptive mesh1237

refinement. Preliminary work and results for fixed embedded boundaries can be found here:1238

http://basilisk.fr/src/navier-stokes/double-projection.h.1239

References1240

[1] C. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics1241

25 (3) (1977) 220–252.1242

[2] E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary1243

finite-difference methods for three-dimensional complex flow simulations, Journal of Com-1244

putational Physics 161 (1) (2000) 35–60.1245

[3] C. Peskin, The immersed boundary method, Acta Numerica 11 (1) (2002) 479–517.1246

[4] Z. Feng, E. Michaelides, The immersed boundary-lattice Boltzmann method for solving1247

fluid-particles interaction problems, Journal of Computational Physics 195 (2) (2004) 602–1248

628.1249

[5] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of1250

particulate flows, Journal of Computational Physics 209 (2) (2005) 448–476.1251

[6] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005)1252

239–261.1253

[7] R. Bale, A. P. S. Bhalla, B. E. Griffith, M. Tsubokura, A one-sided direct forcing immersed1254

boundary method using moving least squares, Journal of Computational Physics 440 (2021)1255

110359.1256

[8] R. Ghias, R. Mittal, T. Lund, A non-body conformal grid method for simulation of com-1257

pressible flows with complex immersed boundaries, in: 42nd AIAA Aerospace Sciences1258

Meeting and Exhibit, 2004, p. 80.1259

[9] S. Majumdar, G. Iaccarino, P. Durbin, RANS solvers with adaptive structured boundary1260

non-conforming grids, Tech. rep., CTR Annual Research Brief (2001).1261

51

http://basilisk.fr/src/navier-stokes/double-projection.h

[10] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, A. von Loebbecke, A ver-1262

satile sharp interface immersed boundary method for incompressible flows with complex1263

boundaries, Journal of computational physics 227 (10) (2008) 4825–4852.1264

[11] J. H. Seo, R. Mittal, A high-order immersed boundary method for acoustic wave scattering1265

and low-Mach number flow-induced sound in complex geometries, Journal of Computa-1266

tional Physics 230 (4) (2011) 1000–1019.1267

[12] S. Tenneti, R. Garg, S. Subramaniam, Drag law for monodisperse gas–solid systems us-1268

ing particle-resolved direct numerical simulation of flow past fixed assemblies of spheres,1269

International Journal of Multiphase Flow 37 (9) (2011) 1072–1092.1270

[13] J. Xia, K. Luo, J. Fan, A ghost-cell based high-order immersed boundary method for inter-1271

phase heat transfer simulation, International Journal of Heat and Mass Transfer 75 (2014)1272

302–312.1273

[14] R. Glowinski, T. Pan, T. Hesla, D. Joseph, A distributed Lagrange multiplier/fictitious1274

domain method for particulate flows, International Journal of Multiphase Flow 25 (5)1275

(1999) 755–794.1276

[15] Z. Yu, X. Shao, A. Wachs, A fictitious domain method for particulate flows with heat1277

transfer, Journal of Computational Physics 217 (2) (2006) 424–452.1278

[16] A. Wachs, A. Hammouti, G. Vinay, M. Rahmani, Accuracy of finite volume/staggered1279

grid distributed Lagrange multiplier/fictitious domain simulations of particulate flows,1280

Computers & Fluids 115 (2015) 154–172.1281

[17] A. Ladd, R. Verberg, Lattice-Boltzmann simulations of particle-fluid suspensions, Journal1282

of Statistical Physics 104 (5) (2001) 1191–1251.1283

[18] C. Peng, O. M. Ayala, L.-P. Wang, A comparative study of immersed boundary method1284

and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltz-1285

mann method: Part I, laminar flows, Computers & Fluids 192 (2019) 104233.1286

[19] C. K. Aidun, J. R. Clausen, Lattice-Boltzmann method for complex flows, Annual Review1287

of Fluid Mechanics 42 (2010) 439–472.1288

[20] A. Wachs, Particle-scale computational approaches to model dry and saturated granular1289

flows of non-Brownian, non-cohesive, and non-spherical rigid bodies, Acta Mechanica 2301290

(2019) 1919–1980.1291

[21] C. Michler, E. Van Brummelen, S. Hulshoff, R. De Borst, The relevance of conservation1292

for stability and accuracy of numerical methods for fluid–structure interaction, Computer1293

methods in applied mechanics and engineering 192 (37-38) (2003) 4195–4215.1294

[22] L. Schneiders, C. Günther, M. Meinke, W. Schröder, An efficient conservative cut-cell1295

method for rigid bodies interacting with viscous compressible flows, Journal of Computa-1296

tional Physics 311 (2016) 62–86.1297

52

[23] J. Feng, H. Hu, D. Joseph, Direct simulation of initial value problems for the motion of1298

solid bodies in a Newtonian fluid. Part 1. Sedimentation, Journal of Fluid Mechanics 2611299

(1994) 95–134.1300

[24] J. Feng, H. Hu, D. Joseph, Direct simulation of initial value problems for the motion of1301

solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows, Journal of Fluid1302

Mechanics 277 (271) (1994) 271–301.1303

[25] A. A. Johnson, T. E. Tezduyar, Advanced mesh generation and update methods for 3D1304

flow simulations, Computational Mechanics 23 (2) (1999) 130–143.1305

[26] C. R. Choi, C. N. Kim, Direct numerical simulations of the dynamics of particles with1306

arbitrary shapes in shear flows, Journal of Hydrodynamics, Ser. B 22 (4) (2010) 456–465.1307

[27] N. O. Jaensson, M. A. Hulsen, P. D. Anderson, Direct numerical simulation of particle1308

alignment in viscoelastic fluids, Journal of Non-Newtonian Fluid Mechanics 235 (2016)1309

125–142.1310

[28] A. Koblitz, S. Lovett, N. Nikiforakis, W. D. Henshaw, Direct numerical simulation of1311

particulate flows with an overset grid method, Journal of computational physics 343 (2017)1312

414–431.1313

[29] W. J. Horne, K. Mahesh, A massively-parallel, unstructured overset method to simulate1314

moving bodies in turbulent flows, Journal of Computational Physics 397 (2019) 108790.1315

[30] K. Luo, Z. Wang, J. Fan, K. Cen, Full-scale solutions to particle-laden flows: Multidirect1316

forcing and immersed boundary method, Physical Review E 76 (6) (2007) 066709.1317

[31] Z. Wang, J. Fan, K. Luo, Combined multi-direct forcing and immersed boundary method1318

for simulating flows with moving particles, International Journal of Multiphase Flow 34 (3)1319

(2008) 283–302.1320

[32] T. Kempe, J. Fröhlich, Collision modelling for the interface-resolved simulation of spherical1321

particles in viscous fluids, Journal of Fluid Mechanics 709 (2012) 445–489.1322

[33] Y. Tang, S. Kriebitzsch, E. Peters, M. van der Hoef, J. Kuipers, A methodology for highly1323

accurate results of direct numerical simulations: drag force in dense gas–solid flows at1324

intermediate Reynolds number, International Journal of Multiphase Flow 62 (2014) 73–1325

86.1326

[34] S. Schwarz, T. Kempe, J. Fröhlich, A temporal discretization scheme to compute the1327

motion of light particles in viscous flows by an immersed boundary method, Journal of1328

Computational Physics 281 (2015) 591–613.1329

[35] G. Akiki, S. Balachandar, Immersed boundary method with non-uniform distribution of1330

Lagrangian markers for a non-uniform Eulerian mesh, Journal of Computational Physics1331

307 (2016) 34–59.1332

53

[36] M. Moriche, M. Uhlmann, J. Dušek, A single oblate spheroid settling in unbounded ambi-1333

ent fluid: A benchmark for simulations in steady and unsteady wake regimes, International1334

Journal of Multiphase Flow 136 (2021) 103519.1335

[37] A. Wachs, A. Hammouti, G. Vinay, M. Rahmani, Accuracy of Finite Volume/Staggered1336

Grid Distributed Lagrange Multiplier/Fictitious Domain simulations of particulate flows,1337

Computers & Fluids 115 (2015) 154–172.1338

[38] J. Keating, P. Minev, A fast algorithm for direct simulation of particulate flows using1339

conforming grids, Journal of Computational Physics 255 (2013) 486–501.1340

[39] N. Deen, S. Kriebitzsch, M. van der Hoef, J. Kuipers, Direct numerical simulation of flow1341

and heat transfer in dense fluid-particle systems, Chemical Engineering Science 81 (2012)1342

329–344.1343

[40] X. Liu, W. Ge, L. Wang, Scale and structure dependent drag in gas–solid flows, AIChE1344

Journal 66 (4) (2020) e16883.1345

[41] A. G. Kidanemariam, M. Uhlmann, Formation of sediment patterns in channel flow: mini-1346

mal unstable systems and their temporal evolution, Journal of Fluid Mechanics 818 (2017)1347

716–743.1348

[42] A. Roma, C. Peskin, M. Berger, An adaptive version of the immersed boundary method,1349

Journal of Computational Physics 153 (2) (1999) 509–534.1350

[43] B. E. Griffith, R. D. Hornung, D. M. McQueen, C. S. Peskin, An adaptive, formally sec-1351

ond order accurate version of the immersed boundary method, Journal of Computational1352

Physics 223 (1) (2007) 10–49.1353

[44] M. Bauer, S. Eibl, C. Godenschwager, N. Kohl, M. Kuron, C. Rettinger, F. Schornbaum,1354

C. Schwarzmeier, D. Thönnes, H. Köstler, U. Rude, waLBerla: A block-structured high-1355

performance framework for multiphysics simulations, Computers & Mathematics with Ap-1356

plications 81 (2020) 478–501.1357

[45] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in1358

complex geometries, Journal of Computational Physics 190 (2) (2003) 572–600.1359

[46] C. Min, F. Gibou, A second order accurate projection method for the incompressible1360

Navier-Stokes equations on non-graded adaptive grids, Journal of Computational Physics1361

219 (2) (2006) 912–929.1362

[47] G. Eitel-Amor, M. Meinke, W. Schröder, A lattice-Boltzmann method with hierarchically1363

refined meshes, Computers & Fluids 75 (2013) 127–139.1364

[48] M. Meinke, L. Schneiders, C. Günther, W. Schröder, A cut-cell method for sharp moving1365

boundaries in cartesian grids, Computers & Fluids 85 (2013) 135–142.1366

[49] L. Schneiders, D. Hartmann, M. Meinke, W. Schröder, An accurate moving boundary1367

formulation in cut-cell methods, Journal of Computational Physics 235 (2013) 786–809.1368

54

[50] S. Popinet, A quadtree–adaptive multigrid solver for the Serre–Green–Naghdi equations,1369

Journal of Computational Physics 302 (2015) 336–358.1370

[51] G. D’Avino, M. Hulsen, A comparison between a collocation and weak implementation of1371

the rigid-body motion constraint on a particle surface, International Journal for Numerical1372

Methods in Fluids 64 (9) (2010) 1014–1040.1373

[52] C. Selcuk, A. R. Ghigo, S. Popinet, A. Wachs, A fictitious domain method with dis-1374

tributed lagrange multipliers on adaptive quad/octrees for the direct numerical simulation1375

of particle-laden flows, Journal of Computational Physics 430 (2021) 109954.1376

[53] A. Wachs, Particle-scale computational approaches to model dry and saturated granu-1377

lar flows of non-brownian, non-cohesive, and non-spherical rigid bodies, Acta Mechanica1378

230 (6) (2019) 1919–1980.1379

[54] W. Bennett, N. Nikiforakis, R. Klein, A moving boundary flux stabilization method for1380

Cartesian cut-cell grids using directional operator splitting, Journal of Computational1381

Physics 368 (2018) 333–358.1382

[55] K. Sverdrup, A. Almgren, N. Nikiforakis, An embedded boundary approach for efficient1383

simulations of viscoplastic fluids in three dimensions, Physics of Fluids 31 (9) (2019)1384

093102.1385

[56] K. Fröhlich, M. Meinke, W. Schröder, Correlations for inclined prolates based on highly1386

resolved simulations, Journal of Fluid Mechanics 901 (2020) A5.1387

[57] M.-H. Chung, Cartesian cut cell approach for simulating incompressible flows with rigid1388

bodies of arbitrary shape, Computers & Fluids 35 (6) (2006) 607–623.1389

[58] M.-H. Chung, An adaptive Cartesian cut-cell/level-set method to simulate incompressible1390

two-phase flows with embedded moving solid boundaries, Computers & Fluids 71 (2013)1391

469–486.1392

[59] Z. Xie, T. Stoesser, A three-dimensional Cartesian cut-cell/volume-of-fluid method for two-1393

phase flows with moving bodies, Journal of Computational Physics 416 (2020) 109536.1394

[60] H. Johansen, P. Colella, A cartesian grid embedded boundary method for Poisson’s equa-1395

tion on irregular domains, Journal of Computational Physics 147 (1) (1998) 60–85.1396

[61] P. Schwartz, M. Barad, P. Colella, T. Ligocki, A cartesian grid embedded boundary method1397

for the heat equation and Poisson’s equation in three dimensions, Journal of Computational1398

Physics 211 (2) (2006) 531–550.1399

[62] P. Colella, D. T. Graves, B. J. Keen, D. Modiano, A cartesian grid embedded boundary1400

method for hyperbolic conservation laws, Journal of Computational Physics 211 (1) (2006)1401

347–366.1402

[63] J. B. Bell, P. Colella, H. M. Glaz, A second-order projection method for the incompressible1403

navier-stokes equations, Journal of Computational Physics 85 (2) (1989) 257–283.1404

55

[64] A. Wachs, L. Girolami, G. Vinay, G. Ferrer, Grains3d, a flexible dem approach for particles1405

of arbitrary convex shape — Part I: Numerical model and validations, Powder Technology1406

224 (2012) 374–389.1407

[65] L. Schneiders, C. Guenther, J. H. Grimmen, M. H. Meinke, W. Schroeder, Sharp resolution1408

of complex moving geometries using a multi-cut-cell viscous flow solver, in: 22nd AIAA1409

Computational Fluid Dynamics Conference, 2015, p. 3427.1410

[66] R. B. Pember, J. B. Bell, P. Colella, W. Y. Curtchfield, M. L. Welcome, An adaptive1411

Cartesian grid method for unsteady compressible flow in irregular regions, Journal of1412

computational Physics 120 (2) (1995) 278–304.1413

[67] R. Scardovelli, S. Zaleski, Analytical relations connecting linear interfaces and volume1414

fractions in rectangular grids, Journal of Computational Physics 164 (1) (2000) 228–237.1415

[68] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, Journal1416

of Computational Physics 228 (16) (2009) 5838–5866.1417

[69] D. Trebotich, D. Graves, An adaptive finite volume method for the incompressible Navier–1418

Stokes equations in complex geometries, Communications in Applied Mathematics and1419

Computational Science 10 (1) (2015) 43–82.1420

[70] J. A. van Hooft, S. Popinet, C. C. van Heerwaarden, S. J. van der Linden, S. R. de Roode,1421

B. J. van de Wiel, Towards adaptive grids for atmospheric boundary–layer simulations,1422

Boundary-layer meteorology 167 (3) (2018) 421–443.1423

[71] J. López-Herrera, S. Popinet, A. Castrejón-Pita, An adaptive solver for viscoelastic incom-1424

pressible two–phase problems applied to the study of the splashing of weakly viscoelastic1425

droplets, Journal of Non-Newtonian Fluid Mechanics 264 (2019) 144–158.1426

[72] A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equa-1427

tions, Mathematics of computation 23 (106) (1969) 341–353.1428

[73] P. M. Gresho, R. L. Sani, On pressure boundary conditions for the incompressible Navier–1429

Stokes equations, International Journal for Numerical Methods in Fluids 7 (10) (1987)1430

1111–1145.1431

[74] H. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface cartesian grid1432

method for simulating flows with complex moving boundaries, Journal of computational1433

physics 174 (1) (2001) 345–380.1434

[75] J. H. Seo, R. Mittal, A sharp–interface immersed boundary method with improved mass1435

conservation and reduced spurious pressure oscillations, Journal of computational physics1436

230 (19) (2011) 7347–7363.1437

[76] J. J. Quirk, An alternative to unstructured grids for computing gas dynamic flows around1438

arbitrarily complex two-dimensional bodies, Computers & fluids 23 (1) (1994) 125–142.1439

56

[77] C. Helzel, M. J. Berger, R. J. LeVeque, A high-resolution rotated grid method for con-1440

servation laws with embedded geometries, SIAM Journal on Scientific Computing 26 (3)1441

(2005) 785–809.1442

[78] N. Gokhale, N. Nikiforakis, R. Klein, A dimensionally split Cartesian cut cell method for1443

hyperbolic conservation laws, Journal of Computational Physics 364 (2018) 186–208.1444

[79] P. Koumoutsakos, A. Leonard, High–resolution simulations of the flow around an impul-1445

sively started cylinder using vortex methods, Journal of Fluid Mechanics 296 (1995) 1–38.1446

[80] F. Mohaghegh, H. Udaykumar, Comparison of sharp and smoothed interface methods for1447

simulation of particulate flows II: Inertial and added mass effects, Computers & Fluids 1431448

(2017) 103–119.1449

[81] R. Mei, Flow due to an oscillating sphere and an expression for unsteady drag on the1450

sphere at finite Reynolds number, Journal of Fluid Mechanics 270 (1994) 133–174.1451

[82] X. Wang, P. Yu, K. Yeo, B. Khoo, SVD–GFD scheme to simulate complex moving body1452

problems in 3D space, Journal of Computational Physics 229 (6) (2010) 2314–2338.1453

[83] A. Ten Cate, C. Nieuwstad, J. Derksen, H. Van den Akker, Particle imaging velocimetry1454

experiments and Lattice-Boltzmann simulations on a single sphere settling under gravity,1455

Physics of Fluids 14 (11) (2002) 4012–4025.1456

[84] C. Veeramani, P. D. Minev, K. Nandakumar, A fictitious domain formulation for flows1457

with rigid particles: A non-lagrange multiplier version, Journal of Computational Physics1458

224 (2) (2007) 867–879.1459

[85] Z.-G. Feng, E. E. Michaelides, Robust treatment of no-slip boundary condition and velocity1460

updating for the lattice-Boltzmann simulation of particulate flows, Computers & Fluids1461

38 (2) (2009) 370–381.1462

[86] A. Wachs, PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D1463

particulate flows, Journal of Engineering Mathematics 71 (1) (2011) 131–155.1464

[87] N. Mordant, J.-F. Pinton, Velocity measurement of a settling sphere, The European Phys-1465

ical Journal B-Condensed Matter and Complex Systems 18 (2) (2000) 343–352.1466

[88] M. Jenny, J. Dušek, G. Bouchet, Instabilities and transition of a sphere falling or ascending1467

freely in a Newtonian fluid, Journal of Fluid Mechanics 508 (2004) 201–239.1468

[89] M. Horowitz, C. Williamson, The effect of reynolds number on the dynamics and wakes of1469

freely rising and falling spheres, Journal of Fluid Mechanics 651 (2010) 251–294.1470

[90] C. Rettinger, U. Rüde, A comparative study of fluid-particle coupling methods for fully1471

resolved lattice Boltzmann simulations, Computers & Fluids 154 (2017) 74–89.1472

[91] A. S. Almgren, J. B. Bell, W. Y. Crutchfield, Approximate projection methods: Part I.1473

Inviscid analysis, SIAM Journal on Scientific Computing 22 (4) (2000) 1139–1159.1474

57

	Introduction
	Mathematical model
	Governing equations for the fluid
	Rigid body dynamics

	Cartesian grid embedded boundary method on a uniform grid
	Uniform Cartesian grid in Basilisk
	Integral description of rigid boundary
	Computation of the embedded fractions in a cut-cell
	Discrete operators in a cut-cell
	Computation of the embedded face gradient of a cell-centered scalar
	Computation of the face gradient of a cell-centered scalar
	Computation of the face value of a cell-centered scalar

	Extension of the Cartesian grid embedded boundary method to quad/oc-tree grids
	Properties of tree grids in Basilisk in the absence of embedded boundaries
	Properties of tree grids in Basilisk in the presence of embedded boundaries
	Computation of embedded fractions in a halo cell
	Prolongation and restriction functions in the presence of embedded boundaries
	Adaptive mesh refinement of quad/oc-trees in Basilisk

	Temporal discretization
	Temporal discretization of the motion of the rigid body
	Hydrodynamic force and torque
	Temporal discretization of the Navier-Stokes equations
	Discrete boundary conditions
	Submerged and emerged cells
	Multigrid solver
	Nonlinear advection equation
	CFL condition and small cell restriction

	Numerical validation
	Poisson-Helmholtz equation with Dirichlet boundary conditions in a domain defined by a 2D rhodonea curve
	Heat equation with Neumann boundary conditions in a 3D expanding sphere
	Pressure-driven Stokes flow through a porous medium arbitrarily refined
	Instabilities due to ``third-order'' Dirichlet boundary conditions at low Reynolds number
	Starting flow past a fixed and moving cylinder at Re = 1000
	Oscillating sphere in a quiescent flow
	Sphere of near-unity density ratio settling in a closed box
	Heavy sphere settling in a large closed box

	Conclusions and perspectives

