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Abstract

Assessment of fecal contamination indicator bacteria concentrations on beaches are important
for health risk prevention and management. This study assessed temporal changes in bacterial
abundances as a function of tidal cycles and seasons along the Kribi beaches, Cameroon.
Overall, samples taken during low and high tides during the different seasons of the year
showed that the waters of Kribi beaches are exposed to fecal contamination due to the
presence of different concentrations of fecal coliforms (5-35 CFU/100 ml), total coliforms
(100-600 CFU/100 ml), Escherichia coli (0-15 CFU/100 ml), Streptococcus feacalis (50-700
CFU/100 ml), Pseudomonas aeruginosa (300-7200 CFU/100 ml), Vibrio cholerea (5-250
CFU/100 ml), Vibrio parahemoliticus (0-115 CFU/100 ml), and Aerobic Mesophilic
Heterotrophic Bacteria (99-875 CFU/100 ml). Regardless of bacterial strain and sampling site,
cell abundances were significant at low tides and during rainy seasons. At each sampling
station (Mpalla, Ngoye and Mboamanga), depending on the seasons and tidal cycles,
significant correlations were recorded between the abundances of some bacterial strains and
some environmental variables (P < 0.05). The presence and high abundance of these
potentially pathogenic bacterial strains in the waters of Kribi beaches constitute a real public
health threat for swimmers. The limitation of this microbiological pollution requires the
implementation of an efficient collection and treatment plan for solid and liquid waste

(sanitary wastewater) in the city of Kribi.

Keywords: fecal pollution; health risks; Kribi beaches; tidal cycles; solid and liquid waste

management
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Introduction

Microbial pollution of coastal recreation areas is a serious ecological and public health
problem (Xue et al., 2022; Manini et al., 2022). Runoff, from urban, domestic, and industrial
wastes, can support intense microplankton growth and proliferation of pathogenic
microorganisms (Basili et al., 2021). To prevent swimming-related infectious diseases, it is
therefore recommended that beach water quality be monitored by quantifying total and fecal
coliforms and enterococci (Kongprajug et al., 2021; Makkaew et al., 2021). Epidemiological
studies of different aquatic environments have shown a relationship between coliform

quantification and the frequency of infectious disease (Martinez et al., 2007; WHO, 2021).

Fecal contamination is one of many forms of contamination that can affect water ecosystems
(Manezeu Tonleu et al., 2021). The presence of pathogenic microorganisms in fecal matter
such as viruses, bacteria, and parasitic protists makes consumption or contact with
contaminated water risky for human health. Fecal contamination has an economic impact, as
it can affect the development of recreational and tourist activities (Martinez et al., 2007).
Many potential sources of fecal contamination can affect water quality. Human sources are
mainly from discharges through sanitary sewers, treated or not, discharged into waterways.
Animal sources include livestock operations and manure spreading. Heavy rainfall can then
cause runoff to streams and migration to groundwater (Saingam et al., 2020). Animal
contamination can also come from wildlife and urban wildlife, such as that caused by
raccoons. In developing countries, waterborne outbreaks attributed to fecal contamination are
very common (Ashbolt, 2004). They are partly explained by two important factors; a lack of
appropriate infrastructure and drinking water purification treatment as well as a lack of
infrastructure for sanitary wastewater treatment and disposal (Yahya et al., 2017; Edge et al.,

2021).
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Swimming in water of poor microbiological quality thus poses health risks and can lead to
several infections, mainly gastroenteritis, more or less severe depending on the germs
involved, ear infections and dermatitis (Manezeu Tonleu et al., 2021). In rare cases,
contaminated water can also lead to more serious infectious diseases such as typhoid, cholera,
etc. (Nimnoi and Pongsilp, 2020). Some elements of the environment can also act as a
"vector" of contamination from water to humans, notably shellfish, which are particularly
sensitive to pollution due to their physiology. Indeed, they are microphagous filter-feeding
organisms, which feed on assimilable particles from the surrounding environment,
phytoplankton and bacteria and concentrate them in their digestive system (Yahya et al.,

2017; Edge et al., 2021).

In sub-Saharan Africa in general and Cameroon in particular, data on microbiological
standards of beach waters are scarce (Leme Banock et al., 2014), yet these environments
constitute high contamination sites given their high frequency of use at all seasons of the year.
Moreover, very few studies have been conducted on the impact of beach water quality on the
health of the population. There is almost no data on the classification of Cameroonian beach
water in relation to the standards of the World Health Organization. There is a problem of
permanent fecal contamination and public health on Cameroonian beaches in general and
those of Kribi in particular. The main objective of this study was to evaluate the influence of
tides and seasons on the dissemination of enteric bacteria and its associated health risks along
the Kribi beaches, in the Southern Region of Cameroon. Specifically, it was necessary to
perform qualitative and quantitative analyses of some indicator bacteria of fecal
contamination on three beaches of Kribi (Mpalla, Ngoy¢ and Mboamanga), during high and
low tides and at different seasons of the year: Long Dry Season (LDS), Short Rainy Season

(SRS), Short Dry Season (SDS) and Long Rainy Season (LRS). In this study, the hypothesis
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that the spread of enteric bacteria along the Kribi beaches is influenced by the tidal cycle and

the seasons will be tested.

1. Materials and methods

1.1. Study area

The study was conducted in 2021 year on three most frequented beaches of the city of Kribi,
in the Ocean Division, Cameroon southern Atlantic coast (Figure 1). This area is subject to a
Guinean-type equatorial climate, characterized by four seasons: LDS from December to
February, SRS from March to May, SDS from June to July and LRS from August to
November (Olivry 1986; Dzana 2011; Mama et al. 2018). Four sampling campaigns were
conducted: January (LDS), April (SRS), July (SDS) and October (LRS) respectively. At the
level of each beach, one sampling station was surveyed based on it accessibility and
frequentation. Station 1 is located at Mpalla beach (3°00'29"N - 0009°56'54.5"E) and
characterized by a gray sandy substrate. Station 2 is situated at Ngoye (2°57'26.6"N -
0009°54'36.9"E), at 4 km from Mpalla, and characterized by a black sandy substrate. Located
at 9 km from Ngoye, station 3 on Mboamanga beach (02°56'22.4"N - 0009°54'12.3"), is

characterized by the sandy clay gray substrate.

1.2. Measurement of abiotic parameters

Physicochemical parameters were analyzed according to Rodier et al. (2009) and APHA
(2017) standard methods. At each campaign and each sampling station, eight physico-
chemical parameters were measured in sifu, in triplicate during each tide period (low and high
tide), using a hand-held multiparameter (HANNA/HI9829). These variables include pH (CU),
Salinity (PSU), Temperature (°C), Dissolved Oxygen (mg/l), Suspended Solids (mg/l),
Turbudity (NTU), Total Dissolved Solids (mg/l) and Electrical Conductivity (mS/cm).

Additional, water depth and current velocity were also measured during low and high tides.
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1.3. Bacteriological analysis

At each station, water samples were collected at high and low tide, in 1000 ml sterile
polyethylene bottles, bacteriological analyses were focused on the isolation and enumeration
of eight strains. The bacteria were isolated by surface plating in 90-mm diameter petri dishes
containing Endo culture media for fecal coliforms, total coliforms and Echerichia coli, Bile
Esculin Azide (BEA) for Streptococcus feacalis, Cetrimide agar for Pseudomonas
aeruginosa, TCBS agar for Vibrio spp and Plate Count Agar (PCA) for mesophilic aerobic
heterotrophic bacteria. The number of colony forming units (CFU) is expressed in CFU/100

ml of water according to the formula (Ajeagah et al., 2010):

Ab= (Nc/Vw) x100

Ab = abundance (CFU/100 ml), Nc¢ = number of colonies counted on the petri dish, Vw =

volume of water analyzed (ml).

1.4. Data analysis

The SPSS software version 16.0 allowed us to perform correlation tests. P values were used to
assess the significance of the correlation between abiotic and biotic parameters. The safety

threshold was 5% (P < 0.05).

2. Results

2.1. Abiotic variables

At the different surveyed site, the minimum water depth (0.30 m) was recorded at low tide
during the SDS at Mpalla and the LDS at Mboamanga. As for the depth (2.07 m), was
recorded at high tide at Ngoye, during the LRS (Table I). The maximum tidal range (1.62 m)
was obtained during the LRS at Ngoye. On the other hand, the minimum tidal range (1.03 m),

was obtained during the LDS at Mboamanga. Overall, at the different sampling points, the
6
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current velocity was higher at low tide than at high tide, during all seasons of the year (LDR,
SRS, SDR and LRS). The lowest current was recorded during SDS at high tide, on Ngoye

beach with a value of 0.90 m/s (Table I).

During the SRS, whether at high or low tide, the waters of the surveyed beaches were strongly
basic with a maximum pH value of 8.81 CU recorded at Mboamanga. The lowest pH value
(6.89 CU) was recorded at Mboamanga during high tide, during the LDS (Figure 2A). Salinity
values were slightly higher at low tide than at high tide. Overall, salinity values showed a
decreasing trend from the dry seasons (LDS, SDS) to the rainy seasons (SRS, LRS). The
minimum salinity (31.01 PSU) was recorded during the LRS, at high tide at Ngoye and the

maximum value (35.77 PSU) during the LDS, at low tide at Mboamanga (Figure 2B).

During high tide, water temperature ranged from 26.16°C during LRS at Ngoye to 31.75°C
during LDS at Mboamanga. At low tide, the water temperature ranged from 27.29 °C at LRS
at Ngoye to 32.44 °C at LDS at Mpalla (Figure 2C). At all stations, the warmest water was
recorded at low tide, specifically during dry periods (LDS, SDS). Regardless of the tidal
cycle, Kribi beach waters were significantly more oxygenated during the rainy seasons (LRS,
SRS) than during the dry seasons (LDS, SDS). The minimum value (2.99 mg/l) was recorded
at Ngoye at low tide during the SDS. On the other hand, the maximum value (5.12 mg/l) was

obtained at high tide at Mpalla during the LRS (Figure 2D).

The waters of the Kribi beaches contain high amounts of suspended solids. However, these
values were more significant at high tide than at low tide. The maximum value (131 mg/l) was
obtained at Mboamanga at high tide and during the SRS (Figure 2E). The high amount of
suspended solids contained in the waters of the Kribi beaches would justify its high turbidity.
Indeed, regardless of the tidal cycle, maximum turbidity values were recorded during the

rainy seasons (SRS, LRS) at all surveyed sites (Figure 2F). Total Dissolved Solids evolved
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from 412 mg/l (in LDS) to 716 mg/1 (in LRS) during high tide and from 375 mg/1 (in LDS) to
636 mg/1 (in LRS) during low tide (Figure 2G). Indeed, across all three beaches surveyed, the
waters of Mpalla were lower in inorganic salts and some small amounts of dissolved organic
matter. Regardless of the tidal cycle, electrical conductivity values varied very little from one
season to the next. However, it was noted that the waters of the Kribi beaches were less
loaded with ions, mineral salts and dissolved trace elements during the dry seasons (LDS,

SDS) than during the rainy seasons (SRS, LRS) (Figure 2H).

2.2. Bacterial distribution and abundance

Bacteriological analyses have revealed an abundant diversity of bacterial strains in the waters
of Kribi beaches: faecal coliforms, total coliforms, Escherichia coli, Streptococcus feacalis,
Pseudomonas aeruginosa, Vibrio cholerea, Vibrio parahemoliticus, and Aerobic Mesophilic
Heterotrophic Bacteria. These bacteria are found exclusively in human and animal feces and
are potentially pathogenic when their load exceeds a certain threshold in the environment.
Their pathogenicity is either specific (they cause specific pathologies) or opportunistic (they
are only expressed on weakened individuals). It should be noted that the presence of Vibrio

cholerea and V. parahemoliticus on the water of the Kibi beaches indicates a high health risk.

Overall, the high concentrations of bacteria found in this study were recorded during low tides
and mainly during the rainy seasons (SRS, LRS) (Figures 3A-H). Fecal coliforms were the
least abundant strains (5-35 CFU/100 ml); in contrast to Pseudomonas aeruginosa whose
maximum concentrations reached 2700 CFU/100 ml during low tide at Mpalla during the

SRS.

Different groups of bacteria are used as indicators of fecal contamination in different
countries and jurisdictions. Total and fecal coliforms have been the main indicators of fecal

contamination for a long time, but nowadays Escherichia coli and intestinal enterococci are

8
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recognized as more appropriate and proposed to replace coliforms in some microbiological
water quality standards. However, it is important to understand the potential and limitations of

these different indicators in tropical bathing waters, particularly those of the Kribi beaches.

2.3 Correlation between abiotic and biotic variables

On all the beaches surveyed, significant correlations were found between certain abiotic and
biotic parameters, exclusively at low tide and during the rainy seasons (SRS, LRS). Thus, at
Mpalla, a positive and significant correlation was observed, during SRS, between
Streptococcus feacalis and turbidity (r = 0.713, P = 0.045). At Ngoye, significant positive
correlations were observed during the SRS between Vibrio parahemoliticus and dissolved
oxygen (r = 0.628, P = 0.041); between Aerobic Mesophilic Heterotrophic Bacteria and
suspended solids during the SRS (r = 0.638, P = 0.033). At Mboamanga, Total coliforms and
Escherichia coli were positively correlated during SRS with temperature (r = 0.811, P = 0.045

and r=0.732, P =0.038).

Comparison of the mean abundances of Pseudomonas aeruginosa at low tide, according to
the two main seasons (LDS+SDS and SRS+LRS) showed a significant difference at Ngoy¢e (P
= 0.048). At Mboamanga, under the same conditions, there was also a significant difference
between the means of Fecal coliform abundances (P = 0.044). On all the sites surveyed, these
comparison tests revealed no significant difference at high tide. Seasonal variations, tidal
cycles and environmental variables seem to have an influence on the dynamics of

microorganisms along the Kribi beaches.

3. Discussion

Although swimming is recreational activity that allows relaxation and physical exercise that is
beneficial to health, it thus present certain health risks, which are related to the swimming

activities, but especially to the physicochemical and microbiological quality of the water
9
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(Basili et al., 2021). This study revealed several strains of potentially pathogenic enteric
bacteria in the waters of Kribi beaches, whose abundance varied from one season to another

and according to tidal cycles.

Indeed, microbiological pollution is one of the major problems facing coastal and marine
environments today (Dang and Lovell, 2016; Basili et al., 2021). This term refers to the
presence in these ecosystems of microbial germs, such as bacteria, viruses or parasites, some
of which may be pathogenic to humans or animals (Nimnoi and Pongsilp, 2020). While
marine and coastal ecosystems are the natural environment for some microorganisms, most of
the germs implicated in the microbiological contamination of the waters of Kribi beaches are
of human origin (Rodriguez et al., 2021). These are mainly enteric bacteria, i.e. from the
intestines of humans or warm-blooded animals and brought into the environment via their
excreta: discharges of treated and untreated sewage on land, ships, ballast water, livestock
effluents (animal feces), stormwater discharges, rainfall runoff and other diffuse sources

(Assako Assako et al., 2010; Manini et al., 2022).

Several causes would explain the arrival of fecal bacteria along the Kribi beaches. Human
contamination is mainly linked to a total absence of wastewater treatment systems in this city.
Indeed, the city of Kribi has no real wastewater and faecal sludge treatment system (Assako
Assako et al., 2010). The treatment plants are non-existent. Naturally, any absence or defect in
the collective sanitation system can lead to the discharge of raw water into the aquatic
environment, resulting in the introduction of microbial germs into the natural environment
(Basili et al., 2021; Rodriguez et al., 2021). Other activities on the Kribian coast could lead to
the input of enteric bacteria into the environment, in particular: recreational activities,
especially when the boats are inhabited and do not have a wastewater collection system. Fecal

pollution due to these activities is mainly located at marinas and fishing camps. Recreational

10
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activities, including swimming, restaurants (contamination related to these activities is
however "secondary" and their impact on coastal uses seems very low) (Weiskerger et al.,

2019; WHO, 2021).

Contamination of animal origin is essentially linked to agricultural activities in the watershed
of the Nyong and Kienke¢ rivers, which flow through the city of Kribi before emptying into the
sea. These contaminants would come from the leaching of grazed surfaces and the movement
of livestock, which during rainy episodes, drain the contaminants present in the soil towards
these rivers that flow into the sea. Rainfall would therefore be one of the main factors in the
dispersal of these enteric bacteria (Di Biase & Hanssen, 2021; Manini et al., 2022). These
contaminations could also be due to industries, especially agri-food industries, if their
effluents are not properly treated, or to wildlife, especially poultry (Yahya et al., 2017; Edge
et al., 2021). Indeed, the lack of a collection and treatment system for solid and liquid waste in
the city of Kribi is conducive to the deposition of sediment, which would promote the
development of microorganisms that will be evacuated to the beaches during rainy episodes.
This would explain the high abundance of bacterial strains found along the Kribi beaches

during the rainy seasons (SRS, LRS).

In the city of Kribi, wastewater disposal is generally done individually. Household wastewater
is discharged into the environment. Apart from a few homes that have modern cesspits (about
15%), most people pour their wastewater into the yard or into poorly equipped traditional
latrines in the open. The flatness of the terrain and the presence of multiple geomorphological
depressions mean that domestic wastewater discharged into nature, obviously without any
treatment, creates numerous stagnation points where a host of pathogenic germs, parasites and
infectious disease vectors develop and are washed ashore during SRS and LRS (Assako

Assako et al., 2010). In the case of hotels, which are generally located on the coast, their

11
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septic tanks are emptied by private drainage companies. These waste are generally transported
and dumped, without any prior treatment, upstream of the Nyong and Kienké rivers, which

flow into the sea.

Ballast water is considered one of the most worrisome vectors of species introduce worldwide
(Bradie et al., 2022). Since the deep sea port of Kribi became operational, several hundred
taxa would be contained in the ballast water of ships that dock there. These are mainly

planktonic microorganisms, but also pathogenic parasites, including enteric bacteria.

When microorganisms, favored by rainfall, are drained onto the coastal zone, their abundance
and diffusion rate would depend on tidal range, physicochemical variables, and
hydrodynamics, among other things (Di Biase and Hanssen, 2021). Tides generate and
influence ocean currents (Madani et al., 2020). In turn, these currents directly and indirectly
affect the movement of aquatic fauna (seedlings, fish) and the dispersion of microbes. Like
the tide, winds, underwater topography, climatic conditions, and prey behavior influence the
dispersal of microorganisms (Ferrarin et al., 2021, Kraus et al., 2022). Influenced in turn by
tidal cycles and seasons, physico-chemical variables would have an impact on the survival
and abundance of bacteria along the Kribi beaches. Indeed, the dilution that occurs
immediately after the discharge is favored by the mixing of waters: currents, turbulence and
tidal action. It is estimated that 90-99% of sewage bacteria are destroyed after 48 hours of
suspension in seawater and that their numbers decrease with distance much faster than would
be expected from simple dilution (Kraus et al., 2022). Direct or indirect sedimentation
determines the momentary disappearance of bacteria. This disappearance may be temporary,
as there may be resuspension of sediment and bacteria. This process is very effective in calm
waters, but is reduced by the turbulence of beach waters. Some studies have shown that fecal

coliforms in seawater are very sensitive to sunlight (Chedad and Assobhei, 2007). This can be
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explained by the bactericidal effect of the UV fraction of solar radiation on the cell, inducing
damage by release of peroxide ions that act on the cell making it permeable to inorganic salts,
which then varies its osmotic pressure. This would explain the low bacterial abundance
recorded on the Kribi beaches during the dry seasons (SDS, LDS). Generally, low
temperatures favor the survival of bacteria in the marine environment by limiting their
energetic expenditure by decreasing the metabolic activities of bacteria (Chedad and
Assobhei, 2007). This explains the high concentration of bacteria observed during LRS and
SRS. High turbidity of the water would limit the penetration of UV rays into the water and
also contribute to reduce the efficiency of UV rays towards bacterial cells. This turbidity is
due to terrigenous inputs on one hand and the other hand to resuspension by waves and
current to resuspension by waves and currents, as well as the contribution of organic particles.
Work has shown that the survival of fecal coliforms was influenced by the pH of the
incubation medium. Indeed, basic pH levels would result in a significant decrease in fecal
coliform survival (Chedad and Assobhei, 2007). Salinity is also a very important stress factor
that fecal pollution bacteria undergo when they arrive in the marine environment (Hughes,
2003), where the bacteria must re-establish the osmotic equilibrium between the external
environment and its cytoplasm. This re-establishment involves complex mechanisms that
involve increasing the concentration of certain solutes (osmo-regulators) in the bacteria. Thus,
strong variations in salinity from one environment to another tend to prevent the habituation
of allochthonous bacteria to their new environment, which would lead to a decrease in their
numbers. Authors have also pointed out that the presence of organic particles allows

microorganisms to fight more effectively against salt stress (Pommepuy et al., 1991).

Enteric bacteria introduced into the marine environment can affect swimming water quality
and cause health impacts, which can lead to the closure of affected beaches if contamination

is significant and persistent (Bonadonna et al., 2019; Manezeu Tonleu et al., 2021). Enteric
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diseases are among the most common infections in the world and affect the poorest and most
disadvantaged communities (WHO, 2006). They are transmitted by strains present in human
excreta, which contaminate soils where sanitation conditions are inadequate. Swimming in
water of poor microbiological quality thus presents health risks and can lead to infections,
mainly gastroenteritis, more or less severe depending on the germs involved, ear infections
and dermatitis (WHO, 2006; Bonadonna et al., 2019; Manezeu Tonleu et al., 2021). In rare
cases, contaminated water can also lead to more serious infectious diseases such as typhoid,
cholera, etc (WHO, 1994). On the Kribi beaches, bathers would be more exposed during low
tides (less dilution) and during the rainy seasons (leaching and drainage of wastewater to the

coastal zone).

Conclusion

The main objective of this study was to evaluate the influence of tidal cycles and seasons on
the dispersion of enteric bacteria in the waters of Kribi beaches. It was found that the waters
of the beaches surveyed concentrated large quantities of bacteria indicative of fecal
contamination. These bacterial strains, potentially pathogenic, originating mainly from
untreated solid and liquid waste from the city of Kribi, were significantly more abundant
during low tides and the rainy season. Despite the many benefits of swimming in the waters of
Kribi beaches, it is not without risks to human health. Indeed, it is possible to develop
infections such as enteric diseases. More serious complications such as hemolytic uremic
syndrome can sometimes occur. Monitoring of fecal contamination indicators on Kribi
beaches would provide useful information on changes in water quality that may occur and
provide a measure for public health decision making. However, water quality monitoring
results should not be the sole measure of whether an area is suitable for recreational activities.

Routine monitoring for Escherichia coli or enterococci should be an integral part of a
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preventive risk management approach to protect the health of recreational water users. It
should be noted that today, the level of microbiological standards for swimming waters is
generally established on the basis of epidemiological studies conducted only in temperate
regions and whose results are probably not directly transposable to tropical regions; it seems
important today to launch specific epidemiological studies in tropical regions to ensure the
relevance of microbiological quality standards. Better management of the health risk
associated with the water on the Kribi beaches requires the continuation of epidemiological
studies in order to better understand the relationship between the presence of indicators and
the occurrence of diseases, but also requires further study of the ecology indicator and

pathogenic germs in the natural aquatic environment.
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Mpalla Ngoyé Mboamanga
LDS SRS SDS LRS LDS SRS SDS LRS LDS SRS SDS LRS
Water depth at 0.37 0.43 0.30 0.47 0.35 0.41 040 045 030  0.39 0.31 0.48
low tide (m)
Water depth at 1.45 1.97 1.80  2.02 1.56 1.99 1.85 2.07 1.33 1.69 1.60  2.01
high tide (m)
Marnage (m) 1.08 1.54 1.50 1.55 1.21 1.58 1.45 1.62 1.03 1.30 1.30 1.53
Wave current 2.10  2.02 2.02 1.88 2.05 1.89 1.99 1.87 2.11 2.10  2.09 1.88
speed at low tide
(m/s)
Wave current 1.31 1.23 1.21 1.11 1.41 1.01 0.90 1.12 0.99 1.14 1.35 1.02
speed at high tide
(m/s)
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