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Deep neural networks-based relevant latent
representation learning for hyperspectral image

classification

Akrem Sellamia, Salvatore Tabbonea

a Universit de Lorraine, LORIA, CNRS, UMR 7503, Nancy Grand Est,
Vandoeuvre-ls-Nancy, F54506, France

Abstract

The classification of hyperspectral image is a challenging task due to the high

dimensional space, with large number of spectral bands, and low number of

labeled training samples. To overcome these challenges, we propose a novel

methodology for hyperspectral image classification based on multi-view deep

neural networks which fuses both spectral and spatial features by using only a

small number of labeled samples. Firstly, we process the initial hyperspectral

image in order to extract a set of spectral and spatial features. Each spectral

vector is the spectral signature of each pixel of the image. The spatial features

are extracted using a simple deep autoencoder, which seeks to reduce the high

dimensionality of data taking into account the neighborhood region for each

pixel. Secondly, we propose a multi-view deep autoencoder model which allows

fusing the spectral and spatial features extracted from the hyperspectral image

into a joint latent representation space. Finally, a semi-supervised graph con-

volutional network is trained based on thee fused latent representation space

to perform the hyperspectral image classification. The main advantage of the

proposed approach is to allow the automatic extraction of relevant informa-

tion while preserving the spatial and spectral features of data, and improve the

classification of hyperspectral images even when the number of labeled samples
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is low. Experiments are conducted on three real hyperspectral images respec-

tively Indian Pines, Salinas, and Pavia University datasets. Results show that

the proposed approach is competitive in classification performances compared

to state-of-the-art.

Keywords: Deep learning, representation learning, hyperspectral image

classification, feature extraction

1. Introduction

Hyperspectral imagery (HSI) can contain a large number of spectral bands,

which provide a rich information on Earth’s surface in both spectral and spa-

tial domains. Therefore, HSI can measure radiance values of different ground

objects, and is widely used in several fields such as defence, mineralogy, or agri-5

culture [1, 2]. Each pixel xi in an HSI X is a 1-D vector with hundreds of

spectral values corresponding to various spectral bands. Due to the high di-

mensionality of HSI, especially, the large number of pixels and spectral bands,

HSI classification is proving to be very challenging [3, 4, 5]. Moreover, when

there is few labeled training samples, HSI misclassification does often occur.10

The large number of spectral bands and the low number of training samples

lead to the problem of the curse of dimensionality, which can significantly harm

the performance in terms of classification accuracy [6, 7, 8].

To address these challenges, dimensionality reduction (DR) is applied as a

preprocessing phase before the spectral-spatial classification. It aims to reduce15

the number of spectral bands, and obtaining a better classification accuracy

preserving the discrimination capability of the spectro-spatial features. DR ap-

proaches can be decomposed into two main categories that are feature extraction

and band selection. Feature extraction aims to project the whole HSI into a very

low dimensional subspace, whereas feature selection selects a subset of relevant20

spectral bands, i.e., by discarding irrelevant and redundant ones.

Feature extraction can be categorized into linear and non-linear techniques.

Linear feature extraction approaches can include principal component analy-
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sis (PCA) [9], independent component analysis (ICA) [10], or linear discrim-

inant analysis (LDA) [5, 11]. Non-linear feature extraction methods seek to25

obtain non-linear feature spaces like laplacian eigenmaps (LE) [12], kernel PCA

(KPCA) [13], or locality preserving projection (LPP) [14].

Band selection methods aim to select a subset of relevant spectral bands

across the initial HSI by using a specific criteria, including, entropy, variance,

and distance between labeled classes and spectral bands, etc. Usually, band30

selection techniques can be categorized into three groups: supervised, unsuper-

vised, and semi-supervised methods [15, 16]. Supervised band selection is based

on a searching algorithm associated with an optimization criteria, including

class separability measures and information theoretic [17, 18]. It aims to find

informative bands using class labels as a priori information. However, in the35

HSI field, there is often very few a priori information on desired ground objects.

Unsupervised band selection methods aim to find discriminative and distinctive

spectral bands, with no a priori knowledge or training labeled samples [19, 20].

Semi-supervised band selection methods aim to find a subset of discriminative

and informative spectral bands using unlabeled and labeled training samples.40

Most techniques are based on graph clustering [21] or manifold learning [22].

To summarize, DR is an important step to overcome all issues related to

the high dimensionality of HSI. Moreover, in recent years, spatial information

has been growing more and more important for spectral-spatial classification of

HSI. In this context, we propose a novel methodology allowing to reduce the45

dimensionality of data by preserving the spectral and spatial features in order

to improve the classification of HSI based on multi-view deep representation

learning with only a small number of labeled samples.

The remainder of the paper is organized as follows. In Section II, we present

some works related to the spectral-spatial classification of HSI. In Section III,50

we detail the proposed methodology called Multi-View Deep Neural Networks

(MV-DNNet) which includes the multi-view deep autoencoder (MVDAE) that

allows fusing spectral- and spatial-features, and the semi-supervised graph con-

volutional network (SSGCN) model. In Section IV, we first describe the HSI
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dataset; then we detail our experimental protocol. Quantitative evaluations55

demonstrate the good performances of the MV-DNNet for classification tasks

and we conclude in Section V.

2. Related Works

Recently, various deep learning-based have been developed for the spectral-

spatial classification of HSI [23, 24, 25, 26]. Liang et al. [27] proposed a deep60

multi-scale feature fusion model for spectral-spatial classification of HSI. Zhong

et al.[28] developed an end-to-end spectro-spatial residual network (SSRN),

where the model learns discriminative features from spatial contexts and abun-

dant spectral signatures. An 3-D CNN framework is designed to preserve

spectro-spatial deep features, which are discriminative features. In [29], a deep65

architecture based on deep belief network (DBN) has been proposed to combine

the spectral-spatial feature extraction and classification together improving the

classification accuracy. Their framework is based on PCA, hierarchical learning-

based feature extraction, and logistic regression (LR). Furthermore, a method

based on fully convolutional neural network (F-CNN) for HSI classification has70

been proposed in [30]. Specifically, some works have been proposed to extract

jointly spectral and spatial features from HSI to perform the classification [31].

A common approach consists to extract for each pixel a neighboring region and

flatten it into a 1 ×D vector. Then, the spatial vector and the spectrum vec-

tor are concatenated and fed into deep learning models [32, 29, 33]. In [34],75

Zhou et al. proposed a compact and discriminative stacked autoencoder model

for HSI classification HSI, which can learn discriminative low-dimensional fea-

ture mappings and train an effective classifier progressively. Cheng et al. [35]

proposed a method to extract hierarchical deep spatial feature for HSI classifi-

cation by exploring the power of off-the-shelf CNN models. In [36], Cheng et80

al. proposed a method to learn discriminative CNNs to boost the performance

of remote sensing image scene classification. Wan et al. proposed a multiscale

dynamic GCN which employs dynamic graphs to encode the intrinsic similar-
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ities among regions to improve the HSI classification [37]. Moreover, in [38] a

CNN-enhanced GCN has been proposed to consider pixel- and superpixel-level85

features for HSI classification . Other methods seeks to extract spectral-spatial

features by averaging all spectral vectors within a spatial region. Then, the

averaged spectral vector is feed into a deep neural network [39, 40]. Moreover,

instead of directly extracting the spatial feature within a neighboring region,

some filtering methods, including, Gabor filtering [41] or attribute profiles [42],90

were proposed to process the original HSI data seeking to extract more relevant

spatial features. In [23], the authors proposed a fused 3-D CNN for spectral-

spatial classification of HSI, which seeks to fuse multiple 3-D CNN applied on

a set of groups of similar spectral bands. However, the combination of multiple

supervised 3-D CNN is very expensive in time and computations.95

Based on previous works, we can notice that deep learning models have

shown their high performance in enhancing HSI classification by extracting ef-

fective spectral and spatial features. However, there are several issues, especially

for CNN, requiring a large number of labeled samples for training and classifi-

cation. However, it is generally very difficult to obtain enough training labeled100

samples for HSIs. In addition, most of spectral-spatial feature extraction meth-

ods aim to concatenate or average the spectrum vector with the neighboring

region. However, some features are not useful for classification and may be

noisy. In this regard, we propose an unsupervised multi-view deep autoencoder

(MVDAE) model to fuse both spatial and spectral features into joint latent105

representation in order to improve the classification of HSI. The aim of the pro-

posed MVDAE is to extract only useful features by discarding the noise and

finding a shared latent representation, which can be effective for the classifica-

tion. Moreover, we propose to develop a semi-supervised graph convolutional

neural network (SSGCN) in order to consider local vertex features and graph110

topology in the convolutional layers preserving the spectral-spatial features in

the classification of the HSI and using a limited set of labeled training samples.
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3. Proposed methodology

This section details the proposed methodology MV-DNNet, which is com-

posed of three phases as shown in Figure 1. The first phase consists in ex-115

tracting the spectral and spatial features based on a simple deep autoencoder

(AE), which seeks to automatically extract relevant features while preserving the

spatial property of HSI. In the second phase, we develop a multi-view deep au-

toencoder (MVDAE) to combine both views, i.e., spectral and spatial features.

Then, we construct the graph for multi-view latent representation. It seeks to120

take into account the spatial features by considering distances between neigh-

boring pixels. Afterwards, we propose a semi-supervised graph convolutional

network (SSGCN) which integrates graph topology and local vertex features in

the convolutional layers, in order to improve the HSI classification by preserving

the spectro-spatial features. The main advantage of the proposed methodology125

is to allow the automatic extraction of relevant spectral and spatial features,

and improve the HSI classification by using a few number of labeled samples.

3.1. Spectral and spatial feature construction

In this section, we propose two parallel modules to extract and build a set of

spectral and spatial features. The aim is to automatically fuse these extracted130

features with a multi-view representation learning model in order to improve

the classification of HSIs. The obtained combined latent representation contains

spectral and spatial features that can be useful for classification.

3.1.1. Spectral feature Xspe

In spectral feature extraction, we consider the raw data, i.e., all pure spectral135

features of the HSI X. Usually, a spectral signature is represented as a one

dimensional spectrum vector (1×D) for each pixel, where D is the number of

spectral bands. Hence, in order to exploit rich spectral information and leverage

limited prior knowledge, we take into consideration the responses of all spectral

bands as input. We obtain then a spectral matrix Xspe ∈ RN×D, where N is140

the number of pixels, and D is the number of spectral bands. Therefore, each
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Figure 1: Flowchart of the proposed methodology MV-DNNet
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row at location i of the spectral matrix Xspe is the spectral signature of the

pixel pi.

3.1.2. Spatial feature Xspa

The aim here is to extract spatial information around each pixels neigh-

borhood and takes all neighbor regions into consideration. Therefore, firstly a

simple deep autoencoder (AE) is conducted to reduce the high dimensionality

of HSI data from D to d (d << D), by preserving its spatial structure. We

use AE model along the spectral dimension of X and only retain several fea-

tures according to the reconstruction error. Formally, an AE takes as input the

original HSI X ∈ RN×D. It includes an encoder noted Eθ(X) and a decoder

noted Dφ(z) (z is the bottleneck layer). The encoder Eθ non-linearly projects

X ∈ RN×D into a new latent representation space z = Eθ(X) (z ∈ RN×d)

from which the decoder Dφ seeks to recover X, i.e. Dφ(Eθ(X)) ≈ X. The AE

aims to minimize the reconstruction error between the input X and its output

(reconstructed input) X̂ using a Mean Squared Error (MSE) criterion (see Fig.

2):

L(θ, φ;x) = E
[
(x− Eθ(Dφ(x)))2

]
(1)

where E(.) and D(.) are parameterized by θ and φ, respectively. The parameters145

(θ, φ) are learned together to reconstruct data x̂ same as the initial input x.

Secondly, a neighbor region is extracted around the pixels in the reduced

data, i.e., latent representation matrix Z ∈ RN×d, which has only d features

(d << D) in spectral dimension. For each pixel, we extract a s × s neighbor

pixels. Given that d is the number of extracted features with AE model and a150

pixel can be considered as a box with a size of s× s× d. Finally, we flatten the

box into 1×D vector with a size of s2d× 1 elements. All 1-D vectors are then

concatenated into the spatial features matrix Xspa. Therefore, Xspa ∈ RN×s2d

contains the spatial features of each pixel taking into account their neighbor

regions. Figure 3 reports the main architecture of the spatial feature extraction155

procedure.
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Figure 2: The architecture of the deep autoencoder model (AE)

Figure 3: Spatial feature extraction from Z
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3.2. Representation learning with multi-view deep autoencoder (MVDAE)

In the classification context, a spectrum of each pixel can contain impor-

tant and useful information for discriminating different kinds of ground classes.

Moreover, with the spatial information, in a neighbor region the statistics of160

the pixels decreases the intra-class variance which can lead to improve classifi-

cation performances. Furthermore, we designed a multi-view deep autoencoder

(MVDAE) that seeks at extracting high level features from the combination of

multiple input views, i.e., spectral and spatial features, from which these input

views can be reconstructed. It relies on our case on the assumption that spectral165

and spatial features are indeed complementary. Our goal is to extract a relevant

multi-view latent representation to learn an accurate classification model. The

MVDAE includes one encoder per view noted Espe and Espa for spectral and

spatial features inputs. Each encoder is a multi layer neural network model that

non linearly transforms the input view into a new representation latent space.170

We note zspe and zspa the corresponding latent representations extracted by the

two encoders, zspe = Espe(xspe) and zspa = Espa(xspa).

A latent representation, z, is extracted from the encoding of the two views

Xspe and Xspa, then this latent multi-view latent representation z is input

to two decoders Dspe and Dspa that each aims at reconstructing both views,

x̂spe = Dspe(z) and x̂spa = Dspa(z). The decoders are nonlinear neural networks

including one to three hidden layers. The learning criterion of the MVDAE is

the sum of the reconstruction error criterion of both views, we used the MSE:

L(xspe,xspa; θ) =

√
1

D
||xspe − x̂spe||2 +

1

w2d
||xspa − x̂spa||2 (2)

The aim of the MDAVE is to find a shared representation from the two encoding

data zspe and zspa using a specific merging layer actually implemented as a dense

layer z = E(Wspe × zspe + Wspa × zspa). We instead use another possibility175

which relies on sharing weights and define the multi-view representation as :

z = E(W × zspe + W × zs). This seeks to find a common space, i.e., shared

representation between two views: spectral and spatial features matrices. This
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Figure 4: Different architectures can be considered of MVDAE. (A) a multi-view deep au-

toencoder model trained on the concatenation of both latent representations xspe and xspa (

z = concat(xspe +xspa) (z is the bottleneck layer). (B) a multi-view deep autoencoder model

trained on the shared representations: z = E(Wspe × zspe + Wspa × zspa).

is a subtle difference in this scheme that introduces constraints on how the latent

representation is defined (see Fig. 4).180

3.3. Spectro-Spatial Graph Construction

After applying an AE upon HSI X, we obtain a reduced 3D cube z =

[x1, ..., xd] ∈ RN×d. We build then an undirected graph G = (V, E ,W), where

V = {v1, ..., vN} is a set of nodes corresponding to the pixels, E is the set of

edges, and W ∈ RN×N is the weighted adjacency matrix of G, where wi,j is a

weight attributed to the edge ei,j = (vi, vj) ∈ E . Each vertex vi in the graph G
has a feature vector of size d (i.e., the number of extracted features with AE,

i.e., the multi-view latent representation matrix Z). Then, we define an edge

ei,j between two nodes (pixels) vi and vj based on a similarity criterion, which is

computed by taking into account the spatial information (pixels neighborhoods)

as well as the spectral information (intensity values). Formally, each vertex vi is

connected to vj if xj belongs to the neighborhood of xi in some p-by-p window.
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The weight wi,j for the edge ei,j is computed using the following formula:

wi,j =





exp−φ(xi,xj)× exp
−dist(xi,xj)

t if dist(xi, xj) < p

0 otherwise

(3)

where the parameter p is the neighborhood size (window), t ∈ R is a heat kernel

which is a parameter that is used to compute the weight matrix W , φ(·) is the

spectral angle mapper which is the spectral distance given by the angle between

the feature vectors of pixels xi and xj using Min/Max normalization, and dist(·)
is the spatial distance. φ(xi, xj) is computed as follows:

φ(xi, xj) = cos−1
(

< xi, xj >

‖ xi ‖ · ‖ xj ‖

)
(4)

The spatial distance dist(xi, xj) is calculated as follows:

dist(xi, xj) =
√

((ri − rj)2 + (li − lj)2) (5)

where (ri, li) and (ri, li) are the coordinates of xi and xj respectively. Algorithm

1 reports the different steps for the spectro-spatial graph construction.

3.4. Semi-Supervised Classification with Graph Convolutional Network (SSGCN)

In this section, we present our proposed semi-supervised graph convolutional185

network (SSGCN). The main goal of this model is to perform the spectral-spatial

classification by considering the constructed graph G. For semi-supervised learn-

ing, let TDl = {zi, yi}Li=1 be a set of labeled training dataset of size L, where

zi indicates a feature vector of the ith labeled pixel, and yi is its corresponding

label. Moreover, let TDnl = {zi}L+NLi=L+1 be a set of unlabeled training samples of190

size NL (L + NL = N). The aim of semi-supervised learning is to predict the

labels of unlabeled training samples TDnl, using a non linear function f(Z,W )

such as ReLu [43].

3.4.1. Convolutional layers

Convolution on graphs can be computed by multiplying each graph signal z̄

by a filter gθ parametrized by the Fourier coefficient θ ∈ RN [44]. Usually, the
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Algorithm 1 Spectro-Spatial Graph Construction

Input: X ∈ RN×D, Z ∈ RN×d

p (window size): integer; t (heat kernel): float

Output: G = (V,E,W ) Spectro-Spatial Graph of X and Diag: diagonal de-

gree matrix

Initialization:V ← [ ], E ← [ ], W ← [ ], Diag ← [ ]

// Compute the list of vertices V

for i = 1 : N do // N : Number of pixels

for j = 1 : d do // d Number of extracted features

V [i][j]← Z[i][j]

end for

end for

// Find the list of edges E for each voxel vi and compute their weights

for i = 1 : N do

for j = 2 : N − 1 do

if dist(xi, xj) < p then

E ← E ∪ {(xi, xj)}
W [i][j]← exp−φ(xi,xj)× exp

−dist(xi,xj)
t

else

W [i][j]← 0

end if

end for

end for

// Compute Diag based on the weighted adjacency matrix W

for i = 1 : N do

Diag[i]← 0

for j = 1 : N do

Diag[i]← Diag[i] +W [i][j]

end for

end for

return V,E,W,Diag
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graph Fourier transform for a signal z is defined as:

F (z) = UT z = ẑ ∈ Rn (6)

where F−1(z) = Uẑ, U is the matrix of eigenvectors of the normalized graph195

Laplacian Ln = IN −Diag
−1
2 WDiag

−1
2 = UΣUT , Diag is the diagonal degree

matrix of G, IN is the identity matrix, and Σ is the diagonal matrix of eigenval-

ues. The graph convolution of the latent representation z with a filter g ∈ Rn

is calculated using:

x ∗G g = F−1(F (x)�F (g)) = U(UT (x)� UT (g)) (7)

where � denotes the element wise product. According to [45], we can efficiently

compute an approximated convolution of G as follows:

gθ ? z̄ = θ B z̄ (8)

where B = IN +Diag
−1
2 WDiag

−1
2 + (Diag

−1
2 WDiag

−1
2 )2.200

3.4.2. Training SSGCN

For the semi-supervised learning, the optimal neural network weights

W(0),W(1), . . . ,W(K)

can be trained using the labeled set of training samples TDL = (i, yi)
L
i=1, by

minimizing the standard cross-entropy loss function:

Loss = −
L∑

i=1

yi lnMi (9)

where Mi is the label output of node i in the final layer.

3.4.3. Semi-supervised classification205

The proposed SSGCN aims to predict the labels of unlabeled pixels zi ∈
TDnl which will go through various propagation layers. Formally, given a input

multi-view latent feature matrix Z and a weighted adjacency matrix W, our
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SSGCN applies a layer-wise propagation rule using the Rectified Linear Unit

(ReLu) as a non linear activation function and softmax() as a classifier:

Z(1) = ReLu(B Z(0) W(0))

...

Z(K−1) = ReLu(B Z(K−2) W(K−2))

Z(K) = softmax(B Z(K−1) W(K−1))

(10)

where Z(0) = Z, {Z(1),Z(2), . . . ,Z(K−1)} are the feature map outputs of the

different layers and Z(K) = M is the label output of the final layer, i.e., Mi is

the label of vertex vi.

4. Experimental Results

4.1. HSI Description210

To evaluate the effectiveness and the performance of the proposed method-

ology, we perform our experiments on three real HSIs 1:

• The Indian Pines HSI collected by the Airborne Visible/ Infrared Imaging

Spectrometer (AVIRIS) sensor, which represents the north-western Indi-

ana. It consists of 145 × 145 pixels with a spatial resolution of 20 m per215

pixel and 220 spectral bands in the wavelength range from 0.4 to 2.5 µm.

The ground truth contains 16 classes. Fig. 5 reports the false color image

and its ground truth.

• The Salinas image collected by the AVIRIS sensor over Salinas, California,

which consists of 512 × 217 pixels with a spatial resolution of 3.7 m per220

pixel and 224 spectral bands. The ground truth contains 16 classes (see

Fig. 6).

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_

Scenes
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Figure 5: (a) False color image of the Indian Pines Dataset. (b) Ground-truth classification

map of Indian Pines Dataset.
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Figure 6: (a) False color image of the Salinas Dataset. (b) Ground-truth classification map

of Salinas Dataset.
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• The last HSI is the Pavia University data collected by the Reflective Optics

System Imaging Spectrometer (ROSIS-03) sensor, which consists of 610×
610 pixels, and 115 spectral bands in the range from 0.43 to 0.86 µm, with225

a spatial resolution of 1.3 m. The ground truth contains 9 classes (see Fig.

7).

4.2. Performance Evaluation Metrics and Parameters Setting

In order to train our MV-DNNet model, we randomly choose 10% of the

samples per class as training samples and the rest as testing samples (see table230

1). After several tests, we choose stochastic gradient descent (SGD) optimizer

for the training. The learning rate lr is fixed to 10−3 as training parameter,

the training epoch to 200, and the batch size to 300, with 10000 iterations, a

weight decay of 5.10−4, and a momentum of 0.9. We variate several encoding

dimensions for each HSI from 2 to 100 (d ∈ [2, .., 100]). We tested different235

pairs of activation functions (hidden layers, output layer) of the MVDAE model:

(linear, linear), (relu, linear), and (relu, sigmoid). It is implemented using the

keras toolkit. We fixed the window size s = 3 of the AE in the first step of the

spatial feature construction. The diagonal degree matrix Diag is fixed also with

a window size p = 3 to take into account the 8-neighbors pixels. We repeated our240

experiments 10 times with random training samples to get stable classification

accuracy. We adopted some metrics of performance to assess the classification

rate: overall accuracy (OA), average accuracy (AA), and kappa coefficient (k).

The OA is the number of corrected classified pixels divided by the total number

of testing pixels, whereas AA is the mean value of classification accuracy of all245

classes. The k index is a statistical measurement of consistency between the

classification maps and the ground truth.

4.3. Analysis of the reconstruction error

In this section, we present the reconstruction errors obtained by differ-

ent representation learning models, including, PCA, ICA, AE(linear,linear),250

AE(relu,linear), and AE(relu,sigmoid). We opted for the MSE loss function
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Figure 7: (a) False color image of the Pavia University Dataset. (b) Ground-truth classification

map of Pavia University Dataset.
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Table 1: Training and testing sets for Indian Pines, Salinas, and Pavia datasets.

Indian Pines Salinas Pavia University

Class
Samples

Class
Samples

Class
Samples

Train Test Train Test Train Test

Alfalfa (C1) 5 49 Broc-W-1 (C1) 200 1809 Asphalt (C1) 132 6499

Build-G (C2) 38 342 Broc-W-2 (C2) 372 3354 Bare-S (C2) 100 4929

Corn (C3) 23 211 Fallow (C3) 197 1779 Bitumen (C3) 26 1304

Corn-M (C4) 83 751 Fallow-P (C4) 139 1255 Gravel (C4) 41 2058

Corn-N (C5) 143 1291 Fallow-S (C5) 267 2411 Meadows (C5) 373 18321

Grass-W (C6) 5 21 Stubble (C6) 395 3564 Painted-M (C6) 26 1319

Grass-P (C7) 50 447 Celery (C7) 357 3222 Self-B (C7) 73 3609

Grass-T (C8) 75 672 Grapes-U (C8) 1127 10144 Shadows (C8) 19 928

Hay-W (C9) 49 440 Soil-V-D (C9) 620 5583 Tree (C9) 61 3003

Oats (C10) 2 18 Corn-W (C10) 327 2951

Soyb-C (C11) 62 552 Let-4wk (C11) 106 962

Soyb-M (C12) 247 2221 Let-5wk (C12) 192 1735

Soyb-N (C13) 97 871 Let-6wk (C13) 91 825

Stone-S (C14) 10 85 Let-7wk (C14) 107 963

Wheat (C15) 21 191 Viney-U (C15) 726 6542

Woods (C16) 130 1164 Viney-T (C16) 180 1627

to compute the reconstruction error between the initial HSI X and the recon-

structed input X̂ and we reported then the average MSE versus to the encoding

dimension for Indian Pines, Salinas, and Pavia University (see Fig. 8). Thus, we

can interpret that the AE(relu,linear) is the appropriate one for representation255

learning for three HSIs data with an MSE value equal to 0.069 and an encoding

dimension set to 20 for Indian Pines, 0.064 for an encoding dimension of 30

for Salinas, and 0.058 for a dimension defined to 20 for Pavia University. For

the other methods, the best average MSE, i.e. MSE < 0.1 is obtained when

the size of the latent representation is greater than ≈ 80 features. However,260

in our case we need a lower encoding dimension due the curse of dimensional-

ity and the overfitting problem. Moreover, Fig. 9 reports the reconstruction

error and standard error values of the best model AE(relu,linear) from 1 to 4

hidden dense layers, where the encoding dimension is 20. We can notice from

the obtained results that the best obtained MSE is equal to 0.069(±0.006) for265
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Figure 8: MSE of reconstruction versus encoding dimension. (A) Indian Pines, (B) Salinas,

and (C) Pavia University

Indian Pines, where the number of hidden layers is 3. For the Salinas, the best

MSE is equal to 0.067(±0.009), for again a number of hidden layers equals to 3,

i.e., the same architecture of AE. Also, for the Pavia University the best MSE

is equal to 0.058(±0.007) when the number of hidden layers is 3. Therefore,

following these experiments we set the number of layers to 3 and we fix the best270

configuration (size and number of dense layers) of the architecture as follows:

Z(1) = 170, Z(2) = 130, and Z(3) = 20.

In order to evaluate the effectiveness of the proposed MVDAE model on the

classification task, we performed a comparative study using the concatenation of

inputs, i.e., the concatenation of spectral and spatial features denoted by xspe+275

xspa, and the concatenation of latent representations zspe+zspa. The aim here is

to demonstrate the potential of the shared representation obtained by our model

MV-DNNet. Tables 2, 3, and 4 report the obtained best average MSE and OA on

Indian Pines, Salinas, and Pavia University, respectively. Based on the obtained

results, we can notice that the fusion of latent representation zspe and zspa have280

shown their added value in the classification task. Moreover, we can observe

that the proposed MVDAE model based on the fusion of latent representation

can achieve a better classification than the concatenation of spectral and spatial

features, i.e., xspe + xspa.
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Figure 9: MSE of reconstruction error versus encoding dimension using four different layers

(d = 20)

Table 2: Best average MSE and OA (± standard error) using spectral and spatial features of

Indian Pines data based on PCA, ICA, and different AE/MVDAE models (3 layers)

Concatenated inputs (xspe + xspa) Fused latent rep. (zspe + zspa)

Avg MSE Avg OA Avg MSE Avg OA

PCA 0.121 (± 0.023) 94.23 (± 0.047) N/A N/A

ICA 0.118 (± 0.019) 95.44 (± 0.092) N/A N/A

AE/MVDAE (lin, lin) 0.093 (± 0.011) 96.23 (± 0.014) 0.085 (± 0.038) 96.52 (± 0.023)

AE/MVDAE (relu, lin) 0.071 (± 0.020) 96.94 (± 0.013) 0.068 (± 0.095) 97.68 (± 0.042)

AE/MVDAE (relu, sig) 0.094 (± 0.063) 96.14 (± 0.028) 0.090 (± 0.036) 96.19 (± 0.012)

23



Table 3: Best average MSE and OA (± standard error) using spectral and spatial features of

Salinas based on PCA, ICA, and different AE/MVDAE models (3 layers)

Concatenated inputs (xspe + xspa) Fused latent rep. (zspe + zspa)

Avg MSE Avg OA Avg MSE Avg OA

PCA 0.092 (± 0.039) 95.84 (± 0.013) N/A N/A

ICA 0.101 (± 0.026) 95.62 (± 0.069) N/A N/A

AE/MVDAE (lin, lin) 0.083 (± 0.014) 96.59 (± 0.091) 0.071 (± 0.043) 96.84 (± 0.081)

AE/MVDAE (relu, lin) 0.073 (± 0.046) 96.72 (± 0.022) 0.063 (± 0.082) 98.24 (± 0.036)

AE/MVDAE (relu, sig) 0.087 (± 0.054) 96.33 (± 0.082) 0.074 (± 0.024) 96.50 (± 0.044)

Table 4: Best average MSE and OA (± standard error) using spectral and spatial features of

Pavia University based on PCA, ICA, and different AE/MVDAE models (3 layers)

Concatenated inputs (xspe + xspa) Fused latent rep. (zspe + zspa)

Avg MSE Avg OA Avg MSE Avg OA

PCA 0.089 (± 0.092) 96.81 (± 0.077) N/A N/A

ICA 0.094 (± 0.074) 96.34 (± 0.021) N/A N/A

AE/MVDAE (lin, lin) 0.075 (± 0.013) 96.84 (± 0.034) 0.071 (± 0.043) 96.84 (± 0.081)

AE/MVDAE (relu, lin) 0.070 (± 0.029) 97.12 (± 0.047) 0.051 (± 0.063) 99.16 (± 0.016)

AE/MVDAE (relu, sig) 0.079 (± 0.031) 96.51 (± 0.011) 0.073 (± 0.031) 96.72 (± 0.072)
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Table 5: Classification performances using DSVM, SAE, CNN, DCNN,R-VCA, SKCR, GF,

3DCNN, F-3DCNN, and MV-DNNet (Ours): Indian Pines HSI (d = 20)

Class
Models

DSVM SAE CNN DCNN R-VCA SKCR GF 3DCNN F-3DCNN Ours

C1 88.22 93.92 93.41 94.21 95.02 93.81 94.01 94.46 96.32 96.42

C2 92.31 91.24 96.80 95.41 94.91 95.63 95.69 92.19 96.26 96.65

C3 95.12 93.10 95.26 96.98 97.36 97.58 93.48 98.05 96.97 98.01

C4 95.96 89.51 93.82 97.56 96.99 97.06 92.69 97.09 96.99 98.12

C5 97.03 93.18 96.22 95.11 94.78 95.06 96.21 92.16 97.42 97.12

C6 83.03 88.21 94.02 96.51 98.89 96.28 96.32 95.10 95.18 97.08

C7 89.64 80.21 95.04 95.63 96.14 97.15 98.01 94.06 97.02 98.61

C8 92.03 94.31 98.01 97.10 95.31 96.14 97.22 98.91 96.89 98.10

C9 96.12 92.10 97.02 94.12 93.36 92.78 92.21 97.03 96.56 96.91

C10 91.22 87.03 98.04 91.85 94.21 95.03 94.02 94.02 97.07 98.07

C11 85.13 88.21 95.32 93.45 94.21 94.09 96.72 95.21 97.31 97.52

C12 91.12 91.04 86.14 89.48 92.14 95.47 96.12 95.03 96.84 97.08

C13 86.12 82.23 94.06 94.25 93.84 95.23 95.06 96.21 96.21 96.89

C14 95.01 86.07 97.13 93.85 94.96 96.98 96.21 96.12 97.26 97.94

C15 95.02 93.06 95.23 94.61 95.95 94.86 95.04 94.18 96.61 97.08

C16 92.38 94.26 96.10 96.85 95.91 96.21 97.02 95.19 96.95 98.51

OA 92.24 91.85 94.99 94.86 94.26 96.23 96.52 96.54 96.98 97.68

AA 92.13 91.78 94.81 96.72 94.08 96.11 96.39 96.47 96.85 97.55

k 92.25 91.77 94.85 94.78 94.18 96.21 96.52 96.40 96.89 97.62

Time (s) 230 241 322 361 298 267 239 278 274 211
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Table 6: Classification performances using DSVM, SAE, CNN, DCNN,R-VCA, SKCR, GF,

3DCNN, F-3DCNN, and MV-DNNet (Ours): Salinas HSI (d = 30)

Class
Models

DSVM SAE CNN DCNN R-VCA SKCR GF 3DCNN F-3DCNN Ours

C1 95.22 97.12 98.04 96.95 95.75 96.23 97.07 95.26 97.01 97.84

C2 94.93 95.84 96.28 94.21 93.87 95.41 96.18 95.92 96.68 96.71

C3 93.16 95.89 97.87 96.81 97.25 96.45 97.13 95.86 96.88 97.67

C4 95.14 95.12 96.24 95.24 96.11 96.36 96.87 96.99 95.98 96.69

C5 96.42 96.12 96.85 97.01 96.81 96.74 97.62 96.74 96.75 98.26

C6 96.24 95.29 97.17 96.91 96.85 97.11 97.09 96.12 97.88 98.92

C7 96.14 95.85 97.42 97.21 97.53 98.01 97.82 96.40 97.51 98.72

C8 97.02 96.62 97.17 96.12 96.34 97.04 97.80 96.87 96.94 97.55

C9 96.26 96.84 96.92 97.11 99.94 97.25 97.84 96.74 97.26 98.62

C10 97.21 94.11 97.21 95.23 96.16 96.98 97.12 96.21 96.23 98.43

C11 94.62 95.81 97.14 96.74 96.84 97.14 97.47 97.22 97.10 98.32

C12 93.14 94.06 96.21 95.99 96.47 96.81 97.12 97.08 96.28 97.89

C13 94.98 96.16 96.82 96.95 97.03 96.96 97.08 97.16 97.21 98.45

C14 96.24 93.81 97.12 97.23 96.83 97.01 96.92 96.13 97.16 97.51

C15 96.08 94.92 97.74 97.15 98.12 98.04 98.83 97.84 97.28 98.68

C16 96.47 96.11 97.94 97.62 96.95 97.74 98.32 97.61 97.62 98.22

OA (%) 95.12 96.24 97.12 96.56 96.74 97.12 97.18 96.36 97.65 98.24

AA (%) 95.02 96.19 97.03 96.31 96.61 96.98 97.11 96.22 97.52 98.17

k × 100 95.07 96.22 97.15 96.30 96.47 97.07 97.16 96.28 97.49 98.20

Time (s) 320 289 295 344 332 297 230 265 289 259

26



Table 7: Classification performances using DSVM, SAE, CNN, DCNN,R-VCA, SKCR, GF,

3DCNN, F-3DCNN, and MV-DNNet (Ours) : Pavia University HSI (d=20)

Class
Models

DSVM SAE CNN DCNN R-VCA SKCR GF 3DCNN F-3DCNN Ours

C1 95.70 97.89 96.49 96.52 96.87 95.89 96.16 96.93 97.24 98.21

C2 95.24 96.24 97.21 96.49 96.84 98.45 96.33 95.35 98.07 99.22

C3 96.25 97.41 97.82 96.91 97.24 97.62 97.24 96.39 98.21 98.87

C4 96.72 96.35 96.84 96.07 95.89 96.84 96.79 96.93 97.18 99.22

C5 96.91 97.24 96.86 96.66 96.15 96.87 96.06 96.02 98.00 98.62

C6 96.82 96.89 97.63 96.97 97.12 96.84 98.10 95.52 97.93 99.01

C7 96.24 96.16 97.79 96.81 96.54 97.03 97.21 95.75 97.71 98.24

C8 95.95 96.89 96.79 96.88 96.99 97.14 97.26 96.59 98.09 98.56

C9 96.84 97.26 96.83 96.96 96.91 97.03 97.06 96.96 98.90 99.63

OA (%) 95.98 96.94 97.12 96.74 96.81 97.08 96.92 96.85 97.83 99.16

AA (%) 95.78 96.84 97.05 96.58 96.79 97.01 96.81 96.64 97.71 99.04

k × 100 95.81 96.87 97.11 96.63 96.80 97.06 96.87 96.82 97.77 98.07

Time (s) 298 195 149 221 197 211 194 201 175 189

4.4. Classification performances using the proposed MV-DNNet with different285

deep learning-based models

In this section, we compare the obtained classification results using the pro-

posed approach MV-DNNet with other deep learning-based methods, including,

deep suppport vector machines (DSVM) [46], stacked autoencoder (SAE) [32],

CNN [40], discriminative convolutional neural network (DCNN) [47], rolling290

guidance filter and vertex component analysis network (R-VCA) [48], structural-

kernel collaborative representation (SKCR)[49], gabor filtering (GF) [41], 3D

convolutional neural network (3DCNN) [50], and fused 3D CNN (F-3DCNN)

[23]. DSVM seeks to use several kernels in the deep SVM model (exponential

radial basis function, gaussian radial basis function, neural, and polynomial) to295

improve the HSI classification. SAE uses the AE model and PCA technique to

preserve the spectral and spatial information in the classification task. The CNN

model aims to perform the HSI classification by considering both spatial context

and spectral features. DCNN uses triplet loss to improve the HSI classification.

R-VCA aims to incorporate the spatial information and spectral characteristics300
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in the classification task using the rolling guidance filter and vertex component

analysis network. SKCR seeks to preserve the spatial neighborhood of the pixels

in a superpixel belonging to the same class. Furthermore, GF is used to preserve

the spatial information in order to improve the performance of the classification.

3D CNN uses a 3D convolution operation to take into account simultaneously305

the spectral and spatial features. Finally, F-3DCNN is proposed to fuse several

3D CNN in order to enhance the classification rates.

Table 5 reports the obtained classification accuracies OAs for the Indian

Pines HSI. Based on these results, we can notice that the proposed model MV-

DNNet gives better classification performance, compared to other deep learning-310

based methods. In fact, the obtained OA is 97.68%, AA is 97.55%, and k is

97.62%. However, for few classes our results are slightly less. For instance,

the 3DCNN and F-3DCNN methods give the best classification rates for three

classes ‘Corn’, ’Corn-N’ and ‘Grass-T’, with an OA of 98.05%, 97.42% and

98.91%, respectively and the CNN model for the ‘Building-G’ and ‘Hay-W’,315

with an OA of 96.80% and 97.02%, respectively. For the remaining 11 classes of

Indian Pines, the proposed method MV-DNNet gives better classification per-

formance. Fig. 10 reports a visual classification maps for Indian Pines HSI

with the corresponding classification rates OA for different models. As shown

in this figure, the SAE and DSVM models present noisy classification results320

because they only exploit the concatenated spectral and spatial information

into a single vector without select useful features. Moreover, the CNN, DCNN,

R-VCA, SKCR, and GF methods can provide smoother classification perfor-

mances. Furthermore, due to the limited number of training labeled samples,

the CNN, 3DCNN, and F-3DCNN also present noisy classification results. In325

contrast, the proposed MV-DNNet model not only delivers better classification

performances but also achieves accurate classification on the edges area.

For the Salinas HSI, the obtained classification rate OA with MV-DNNet

is 98.24%, AA is 98.17%, and k is 98.29% (see Table 6). Also, we can notice

that the MV-DNNet method gives better classification rates for 13 out of 16330

classes, with a number of features d = 30. Most classification rates are greater
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Figure 10: Classification maps for the Indian Pines HSI obtained by (a) DSVM, (b) SAE,

(c) CNN, (d) DCNN, (e) R-VCA, (f) SKCR, (g) GF, (h) 3DCNN, (i) F-3DCNN, and (j)

MV-DNNet.

than 97%. Again, for very few classes our model is slightly less. Indeed, the GF

method gives the best classification rates for the class ‘Grapes-U’, with an OA

of 97.80%. Also, the 3DCNN model is better for the class ‘Fallow-R-P’, with an

OA of 96, 99%, and the F-3DCNN is better for the class ‘Brocoli-G-W-2’, with335

an OA of 96.68%. Fig. 11 shows the thematic maps of different classification

methods for Salinas Dataset. Overall, we obtained a higher performance in

classification with the proposed MV-DNNet model. This prove the effectiveness

of the incorporation of the deep multi-view representation in the classification

task. However, in the rest of classification methods, there are still some mistakes340

in different thematic maps.

Table 7 reports the obtained classification results for the Pavia University

HSI. From this table, we can see that the OA with MV-DNNet is 99.16%, AA is

99.04%, and k is 99.07%. The MV-DNNet model gives better classification rates

for all the 9 classes of Pavia University dataset. Also, most classification rates345

OAs are greater than 98%. In Fig. 12, we compare also the obtained classifica-
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Figure 11: Classification maps for the Salinas HSI obtained by (a) DSVM, (b) SAE, (c) CNN,

(d) DCNN, (e) R-VCA, (f) SKCR, (g) GF, (h) 3DCNN, (i) F-3DCNN, and (j) MV-DNNet.
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tion maps with MV-DNNet based on multi-view latent representation, i.e., fused

both spectral and spatial features with those only relying on spectral and spa-

tial features, and average or concatenated spectral and spatial features. We can

notice that the MV-DNNet can extract effective features to perform the classifi-350

cation. In this case, multi-view deep representation learning as a spectralspatial

feature extraction model also provides a better classification performance than

the standard spectral and spatial classification methods.

According to the obtained classification results, we can state that the pro-

posed method is more effective than many other state-of-the-art deep learning-355

based methods for spectral-spatial classification of HSI. Furthermore, our model

can extract the relevant spectral and spatial features of HSI with limited labeled

samples by preserving useful information simultaneously, and it also provides a

good spectral-spatial classification by exploiting the SSGCN model.

Overall, we can explain the high performance of our MV-DNNet model com-360

pared to other classical methods of spectral-spatial classification of HSI, that

the multi-view latent representation obtained simultaneously with the deep AE

model, i.e. the shared representation is more effective as a relevant features

for classification than a simple concatenation or average of the features. We

have shown then the added value of deep multi-view representation learning in365

the classification of HSI compared to other existing models that only use spa-

tial features, like the GF or spectral features like the SAE model. In terms of

computation time, the proposed model MV-DNNet is quite fast compared to

some deep learning-based methods, since the training of the multi-view latent

representation requires much less time.370

5. Conclusion

In this paper, we proposed a novel approach for spectral-spatial classifica-

tion of HSI, called MV-DNNet, which is based on multi-view deep autoencoder

(MVDAE) and semi-supervised graph convolutional network (SSGCN). The ad-

vantage of such an approach is that it works with very small number of labeled375
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Figure 12: Classification maps for the Pavia University HSI obtained by (a) DSVM, (b) SAE,

(c) CNN, (d) DCNN, (e) R-VCA, (f) SKCR, (g) GF, (h) 3DCNN, (i) F-3DCNN, and (j)

MV-DNNet.
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samples. Furthermore, the MVDAE model can extract relevant features, while

preserving the useful spatial-spectral information for classification. Moreover, a

SSGCN has been developed in order to preserve the spectro-spatial features of

the multi-view latent representation. Finally, this approach has been used for

the classification of HSI using few samples. Experimental results have shown380

that the proposed approach is more effective compared to other DL-based clas-

sification methods, including GCN, and CNN-based methods. As future work,

our approach can be applied on other real hyperspectral data and extended to

other field of applications where few labeled training samples are available.
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