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PARALLEL APPROXIMATION OF THE EXPONENTIAL OF
HERMITIAN MATRICES

FRÉDÉRIC HECHT∗, SIDI-MAHMOUD KABER† , LUCAS PERRIN‡ , ALAIN PLAGNE§ ,

AND JULIEN SALOMON¶

Abstract. In this work, we consider a rational approximation of the exponential function to
design an algorithm for computing matrix exponential in the Hermitian case. Using partial fraction
decomposition, we obtain a parallelizable method, where the computation reduces to independent
resolutions of linear systems. We analyze the effects of rounding errors on the accuracy of our
algorithm. We complete this work with numerical tests showing the efficiency of our method and a
comparison of its performances with Krylov algorithms.

Key words. Matrix exponential, Parallel computing, Truncation error, Taylor series, Partial
fraction decomposition, Padé approximation, MATLAB, Octave, expm, Roundoff error.
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1. Introduction. Given a square matrix A, the differential equation u′(t) =
Au(t) appears in many models, either directly or as an elementary component of
more complicated differential systems. To solve this equation with a good accuracy,
it is useful to have an algorithm computing matrix exponential. This algorithm must
be efficient, both for the accuracy and for the computational efficiency. Such an
algorithm is presented in this paper.

Many algorithms for computing the exponential of a matrix are available. We
refer to the celebrated review by Moler and Van Loan [23] for a comparison of these
methods. None of them is clearly more efficient than the others if we take into
account various important criteria such as accuracy, computing time, memory space
requirements, complexity, properties of the matrices under consideration, etc.

As is the case with our method, several algorithms are based on rational approx-
imation of the exponential function ez (z ∈ C), such as Padé or uniform Chebyshev
approximations. Let Rm,n(z) denotes such an approximation (m and n are the de-
grees of the numerator Nm,n and denominator Dm,n respectively), the considered
approximation of exp(A) is given by Rm,n(A) = [Dm,n(A)]−1Nm,n(A).

In the literature, such approximations are combined with scaling or reduction
techniques, which mainly consider the so called diagonal case, i.e., m = n. In [1], the
authors use the scaling and squaring method [17] to compute exp(A) ' [Rn,n(A/`)]`

where Rn,n(z) is accurate enough near the origin to guarantee high order approxi-
mation of exp(A/`) with ` ∈ N. This strategy avoids the conditioning problem of
Dn,n that can occur when n is large [23]. Rational approximation can also be applied
to, e.g., reduced or simpler forms of A, as in [20] where an orthogonal factorization
A = QTTQ is used to compute exp(A) ' QTRn,n(T )Q with T a tridiagonal matrix.
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CNRS, Laboratoire Jacques-Louis Lions, 75005 Paris, France (lucas.perrin@inria.fr).
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In the case n = 0, properties of orthogonal polynomials have been used to define
approximations of the matrix exponential, see [4] for the Chebyshev case (orthogo-
nality on a bounded interval) and [26] for the Laguerre case (orthogonality on the
half real line). The interest, in both cases, relies on saving in storage of Ritz vectors
during the Krylov iterations.

Our algorithm is based on an independent approach which aims at decomposing
the computation in view of parallelization. As a consequence, it can be combined
with all the previous algorithms which require the computation of the exponential of
a transformed matrix. It shares some features with the one presented in [11] and [12],
where diagonal approximations are used to define implicit numerical schemes for linear
parabolic equations. The parallelization is obtained using partial fraction decompo-
sition, which is also the case in our method, as explained below. A similar approach
is considered in [13], where the author focus on matrices arising from stiff systems
of ordinary differential equations, associated with matrices whose numerical range is
negative. A specific rational approximation where the poles are constrained to be
equidistant in a part of the complex plane is presented. These approximations are
related to the functions1 ϕ` (` > 0) which do not include the exponential (which cor-
responds to ϕ0). Moreover, the proposed approximation appears to be more efficient
for large `, whereas our method is designed and efficient in the case ` = 0. Various ap-
proximations of some matrix functions (including the exponential) based on rational
Krylov methods with fixed denominator are presented in [14]. A posteriori bounds
and stopping criterion in a similar framework are given in [10].

Note however that these references mainly focus on the reduction obtained by
Krylov approaches and can be combined with our method. The convergence properties
of Krylov methods related to matrix functions is widely documented in the literature.
Among the more recent papers on this topic, we refer to [3, 7, 8, 18, 19].

In the present work, we focus on the parallelization strategy associated with the
rational approximation defined by R0,n(z) = 1/ expn(−z) (which we simply denote by
Rn(z) hereafter), where expn denotes the truncated Taylor series of order n associated
with the exponential, i.e., m = 0. The poles of Rn(z) are all distinct (and well
documented) allowing a partial fraction decomposition with affine denominators. All
terms in the decomposition are independent hence their computation can be achieved
efficiently in parallel.

To see how these results can be used to compute matrix exponential, consider En
an approximation of the complex exponential function depending on one parameter
n ∈ N∗. This approximation naturally extends to the exponential of diagonal matrices
by setting En(diag(di)i) := (diag(En(di))i, thus to any diagonalizable matrix A =
PDP−1 by En(A) := PEn(D)P−1. The latter definition is actually a property of usual
matrix functions, see [16, Chap. 1]. The approximation error for a diagonalizable
matrix A = PDP−1, with eigenvalues located in a domain of the complex plane Λ
can then be estimated as follows

(1.1) ‖ exp(A)− En(A)‖2 ≤ εn κ2(P )

where κ2(P ) = ‖P‖2 ‖P−1‖2 is the condition number of P in the matrix norm associ-
ated with the usual Euclidean vector norm ‖ · ‖2 and εn := maxz∈Λ |En(z)− exp(z)|.
The approximation of exp(A) is then reduced to the approximation of the exponential
on the complex plane. If we further assume A to be Hermitian (or, more generally,

1These functions are defined by ϕ`(x) :=
∑

k=0
xk

(k+`)!
.
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normal), then P is a unitary matrix and κ2(P ) = 1. This is the case for Hermitian
matrices that arise, e.g. from the space discretization of the Laplace operator, and
more generally for normal matrices. Note, however, that for an arbitrary matrix, the
term κ2(P ) may be too large and significantly deteriorate the estimate (1.1).

The paper is organized as follows. Section 2 is devoted to the approximation of
the scalar exponential function. As explained above, this approximation, denoted by
Rn(z) is in our approach a rational function whose poles are all simple. In Section 3,
we present the approximation of the exponential of a matrix. In practise, the par-
tial fraction decomposition of Rn(z) raises some specific numerical issues related to
floating-point arithmetic ; these are discussed in Section 4. We finally demonstrate
the efficiency of our method on some examples in Section 5.

2. The scalar case. For n ∈ N∗, let us define expn(z) :=
∑n
k=0

1
k!z

k, i.e., the
exponential Taylor series truncated at order n. It is readily seen that for all x ∈ R
and even values of n, expn(x) is positive. Since exp′n = expn−1, it follows that expn
is strictly increasing for n odd and strictly convex for n even.

2.1. Roots of the truncated exponential series. We denote by (θ
(n)
k )k=1,··· ,n

the roots of the polynomial expn. If n is even, the roots are pairs of conjugate complex
numbers and none of them is a real number. If n is odd, there is one and only one
real root of expn and the others are pairwise conjugate. Some roots of expn are
represented on the figure 1 (left panel). We see that the norm of the roots increases
with n, which intuitively follows from the fact that the exponential function has no
roots on the whole complex plane. However, this growth is moderate since (see [30],
for example)

(2.1) 1 ≤ |θ(n)
k | ≤ n.

G. Szegő has shown in [27] that the normalized roots, i.e., the roots of expn(nz),

Figure 1: Left: the roots of z 7−→ expn(z), n = 10, 20, 30, 40, 50, 60. The parabola
y2 = 4(x+ 1) delimits an area containing no roots. Right: the Szegő curve.

approach, when n→∞, the so-called Szegő curve, defined by

{z ∈ C, |ze1−z| = 1, |z| ≤ 1}.

Some normalized roots and the Szegő curve are presented in Figure 1 (left panel). In
view of (1.1), it is interesting to determine regions of the complex plane which do not
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contain any roots. An example is given by the interior of the parabola of equation
y2 = 4(x + 1), which thus includes the positive real half-axis. This surprising result
has been obtained by Saff and Varga in [24], see Figure 1 (right panel).

2.2. Approximation of the exponential. We propose the following approxi-
mation of the exponential function defined for any complex number z by

exp(z) ' Rn(z) :=
1

expn(−z)
,

which reflects the identity exp(z) = 1
exp(−z) . Note that Rn(0) = 1 and that Rn has

no real root if n is even, which we will always assume in the rest of this paper.
This approach opens the way to a good approximation of the exponential on the

half axis (−∞, 0]. We present on Figure 2 a graph of the exponential function, its
polynomial approximation expn, and the rational approximation Rn, on the interval
[−5, 0]. Though the two approximations seem to fit well with the exponential function
for n = 20, we observe that for n = 10, the rational approximation is clearly more
accurate. Given n,m ∈ N, the Padé approximant [2] of index (m,n) of the exponential

Figure 2: The exponential function and its polynomial and rational approximations
rational expn and Rn on [−5, 0], for n = 10 (left) and n = 20 (right).

function is explicitly known; it is the rational function with numerator Pm,n and
denominator Qm,n:

Pm,n(z) =

m∑
k=0

(m+ n− k)!m!

(m+ n)!(m− k)!k!
zk, Qm,n(z) =

n∑
k=0

(m+ n− k)!n!

(m+ n)!(n− k)!k!
(−z)k.

The function Rn is therefore the Padé approximant of index (0, n) of the exponential
function, i.e., its Taylor expansion at the origin coincides with this function up to
order n. More precisely, we have

(2.2) R(j)
n (0) = 1, j ∈ N, 0 ≤ j ≤ n,

and, in the neighborhood of the origin,

Rn(z) = exp(z) +O(zn+1).
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We can slightly refine this result. Let us decompose Rn(z) as

Rn(z) = expn(z) +

+∞∑
k=n+1

λn,k
k!

zk.

A simple calculation shows that (recall that n is supposed to be even) λn,n+1 = 0
and λn,n+2 = −2(n+ 1). In other words, at z = 0, the derivatives of Rn(z) of order
greater than n are not at all close to the derivatives of the exponential function.

The partial fraction decomposition of Rn is the foundation of our numerical
method to compute the exponential of a matrix.

Proposition 2.1. We have, for all z ∈ C

(2.3) Rn(z) =

n∑
k=1

a
(n)
k

z + θ
(n)
k

,

where θ
(n)
k are the roots of expn and

(2.4) a
(n)
k = − n!∏

j 6=k(θ
(n)
k − θ(n)

j )
.

One should not be alarmed in the calculation of the coefficients a
(n)
k by the rela-

tion (2.4) whose denominator is a product of the differences θ
(n)
k − θ

(n)
j since the

difference between two roots of expn is uniformly lower bounded with respect to n
(see [30, Theorem 4])

(2.5) inf
n≥2

min
j 6=k
|θ(n)
j − θ(n)

k | ≥ γ := 0.29044 · · ·

thus avoiding to divide by too small numbers in (2.4). Note also that other expressions

can be used to compute the coefficients a
(n)
k , e.g.,

(2.6) a
(n)
k =

−1

exp′n(θ
(n)
k )

=
n!

(θ
(n)
k )n

.

Numerical properties of these formula are investigated in Section 4.

2.3. Convergence and error estimate. The rational approximation of a real
or complex function is a well-documented problem. Results concerning existence of
best approximation, uniqueness, computation can be found, e.g., in [22]. In this
section, we focus on the convergence properties of Rn(z) on ]−∞, 0]. This interval
includes the spectrum of negative Hermitian matrices that we consider in this paper.
Note however that results on others domains are available. Indeed, let Pk denotes the
set of polynomials of degree at most k, Pm,n the set of rational functions p/q, p ∈ Pm,
q ∈ Pn, and

Em,n(exp,Λ) := min
r∈Pm,n(Λ)

max
z∈Λ

| exp(z)− r(z)|,

the error of best uniform approximation of the exponential on Λ ⊂ C. On bounded
domains, we have for example [5]

Em,n(exp, [−1, 1]) '
n+m→∞

n!m!

2n+m(n+m)!(n+m+ 1)!
.
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The analog of this result on the disk B(0, %) of radius % centered in 0 is [28]

Em,n(exp, B(0, %)) '
n+m→∞

n!m!%n+m+1

(n+m)!(n+m+ 1)!
.

In both cases, we observe a fast decreasing of the error when Λ is bonded. This is not
the case in the applications which have motivated our study. The case Λ = ]−∞, 0] is
discussed in the pioneering work of [6]. The authors show that the best approximation
error E0,n(exp, ]−∞, 0]) decays linearly and exhibit a particular function, which just
happens to be our rational approximation Rn.

Proposition 2.2. ([6, Lemma 1]) We have for any real x ≤ 0

(2.7) |Rn(x)− exp(x)| ≤ M1(n) :=
1

2n
.

The convergence of Rn(x) to exp(x) is therefore linear on the real negative half-
line2. The error on this interval is represented in Figure 3 for various values of n.

Figure 4 shows iso-curves of the norm of the error for n = 32 as well as points −θ(n)
k .

The values presented in the graphics for n = 32 are the 10−k for k = 0, · · · , 14. One
observes there the rapid decay of the approximation along the real half-axis. We also
observe a remarkable decay in the whole left half-plane.

Figure 3: The error |Rn(x)− exp(x)| for n ∈ {4, 8, 16, 32}.

Before going further, let us state a technical result.

Lemma 2.3. The function fn(x) := expn(x) exp(−x) satisfies

fn(n+ 1) <
1

2
(2.8)

f2
n(x) ≤ n+ 1

n
fn−1(x)fn+1(x).(2.9)

Proof. We first show that

(2.10) expn(n+ 1) =

n∑
k=0

(n+ 1)k

k!
< exp(n+ 1)− expn(n+ 1) =

+∞∑
k=n+1

nk

k!
,

2For the sake of completeness, let us note that the optimal linear decrease is given by Schönhage

in [25] who showed that limn→+∞ E
1/n
0,n (exp, ]−∞, 0]) = 1/3.
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Figure 4: Norm of error Rn(z)− exp(z) and poles of Rn for n = 16 (left) and n = 32
(right).

which directly leads to (2.8). To get (2.10), we compare the terms k = n − j and
k = n+ j − 1 of the respective sums. Precisely, we have

nn−j

(n− j)!
≤ nn+j−1

(n+ j − 1)!
.

The proof is by induction on j. For j = 1, we actually have equality. Assuming that
the property is true at rank j, we have

nn−(j+1)

(n− (j + 1))!
=

nn−j

(n− j)!
n− j
n

<
nn+j−1

(n+ j − 1)!

n− j
n

=
nn+j

(n+ j)!
(1− (

j

n
)2)

<
nn+j

(n+ j)!
,

hence the result. Inequality (2.9) simply follows from the Cauchy-Schwarz inequality
applied to ∫ +∞

x

exp(−t)tndt =

∫ +∞

x

(exp(−t/2)t
n−1
2 ) (exp(−t/2)t

n+1
2 ) dt,

since fn(x) =
∫ +∞
x

exp(−t) t
n

n!dt.

In the following proposition, we summarize some properties of the function errn :
x ∈ ]−∞, 0] 7−→ Rn(x)− exp(x) > 0.

Proposition 2.4. For n ≥ 1, the function errn reaches its maximum at a single
point ξn < 0, is increasing on ]−∞, ξn] and decreasing on [ξn, 0]. Moreover, we have

(2.11)
n

2
≤ −ξn ≤ n+ 2.

Proof. To simplify the notation, we introduce y = −x and study the error
errn(y) = Rn(−y) − exp(−y) on the half-axis (0,+∞[, in which we have excluded
y = 0 where the error cancels. Since

err′n(y) = exp(2y)
(expn(y) exp(−y))2 − expn−1(y) exp(−y)

expn(y)2
(2.12)

=yn
exp(−y)

expn(y)2

(
1

n!
expn(y)− expn−1(y)

exp(y)− expn(y)

yn

)
,
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the variations on errn are determined by the sign of

(2.13) gn(y) :=
1

n!
expn(y)− expn−1(y)

exp(y)− expn(y)

yn
.

In this formula, the last term as well as all its derivatives is positive on I =]0,+∞[

so that g
(n+1)
n (y) < 0 on this interval. To prove that gn has an unique zero ξn in

I, we shall show that for some a1 > 0, g′n is strictly positive on in interval ]0, a1[
and strictly negative on ]a1,+∞[. That guarantees the result since gn(0) > 0 and

limy→+∞ gn(y) = −∞. The values of g
(k)
n (k = 1, · · · , n) on both sides of interval I

are of importance in the analysis. Note first that limy→+∞ g
(k)
n (y) = −∞ for all k ∈ N

and that the sequence uk := g
(k)
n (0) = 1

n! −
∑k
`=1

k!
(k−`)!(n+`)! is decreasing. Indeed,

for k = 1, · · · , n− 1 we have

uk+1 − uk =− (k + 1)!

(n+ k + 1)!
+

k∑
`=1

k!

(k − `)!(n+ `)!
− (k + 1)!

(k + 1− `)!(n+ `)!

=− (k + 1)!n!

(n+ k + 1)!
− k!

k∑
`=1

1

(k − `)!(n+ `)!

`

k + 1− `
< 0.

Since the first term in the right hand side of (2.13) is a polynomial of order n, we have

g
(n+1)
n (y) < 0 on I. Hence g

(n)
n is strictly decreasing on this interval. If un > 0, then

for some an > 0, g
(n)
n > 0 on some interval [0, an[ and g

(n)
n < 0 on ]an,+∞[. Hence

function g
(n−1)
n is strictly increasing on the first interval and decreasing on the second

one. It follows that there exists a unique an−1 > an where this function vanishes.
This property clearly spreads to gn. Otherwise, un ≤ 0, and the previous reasoning
can be applied to the largest n′ such that un′ > 0.

To prove (2.11), we first show that err′n(n/2) < 0, i.e., gn(n/2) > 0. Set y = nθ,
with 0 < θ < 1. We have

exp(y)− expn(y)

yn
=

1

(nθ)n

+∞∑
`=n+1

θ`

`!/n`

≤ 1

(nθ)n
nn+1

(n+ 1)!

+∞∑
`=n+1

θ` =
n

(n+ 1)!

θ

1− θ
.

As a consequence, we get

gn(nθ) ≥ (nθ)n

(n!)2
+

expn−1(nθ)

n!

(
1− n

n+ 1

θ

1− θ

)
,

which is positive when θ = 1/2.
We then prove that err′n(n + 2) < 0. Rewriting (2.12) with the notation of

Lemma 2.3, we get err′n(y) = exp(2y) (fn(y))2−fn−1(y)
expn(y)2 . The task is now to find the

sign of (fn(n+ 2))2 − fn−1(n+ 2). Because of Lemma 2.3, we have

(fn(n+ 2))2 − fn−1(n+ 2) ≤
(
n+ 1

n
fn+1(n+ 2)− 1

)
fn−1(n+ 2)

≤
(
n+ 1

2n
− 1

)
fn−1(n+ 2),

where the former inequality follows from (2.9) and the latter from (2.8). This shows
that (fn(n+ 2))2 − fn−1(n+ 2) < 0. Hence err′n(n+ 2) < 0.
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3. Approximation of the exponential of Hermitian matrices. Let A

be a square matrix of Md(C). Given n > 1, we suppose that all matrices A − θ(n)
k I

are invertible, i.e., their spectrum does not contain any root of any expn. This is the
case if the matrix A is Hermitian (recall that n is supposed to be even). The same
is true for any matrix provided that n is large enough. We propose the following
approximation of the exponential of A

(3.1) exp(A) ' Rn(A) :=

n∑
k=1

a
(n)
k (A+ θ

(n)
k I)−1,

where I denotes the identity matrix.

Remark 3.1. Note that Rn(0) = I and that if the matrix D ∈Md(C) is diagonal,
so is matrix Rn(D) with (Rn(D))i,i = Rn(Di,i). On the other hand, for any invertible
matrix P ∈Md(C), we have

Rn(PAP−1) = PRn(A)P−1.

From now on, we restrict our attention to negative Hermitian matrices. In view
of Proposition 2.4, we can state a specific estimate in this case.

Theorem 3.2. Assume that Spec(A) ⊂ R− and let %(A) := maxλ∈Spec(A) |λ|. If
n > 2%(A), then

‖ exp(A)−Rn(A)‖2 ≤ ε,
where ε = Rn(−%(A))− exp(−%(A)).

Remark 3.3 (Shifting method for nonnegative Hermitian matrices). Since the
spectrum of a real-valued matrix can be localized everywhere in the complex plane, we
cannot guarantee that (2.7) holds in the general case. This problem can be solved by
a shifting method in the case of Hermitian matrices. Let A be an Hermitian matrix
and c ∈ R a bound of its spectrum, c ≥ α(A) := maxi λi. Since Spec(A − cI) ⊂ R−,
we can consider the approximation

exp(A) = ec exp(A− cI) ' ecRn(A− cI).

But the term ec can be very large so that the approximation is only relevant for mod-
erate values of c. However, we have

‖ exp(A)− ecRn(A− cI)‖2
‖ exp(A)‖2

≤ ec

‖ exp(A)‖2
‖ exp(A− cI)−Rn(A− cI)‖2.

Assuming that A is Hermitian, we have ‖ exp(A)‖2 = eα(A), so that the relative error
can be controlled in this case. Some numerical results about this strategy are presented
in Section 5.

Many applications require in practice to compute a matrix-vector product instead
of assembling the full matrix. In such a case, given v ∈ Cd, y = exp(A)v is computed
by

(3.2) y ' Rn(A)v =

n∑
k=1

a
(n)
k y

(n)
k ,

with y
(n)
k the solution to the linear system (A + θ

(n)
k I)y

(n)
k = v. Each y

(n)
k could be

computed separately from the others leading to significant savings in computing time
as illustrated by our numerical tests, see Section 5.
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4. Floating-point arithmetic and numerical implementation. In this sec-
tion, we examine the efficiency of the approximation

exp(x) '
n∑
k=1

a
(n)
k

x+ θ
(n)
k

,

where x is assume to be a real number. We decompose the error according to

exp(x)−
n∑
k=1

a
(n)
k

x+ θ
(n)
k︸ ︷︷ ︸

e1(x)

=

(
exp(x)− 1

expn(−x)

)
︸ ︷︷ ︸

e2(x)

+

(
1

expn(−x)
−

n∑
k=1

a
(n)
k

x+ θ
(n)
k

)
︸ ︷︷ ︸

e3(x)

.

The latter cancels in exact arithmetic. However, working for example in a finite

Figure 5: Left: uniform norm of e1, e2, and e3 over [−100, 0] as a function of n. Right:

norm of e3 using various definitions of a
(n)
k , the black curve computation is done with

a
(n)
k computed with 32 significant digits and truncated to 16 significant digits.

precision of 16 significant digits, we see on Figure 5 (left panel) that in practise e1

decreases until approximately n = 34 and then increases. This observation shows
that our approximation is not relevant in practice for large values of n. This behavior
can be explained by an analysis of e2 and e3. The former decreases as predicted
by Proposition 2.2. The latter increases with respect to n. The increase in e3 is
related to the partial fraction decomposition in floating-point arithmetic which is our
framework hereafter, since we use MATLAB [21] and Octave [9] with double precision.
The accuracy actually deteriorates for larger values of n. Indeed, the three equivalent

definitions of the coefficients a
(n)
k given by (2.4) and (2.6) lead in practise to different

numerical results. The uniform norm of e3 obtained with each of these definitions is
shown on Figure 5 (right panel). The formula given in (2.4) gives the most precise
result, which is actually very similar to the one obtained by keeping the exact 16 first
digits. Hence, we use (2.4) in the sequel.

In order to understand the influence of the floating-point arithmetic, we give in
the next proposition a bound which guarantees a certain precision for a given n when
working with a floating-point arithmetic of D significant digits.

Proposition 4.1. Denote by ã
(n)
k and θ̃

(n)
k , the D-significant digits approxima-

tions of a
(n)
k and θ

(n)
k , and assume that

(4.1) γ > n10(1−D)

10



with γ defined in (2.5). We have the following upper bound, for x ∈ R :

(4.2)

∣∣∣∣∣ 1

expn(−x)
−

n∑
k=1

ã
(n)
k

θ̃
(n)
k + x

∣∣∣∣∣ ≤M2(n,D) := (C1(D) + C2(n,D))

n∑
k=1

∣∣∣ã(n)
k

∣∣∣ ,
where

C1(D) :=
2 · 10(1−D)

γ
(
1− 10(1−D)

) , C2(n,D) :=
4n · 10(1−D)

γ(γ − n · 10(1−D))
.

Note that the condition given in (4.1) is not restrictive: it holds for example in the
case of 16 significant digits even in the case where n ≈ 1010.

This result is illustrated in Figure 6. We see in this example that with 16 signifi-
cant digits, the bound obtained in (4.2) implies that working with n = 30 guarantees
an error of order 10−8 and get an actual order of 10−10. We see however that to
increase the accuracy, we could work up to n ≈ 36.

Figure 6: Uniform norm of e2 and e3 over [−100, 0], in 16 significant digits, and upper
bounds : M1(n) := 1/2n (see Proposition 2.2) and M2(n,D = 16) given by (4.2).

Proof. (Proposition 4.1) Since we are dealing with numerical approximations

based on D significant digits, we consider the first D digits of ã
(n)
k and θ̃

(n)
k to be

exact. Then, for any complex number z and its approximation z̃ we have:

(4.3) z̃ = z(1 + εz), |εz| ∈
[
10−D, 10(1−D)

]
.

Writing r
(n)
k (x) = 1

θ
(n)
k +x

and r̃
(n)
k (x) = 1

θ̃
(n)
k +x

, we see that finding an upper bound

for the left side of (4.2) amounts to finding an upper bound for:

n∑
k=1

r
(n)
k (x)

(
ã

(n)
k − a(n)

k

)
+ ã

(n)
k

(
r̃

(n)
k (x)− r(n)

k (x)
)

=

n∑
k=1

r
(n)
k (x)a

(n)
k

(
ε
a
(n)
k

1 + ε
a
(n)
k

)
+

n∑
k=1

ã
(n)
k

(
r̃

(n)
k (x)− r(n)

k (x)
)
,

where the equality follows from (4.3). Combining (2.1) with (4.3), we get |θ̃(n)
k −θ

(n)
k | =

|ε
θ
(n)
k

θ
(n)
k | ≤ n·10(1−D). Combining (2.5) with the fact that for n even, θ

(n)
k are strictly

11



not real, we obtain that
∣∣∣θ(n)
k + x

∣∣∣ ≥ ∣∣∣Im(θ
(n)
k )

∣∣∣ ≥ γ
2 when x ∈ R. As a consequence∣∣∣r(n)

k (x)
∣∣∣ ≤ 2

γ for all x ∈ R. In the same manner, we can see that∣∣∣θ̃(n)
k + x

∣∣∣ ≥ ∣∣∣Im(θ̃
(n)
k )

∣∣∣ ≥ ∣∣∣|Im(θ
(n)
k )| − |Im(ε

θ
(n)
k

θ
(n)
k )|

∣∣∣ ≥ ∣∣γ − n10(1−D)
∣∣

2

which follows from (4.1). Consequently,
∣∣∣r̃(n)
k (x)

∣∣∣ ≤ 2
γ−n10(1−D) for all x ∈ R.

Finally, we have |r̃(n)
k (x)−r(n)

k (x)| = |r̃(n)
k (x)||r(n)

k (x)||θ̃(n)
k −θ

(n)
k | so that |r̃(n)

k (x)−
r

(n)
k (x)| ≤ 4n·10(1−D)

γ(γ−n10(1−D))
. Combining all theses inequalities with |ε

a
(n)
k

| ≤ 10(1−D), and∣∣∣∣ ε
a
(n)
k

1+ε
a
(n)
k

∣∣∣∣ ≤ 10(1−D)

1−10(1−D) , we get (4.2).

The graphs of e1(x) for x = −10 obtained with various number of significant
digits is given in Figure 7. We see that the larger the number of significant digits, the
later e1 starts increasing. It follows that floating-point arithmetic precision must be
adapted to n which is in practise the number of processor used in the computation.

Figure 7: Error (e1) on the approximation of exp(x) vs n (x = −10) computed with
Maple, with 16, 32 and 64 significant digits, respectively.

5. Numerical efficiency. In this section, we test the performance of our method
on MATLAB and Octave, and compare it with several other algorithms: the expm

functions available in these softwares, and a rational Krylov method. Recall that expm
is based on the combination of a Padé approximation with a scaling and squaring
technique. MATLAB uses the variant described in [17] and [1] whereas Octave uses
the variant described in [29].

Remark 5.1. If n is even and x ∈ R, we can compute twice as fast Rn(x).

Indeed, the complex numbers θ
(n)
k are in this case a set of conjugate pairs as well as

a
(n)
k , and 1

θ
(n)
k +x

. Assuming that the labelling is such that θ
(n)
2`+1 = θ

(n)
2` , we get

n∑
k=1

a
(n)
k

x+ θ
(n)
k

=

n/2∑
`=1

2Re

(
a

(n)
2`

x+ θ
(n)
2`

)
.

It follows that the number of computations can be divided by two. The same holds for
the computation of Rn(A) when Spec(A) is real, e.g., in the Hermitian case that we
consider in this paper.
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5.1. Setting. Because of the results obtained in Section 4, we consider cases
where n ≤ 32 so that floating arithmetic does not affect our results. All compu-
tational times are measured thanks to the MATLAB/Octave tic / toc functions.
The simulated parallel computational times for our method are estimated as follows:
tpara = max1≤i≤n ti where ti is the computational time of the i-th matrix inversion
or linear system resolution. We denote by tseq the sequential computing time of the
approximation via expm and by tKrylov the time taken by a rational Krylov approxi-
mation to get the same absolute error as the one of our method using n = 32.

We first show that the error of our method does not depend on the dimension of
the matrix by considering a symmetric d× d real matrix A, with spectrum randomly
chosen within a fixed range. We then compare with the above mentioned algorithms,
using matrices B = ∆1

d ∈ Md(R) and C = ∆2
d ∈ Md(R) corresponding respectively

to the usual Finite Difference discretization of the Laplace operator in one and two
dimensions. We consider both approximations exp(·) and exp(·)v where v is a random
vector of size d and norm 1.

5.2. Stability of the error with respect to the dimension. Given a ma-
trix A, we consider either the absolute error ‖ exp(A)−Rn(A)‖2 or the relative error
‖ exp(A)−Rn(A)‖2
‖ exp(A)‖2 when the spectrum of A is non-positive or include positive eigen-

values, respectively. This choice follows from the fact that relative error is relevant
for large numbers whereas small numbers are correctly analysed with absolute error.
Both cases occur when using exp.

As a first example, we consider the matrix A described previously. The absolute
error ‖ exp(A) − Rn(A)‖2 as a function of the dimension d is represented in Figure
8 (left panel). The results are smoothed by using the mean of the error for various
random spectra included in [−1, 0]. We use the approximation (3.1) where the inverse
matrix is computed using the functions inv of MATLAB and Octave. We note that
the error does not depend on d, which is an expected result since the spectrum remains
in a fixed interval. In a second example, we consider a matrix with positive spectrum

Figure 8: Error versus the dimension of the matrix. Left: absolute error, matrices
with negative spectra. Right: relative error, matrices with positive spectra using the
shift method from Remark 3.3.

included in [0, 20]. We use the shift method presented in Remark 3.3 to compute the

exponential, and the relative error ‖ exp(A)−Rn(A)‖2
‖ exp(A)‖2 . We see that the error still not

depends on the dimension of the problem.
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5.3. Computation of exp(·) for the Laplace operator. From now on, we
focus on matrices B and C described previously.

The absolute error is computed in practise by ‖expm(·)−Rn(·)‖2. The results are
presented in Figure 9 (bottom) for B and in Figure 10 for C (bottom). Here again,
the error does not depend on the dimension of the problem, but only on the degree
of truncation n. Note that increasing n only expands the spectrum of these matrices
on the left side, hence does not deteriorate our approximations.

Next, we compare the computing times tseq and tpara. The results are presented

in Figure 9 for B and in Figure 10 for C. In these tests, the matrices (B+θ
(n)
k I)−1 are

computed with the MATLAB and Octave functions inv in parallel and, as explained

previously tpara is defined as the maximum time taken to compute one of the a
(n)
k (A+

θ
(n)
k I)−1. We can see that tpara is slightly larger than tseq in the case of MATLAB

and almost ten times larger in the case of Octave.

Figure 9: Performance of the approximation of exp(B) for matrix B = ∆1
d. Top:

CPU time required to compute expm and approximation Rn for various values of n
using MATLAB (left) and Octave (right). Bottom: relative error in the computation
of exp(B) as a function of d.

5.4. Computation of exp(·)v for the Laplace operator. Still considering
matrices B and C, we finally consider the action of the matrix exponential on vectors.

For v ∈ Rd, the vector w = exp(B)v is approximated by (3.2) where (B+θ
(n)
k I)y

(n)
k =

v is solved using the solvers mldivide of MATLAB and Octave. We evaluate the mean
of the error and the mean of tpara for a series of random vectors v of norm 1.

Rational Krylov methods being the state of the art for this type of computation,
we first look at the method proposed in [14] to compare it with our approximation. All

14



Figure 10: Same as Figure 9 for matrix C = ∆2
d.

our results related to rational Krylov methods are obtained using Guettel’s toolbox
[15], with parameter ξ = −1 as in [14]. Figure 11 shows the absolute error of the two
methods, as a function of the computational time. We see that in both cases, for a
prescribed accuracy, our method outperforms rational Krylov method.

Figure 11: Error and CPU time comparison of the approximation exp(B)v using
rational Krylov method (blue) and our approach (red). Vector v is randomly chosen,
d = 100 (left) and d = 400 (right). Each point of the cloud corresponds to a Krylov
rational space of size m with m ∈ {1, ..., d − 1}. The dimension m for which Krylov
method is at least as precise as our method with n = 32 is circled in red.

The absolute error ‖expm(B)v − Rn(B)v‖2 together with the computing times
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tseq, tKrylov and tpara are shown in Figure 12. In this case tpara is defined as the

maximum time used to compute one of the vectors a
(n)
k y

(n)
k (see (3.2)). We note that

tseq and tKrylov are larger than tpara for all values of the dimension d of the matrix,
with MATLAB as well as Octave. For example, with d = 103, tseq ≈ 102tpara and
tseq ≈ 104tpara with MATLAB and Octave, respectively, and tKrylov ≈ 10tpara and
tKrylov ≈ 103tpara.

Figure 12: Top: CPU time required to compute Av = exp(∆1
d)v for vectors v ran-

domly chosen using rational Krylov method and our method for various values of n.
Computations are done with MATLAB (left) and Octave (right). Bottom: relative
error, as a function of the dimension of the matrix.

We make the same analysis for the absolute error ‖expm(C)v−Rn(C)v‖2 together
with the computing times tseq, tKrylov and tpara are shown in Figure 13. We note
again that tseq and tKrylov are larger than tpara for all values of the dimension d of the
matrix, with MATLAB as well as Octave. For d = 103, we observe that tseq ≈ 10tpara
and tseq ≈ 102tpara with MATLAB and Octave, respectively, whereas tpara / tKrylov
and tKrylov ≈ 10tpara.

Finally, we point out that our method defines a way to approximate the exponen-
tial of a matrix, whereas Krylov’s rational methods approximate the matrix-vector
product. These methods are based on a reduction of dimensionality. For the problems
considered in this article they lead in practice to the computation of the exponential
of a smaller matrix. Hence rational Krylov can be combined with our method for the
computation of the exponential of this smaller matrix.
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Figure 13: Same as Figure 12 for matrix B = ∆2
d.
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