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Abstract: We propose a mathematical study of the statistics of chlorophyll fluorescence indices.
While most of the literature assumes Gaussian distributions for these indices, we demonstrate
their fundamental non-Gaussian nature. Indeed, while the noise in the raw fluorescence images
can be assumed as Gaussian additive, the deterministic ratio between them produces nonlinear
non-Gaussian distributions. We investigate the states in which this non-Gaussianity can affect the
statistical estimation when wrongly approached with linear estimators. We provide an expectation–
maximization estimator adapted to the non-Gaussian distributions. We illustrate the interest of this
estimator with simulations from images of chlorophyll fluorescence indices.. We demonstrate the
benefits of our approach by comparison with the standard Gaussian assumption. Our expectation–
maximization estimator shows low estimation errors reaching seven percent for a more pronounced
deviation from Gaussianity compared to Gaussianity assumptions estimators rising to more than
70 percent estimation error. These results show the importance of considering rigorous mathematical
estimation approaches in chlorophyll fluorescence indices. The application of this work could be
extended to various vegetation indices also made up of a ratio of Gaussian distributions.

Keywords: Arabidopsis; Bayesian inference; Expectation–Maximization (EM) algorithm; parameter
estimation; plant imaging; statistics; vegetation indices

1. Introduction

Chlorophyll fluorescence imaging is a well-established imaging technique for plant
phenotyping [1–6]. In this imaging technique, flashes of light are sent onto leaves and the
resulting emitted fluorescence is captured with grayscaled images. Images acquired during
the illumination protocols are then combined to provide chlorophyll fluorescence indices.
These indices are directly related to the availability of electrons in the tissue and therefore
are related to their chemical content and indirectly also to the physiology of the tissue at
the time of the acquisition. Chlorophyll fluorescence imaging has been widely reported
to monitor plant growth and response to stress [5]. While used already, investigations
on chlorophyll fluorescence continue to be extended in various directions including the
search for new sequences of illumination protocols [7], the physiological interpretation
of image signature [8], the genetic determinism associated with chlorophyll fluorescence
signals [9,10] or the fundamental biomolecular mechanisms at work [9,11]. We position this
article in this trend of further investigations of chlorophyll fluorescence but here at the level
of the mathematical modeling of the statistics observed in chlorophyll fluorescence indices.

Chlorophyll fluorescence indices are mainly built with differences and ratios of images
which are basically corrupted with various amounts of Gaussian additive noise. The nonlin-
ear derministic combination of these images trivially produces images with non-Gaussian
noise. An estimation of the distribution of gray levels in the resulting indices is then per-
formed. Surprisingly, the non-Gaussianity of the chlorophyll fluorescence indices has only
recently been highlighted empirically [12]. In most of the literature, Gaussianity is assumed,
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and therefore, one resorts to the linear associated estimators of average and standard
deviation to characterize the chlorophyll fluorescence indices [13–26]. This assumption
may not be an issue for the phenotyping situations considered in the literature where a
measure of a biomarker is not the aim but rather a difference between a reference (genotype
or control conditions) and another plant (other genotype or various stress conditions).
From a methodological and mathematical point of view, it is not rigorous to systematically
have this Gaussian assumption since the possible negative impact on the estimation of
chlorophyll fluorescence distribution parameters is not known.

In this article, we further investigate this non-Gaussianity mathematically. We demon-
strate the states where Gaussianity assumptions can be made, and we design appropriate
statistical estimators of generic value in the Gaussian and non-Gaussian cases. We illus-
trate the advantages of our approach using simulations and on images of chlorophyll
fluorescence indices.

The paper is organized as follows. We describe the empirical data sets of chlorophyll
fluorescence images of diseased plants (Section 2). From the statistical analysis of these data
sets, we then propose a statistical model for chlorophyll fluorescence indices (Section 3).
We derive two Bayesian estimators of the resulting non-Gaussian distributions. The per-
formance of these estimators is compared with the standard Gaussian approximation on
synthetic data simulating the empirical data set (Section 4). We conclude with the impor-
tance of considering the non-Gaussianity of chlorophyll fluorescence indices. We provide
mathematical proofs of the properties related to the various expressions in the Appendix A.

2. Material
2.1. Arabidopsis thaliana Inoculated by a Bacteria

We consider chlorophyll fluorescence imaging on rosettes of Arabidopsis thaliana eco-
type Col0. The experiment consisted of 36 pots of four plants each. Half of the pots were
inoculated with water, and the other half with the virulent DC300, a tomato bacteria. We
attribute ‘Healthy’ to the pots inoculated with water and ‘Diseased’ to the ones with the
bacteria. Chlorophyll fluorescence imaging was realized during six days of the experiment:
D0, D2, D5, D6, D7, and D8. The same data set was used for automated disease segmenta-
tion [13,27]. A full description of the experiment is in these two papers. We got interested
in Fm, the fluorescence after saturating actinic flash, and F0, the basal fluorescence before
the flash. To build a statistical model of F0 and Fm we manually selected areas located in the
limb of the leaves as illustrated in Figure 1. The physical interpretation of the distribution
observed is the thermal noise of the camera, which is expected to be Gaussian with an
additive coupling.

Therefore, we verified the adequacy of F0 and Fm to a normal distribution with the
D’Agostino test [28]. We chose the D’Agostino test among other normality tests since
it is the recommended test in case of the presence of ex-aequo in the variable. It’s our
case with the number of pixels data. We sample four pots from Healthy and Diseased
for each day of the experiment, and we select areas located in the limb of the leaves as
illustrated in Figure 1. Table 1 shows the mean and the standard deviation of these four
p-values associated with the D’Agostino test of normality on the resulting pixel counts
of the selections. From Table 1, all p-values are higher than 0.05. Consequently, we do
not reject the null hypothesis that F0 and Fm follow a normal distribution in either healthy
or diseased tissues. We extracted the mean and the standard deviation of healthy and
diseased pixels from F0 and Fm parameters for the six days of the experiment. The results
are in Table 2. It is noticeable that the standard deviation of the Gaussian distribution is
relatively stable for healthy and diseased plants over the experiment. This observation is
compatible with the interpretation of randomness due mainly to the stationary thermal
noise of the camera.
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Figure 1. Example of chlorophyll fluorescence images of Arabidopsis thaliana inoculated by a bacteria,
at day 2, pot 19, a healthy pot (inoculated with water): (a) Fm maximum fluorescence and (b) F0

minimum fluorescence. The histograms (c,d) are the associated frequency distribution of pixel counts
inside the region of interest drawn in a solid yellow line in (a,b), respectively. The dashed blue line in
the histograms is the fit with a normal probability density function (pdf).

Table 1. Mean ± the standard deviation of four p-values associated with the D’Agostino test of
normality in the limb of the Arabidopsis thaliana inoculated by a bacteria for Fm maximum fluorescence
and F0 minimum fluorescence. D0, . . . , and D8 are the six days of the acquisition of chlorophyll
fluorescence images.

Time
Fm F0

Healthy Diseased Healthy Diseased

D0 0.53 ± 0.33 0.55 ± 0.25 0.59 ± 0.34 0.60 ± 0.33
D2 0.39 ± 0.25 0.59 ± 0.35 0.31 ± 0.25 0.57 ± 0.38
D5 0.60 ± 0.38 0.45 ± 0.31 0.33 ± 0.19 0.31± 0.18
D6 0.30 ± 0.22 0.46 ± 0.23 0.47± 0.33 0.44 ± 0.26
D7 0.27 ± 0.10 0.24 ± 0.19 0.43 ± 0.31 0.44 ± 0.10
D8 0.26 ± 0.16 0.25 ± 0.10 0.25 ± 0.14 0.11 ± 0.04

Table 2. Mean µ, and standard deviation, σ, values on Healthy and Diseased tissues of chlorophyll
fluorescence parameters F0 (minimum fluorescence) and Fm (maximum fluorescence) for images of
plants inoculated with bacteria. D0, . . . , and D8 are the six days of the acquisition of chlorophyll
fluorescence images.

Time
µF0 σF0 µFm σFm

Healthy Diseased Healthy Diseased Healthy Diseased Healthy Diseased

D0 62.845 42.158 15.261 6.870 418.173 182.367 89.129 33.985
D2 64.756 78.609 16.343 15.380 432.239 338.601 95.681 63.571
D5 67.168 76.984 16.796 21.338 438.586 301.224 96.591 87.018
D6 67.402 77.424 17.150 21.545 444.460 306.174 99.267 86.616
D7 68.781 77.363 17.407 21.546 447.470 306.662 100.153 87.427
D8 67.256 74.562 16.961 21.719 441.044 305.809 98.580 86.968

2.2. Arabidopsis thaliana Infected with a Fungal Pathogen

We considered a second study aiming to score the development of fungal pathogen
symptoms (Botrytis cinerea) on the Arabidopsis thaliana plant [12]. This is currently the only
public data set on chlorophyll fluorescence imaging with diseased plants that we found.
The data set can be found in [29]. It is composed of chlorophyll fluorescences images and
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RGB images acquired during 96 h post-infection at 0 h, 24 h, 72 h, and 98 h. After checking
successfully (not shown) the Gaussianity of the distribution of gray levels in limbs of F0 and
Fm images, we computed like for the previous data set the mean and standard deviation
associated. The value obtained is provided in Table 3. Here again, one can notice that the
standard deviation of the Gaussian distribution is relatively stable over the experiment
but only for the healthy plants. For this fungal disease, spores progressively appear at the
surface of the leaves. These spores act as a multiplicative filter that absorbs the incident
light. The emergence of these spores may add another source of randomness here.

Table 3. Mean µ, and standard deviation, σ, values on Healthy and Diseased tissues of chlorophyll
fluorescence parameters F0 (minimum fluorescence) and Fm (maximum fluorescence) for the data
set of plants infected with fungal pathogen data. 0 h, . . . , 96 h are the five times of the acquisition of
chlorophyll fluorescence images.

Time
µF0 σF0 µFm σFm

Healthy Diseased Healthy Diseased Healthy Diseased Healthy Diseased

0 h 142.747 - 31.056 - 810.626 - 192.474 -

24 h 122.533 123.685 52.404 77.543 676.331 329.290 275.724 277.567

48 h 105.450 82.616 56.436 66.731 537.056 222.493 295.606 203.232

72 h 121.525 73.177 40.216 42.067 618.474 172.596 225.188 150.189

96 h 103.579 43.691 50.808 41.099 526.299 103.953 274.768 133.111

In the following sections, we will refer to the bacteria data set, the chlorophyll fluores-
cence images associated with the Arabidopsis thaliana inoculated by a bacteria and by fungal
pathogen data set, the chlorophyll fluorescence images of the Arabidopsis thaliana infected
with a fungal pathogen.

3. Methods
3.1. Statistical Model of Fv/Fm

In the chlorophyll fluorescence imaging technique, the raw images Fm and F0 are not
directly used [30,31]. Instead, they are combined to produce some indices, which serve
as a biomarker. We focus on the most common of these indices, known as the maximum
quantum yield of photosystem II (PSII) [32]:

Fv

Fm
=

(Fm − F0)

Fm
. (1)

This ratio is an indicator of plant stress and is among the most used chlorophyll fluores-
cence parameter. It serves as a biomarker to assess the normal or abnormal photosynthetic
activity of plant tissue with a threshold applied to the distributions. The choice of this
parameter Fv/Fm is made without loss of generality as all of the indices in chlorophyll
fluorescence are based on ratios of images with variations concerning the timing of the
flash of light and the wavelength.

We have shown that both Fm and F0 can be modeled as Gaussian distribution in the
previous section.

Since the Gaussian distribution is alpha-stable, the difference between the two Gaus-
sian distributions is known to be a Gaussian distribution. Consequently, the distribution of
Fv/Fm can be modeled in the following way. Let us consider the variables X and Y as F0 and
Fm, respectively, where X and Y are two identical and independent normal distributions:

X ∼ N(µx, σx) and Y ∼ N(µy, σy).
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The probability density function, PZ, of the ratio Z = X/Y is given by [33,34]:

pZ(z) =
ρ

π(1 + ρ2z2)
exp

(
−ρ2β2 + 1

2δ2
y

)
×
[

1 +
√

π

2
q erf

(
q√
2

)
exp

(
q2

2

)]
, (2)

with β =
µx

µy
; ρ =

σy

σx
; δy =

σy

µy
; q =

1 + βρ2z
δy
√

1 + ρ2z2
, and erf

(
q√
2

)
=

2√
π

∫ q√
2

0
exp (−t2)dt.

We can write this PZ otherwise using the confluent hypergeometric function, 1F1(.) [35]:

pZ(z) =
ρ

π(1 + ρ2z2)
exp

(
− β2ρ2 + 1

2δ2
y

)
1F1

(
1,

1
2

;
1

2δ2
y

(1 + βρ2z)2

1 + ρ2z2

)
, (3)

with 1F1(.), the confluent hypergeometric function, also known as Kummer’s function and
defined as follow:

1F1(a; c; z) =
+∞

∑
n=0

(a)n

(c)n

zn

n!
, (4)

where the Pochhammer symbol (a)n indicates the nth rising factorial of a, i.e.,

(a)n = a(a + 1). . .(a + n− 1) =
Γ(a + n)

Γ(a)
if n = 1, 2, . . .

If n = 0, (a)n = 1. The demonstration of the second form of the PZ given by
Equation (3) is presented in Appendix A.1.

An approximation of the distribution of Z by a normal distribution has been proposed
by [34]. Most authors defined conditions on the parameters, β, ρ and δy resulting from
empirical or simulation works and showed the switch from a normal distribution to a
bimodal distribution under certain values [36–38]. This is illustrated with simulation for
different values of β, ρ and δy in Figure 2. We draw the distribution of the ratio for three
different values of the parameters and we add the normal approximation proposed by [34].

In the first case (β = 0.1, ρ = 0.05, δy = 0.1), we see a perfect fit of the normal
approximation. In the second case (β = 2, ρ = 0.5, δy = 0.6), we start to see the deviation
from normality, whereas for (β = 2, ρ = 2, δy = 2), the distribution of the ratio is bimodal.
Therefore, supposing a normal distribution of Fv/Fm will be more or less wrong depending
on the values of β, ρ, and δy.

There is not a sufficient amount of public sets of chlorophyll fluorescence images
to determine if the normal assumption can always be done in estimation of statistical
parameters. Therefore, it is necessary to design estimators adapted for the non-Gaussianity
of Z in general.

3.2. Estimation of the PZ Parameters

We now present two estimators of the non-Gaussian distribution Z modeling the
Maximum Quantum Yield Fv/Fm. The first estimator is based on the Bayesian estimation
and the second one follows the expectation maximization (EM) algorithm. The Bayesian
estimation is chosen here with the hypothesis that two parameters are known according to
some prior information and we need to estimate only one parameter. For the EM algorithm,
all the parameters are unknown and need to be estimated. We consider that the latter is a
more general approach than the former.
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Figure 2. The black curve with circle points is the distribution PZ of the ratio Fv/Fm (Fm maximum
fluorescence and Fv = Fm − F0, F0 minimum fluorescence) for an increasing values of the parameters,
β , ρ , and δy and the red curve with crossed points is the normal approximation of the distribution
in each of these cases. (a) A case with perfect fit of the ratio density and the normal approximation;
(b) a deviation from normal distribution; (c) a case where the ratio density is bimodal and the normal
approximation is not appropriate.

3.2.1. Bayesian Estimation

We suppose that β and ρ are known, and we aim to estimate δy using Bayesian
inference. We consider the results for the first day of the experiment as our observed data
to get β and ρ values. The next step is to define the prior probability for δy. We recall
that δy = σy/µy. Since only the parameters of the first day are known (µx; µy; σx; σy), we
simulate N samples of Y associated to the first day: Y1, . . ., YN ∼ N(µy, σy). The ratio of
the standard deviation to the mean value of these N samples leads to one δy value. We
repeat this simulation a couple of times (let us say S times) and we define δy ∼ N(µδy , σδy ),
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with µδy and σδy the mean and standard deviation of the δy values obtained with the S
simulations. The posterior distribution is therefore given by:

p(δy|z1, . . ., zN) =
p(δy)p(z1, . . ., zN |δy)

+∞∫
−∞

p(δy)p(z1, . . ., zN |δy)dδy

,

where

p(z1, . . ., zN |δy) = exp

(
−N(ρ2β2 + 1)

2δ2
y

)
N

∏
i=1

ρ

π(1 + ρ2z2
i )

1F1

(
1,

1
2

;
1

2δ2
y

(1 + βρ2zi)
2

1 + ρ2z2
i

)
, (5)

and

+∞∫
−∞

p(δy)p(z1, . . ., zN |δy)dδy =

(
N

∏
i=1

ρ

π(1 + ρ2z2
i )

)
×

+∞∫
−∞

exp

(
−N(ρ2β2 + 1)

2δ2
y

−
(δy − µδy)

2

2σ2
δy

)
N

∏
i=1

1F1

(
1,

1
2

;
1

2δ2
y

(1 + βρ2zi)
2

1 + ρ2z2
i

)
dδy, (6)

with z1 = X1
Y1

, . . ., zN = XN
YN

, N ratios of N samples of two normal distributions
X ∼ N(µx, σx), and Y ∼ N(µy, σy). Last step is to determine the posterior mean esti-
mator of δy, which is given by [39]:

δ̂y = E(δy|z1, . . ., zN) (7)

=

+∞∫
−∞

δy p(δy|z1, . . ., zN)dδy.

It is not obvious to compute the above integral since it contains the confluent hyper-
geometric function. In this case, we use the Monte Carlo (MC) method to numerically
approximate this integral. The approximation of δy using Monte-Carlo is detailed in
Algorithm 1. The resulting quantity is an estimator without bias and highly consistent
with δy. The only drawback of using the MC method is that it is time-consuming. More
iterations lead to better consistency but to more simulation time.

3.2.2. EM Estimation of the Parameters

Knowing that the pdf of Z is the result of the ratio of two independent normal distribu-
tions N(µx, σx) and N(µy, σy), respectively, we estimate first the parameters (µx, σx, µy, σy)
by performing the expectation maximization (EM) algorithm. Thereafter, the parameters
(β, ρ, δy) can be deduced from the following relations:

β̂ =
µ̂x

µ̂y
, ρ̂ =

σ̂y

σ̂x
, δ̂y =

σ̂y

µ̂y
(8)

Consider N independent and identically distributed realizations zi, i = {1, . . ., N} of
a random variable Z distributed according to the PZ written with the confluent hyperge-
ometric function (3). This form of the PZ is more adequate to the estimation parameter
procedure using the EM algorithm.
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The pdf associated to the ratio Z depends on the set of unknown parameters:
θ = (µx, µy, σ2

x , σ2
y ). The maximum likelihood estimator θ̂ of the set parameter θ, is given by:

θ̂ML = arg max
θ

pZ(z|θ) = arg max
θ

N

∏
i=1

pZ(zi|θ). (9)

Algorithm 1: MC estimation of δy.

1. Input: N, S, K
2. Output: δ̂y
3. Loop: K iteration:
4. Repeat for k in 1. . .K
5. Loop: S iteration:
6. Initialization:
7. Set the parameters (µx, σx, µy, σy) of the first day of the experiment
8. Repeat
9. generate N samples y1, . . ., yN ∼ N(µy, σy)
10. calculate the associated mean µs

y and standard deviation σs
y:

11. µs
y = 1

N ∑N
i=1 yi and σs

y =
√

1
N ∑N

i=1(yi − µs
y)

2, for s = 1, . . ., S

12. deduce δs
y =

σs
y

µs
y
, for s = 1, . . ., S

13. generate N samples x1, . . ., xN ∼ N(µx, σx)
14. compute N samples z1 = x1

y1
, . . ., zN = xN

yN

15. deduce p(z1, . . ., zN |δs
y), for s = 1, . . ., S using Equation (5)

16. End loop

17. calculate µδy = 1
S ∑S

s=1 δs
y and σδy =

√
1
S ∑S

s=1(δ
s
y − µδy)

2

18. deduce p(δs
y) the pdf of δs

y ∼ N(µδy , σδy), for s = 1, . . ., S

19. Return δ̂k
y =

∑S
s=1 δs

y × p(δs
y)× p(z1, . . ., zN |δs

y)

∑S
s=1 p(δs

y)× p(z1, . . ., zN |δs
y)

.

20. Save δ̂k
y the result of the last return for k from 1 to K.

21. Return δ̂y =
1
K

K

∑
k=1

δ̂k
y;

In the absence of an explicit solution of the maximum likelihood Equation (9), the
Expectation–Maximization (EM) algorithm is used to find an estimation θ̂ given a current
estimate θ′ of θ. We suppose that for each observed zi an unobserved and hidden data
yi is associated. The sequence {yi, i = 1, · · · , N} is also supposed to be independent and
identically distributed.

θ̂ = arg max
θ

EY|Z{ln fY,Z(Z, Y|θ)
∣∣z, θ′} (10)

= arg max
θ

EY|Z{ln
N

∏
i=1

fY,Z(Zi, Yi|θ)
∣∣zi, θ′}

= arg max
θ

EY|Z{
N

∑
i=1

ln fY,Z(Zi, Yi|θ)
∣∣zi, θ′}

= arg max
θ

N

∑
i=1

EY|Z{ln fY,Z(Zi, Yi|θ)
∣∣zi, θ′}.
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Let θx = (µx, σx) and θy = (µy, σy). By using the fact that:

fY,Z(zi, yi|θ) = fZ|Y(zi|yi, θx) fY(yi|θy), (11)

then (10) can be maximized separately in respect to the set of parameters θx and θy
as follows:

θ̂x = arg max
θx

N

∑
i=1

EY|Z{ln fZ|Y(Zi|Yi, θx)
∣∣zi, θ′} (12)

θ̂y = arg max
θy

N

∑
i=1

EY|Z{ln fY(Yi|θy)
∣∣zi, θ′}. (13)

By developing these two equations, and differentiating with respect to µx, σx, µy and
σy (Appendix A.2), we provide the estimate θ̂x = (µx, σx) and θ̂y = (µy, σy):

µ̂x =
1
N

N

∑
i=1

ziEY|Z{Yi|zi, θ′} (14)

σ̂2
x =

1
N

N

∑
i=1

z2
i EY|Z{Y2

i |zi, θ′} − µ̂2
x (15)

µ̂y =
1
N

N

∑
i=1

EY|Z{Yi|zi, θ′} (16)

σ̂2
y =

1
N

N

∑
i=1

EY|Z{Y2
i |zi, θ′} − µ̂2

y. (17)

where EY|Z{Yi|zi, θ′} and EY|Z{Y2
i |zi, θ′} are the posterior expectation values dependent of

the distribution of Y given by:

EY|Z{Yi|zi, θ′} = γ

µ

1F1

(
2, 3

2 ; γ2

4µ

)
1F1

(
1, 1

2 ; γ2

4µ

) , (18)

and

EY|Z{Y2
i |zi, θ′} = 1

µ

1F1

(
2, 1

2 ; γ2

4µ

)
1F1

(
1, 1

2 ; γ2

4µ

) , (19)

with µ =
1
2

(
z2

i
σ2

x
+

1
σ2

y

)
and γ =

µy

σ2
y
+

µx

σ2
x

zi.

The proof of both these expressions is also in Appendix A.2. This leads to the following
iterative Algorithm 2 for solving the maximum likelihood problem:

3.3. Comparison with Normal Assumptions Baseline

To show the benefit of using the Bayesian and EM estimations with the PZ distribu-
tion, we compare them with a standard normal distribution assumption and the normal
approximation proposed in [34].

3.4. Numerical Experiments

We now present the metrics used to establish the value of the proposed non-Gaussian
estimator for PZ. We then describe the numerical simulation undertaken with these metrics.
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Algorithm 2: EM algorithm.

1. Input: N, zi, ε

2. Output: θ̂ = (µ̂x, σ̂x, µ̂y, σ̂y) and consequently (β̂, ρ̂, δ̂y)
3. Initialization:
4. Set the parameters θ′ = (µ′x, σ′x, µ′y, σ′y)

5. Loop:
6. Repeat

7. Calculate µ′ = 1
2

(
z2

i
σ′2x

+ 1
σ′2y

)
and γ′ =

µ′y
σ′2y

+ µ′x
σ′2x

zi

8. Estimate µ̂x = 1
N ∑N

i=1 zi
γ′

µ′
1F1

(
2, 3

2 ; γ′2
4µ′

)
1F1

(
1, 1

2 ; γ′2
4µ′

)

9. Estimate σ̂2
x = 1

N ∑N
i=1 z2

i
1
µ′

1F1

(
2, 1

2 ; γ′2
4µ′

)
1F1

(
1, 1

2 ; γ′2
4µ′

) − µ̂2
x

10. Estimate µ̂y = 1
N ∑N

i=1
γ′

µ′
1F1

(
2, 3

2 ; γ′2
4µ′

)
1F1

(
1, 1

2 ; γ′2
4µ′

)

11. Estimate σ̂2
y = 1

N ∑N
i=1

1
µ′

1F1(2, 1
2 ; γ′2

4µ′ )

1F1(1, 1
2 ; γ′2

4µ′ )
− µ̂2

y

12. Calculate the stop criterion: D ← ‖θ̂ − θ′‖
13. Define the next iteration initialization: µ′x, σ′x, µ′y, σ′y ← µ̂x, σ̂x, µ̂y, σ̂y

14. Until D < ε

15. Return β̂ =
µ̂x

µ̂y
; ρ̂ =

σ̂y

σ̂x
; δ̂y =

σ̂y

µ̂y
;

3.4.1. Fractional Moments

Dividing two normal distributions lead to a high variability of the mean value. This
problem has been raised in agricultural research [40]. For a coefficient of variation of Y
(CVY) strictly lower than 0.2, the mean value of the ratio is stable. The coefficient of variation
of Y is equal to δy: the ratio of the standard deviation to the mean of Y. Thus, we used
interchangeably δy or CVY. For the bacteria data set, δy values are between 0.2 and 0.3 (see
Table 4), and for the fungal pathogen data set, δy values are between 0.8 and 1.3 (see Table 5).
Therefore, we are not in a situation with a stable mean ratio. We propose an alternative for
the mean value in these cases. We suggest using the mean of the fractional moment.

Table 4. The values of β, ρ and δy associated with the fluorescence data on Healthy and Diseased
plants of the bacteria data set. D0, . . . , and D8 are the six days of the acquisition of chlorophyll
fluorescence images.

Time
β ρ δy

Healthy Diseased Healthy Diseased Healthy Diseased

D0 0.150 0.231 5.840 4.947 0.213 0.186
D2 0.150 0.232 5.855 4.133 0.221 0.188
D5 0.153 0.256 5.751 4.078 0.220 0.289
D6 0.152 0.253 5.788 4.020 0.223 0.283
D7 0.154 0.252 5.753 4.058 0.224 0.285
D8 0.152 0.244 5.812 4.004 0.224 0.284
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Table 5. The values of β, ρ and δy associated with the fluorescence data on Healthy and Diseased
plants of the fungal pathogen data set. 0 h, . . . , 96 h are the five times of the acquisition of chlorophyll
fluorescence images.

Time
β ρ δy

Healthy Diseased Healthy Diseased Healthy Diseased

0 h 0.176 6.198 0.237
24 h 0.181 0.376 5.262 3.580 0.408 0.843
48 h 0.196 0.371 5.238 3.046 0.550 0.913
72 h 0.196 0.424 5.599 3.570 0.364 0.870
96 h 0.197 0.420 5.408 3.239 0.522 1.280

We give the expression for these moments that benefits from the independence of the
variability of the denominator. The fractional moments expression is given by:

E{|Z|s} =
(

σx

σy

)s Γ(1− s)Γ(1 + s)
Γ(1− s

2 )Γ(1 +
s
2 )

1F1

(
s
2

,
1
2

,−
µ2

y

2σ2
y

)
1F1

(
−s
2

,
1
2

,− µ2
x

2σ2
x

)
(20)

= ρ−s Γ(1− s)Γ(1 + s)
Γ(1− s

2 )Γ(1 +
s
2 )

1F1

(
s
2

,
1
2

,− 1
2δ2

y

)
1F1

(
−s
2

,
1
2

,− 1
2δ2

x

)
(21)

with β = µx
µy

, ρ =
σy
σx

, δx = σx
µx

, δy =
σy
µy

. The proof of this expression is given in Appendix A.4
for 0 < s < 1.

3.4.2. Monte Carlo Experiments

To have ground truth in the evaluation of the value of the estimator of PZ, we resorted
to the use of simulation of the two empirical data sets both in the healthy and diseased
plants. We considered the size of the smallest leaves and the largest ones on our two data
sets. We found 10 pixels for the smallest leaves and 80 for the largest ones. Generation
of Gaussian distribution for Fm and F0 mimicking the experimental observation of our
two experimental data sets given in Tables 2 and 3. The resulting observations of Fv/Fm
were computed. The two proposed non-Gaussian estimators and the Gaussian baselines
estimator described in the previous section were computed. Simulations were repeated
5000 times to compute average performance and associated standard deviations. The end
point of our experiments is the relative error:

RE = Measured−Estimated
Estimated .

The measured value is the exact value of the fractional moment, and the estimated
value is obtained with one of the compared estimators. This comparison is made at all dates
of the experimental data used for the simulation. The prior values used in our proposed
methods are initialized with the values of the first day of the experiment.

4. Results

We are now ready to assess the importance of non-Gaussianity in chlorophyll fluo-
rescence images via the comparison of the relative error of our two proposed statistical
estimators against the standard estimator under Gaussian assumptions.

4.1. Arabidopsis thaliana Inoculated by a Bacteria

To illustrate the non-Gaussianity of the bacteria data set, we provide the distribution
of PZ for the mean values of β, ρ, and δy over the six days of our real experimental data set
both for Healthy and Diseased in Figure 3. The normal approximation is added. One can
observe a small deviation from Gaussianity.
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Figure 3. The distribution PZ of the ratio Fv/Fm (Fm maximum fluorescence and Fv = Fm − F0, F0

minimum fluorescence) is the black curve with circle points, and the normal approximation is the red
curve with crossed points. The parameters β , ρ , and δy of the distribution PZ are associated with
the mean value of these parameters over the six days of the acquisition of chlorophyll fluorescence
images for (a) Healthy: β = 0.15, ρ = 5.79 and δy = 0.22 and (b) Diseased: β = 0.24, ρ = 4.21 and
δy = 0.25 plants of the bacteria data set.

We considered the second-order fractional moment of PZ for this first data set since it
led to stable results of the mean of fractional moments for the values of δy between 0.3 and
1 (see Appendix A.5). We calculated these second-order fractional moments of PZ for each
day of the experiment (Table 6). These are the measured values to which we will compare
the estimated values obtained with the Monte Carlo simulations with 10 and 80 samples.
The results of the Monte Carlo simulation are given in Table 7. The normal distribution
and the normal approximation are the methods of estimation when assuming a normal
distribution of Fv/Fm. Bayesian and EM estimation are the two proposed non-Gaussian
estimators with PZ distribution.

Table 6. Second-order fractional moment of PZ distribution of the ratio for the healthy and diseased
leaves of the bacteria data set. D0, . . . , and D8 are the six days of the acquisition of chlorophyll
fluorescence images.

Plants
Time

D0 D2 D5 D6 D7 D8

Healthy 0.608 0.608 0.604 0.606 0.603 0.605
Diseased 0.514 0.514 0.478 0.482 0.483 0.492
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Table 7. The mean value (µ) and the associated standard deviation (σ) of the second-order fractional
moment of the Monte Carlo simulation for 10 and 80 sample sizes, with the first day of the experiment
as a reference value, with the assumptions of Gaussian probability density function and the Gaussian
approximation proposed in [34] and with the two non-Gaussian estimators, Bayesian and EM.

Method of Estimation

Plants, Sample Size (N)

Healthy, Healthy, Diseased, Diseased,
N = 10 N = 80 N = 10 N = 80

µ σ µ σ µ σ µ σ

Normal distribution 0.591 0.037 0.613 0.009 0.524 0.016 0.523 0.007

Normal approximation 0.618 0.021 0.618 0.007 0.523 0.019 0.523 0.007

Bayesian estimation 0.608 0.022 0.608 0.008 0.515 0.020 0.514 0.007

EM estimation 0.612 0.017 0.608 0.008 0.516 0.021 0.513 0.008

With both measured (Table 6) and estimated values (Table 7), we calculate the relative
error for each day of the experiment. The mean value of the relative error over the six days
of the experiment is given in Table 8, for Healthy and Diseased plants, and per sample size.

Table 8. Mean value of the relative error ( % ) for the five days of the experiment per method of
estimation and per sample size, N, for Healthy and Diseased plants of the bacteria data set.

Method of Estimation

Plants, Sample Size (N)

Healthy, Healthy, Diseased, Diseased,
N = 10 N = 80 N = 10 N = 80

Normal distribution 2 1 6 6

Normal approximation 2 2 6 6

Bayesian estimation 0 0 4 4

EM estimation 1 0 5 4

The maximum value of the relative error was not high: 6% with normal assumptions.
The relative error is lower for Healthy compared to Diseased plants. Overall, we have a
lower error with Bayesian and EM estimations compared to the normal distribution and
normal approximation.

4.2. Arabidopsis thaliana Infected with a Fungal Pathogen

We apply the same analysis to the fluorescence images of Arabidopsis thaliana infected
with a fungal pathogen. We start with a representation of the distribution of PZ associated
with the mean values of β, ρ, and δy over the five dates of the empirical data set for both
Healthy and Diseased plants, Figure 4.

The deviation from normality is more pronounced with this data set. We calculate
the measured values of the fourth-order fractional moment of Fv/Fm for each date of the
experiment (Table 9). The choice to use the fourth order is due to the higher values of
δy in this data set. Thus, a lower value of the fractional moment was more appropriate
(cf. simulation of CVy in Appendix A.5). We then calculate the mean value of the fourth-
order fractional moment with the Monte-Carlo simulations for 10 and 80 sample sizes.
The simulation results are in Table 10. The mean values represent the estimated fourth-order
fractional moment with the four methods of estimation: normal distribution assumption,
the normal approximation, and the two non-Gaussian estimators, Bayesian and EM.
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Figure 4. The distribution PZ of the ratio Fv/Fm (Fm maximum fluorescence and Fv = Fm − F0, F0

minimum fluorescence) is the black curve with circle points, and the normal approximation is the red
curve with crossed points. The parameters β , ρ , and δy of the distribution PZ are associated with
the mean value of these parameters over the six days of the acquisition of chlorophyll fluorescence
images for (a) Healthy: β = 0.192, ρ = 5.377 and δy = 0.461 and (b) Diseased: β = 0.358, ρ = 3.359
and δy = 0.976 plants of the fungal pathogen data set.

Table 9. Fourth-order fractional moment of PZ distribution of the ratio for the Healthy and Diseased
plants of the fungal pathogen data set. 0 h, . . . , 96 h are the five times of the acquisition of chlorophyll
fluorescence images.

Plants
Time

0 h 24 h 48 h 72 h 96 h

Healthy 0.349 0.335 0.304 0.322 0.306
Diseased - 0.165 0.168 0.138 0.157

We calculate the relative error per time of experiment with the measured value of the
fourth-order fractional moment (Table 9) and the estimated values (Table 10). We give in
Table 11 the mean value of the relative error over all the experiment acquisition times.

We see clearly on the fungal data set that the relative error is much higher if one
supposes a normal distribution of the ratio: 26% for healthy (N = 10) and 82% for diseased
(N = 10) v.s around 6% and 7% for Bayesian and EM estimations. Thus, these results show
that using a normal distribution or normal approximation of the ratio Fv/Fm leads to more
or less wrong results depending on how pronounced is the deviation from Gaussianity.
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Table 10. The mean value (µ) and the associated standard deviation (σ) of the fourth-order fractional
moment of the Monte Carlo simulation with 24 h as a reference value.

Method of Estimation

Plants, Sample Size (N)

Healthy, Healthy, Diseased, Diseased,
N = 10 N = 80 N = 10 N = 80

µ σ µ σ µ σ µ σ

Normal distribution 0.399 0.037 0.277 0.018 0.284 0.053 0.055 0.025

Normal approximation 0.370 0.035 0.369 0.012 0.231 0.055 0.231 0.019

Bayesian estimation 0.337 0.047 0.334 0.018 0.167 0.107 0.165 0.038

EM estimation 0.327 0.070 0.334 0.017 0.163 0.106 0.165 0.037

Table 11. Mean value of the relative error (%) for the five times of the experiment per method of
estimation and per number of observations for Healthy and Diseased plants of the fungal pathogen
data set.

Method of Estimation

Plants, Sample Size (N)

Healthy, Healthy, Diseased, Diseased,
N = 10 N = 80 N = 10 N = 80

Normal distribution 26 12 82 65

Normal approximation 17 17 48 48

Bayesian estimation 7 6 7 7

EM estimation 5 6 6 7

5. Discussion

We have quantified the importance of considering the non-Gaussianity in the maxi-
mum quantum yield of photosystem II. This non-Gaussianity was only recently highlighted
empirically in [12]. In most of the recent studies using the maximum quantum yield of
photosystem II as phenotyping characteristic [14,15,17–22,24–26], the results are presented
with average and standard deviation. Our mathematical study shows that this may not
be the most appropriate approach especially when the distribution of the gray levels in
Fv/Fm strongly deviates from Gaussianity. This advocate for the use of box plots like in [23]
to easily visualize the non-Gaussianity. The only use of average and standard deviation
in [14,15,17–22,24–26] was not problematic as the maximum quantum yield of photosystem
II is not used as a biomarker for its absolute value but rather to differentiate different pheno-
types. However, our mathematical models show that the distribution can be nonsymmetric
with heavy tails. This may explain why advanced models have been used in the literature
for decision making with decisions trees [41,42] or Gaussian mixtures [12,13] for decision
making. We focus on estimation in this article which is distinct from detection. It could be
an interesting perspective to compare the advanced approaches [12,13,41,42] with a simple
single threshold to be applied to the non-Gaussian distribution considered in our work.

6. Conclusions

In this article, we have demonstrated the importance to consider mathematically
the non-Gaussianity of vegetation indices composed of a ratio of images corrupted by
Gaussian noises. This was illustrated and detailed with chlorophyll fluorescence images.
We have designed estimators adapted to this non-Gaussianity under the hypothesis of
independence of the distribution of the images used in the ratio. Despite the simplicity of
this model, the benefits of this approach by comparison with the usual Gaussian assumption
was demonstrated.
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In this work, we focused on estimating the distribution parameters of the ratio Fv/Fm
used in chlorophyll fluorescence indices. In the two chlorophyll fluorescence, infected
plants data sets that we considered, the distribution of this ratio Fv/Fm didn’t follow a
normal distribution. If more chlorophyll fluorescence data sets are available, it could be
interesting to have a range of the parameters for the density distribution of the ratio and to
identify the intervals for these parameters where normality is verified.

This work could be extended in various directions. Many vegetation indices include
a ratio of images and therefore could benefit from the approach proposed in the article.
With the two empirical data sets considered, the deviation from Gaussianity was limited, but
it was enough to show the importance to use adapted non-Gaussian models. Theoretically,
the deviation from Gaussianity can be severe. Therefore, it is fundamentally important to
have mathematically grounded estimators. The assumption of independence of the images
is a current limitation of our approach that produced lower error but yet biased estimators,
especially for small leaves (with a small number of observations). It would be interesting to
design models of covariance between images used in the vegetation indices ratio in order
to propose possibly unbiased estimators independently of the size of the leaves.
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Appendix A

Appendix A.1. Ratio Distribution

The aim of this appendix is to show the passage from the distribution of the ratio
written as Equation (2) to the distribution of the ratio written with the hypergeometric
function Equation (3). We start by recalling two equalities that will be used hereinafter in
the proof.

Prerequisite A1 ([43], Section 3.462, Equation (5)).∫ ∞

0
xe−µx2−2λxdx =

1
2µ

[
1− λ

√
π

µ
e

λ2
µ

(
1− er f

(
λ
√

µ

))]
, Real(µ) > 0 (A1)

Since erf(.) function is an odd function, it follows:

∫ ∞

0
xe−µx2−2λxdx +

∫ ∞

0
xe−µx2+2λxdx =

1
µ

[
1 +

√
π

λ2

µ
e

λ2
µ erf

(
λ
√

µ

)]
(A2)



Remote Sens. 2023, 15, 528 17 of 28

Prerequisite A2 ([43], Section 3.462, Equation (1)).

∫ ∞

0
xν−1e−µx2−γxdx =

(
1

2µ

) ν
2
Γ(ν)e

γ2
8µ D−ν

(
γ√
2µ

)
, Real(µ) > 0, real(ν) > 0 (A3)

with D−ν(z) the parabolic cylinder function defined as follow:

D−ν(z) = 2−
ν
2 e−

z2
4

 √
π

Γ
(

1+ν
2

) 1F1

(
ν

2
,

1
2

;
z2

2

)
−
√

2π

Γ
(

ν
2
) z 1F1

(
1 + ν

2
,

3
2

;
z2

2

),

Γ(ν) is the gamma function and 1F1(.) is the confluent hypergeometric function.

Proof. Set X ∼ N (µx, σx) and Y ∼ N (µy, σy). We will start by proving the probability
distribution of the ratio Z = X/Y since, at one step of the proof, the switch to the hyper-
geometric function will be realised. We denote by g(z, y) the pdf of the joint two random
variables (Z = X/Y, Y = Y). It is given as following:

g(z, y) = f (x, y)
∣∣∣∣ ∂(z, y)
∂(x, y)

∣∣∣∣−1

, (A4)

where the Jacobian determinant of the change of variables is given by |J| =
∣∣∣∣ ∂(z,y)

∂(x,y)

∣∣∣∣ and

calculated as follow: |J| =
∂z
∂x

∂z
∂y

∂y
∂x

∂y
∂y

=
1
y − x

y2

0 1
=
∣∣ 1

y

∣∣.
Therefore,

g(z, y) = |y| f (x, y). (A5)

The probability distribution of the ratio Z = X/Y, denoted pZ(z), is given by:

pZ(z) =
∫ ∞

−∞
g(z, y)dy =

∫ ∞

−∞
|y| f (x, y)dy. (A6)

Since the two random variables X and Y are independent then f (x, y) = fX(x) fY(y).
The expression of pZ(z) is then given by

pZ(z) =
∫ ∞

−∞
|y| fX(x) fY(y)dy

=
∫ ∞

−∞
|y| fX(zy) fY(y)dy, since x = zy

=
1

2πσxσy

∫ ∞

−∞
|y|e
− (zy−µx)2

2σ2
x e

− (y−µy)2

2σ2
y dy

=
1

2πσxσy
e
− 1

2

(
µ2

x
σ2

x
+

µ2
y

σ2
y

) ∫ ∞

−∞
|y|e
− 1

2

(
z2

σ2
x
+ 1

σ2
y

)
y2+

(
µx
σ2

x
z+

µy
σ2

y

)
y
dy

=
1

2πσxσy
e
− 1

2

(
µ2

x
σ2

x
+

µ2
y

σ2
y

)∫ ∞

0
ye
− 1

2

(
z2

σ2
x
+ 1

σ2
y

)
y2+

(
µx
σ2

x
z+

µy
σ2

y

)
y
dy−

∫ 0

−∞
ye
− 1

2

(
z2

σ2
x
+ 1

σ2
y

)
y2+

(
µx
σ2

x
z+
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σ2

y
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y
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=

1
2πσxσy

e
− 1

2
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x
σ2

x
+
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)∫ ∞

0
ye
− 1

2

(
z2

σ2
x
+ 1

σ2
y

)
y2+

(
µx
σ2

x
z+

µy
σ2

y

)
y
dy +

∫ ∞

0
te
− 1

2

(
z2

σ2
x
+ 1

σ2
y

)
t2−

(
µx
σ2

x
z+

µy
σ2

y

)
t
dt

.



Remote Sens. 2023, 15, 528 18 of 28

By a direct application of Prerequisite A1, with: µ =
1
2

(
z2

σ2
x
+

1
σ2

y

)
and

λ =
1
2

(
µx

σ2
x

z +
µy

σ2
y

)
, then,

λ2

µ
=

1
2

(µyσ2
x + µxσ2

y )
2

σ2
x σ2

y

1
σ2

x + σ2
y z2 .

Setting: β =
µx

µy
, ρ =

σy

σx
, and δy =

σy

µy
, we have the three following equations:

λ2

µ
=

1
2

1
δ2

y

(1 + βρ2z)2

1 + ρ2z2 =
1
2

q2 with q =
1
δy

1 + βρ2z√
1 + ρ2z2

(A7)

e
− 1

2

(
µ2

x
σ2

x
+

µ2
y

σ2
y

)
= e
− 1

2
1+β2ρ2

δ2
y (A8)

1
2πσxσy

1
µ
=

ρ

π(1 + ρ2z2)
. (A9)

The probability distribution of the ratio, pZ(z) is then given by:

pZ(z) =
ρ

π(1 + ρ2z2)
e
− 1

2
1+β2ρ2

δ2
y

[
1 +

√
π

q2

2
e

q2
2 er f

(
q√
2

)]
. (A10)

This probability distribution could be written differently using the Prerequisite A2.
In fact, the integral in (A1) is a particular form of the integral in (A3). We can then write the
Equation (A2) considering ν = 2 as follow:

∫ ∞

0
xe−µx2−γxdx +

∫ ∞

0
xe−µx2+γxdx =

1
2µ

e
γ2
8µ

[
D−2

(
γ√
2µ

)
+ D−2

(
− γ√

2µ

)]
. (A11)

Since ∀ real(ν) > 0, we have:

D−ν(z) + D−ν(−z) = 2× 2−
ν
2 e−

z2
4

√
π

Γ
(

1+ν
2

) 1F1

(
ν

2
,

1
2

;
z2

2

)
. (A12)

Therefore

D−2

(
γ√
2µ

)
+ D−2

(
− γ√

2µ

)
= e−

γ2
8µ

√
π

Γ
( 3

2
) 1F1

(
1,

1
2

;
γ2

4µ

)
= 2e−

γ2
8µ 1F1

(
1,

1
2

;
γ2

4µ

)
. (A13)

and ∫ ∞

0
xe−µx2−γxdx +

∫ ∞

0
xe−µx2+γxdx =

1
µ 1F1

(
1,

1
2

;
γ2

4µ

)
. (A14)

Since γ = 2λ =
µy

σ2
y
+

µx

σ2
x

z, it’s obvious that
γ2

4µ
=

1
2

q2.

In summary, the final expression of pZ(z) is given by:

pZ(z) =
ρ

π(1 + ρ2z2)
e
− 1

2
1+β2ρ2

δ2
y 1F1

(
1,

1
2

;
1

2δ2
y

(1 + βρ2z)2

1 + ρ2z2

)
(A15)
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Appendix A.2. EM Algorithm Estimations

We recall that the aim of this appendix is to find the estimations of θx = (µx, σx) and
θy = (µy, σy) associated to the maximisation problem:

θ̂x = arg max
θx

N

∑
i=1

EY|Z{ln fZ|Y(Zi|Yi, θx)
∣∣zi, θ′} (A16)

θ̂y = arg max
θy

N

∑
i=1

EY|Z{ln fY(Yi|θy)
∣∣zi, θ′}. (A17)

Estimation of θx = (µx, σx):
Since

ln fZ|Y(zi|yi, θx) = ln(|yi| fX(ziyi)) (A18)

= ln |yi| − ln
√

2πσx −
(ziyi − µx)

2

2σ2
x

, (A19)

by replacing (A18) in (A16), differentiating with respect to µx and σx, and setting the result
to zero:

µ̂x =
1
N

N

∑
i=1

ziEY|Z{Yi|zi, θ′} (A20)

σ̂2
x =

1
N

N

∑
i=1

EY|Z{(ziYi − µ̂x)
2|zi, θ′}. (A21)

However,

EY|Z{(ziYi − µ̂x)
2|zi, θ′} = EY|Z{z2

i Y2
i + µ̂2

x − 2ziYiµ̂x|zi, θ′}
= EY|Z{z2

i Y2
i |zi, θ′}+ µ̂2

x − 2ziµ̂xEY|Z{Yi|zi, θ′}. (A22)

Thus

1
N

N

∑
i=1

EY|Z{(ziYi − µ̂x)
2|zi, θ′} = 1

N

N

∑
i=1

z2
i EY|Z{Y2

i |zi, θ′}+ µ̂2
x − 2µ̂x

1
N

N

∑
i=1

ziEY|Z{Yi|zi, θ′} (A23)

=
1
N

N

∑
i=1

z2
i EY|Z{Y2

i |zi, θ′} − µ̂2
x.

In summary

µ̂x =
1
N

N

∑
i=1

ziEY|Z{Yi|zi, θ′} (A24)

σ̂2
x =

1
N

N

∑
i=1

z2
i EY|Z{Y2

i |zi, θ′} − µ̂2
x, (A25)

where EY|Z{Yi|zi, θ′} and EY|Z{Y2
i |zi, θ′} are the posterior expectation values dependent of

the distribution of Y.
Estimation of θy = (µy, σy):
Since

ln fY(Yi|θy) = − ln
√

2πσy −
(yi − µy)2

2σ2
y

, (A26)
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by replacing (A26) in (A17), differentiating with respect to µx and σx, and setting the result
to zero:

µ̂y =
1
N

N

∑
i=1

EY|Z{Yi|zi, θ′} (A27)

σ̂2
y =

1
N

N

∑
i=1

EY|Z{Y2
i |zi, θ′} − µ̂2

y. (A28)

Determination of EY|Z{Yi|zi, θ′} and EY|Z{Y2
i |zi, θ′}:

The posterior expectation EY|Z{Yi|zi, θ′} and EY|Z{Y2
i |zi, θ′} are given by:

EY|Z{Yi|zi, θ′} =
∫ ∞

−∞
yi fY|Z(yi|zi)dyi (A29)

EY|Z{Y2
i |zi, θ′} =

∫ ∞

−∞
y2

i fY|Z(yi|zi)dyi. (A30)

Both these equations depends on the posterior distribution fY|Z(yi|zi) given by:

fY|Z(yi|zi) =
|yi| fX(yizi) fY(yi)

gZ(zi)

=
|yi|e

− (yizi−µx)
2

2σ2
x e

− (yi−µy)
2

2σ2
y

e
− 1

2

(
µ2

x
σ2

x
+

µ2
y

σ2
y

)
1
µ 1F1

(
1, 1

2 , γ2

4µ

)
=
|yi|e−µy2

i +γyi

1
µ 1F1

(
1, 1

2 , γ2

4µ

) , (A31)

with µ =
1
2

(
z2

i
σ2

x
+

1
σ2

y

)
and γ =

µy

σ2
y
+

µx

σ2
x

zi.

Therefore, the posterior expectation EY|Z{Yi|zi, θ′} is equal to:

EY|Z{Yi|zi, θ′} =
∫ ∞

−∞
yi fY|Z(yi|zi)dyi

=
µ

1F1

(
1, 1

2 , γ2

4µ

) ∫ ∞

−∞
yi|yi|e−µy2

i +γyi dyi

=
µ

1F1

(
1, 1

2 , γ2

4µ

)[∫ ∞

0
y2

i e−µy2
i +γyi dyi −

∫ 0

−∞
y2

i e−µy2
i +γyi dyi

]

=
µ

1F1

(
1, 1

2 , γ2

4µ

)[∫ ∞

0
y2

i e−µy2
i +γyi dyi −

∫ ∞

0
t2
i e−µt2

i −γti dti

]

=
µ

1F1

(
1, 1

2 , γ2

4µ

) ( 1
2µ

)
3
2 Γ(3)e

γ2
8µ

[
D−3

(
− γ√

2µ

)
− D−3

(
γ√
2µ

)]
.

Since ∀ Real(ν) > 0 we have

D−ν(−z)− D−ν(z) = 2× 2−
ν
2 e−

z2
4

√
2π

Γ
(

ν
2
) z 1F1

(
1 + ν

2
,

3
2

;
z2

2

)
, (A32)
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and Γ(3/2) =
√

π/2, the new expression of the posterior expectation is then given by

EY|Z{Yi|zi, θ′} = γ

µ

1F1

(
2, 3

2 ; γ2

4µ

)
1F1

(
1, 1

2 , γ2

4µ

) . (A33)

As for the posterior expectation, EY|Z{Y2
i |zi, θ′}, we have:

EY|Z{Y2
i |zi, θ′} =

∫ ∞

−∞
y2

i fY|Z(yi|zi)dyi

=
µ

1F1

(
1, 1

2 , γ2

4µ

) ∫ ∞

−∞
y2

i |yi|e−µy2
i +γyi dyi

=
µ

1F1(1, 1
2 , γ2

4µ )

[∫ ∞

0
y3

i e−µy2
i +γyi dyi −

∫ 0

−∞
y3

i e−µy2
i +γyi dyi

]

=
µ

1F1

(
1, 1

2 , γ2

4µ

)[∫ ∞

0
y3

i e−µy2
i +γyi dyi +

∫ ∞

0
t3
i e−µt2

i −γti dti

]

=
µ

1F1

(
1, 1

2 , γ2

4µ

)( 1
2µ

)2
Γ(4)e

γ2
8µ

[
D−4

(
− γ√

2µ

)
+ D−4

(
γ√
2µ

)]

=
µ

1F1

(
1, 1

2 , γ2

4µ

)( 1
2µ

)2
Γ(4)e

γ2
8µ

[
2× 2−2e−

γ2
8µ

√
π

Γ
( 5

2
) 1F1

(
2,

1
2

;
γ2

4µ

)]

=
1
µ

1F1

(
2, 1

2 ; γ2

4µ

)
1F1

(
1, 1

2 , γ2

4µ

) .

In summary

EY|Z{Y2
i |zi, θ′} = 1

µ

1F1

(
2, 1

2 ; γ2

4µ

)
1F1

(
1, 1

2 , γ2

4µ

) . (A34)

Appendix A.3. Mean Value of the Ratio

Set X ∼ N (µx, σx) and Y ∼ N (µy, σy). We show in this appendix that the expectation
of the ratio, E{Z} where Z = X/Y is given by

E{Z} = β

δ2
y

1F1

(
1,

3
2

;− 1
2δ2

y

)
(A35)

with β =
µx

µy
and δy =

σy

µy
.

We start by developing the mathematical expectation of the ratio, E{Z}:

E{Z} = E{X}E{ 1
Y
} = µxE{ 1

Y
}. (A36)
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Since Y ∼ N (µy, σy), the new variable T = 1/Y flows the reciprocal normal distribu-
tion with a pdf f (t) defined as follow

f (t) =
1√

2πσyt2
exp

(
−
(
1/t− µy

)2

2σ2
y

)
. (A37)

The mean of T doesn’t exist since t f (t) is not Lebesgue integrable. We propose here
the expectation of the variable T by computing the Cauchy principal value of t f (t) given
as follows:

E{T} = P.V.
∫ +∞

−∞
t f (t)dt = P.V.

1√
2πσy

∫ +∞

−∞

1
t

exp

(
−
(
1/t− µy

)2

2σ2
y

)
dt

=
1√

2πσy

(
lim
ε→0

∫ −ε

−∞

1
x

exp

(
−
(
x− µy

)2

2σ2
y

)
dx + lim

ε→0

∫ +∞

ε

1
x

exp

(
−
(
x− µy

)2

2σ2
y

)
dx

)

=
1√

2πσy

(
lim
ε→0

∫ +∞

ε

1
x

exp

(
−
(
x− µy

)2

2σ2
y

)
dx− lim

ε→0

∫ +∞

ε

1
x

exp

(
−
(
−x− µy

)2

2σ2
y

)
dx

)

=
1√

2πσy
lim
ε→0

∫ +∞

ε

1
x

[
exp

(
−
(x− µy)2

2σ2
y

)
− exp

(
−
(−x− µy)2

2σ2
y

)]
dx

=
2√

2πσy
exp

(
−

µ2
y

2σ2
y

) ∫ +∞

0

1
x

sinh

(
xµx

σ2
y

)
exp

(
− x2

2σ2
y

)
dx.

Using the following property (see [43], Section 3.562)

∫ +∞

0
x2µ−1 exp

(
−βx2

)
sinh(γx)dx =

1
2

Γ(2µ)(2β)−µ exp
(

γ2

8β

)
×[

D−2µ

(
− γ√

2β

)
− D−2µ

(
γ√
2β

)]
, (A38)

under the conditions Real(µ) > −1/2 and Real(β) > 0, and using Equation (A4), we can
deduce:

D−2µ

(
− γ√

2β

)
− D−2µ

(
γ√
2β

)
= 2× 2−µ exp

(
−γ2

8β

)√
2π

Γ(µ)
γ√
2β

1F1

(
1 + 2µ

2
,

3
2

,
γ2

4β

)
. (A39)

Thus,

∫ +∞

0
x2µ−1 exp(−βx2) sinh(γx)dx = 2−µ(2β)−µ Γ(2µ)

Γ(µ)

√
2π

γ√
2β

1F1

(
1 + 2µ

2
,

3
2

,
γ2

4β

)
. (A40)

In the case µ = 0, the above equation becomes:

∫ +∞

0
x−1 exp(−βx2) sinh(γx)dx = lim

µ→0

Γ(2µ)

Γ(µ)

√
2π

γ√
2β

1F1

(
1
2

,
3
2

,
γ2

4β

)
. (A41)

Knowing that lim
µ→0

µΓ(µ) = 1 then lim
µ→0

2µΓ(2µ)
2µΓ(µ) = 1/2. As a consequence,

∫ +∞

0
x−1 exp(−βx2) sinh(γx)dx =

√
π

2
γ√
2β

1F1

(
1
2

,
3
2

,
γ2

4β

)
. (A42)
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By applying this result to Equation (A38), we get then after identification:

E{T} =
µy

σ2
y

exp

(
−

µ2
y

2σ2
y

)
1F1

(
1
2

,
3
2

,
µ2

y

2σ2
y

)

=
µy

σ2
y

1F1

(
1,

3
2

,−
µ2

y

2σ2
y

)
. (A43)

The last equation is obtained using the property (see [43], Section 9.212):

1F1(α, γ, z) = ez
1F1(γ− α, γ,−z). (A44)

We have therefore proven that:

E{Z} = µx
µy

σ2
y

1F1

(
1,

3
2

;−
µ2

y

2σ2
y

)

=
β

δ2
y

1F1

(
1,

3
2

;− 1
2δ2

y

)
, with β =

µx

µy
and δy =

σy

µy
. (A45)

Appendix A.4. Fractional Moments of the Absolute Value of the Ratio

Set X ∼ N (µx, σx) and Y ∼ N (µy, σy). We provide in this appendix the fractional
absolute moments given by

E{|Z|s} = E{|X|s}E{|1/Y|s}, Z = X/Y, ∀s, 0 < s < 1 (A46)

Set T = 1/Y. We calculate then E{|T|s}:

E{|T|s} = 1√
2πσy

∫ +∞

−∞
|t|s−2 exp

−
(

1
t − µy

)2

2σ2
y

dt

=
1√

2πσy

∫ 0

−∞
(−t)s−2 exp−

(
1
t − µy

)2

2σ2
y

dt +
∫ ∞

0
ts−2 exp−

(
1
t − µy

)2

2σ2
y

dt


=

1√
2πσy

(∫ +∞

0
x−s exp−

(
−x− µy

)2

2σ2
y

dx +
∫ +∞

0
x−s exp−

(
x− µy

)2

2σ2
y

dx

)

=
1√

2πσy
exp

(
−

µ2
y

2σ2
y

) ∫ +∞

0
x−s exp

(
− x2

2σ2
y

)[
exp

(
µyx
σ2

y

)
+ exp

(
−

µyx
σ2

y

)]
dx

=
2√

2πσy
exp

(
−

µ2
y

2σ2
y

) ∫ +∞

0
x−s exp

(
− x2

2σ2
y

)
cosh

(
µyx
σ2

y

)
dx. (A47)

Using the following property(see [43], Section 3.562):

∫ +∞

0
x2µ−1 exp(−β2x2) cosh(γx)dx =

1
2

Γ(2µ)(2β)−µ exp
(

γ2

8β

)
×[

D−2µ

(
− γ√

2β

)
+ D−2µ

(
γ√
2β

)]
(A48)

Real(µ) > 0, Real(β) > 0.
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And knowing that

D−2µ

(
− γ√

2β

)
+ D−2µ

(
γ√
2β

)
= 2× 2−µ exp

(
−γ2

8β

) √
π

Γ
(

1+2µ
2

) 1F1

(
µ,

1
2

;
γ2

4β

)
(A49)

We deduce:∫ +∞

0
x2µ−1 exp(−β2x2) cosh(γx)dx = Γ(2µ)(4β)−µ

√
π

Γ
(

1+2µ
2

) 1F1

(
µ,

1
2

,
γ2

4β

)
(A50)

Substituting this last property in Equation (A47) leads to:

E{|T|s} = 2√
2πσy

exp

(
−

µ2
y

2σ2
y

)
Γ(1− s)σ1−s

y 2
s−1

2

√
π

Γ
( 2−s

2
) 1F1

(
1− s

2
,

1
2

,
µ2

y

2σ2
y

)
(A51)

After simplification, we have:

E{|T|s} =
(√

2
σy

)s

exp

(
−

µ2
y

2σ2
y

)
Γ(1− s)

Γ(1− s/2) 1F1

(
1− s

2
,

1
2

,
µ2

y

2σ2
y

)

=

(√
2

σy

)s
Γ(1− s)

Γ(1− s/2) 1F1

(
s
2

,
1
2

,−
µ2

y

2σ2
y

)
(A52)

We deduce the case of X:

E{|X|s} =
(

σx√
2

)s Γ(1 + s)
Γ(1 + s/2) 1F1

(
−s
2

,
1
2

,− µ2
x

2σ2
x

)
(A53)

To conclude:

E{|Z|s} =
(

σx

σy

)s Γ(1− s)Γ(1 + s)
Γ
(
1− s

2
)
Γ
(
1 + s

2
) 1F1

(
s
2

,
1
2

,−
µ2

y

2σ2
y

)
1F1

(
−s
2

,
1
2

,− µ2
x

2σ2
x

)

= ρ−s Γ(1− s)Γ(1 + s)
Γ
(
1− s

2
)
Γ
(
1 + s

2
) 1F1

(
s
2

,
1
2

,− 1
2δ2

y

)
1F1

(
−s
2

,
1
2

,− 1
2δ2

x

)
(A54)

with β =
µx

µy
, ρ =

σy

σx
, δx =

σx

µx
, δy =

σy

µy
.

Appendix A.5. Simulation of the CVY

We investigate at first the variation of the mean value of the fractional moments for
δy values between 0.2 and 0.3. These values correspond to δy of the bacteria data set.
We simulate as follows: repeat 5000 times the calculation of the second-order fractional
moments mean for ten pairs of observations Xi/Yi, where Xi ∼ N(µX, σX) and Yi ∼
N(µY, σY), under varying coefficients of variation, with µX/µY = 0.15. This corresponds to√

µX/µY = 0.39. Deduce the standard deviation associated with these 5000 values of the
fractional means. The choice of µX/µY = 0.15 does not impact the simulation as pointed
out in [40]. Nevertheless, we chose a value close to the bacteria data for this first simulation.
The simulation results of CVy are in Table A1.
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Table A1. Simulation of the ratio distribution: mean values of the fractional moment of the sec-
ond order and standard deviations (in brackets) for 5000 values of 10 pairs of observations Xi/Yi,
where Xi ∼ N(µX , σX) and Yi ∼ N(µY , σY), under varying coefficients of variation of Y and X,
with

√
µX/µY = 0.39.

CVX
CVY

0.20 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30

0.20 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41 0.41
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.05)

0.21 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41 0.41
(0.02) (0.02) (0.02) (0.02) (0.04) (0.02) (0.03) (0.04) (0.03) (0.05)

0.22 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41
(0.02) (0.02) (0.02) (0.02) (0.04) (0.03) (0.03) (0.04) (0.03) (0.04)

0.23 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.04) (0.04)

0.24 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41
(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04)

0.25 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.03) (0.08)

0.26 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04)

0.27 0.39 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.41
(0.02) (0.02) (0.02) (0.03) (0.03) (0.06) (0.03) (0.03) (0.04) (0.08)

0.28 0.39 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.05)

0.29 0.39 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41
(0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.04)

0.30 0.39 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41
(0.02) (0.02) (0.02) (0.03) (0.03) (0.06) (0.03) (0.06) (0.04) (0.04)

The estimated values of
√

µX/µY are close to 0.39, and the standard deviations (in
brackets) associated with the mean values of the fractional moments of the second order
show a very low variation. Thus, we use the second-order fractional moment for the
bacteria data set.

We secondly investigated the mean value of the fractional moment of the second order
for the CVy between 0.8 and 1.3. These values correspond to δy of the Fungal pathogen data
set. It had a high variability for CVy and a poor estimation of the mean value (we don’t
show the results of this simulation for the sake of readability). We then simulated with a
fractional moment of the fourth order (s = 1/4). This corresponds to (µX/µY)

1/4 = 0.65.
The results of this simulation are in Table A2.

The standard deviations (in brackets) associated with the mean values of the fractional
moments of the fourth order show a low variation, and the exact value of 0.65 is reasonably
approximated. Therefore, we propose to use higher fractional moments for higher values
of δy. In our data sets, we will use s = 1/2 for the bacteria data set and s = 1/4 for the
fungal pathogen data set.
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Table A2. Simulation of the ratio distribution: mean values of the fractional moment of the
fourth order and standard deviations (in brackets) for 5000 values of 10 pairs of observations
Xi/Yi, where Xi ∼ N(µX , σX) and Yi ∼ N(µY , σY), under varying coefficients of variation (CV),
with (µX/µY)

1/4 = 0.65.

CVX
CVY

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.4 0.67 0.68 0.69 0.70 0.71 0.71 0.70 0.70 0.69 0.69
(0.05) (0.06) (0.07) (0.08) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09)

0.5 0.66 0.68 0.69 0.70 0.70 0.70 0.70 0.69 0.69 0.68
(0.06) (0.07) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

0.6 0.66 0.67 0.69 0.69 0.70 0.70 0.69 0.69 0.68 0.68
(0.06) (0.07) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

0.7 0.65 0.67 0.69 0.69 0.69 0.69 0.69 0.69 0.68 0.67
(0.06) (0.07) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

0.8 0.66 0.67 0.69 0.70 0.70 0.70 0.69 0.69 0.68 0.68
(0.06) (0.07) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

0.9 0.66 0.67 0.69 0.70 0.70 0.70 0.69 0.69 0.69 0.68
(0.06) (0.07) (0.09) (0.09) (0.10) (0.09) (0.10) (0.09) (0.09) (0.09)

1 0.66 0.68 0.70 0.70 0.71 0.70 0.70 0.70 0.69 0.68
(0.06) (0.08) (0.09) (0.09) (0.09) (0.10) (0.10) (0.10) (0.10) (0.09)

1.1 0.67 0.69 0.70 0.71 0.71 0.71 0.71 0.71 0.70 0.69
(0.06) (0.08) (0.09) (0.09) (0.09) (0.10) (0.10) (0.10) (0.10) (0.10)

1.2 0.68 0.69 0.71 0.72 0.72 0.72 0.71 0.71 0.70 0.70
(0.06) (0.08) (0.09) (0.09) (0.09) (0.10) (0.10) (0.10) (0.10) (0.10)

1.3 0.68 0.70 0.71 0.72 0.72 0.72 0.72 0.72 0.71 0.71
(0.06) (0.08) (0.09) (0.09) (0.09) (0.10) (0.10) (0.10) (0.10) (0.11)
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