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PARALLEL APPROXIMATION OF THE EXPONENTIAL OF
HERMITIAN MATRICES

FRÉDÉRIC HECHT∗, SIDI-MAHMOUD KABER† , LUCAS PERRIN‡ , ALAIN PLAGNE§ ,

AND JULIEN SALOMON¶

Abstract. We are interested in the approximation of the exponential function on a real interval
by a particular rational function (inverse of a polynomial). Using the partial fraction decomposition
of this rational function, we build an algorithm for computing the exponential of a matrix that is
adapted to parallel computing. The performances of this parallel algorithm, both in accuracy and
in computing time, are quantitatively analyzed.

Key words. Matrix exponential, Parallel computing, Truncation error, Taylor series, Partial
fraction decomposition, Padé approximation, MATLAB, Octave, expm, Roundoff error.

AMS subject classifications. 15A16, 65F60, 65L99, 65Y05.

1. Introduction. Given a matrix A, the differential equation u′(t) = Au(t)
appears in many models, either directly or as an elementary component of more
complicated differential systems. To solve with a good accuracy this equation, it is
essential to have an algorithm to compute the exponential of a matrix. This algorithm
must be efficient, both for the precision and for the time taken to execute it. Such an
algorithm is presented in this paper.

Many algorithms exist to compute the exponential of a matrix. We refer the
reader to the celebrated review by Moler and Van Loan [10] for a comparison of these
methods. None of them is clearly more efficient than the others if we take into ac-
count several important criteria such as accuracy, computational time, memory space
requirements, complexity, variety of matrices to which the method can be applied,
etc. The method we propose in this paper is close to the one defined in [6] or [1], in
the sense that on the one hand, it concerns more the action of exponential matrix
operator on vectors than the computation of the matrix exp(A) itself and on the other
hand, its objective is to develop calculation algorithms adapted to parallel computing.
The algorithm presented in [6] is based on the computation of the exponential of a
Heisenberg matrix of dimension m, smaller than the dimension n of the matrix A.
This matrix is obtained at the m− i-th step of Arnoldi’s algorithm. In [1], a scaling
and squaring method is used together with a truncated Taylor series approximation
to the exponential. Let us also mention the method proposed in [7] which uses a
factorization of the matrix A.

In the present work, we present a method based on a simple and old idea which
appears to be particularly well adapted to parallel computing. Consider an approx-
imation En of the complex exponential function depending on a parameter n ∈ N,
with n ≥ 1. This approximation naturally extends to the exponential of diagonal
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matrices by setting En(diag(di)i) = (diag(En(di))i, thus to any diagonalizable matrix
A = P−1DP by En(A) = PEn(D)P−1. The approximation error for a diagonalizable
matrix A = PDP−1 can then be estimated as follows

‖ exp(A)− En(A)‖2 ≤ κ2(P ) ‖ exp(D)− En(D)‖2,

where κ2(P ) = ‖P‖2 ‖P−1‖2 is the condition number of P in the matrix norm asso-
ciated with the usual Euclidean vector norm ‖ · ‖2. Let Λ be a domain of the complex
plane that contains the spectrum of A. It follows that if there exists a sequence
(εn)n > 0 converging rapidly to 0 such that maxz∈Λ |En(z)− exp(z)| ≤ εn, then, for
any diagonalizable matrix whose spectrum is included in Λ

(1.1) ‖ exp(A)− En(A)‖2 ≤ εn κ2(P ) .

The approximation of exp(A) is then reduced to the approximation of the exponential
on the complex plane. If we further assume A to be Hermitian (or, more generally,
normal), then P is a unitary matrix and κ2(P ) = 1. This is the case for Hermitian
matrices, and more generally for normal matrices. Note, however, that for an arbitrary
matrix, the term κ2(P ) may be too large and seriously degrade the estimate (1.1).
As we are interested in matrices coming from the Laplacian discretization, we will
consider in this work only Hermitian matrices.

In our approach, the approximation En is based on the the partial fraction de-
composition of 1/ expn(−x), where expn denotes the truncated Taylor series of order
n associated with the exponential. All terms in this decomposition are independent
hence their computation can achieved efficiently in parallel.

The article is organized as follows. Section 2 is devoted to the approximation
of the scalar exponential function. This approximation, denoted by Rn(z) is in our
approach a rational function whose poles are all simple. In Section 3, we present the
approximation of the exponential of a matrix. In practise, the partial fraction decom-
position of Rn(z) at the basis of our approach raises some specific numerical issues
related to floating-point arithmetic ; these are discussed in Section 4. The efficiency
of our method is demonstrated on some examples in Section 5. Some concluding
remarks are given in Section 6.

2. The scalar case. For n ∈ N∗, let us define expn(z) :=
∑n
k=0

1
k!z

k, i.e.,
the exponential Taylor series truncated at order n. For any complex z, we have

lim
z→+∞

expn(z) = exp(z). It is readily seen that for all x ∈ R and even values of n,

expn(x) is positive. Since exp′n = expn−1, it follows that expn is strictly increasing
for n odd and strictly convex for n even.

2.1. Roots of the truncated exponential series. We denote by (θ
(n)
k )k=1,··· ,n

the roots of the polynomial expn. If n is even, the roots are pairs of conjugate complex
numbers and none of them is a real number. If n is odd, there is one and only one
real root of expn and the others are pairwise conjugate. Some roots of expn are
represented on the figure 1 (left panel). We see that the norm of the roots increases
with n, which intuitively follows from the fact that the exponential function has no
roots on the whole complex plane. However, this growth is moderate since (see [15],
for example)

(2.1) 1 ≤ |θ(n)
k | ≤ n.

G. Szegőe has shown in [13] that the normalized roots, i.e, the roots of expn(nz),
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Figure 1: Left: the roots of z 7−→ expn(z), n = 10, 20, 30, 40, 50, 60. The parabola
y2 = 4(x+ 1) delimits an area containing no roots. Right: the Szegőe curve.

approach, when n→∞, the so-called Szegőe curve, defined by

{z ∈ C, |ze1−z| = 1, |z| ≤ 1}.

Some normalized roots and the Szegőe curve are presented in Figure 1 (right panel).
In view of (1.1), it is interesting to determine parts of the complex plane which do
not contain any roots. An example is given by the interior of the parabola of equation
y2 = 4(x + 1), which thus includes the positive real half-axis. This surprising result
has been obtained by Saff and Varga in [11], see Figure 1 (left).

2.2. Approximation of the exponential. Considering the identity exp(z) =
1

exp(−z) , we propose the following approximation of the exponential function defined

for any complex number z by

exp(z) ' Rn(z) :=
1

expn(−z)
.

Note that Rn(0) = 1 and that Rn has no real root if n is even, which we will always
assume in the rest of this paper.

This approach opens the way to a good approximation of the exponential on the
half axis (−∞, 0]. We present on Figure 2 a graph of the exponential function expo-
nential function and its polynomial approximation expn and rational approximation
Rn, on the interval [−5, 0]. We observe that for n = 10, the rational approximation
is clearly more accurate. For n = 20, the two approximations seem to fit well with
the exponential function.

Remark 2.1. Given n,m ∈ N, the Padé approximant [2] of index (m,n) of the
exponential function is explicitly known ; it is the rational function with numerator
Pm,n and denominator Qm,n:

Pm,n(x) =

m∑
k=0

(m+ n− k)!m!

(m+ n)!(m− k)!k!
xk, Qm,n(x) =

n∑
k=0

(m+ n− k)!n!

(m+ n)!(n− k)!k!
(−x)k.

Function Rn(z) is therefore the Padé approximant of index (0, n) of the exponential
function. Its Taylor expansion at the origin coincides with this function up to order
n. More precisely, we have

(2.2) R(j)
n (0) = 1, j ∈ N, 0 ≤ j ≤ n,
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Figure 2: The exponential function and its polynomial and rational approximations
rational expn and Rn on [−5, 0], for n = 10 (left) and n = 20 (right)

and, in the neighborhood of the origin,

Rn(z) = exp(z) +O(zn+1).

We can refine this result a little. Let us decompose Rn(z) as

Rn(z) = expn(z) +

+∞∑
k=n+1

λn,k
k!

zk.

A simple calculation shows that (recall that n is supposed to be even) λn,n+1 = 0
and λn,n+2 = −2(n + 1). In other words, in z = 0, the derivative of Rn(z) of order
greater than n are not at all close to the derivatives of the exponential function.

The partial fraction decomposition of Rn is the basis of our numerical method to
compute the exponential of a matrix.

Proposition 2.2. We have, for all z ∈ C

(2.3) Rn(z) =

n∑
k=1

a
(n)
k

z + θ
(n)
k

,

where θ
(n)
k are the roots of expn and

(2.4) a
(n)
k = − n!∏

j 6=k(θ
(n)
k − θ(n)

j )
.

One should not be alarmed in the calculation of the coefficients a
(n)
k by the rela-

tion (2.4) whose denominator is a product of the differences θ
(n)
k − θ(n)

j because the
difference between two roots of expn is uniformly lower bounded with respect to n
(see [15, Theorem 4])

(2.5) inf
n≥2

min
j 6=k
|θ(n)
j − θ(n)

k | ≥ γ := 0.29044 · · ·

thus avoiding to divide by too small numbers in (2.4). Moreover, other expressions

can be used to compute the coefficients a
(n)
k , e.g.,

(2.6) a
(n)
k =

−1

exp′n(θ
(n)
k )

=
n!

(θ
(n)
k )n

.
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2.3. Convergence and error estimate. The rational approximation of a real
or complex function is a well-documented problem: existence of a better approxima-
tion, uniqueness, computation, etc. See, for example [9]. Two problems arise.

1. Determine a part Λ of the complex plane where the approximation Rn(z) '
exp(z) converges:

lim
n→+∞

|Rn(z)− exp(z)| = 0, (∀z ∈ Λ).

Obviously, one needs to exclude neighborhoods of the poles of Rn
2. Determine parts of the complex plane where the approximation is accurate,

i.e. where the error |Rn(z)−exp(z)| rapidly goes to 0 when n goes to infinity,
e.g., linearly.

Let us denote Pm,n(Λ) the set of rational functions defined on Λ whose numerator
and denominator are of degree m (at most) and n (at most) respectively and define

Em,n(exp,Λ) = min
r∈Pm,n(Λ)

max
z∈Λ

| exp(z)− r(z)|,

the error of best uniform approximation on Λ of the exponential function by Pm,n(Λ).

2.3.1. Convergence on a bounded domain. In [3], one obtains

Em,n(exp, [−1, 1]) '
n+m→∞

n!m!

2n+m(n+m)!(n+m+ 1)!
.

In this work we are only interested in the approximation in P0,n for which we have

E0,n(exp, [−1, 1]) '
n→∞

1

2n(n+ 1)!
.

Such strong decrease can however only be obtained on bounded intervals of R. This
is not the case in the applications which have motivated our study. The behavior of
the approximation error on a disk has been also analysed [14]:

E0,n(exp, B(0, %)) '
n →∞

1

(n+ 1)!
%n+1,

where B(0, %) denotes the ball of the complex plane centred in 0 and of radius %.

2.3.2. Convergence on ]−∞, 0]. This case is treated in the pioneering work of
[4] where exp(−x) is approached for positive values of x. The authors show that the
best approximation error E0,n(exp, ]−∞, 0]) decays linearly and exhibit a particular
function, which just happens to be our rational approximation Rn.

Proposition 2.3. ([4, Lemma 1]) We have for any real x ≤ 0

(2.7) |Rn(x)− exp(x)| ≤ 1

2n
.

The convergence of Rn is largely sufficient in practical applications. For the sake
of completeness, let us note that the optimal linear decrease is given by Schönhage

in [12] who showed that limn→+∞ E
1/n
0,n (exp, ]−∞, 0]) = 1/3.

The convergence of Rn(x) to exp(x) is therefore linear on the half-line of the
negative half-line as we can see on the curves in Figure 3. Figure 4 shows iso-curves

of the norm of the error for n = 32 as well as points −θ(n)
k . The iso-curves of the
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Figure 3: The error |Rn(x)− exp(x)| for n ∈ {4, 8, 16, 32}.

Figure 4: Norm of error Rn(z)− exp(z) and poles of Rn for n = 16 (left) and n = 32
(right)

norm of error for n = 32 and the points −θ(n)
k . The iso-curves of the norm of error

for n = 32 are the 10−k for k = 0, · · · , 14. One observes there the rapid decay of the
approximation along the real half-axis. We also observe a remarkable decay in the
whole left half-plane.

Before going further, let us state a technical result.

Lemma 2.4. The function fn(x) := expn(x) exp(−x) satisfies

fn(n+ 1) <
1

2
(2.8)

f2
n(x) ≤ n+ 1

n
fn−1(x)fn+1(x).(2.9)

Proof. We first show that

(2.10) expn(n+ 1) =

n∑
k=0

(n+ 1)k

k!
< exp(n+ 1)− expn(n+ 1) =

+∞∑
k=n+1

nk

k!
,

which directly leads to (2.8). To get (2.10), we compare the terms k = n − j and
k = n+ j − 1 of the respective sums. Precisely, we have

nn−j

(n− j)!
≤ nn+j−1

(n+ j − 1)!
.
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The proof is by induction on j. For j = 1, we actually have equality. Assuming the
property is true at rank j, we have

nn−(j+1)

(n− (j + 1))!
=

nn−j

(n− j)!
n− j
n

<
nn+j−1

(n+ j − 1)!

n− j
n

=
nn+j

(n+ j)!
(1− (

j

n
)2)

<
nn+j

(n+ j)!
,

hence the result. Inequality (2.9) simply follows from the Cauchy-Schwarz inequality
applied to ∫ +∞

x

exp(−t)tndt =

∫ +∞

x

(exp(−t/2)t
n−1
2 ) (exp(−t/2)t

n+1
2 ) dt,

since fn(x) =
∫ +∞
x

exp(−t) t
n

n!dt.

We summarize some properties of the function errn : x ∈ ]−∞, 0] 7−→ Rn(x) −
exp(x) > 0 in the following proposition.

Proposition 2.5. For n ≥ 1, the function errn reaches its maximum at a single
point ξn < 0, is increasing on ]−∞, ξn] and decreasing on [ξn, 0]. Moreover, we have

(2.11)
n

2
≤ −ξn ≤ n+ 2.

Proof. To simplify the notation, we introduce y = −x and study the error
errn(y) = Rn(−y) − exp(−y) on the half-axis (0,+∞[, in which we have excluded
y = 0 where the error cancels. Since

err′n(y) = exp(2y)
(expn(y) exp(−y))2 − expn−1(y) exp(−y)

expn(y)2
(2.12)

=yn
exp(−y)

expn(y)2

(
1

n!
expn(y)− expn−1(y)

exp(y)− expn(y)

yn

)
,

the variations on errn are determined by the sign of

(2.13) gn(y) :=
1

n!
expn(y)− expn−1(y)

exp(y)− expn(y)

yn
.

In this formula, the last term as well as all its derivatives is positive on I =]0,+∞[

so that g
(n+1)
n (y) < 0 on this interval. To prove that gn has an unique zero ξn in

I, we shall show that for some a1 > 0, g′n is strictly positive on in interval ]0, a1[
and strictly negative on ]a1,+∞[. That guarantees the result since gn(0) > 0 and

limy→+∞ gn(y) = −∞. The values of g
(k)
n (k = 1, · · · , n) on both sides of interval I

are of importance in the analysis. Note first that limy→+∞ g
(k)
n (y) = −∞ for all k ∈ N

and that the sequence uk := g
(k)
n (0) = 1

n! −
∑k
`=1

k!
(k−`)!(n+`)! is decreasing. Indeed,

for k = 1, · · · , n− 1 we have

uk+1 − uk =− (k + 1)!

(n+ k + 1)!
+

k∑
`=1

k!

(k − `)!(n+ `)!
− (k + 1)!

(k + 1− `)!(n+ `)!

=− (k + 1)!n!

(n+ k + 1)!
− k!

k∑
`=1

1

(k − `)!(n+ `)!

`

k + 1− `
< 0.
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Since the first term in the right hand side of (2.13) is a polynomial of order n, we have

g
(n+1)
n (y) < 0 on I. Hence g

(n)
n is strictly decreasing on this interval. If un > 0, then

for some an > 0, g
(n)
n > 0 on some interval [0, an[ and g

(n)
n < 0 on ]an,+∞[. Hence

function g
(n−1)
n is strictly increasing on the first interval and decreasing on the second

one. It follows that there exists a unique an−1 > an where this function vanishes.
This property clearly spreads to gn. Otherwise, un ≤ 0, and the previous reasoning
can be applied to the largest n′ such that un′ > 0.

To prove (2.11), we first show that err′n(n/2) < 0, i.e., gn(n/2) > 0. Set y = nθ,
with 0 < θ < 1. We have

exp(y)− expn(y)

yn
=

1

(nθ)n

+∞∑
`=n+1

θ`

`!/n`

≤ 1

(nθ)n
nn+1

(n+ 1)!

+∞∑
`=n+1

θ` =
n

(n+ 1)!

θ

1− θ
.

As a consequence, we get

gn(nθ) ≥ (nθ)n

(n!)2
+

expn−1(nθ)

n!

(
1− n

n+ 1

θ

1− θ

)
,

which is positive when θ = 1/2.
We then prove that err′n(n + 2) < 0. Rewriting (2.12) with the notation of

Lemma 2.4, we get err′n(y) = exp(2y) (fn(y))2−fn−1(y)
expn(y)2 . The task is now to find the

sign of (fn(n+ 2))2 − fn−1(n+ 2). Because of Lemma 2.4, we have

(fn(n+ 2))2 − fn−1(n+ 2) ≤
(
n+ 1

n
fn+1(n+ 2)− 1

)
fn−1(n+ 2)

≤
(
n+ 1

2n
− 1

)
fn−1(n+ 2),

where the former inequality follows from (2.9) and the latter from (2.8). This shows
that (fn(n+ 2))2 − fn−1(n+ 2) < 0. Hence err′n(n+ 2) < 0.

3. Approximation of the exponential of Hermitian matrices. Let A

be a square matrix of Md(C). Given n > 1, we suppose that all matrices A − θ(n)
k I

are invertible, i.e., their spectrum does not contain any root of any expn. This is the
case if the matrix A is Hermitian (recall that n is supposed to be even). And the
same is true for any matrix provided that n is large enough. We propose the following
approximation of the exponential of A

(3.1) exp(A) ' Rn(A) :=

n∑
k=1

a
(n)
k (A+ θ

(n)
k I)−1,

where I denotes the identity matrix.

Remark 3.1. Note that Rn(0) = I and that if the matrix D ∈Md(C) is diagonal,
so is matrix Rn(D) with (Rn(D))i,i = Rn(Di,i). On the other hand, for any invertible
matrix P ∈Md(C), we have

Rn(PAP−1) = PRn(A)P−1.

8



From now on, we restrict our attention to negative Hermitian matrices. In view
of Proposition 2.5, we can state a specific estimate in this case.

Theorem 3.2. Assume that Spec(A) ⊂ R− and n > 2%(A) with

%(A) := max
λ∈Spec(A)

|λ|,

then
‖ exp(A)−Rn(A)‖2 ≤ ε,

where ε = Rn(%(A))− exp(%(A)).

Remark 3.3 (Shifting method for nonnegative Hermitian matrices). Since the
spectrum of a real-valued matrix can be localized everywhere in the complex plane, we
cannot guarantee that (2.7) holds in the general case. This problem can be solved by
a shifting method in the case of Hermitian matrices. Let A be an Hermitian matrix
and c ∈ R a bound of its spectrum, c ≥ α(A) := maxi λi. Since Spec(A − cI) ⊂ R−,
we can consider the approximation

exp(A) = ec exp(A− cI) ' ecRn(A− cI).

But the term ec can be very large so that the approximation is only reasonable for
moderate values of c. However the relative error

‖ exp(A)− ecRn(A− cI)‖2
‖ exp(A)‖2

≤ ec

‖ exp(A)‖2
‖ exp(A− cI)−Rn(A− cI)‖2

is under control since for Hermitian matrices, ‖ exp(A)‖2 = eα(A).

Computation of exp(A)v. Given v ∈ Cd, y = exp(A)v is computed by

(3.2) y ' Rn(A)v =

n∑
k=1

a
(n)
k y

(n)
k ,

with y
(n)
k the solution to the linear system (A + θ

(n)
k I)y

(n)
k = v. Each y

(n)
k could be

computed separately from the others leading to significant savings in computational
time as illustrated by our numerical tests, see Section 5.

4. Floating-point arithmetic and numerical implementation. In this sec-
tion, we examine the efficiency of the approximation

exp(x) '
n∑
k=1

a
(n)
k

x+ θ
(n)
k

,

where x is assume to be a real number. We decompose the error according to

exp(x)−
n∑
k=1

a
(n)
k

x+ θ
(n)
k︸ ︷︷ ︸

e1(x)

=

(
exp(x)− 1

expn(−x)

)
︸ ︷︷ ︸

e2(x)

+

(
1

expn(−x)
−

n∑
k=1

a
(n)
k

x+ θ
(n)
k

)
︸ ︷︷ ︸

e3(x)

.

The latter cancels in exact arithmetic. However, working for example in a finite preci-
sion of 16 significant digits, we see on Figure 5 (left) that in practise e1 decreases until
approximately n = 34 and then increases. This behavior makes our approximation
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Figure 5: Left: uniform norm of e1, e2, and e3 over [−100, 0] as a function of n. Right:

norm of e3 using various definitions of a
(n)
k , the black curve computation is done with

a
(n)
k computed with 32 significant digits and truncated to 16 significant digits.

not accurate and our approach uninteresting in practise for large values of n. These
two behaviours can be explained by e2 and e3, respectively. The former decreases as
predicted by Proposition 2.3. The latter increases with respect to n. The increase
in e3 is related to the partial fraction decomposition in floating-point arithmetic. In
what follows, we use Matlab [8] and Octave [5], with double precision. The accuracy
actually deteriorates for larger values of n. Indeed, the three equivalent definitions

of the coefficients a
(n)
k given by (2.4) and (2.6) lead in practise to different numerical

results. The uniform norm of e3 obtained with each of these definitions is shown on
Figure 5 (right). The formula given in (2.4) gives the most precise results, which
actually very similar to the one obtained by keeping the exact 16 first digits. Hence,
we use (2.4) in the sequel.

In order to understand the influence of the floating-point arithmetic, we present a
numerical bound whose graph is plotted in Figure 6. This bound guarantees a certain
precision for a given n when working with a floating-point arithmetic of D significant
digits. We see in that example that with 16 significant digits, we can choose n = 30
to guarantee an error of order 10−8 and get actually order 10−10.

Proposition 4.1. Denote by ã
(n)
k and θ̃

(n)
k , the D-significant digits approxima-

tions of a
(n)
k and θ

(n)
k , and assume that

(4.1) γ > n10(1−D)

with γ defined in (2.5). We have the following upper bound, for x ∈ R :

(4.2)

∣∣∣∣∣ 1

expn(−x)
−

n∑
k=1

ã
(n)
k

θ̃
(n)
k + x

∣∣∣∣∣ ≤ (C1(n,D) + C2(n,D))

n∑
k=1

∣∣∣ã(n)
k

∣∣∣ ,
where

C1(n,D) :=
2 · 10(1−D)

γ ·
(
1− 10(1−D)

) , C2(n,D) :=
4n · 10(1−D)

γ|γ − n · 10(1−D)|
.

Note that (4.1) is not restrictive: it holds for example in the case of 16 significant
digits even if n ≈ 1010.

10



Figure 6: Uniform norm of e2 and e3 over [−100, 0], in 16 significant digits, and upper
bounds : M1(n) = 1/2n and M2(n,D = 16) given by (4.2).

Proof. Since we are dealing with numerical approximations based on D significant

digits, we consider the firstD digits of ã
(n)
k and θ̃

(n)
k to be exact. Then, for any complex

number z and its approximation z̃ we have:

(4.3) z̃ = z(1 + εz), |εz| ∈
[
10−D, 10(1−D)

]
Writing r

(n)
k (x) = 1

θ
(n)
k +x

and r̃
(n)
k (x) = 1

θ̃
(n)
k +x

, we see that finding an upper bound

for the left side of (4.2) amounts to finding an upper bound for:

n∑
k=1

r
(n)
k (x)

(
ã

(n)
k − a(n)

k

)
+ ã

(n)
k

(
r̃

(n)
k (x)− r(n)

k (x)
)

=

n∑
k=1

r
(n)
k (x)a

(n)
k

(
ε
a
(n)
k

1 + ε
a
(n)
k

)
+

n∑
k=1

ã
(n)
k

(
r̃

(n)
k (x)− r(n)

k (x)
)
,

where the equality follows from (4.3). Combining (2.1) with (4.3), we get |θ̃(n)
k −θ

(n)
k | =

|ε
θ
(n)
k

θ
(n)
k | ≤ n·10(1−D). Combining (2.5) with the fact that for n even, θ

(n)
k are strictly

not real, we obtain that
∣∣∣θ(n)
k + x

∣∣∣ ≥ ∣∣∣Im(θ
(n)
k )

∣∣∣ ≥ γ
2 when x ∈ R. As a consequence∣∣∣r(n)

k (x)
∣∣∣ ≤ 2

γ for all x ∈ R. In the same manner, we can see that

∣∣∣θ̃(n)
k + x

∣∣∣ ≥ ∣∣∣Im(θ̃
(n)
k )

∣∣∣ ≥ ∣∣∣|Im(θ
(n)
k )| − |Im(ε

θ
(n)
k

θ
(n)
k )|

∣∣∣ ≥ ∣∣γ − n10(1−D)
∣∣

2

which follows from (4.1). Consequently,
∣∣∣r̃(n)
k (x)

∣∣∣ ≤ 2

|γ−n10(1−D)| for all x ∈ R.

Finally, we have |r̃(n)
k (x)−r(n)

k (x)| = |r̃(n)
k (x)||r(n)

k (x)||θ̃(n)
k −θ

(n)
k | so that |r̃(n)

k (x)−
r

(n)
k (x)| ≤ 4n·10(1−D)

γ|γ−n10(1−D)| . Combining all theses inequalities with |ε
a
(n)
k

| ≤ 10(1−D), and∣∣∣∣ ε
a
(n)
k

1+ε
a
(n)
k

∣∣∣∣ ≤ 10(1−D)

1−10(1−D) , we get (4.2).

The graphs of e1(x) for x = −10 obtained with various number of significant
digits is given in Figure 7. We see that the larger the number of significant digits, the

11



Figure 7: Error (e1) on the approximation of exp(x) vs n (x = −10) computed with
Maple, with 16, 32 and 64 significant digits, respectively.

later e1 starts increasing. It follows that floating-point arithmetic precision must be
adapted to n which is in practise the number of processor used in the computation.

Remark 4.2. If n is even and x ∈ R, we can compute twice as fast Rn(x).

Indeed, the complex numbers θ
(n)
k are in this case a set of conjugate pairs as well as

a
(n)
k , and 1

θ
(n)
k +x

. Assuming that the labelling is such that θ
(n)
2`+1 = θ

(n)
2` , we get

n∑
k=1

a
(n)
k

x+ θ
(n)
k

=

n/2∑
`=1

2Re

(
a

(n)
2`

x+ θ
(n)
2`

)
.

It follows that the number of computations can be divided by two. The same holds for
the computation of Rn(A) when Spec(A) is real. However, the condition number of
transition matrix the may significantly increases in this case.

5. Numerical efficiency. As a first example, we consider a symmetric d×d real

matrix with spectrum randomly chosen in [−50, 0]. The relative error ‖ exp(A)−Rn(A)‖2
‖ exp(A)‖2

as a function of the dimension d is represented in Figure 8 (left). The results are
smoothed by using the mean of the error for various random spectra. We use the
approximation (3.1) where the inverse matrix is computed with the functions inv of
Matlab and Octave. We note that the error does not depend on d, but on n. In a
second example, we consider a matrix with positive spectrum included in [0, 20]. We
use the shift method presented in Remark 3.3 to compute the exponential. We see
that the error still does not depend on the dimension of the problem.

From now on, we focus on the matrix obtained by the usual second order Finite
Difference discretization of the one dimensional Laplace operator, that we denote by

A = ∆1
d ∈ Md(R). The relative error is computed in practise by

‖expm(∆1
d)−Rn(∆1

d)‖2
‖expm(∆1

d)‖2 .

The results are presented in Figure 9 (left). Here again, the error does not depend on
the dimension of the problem, but only on the degree of truncation n.

Next, we compare the computing time (using tic and toc functions of Matlab and
Octave) of expm(∆1

d) and Rn(∆1
d) denoted respectively tseq and tpara. The results are

presented in Figure 9 (right). In this test, the matrices (∆1
d + θ

(n)
k I)−1 are computed

in parallel and tpara is defined as the maximum time taken to compute one of the

a
(n)
k (∆1

d + θ
(n)
k I)−1. We can see that tseq is slightly larger than tpara in the case of

12



Figure 8: Relative error versus the dimension of the matrix. Left: matrices with
negative spectra. Right: matrices with positive spectra using the shift method from
Remark 3.3.

Matlab and almost ten times larger in the case of Octave.
We finally consider the action of the matrix exponential on vectors. For v ∈ Rd,

the vector w = exp(∆1
d)v is approximated by (3.2) where (∆1

d + θ
(n)
k I)y

(n)
k = v is

solved using the solvers mldivide of Matlab and Octave. We evaluate the mean of
the error and the mean of tpara for a series of random vectors v.

The relative error
‖expm(∆1

d)v−Rn(∆1
d)v‖2

‖expm(∆1
d)v‖2 together with the computing times tseq and

tpara for expm(∆1
d)v and for Rn(∆1

d)v, respectively are shown in Figure 10. In this

case tpara is defined as the maximum time used to compute one of the vectors a
(n)
k y

(n)
k .

We note that tseq is larger than tpara for all values of the dimension d of the matrix,
with Matlab as well as Octave. For example, with d = 103, tseq ≈ 10tpara and
tseq ≈ 105tpara with Matlab and Octave, respectively.

6. Concluding remarks. We have presented a simple and efficient method to
compute the exponential of a Hermitian matrix. This method is based on a rational
approximation of the scalar exponential. We explain in particular how this idea,
old and very well documented, is particularly suitable for parallel computing. The
tests show a substantial computational time saving in matrix-vector products of the
form exp(A)v. The method also offers an advantage in terms of memory occupation.
Indeed, in the general case, the matrix exp(A) is full and must be stored entirely for
the direct calculation of the vector exp(A)v. On the contrary, our method does not

requires to store the full matrices (A+θ
(n)
k I)−1 but only the sparse matrices A+θ

(n)
k I.
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