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The classification of hyperspectral image is a challenging task due to the high dimensional space, with large number of spectral bands, and low number of labeled training samples. To overcome these challenges, we propose a novel methodology for hyperspectral image classification based on multi-view deep neural networks which fuses both spectral and spatial features by using only a small number of labeled samples. Firstly, we process the initial hyperspectral image in order to extract a set of spectral and spatial features. Each spectral vector is the spectral signature of each pixel of the image. The spatial features are extracted using a simple deep autoencoder, which seeks to reduce the high dimensionality of data taking into account the neighborhood region for each pixel. Secondly, we propose a multi-view deep autoencoder model which allows fusing the spectral and spatial features extracted from the hyperspectral image into a joint latent representation space. Finally, a semi-supervised graph convolutional network is trained based on thee fused latent representation space to perform the hyperspectral image classification. The main advantage of the proposed approach is to allow the automatic extraction of relevant information while preserving the spatial and spectral features of data, and improve the classification of hyperspectral images even when the number of labeled samples

Introduction

Hyperspectral imagery (HSI) can contain a large number of spectral bands, which provide a rich information on Earth's surface in both spectral and spatial domains. Therefore, HSI can measure radiance values of different ground objects, and is widely used in several fields such as defence, mineralogy, or agriculture [START_REF] Qiao | Joint bilateral filtering and spectral similarity-based sparse representation: a generic framework for effective feature extraction and data classification in hyperspectral imaging[END_REF][START_REF] Liang | Material based salient object detection from hyperspectral images[END_REF]. Each pixel x i in an HSI X is a 1-D vector with hundreds of spectral values corresponding to various spectral bands. Due to the high dimensionality of HSI, especially, the large number of pixels and spectral bands, HSI classification is proving to be very challenging [START_REF] Zhao | Hyperspectral remote sensing image classification based on tighter random projection with minimal intra-class variance algorithm[END_REF][START_REF] Li | Discriminant analysis-based dimension reduction for hyperspectral image classification: A survey of the most recent advances and an experimental comparison of different techniques[END_REF][START_REF] Wu | Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels[END_REF]. Moreover, when there is few labeled training samples, HSI misclassification does often occur.

The large number of spectral bands and the low number of training samples lead to the problem of the curse of dimensionality, which can significantly harm the performance in terms of classification accuracy [START_REF] Wang | Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization[END_REF][START_REF] Deng | Active multi-kernel domain adaptation for hyperspectral image classification[END_REF][START_REF] Shao | Spatial and class structure regularized sparse representation graph for semi-supervised hyperspectral image classification[END_REF].

To address these challenges, dimensionality reduction (DR) is applied as a preprocessing phase before the spectral-spatial classification. It aims to reduce the number of spectral bands, and obtaining a better classification accuracy preserving the discrimination capability of the spectro-spatial features. DR approaches can be decomposed into two main categories that are feature extraction and band selection. Feature extraction aims to project the whole HSI into a very low dimensional subspace, whereas feature selection selects a subset of relevant spectral bands, i.e., by discarding irrelevant and redundant ones.

Feature extraction can be categorized into linear and non-linear techniques.

Linear feature extraction approaches can include principal component analy-sis (PCA) [START_REF] Sun | Graph-regularized fast and robust principal component analysis for hyperspectral band selection[END_REF], independent component analysis (ICA) [START_REF] Johnson | Autogad: An improved icabased hyperspectral anomaly detection algorithm[END_REF], or linear discriminant analysis (LDA) [START_REF] Wu | Semi-supervised dimensionality reduction of hyperspectral imagery using pseudo-labels[END_REF][START_REF] Huang | Self-adaptive manifold discriminant analysis for feature extraction from hyperspectral imagery[END_REF]. Non-linear feature extraction methods seek to obtain non-linear feature spaces like laplacian eigenmaps (LE) [START_REF] Cheng | Integration of hyperspectral imagery and sparse sonar data for shallow water bathymetry mapping[END_REF], kernel PCA (KPCA) [START_REF] Romero | Unsupervised deep feature extraction for remote sensing image classification[END_REF], or locality preserving projection (LPP) [START_REF] Sellami | High-level hyperspectral image classification based on spectro-spatial dimensionality reduction[END_REF].

Band selection methods aim to select a subset of relevant spectral bands across the initial HSI by using a specific criteria, including, entropy, variance, and distance between labeled classes and spectral bands, etc. Usually, band selection techniques can be categorized into three groups: supervised, unsupervised, and semi-supervised methods [START_REF] Asl | Unsupervised feature selection using geometrical measures in prototype space for hyperspectral imagery[END_REF][START_REF] Sellami | Hyperspectral imagery semantic interpretation based on adaptive constrained band selection and knowledge extraction techniques[END_REF]. Supervised band selection is based on a searching algorithm associated with an optimization criteria, including class separability measures and information theoretic [START_REF] Yang | An efficient method for supervised hyperspectral band selection[END_REF][START_REF] Patra | Hyperspectral band selection based on rough set[END_REF]. It aims to find informative bands using class labels as a priori information. However, in the HSI field, there is often very few a priori information on desired ground objects.

Unsupervised band selection methods aim to find discriminative and distinctive spectral bands, with no a priori knowledge or training labeled samples [START_REF] Wang | Optimal clustering framework for hyperspectral band selection[END_REF][START_REF] Zhang | Unsupervised hyperspectral band selection by fuzzy clustering with particle swarm optimization[END_REF].

Semi-supervised band selection methods aim to find a subset of discriminative and informative spectral bands using unlabeled and labeled training samples.

Most techniques are based on graph clustering [START_REF] Liu | Spatial-spectral locality-constrained low-rank representation with semi-supervised hypergraph learning for hyperspectral image classification[END_REF] or manifold learning [START_REF] Wang | Salient band selection for hyperspectral image classification via manifold ranking[END_REF].

To summarize, DR is an important step to overcome all issues related to the high dimensionality of HSI. Moreover, in recent years, spatial information has been growing more and more important for spectral-spatial classification of HSI. In this context, we propose a novel methodology allowing to reduce the dimensionality of data by preserving the spectral and spatial features in order to improve the classification of HSI based on multi-view deep representation learning with only a small number of labeled samples.

The remainder of the paper is organized as follows. In Section II, we present some works related to the spectral-spatial classification of HSI. In Section III, we detail the proposed methodology called Multi-View Deep Neural Networks (MV-DNNet) which includes the multi-view deep autoencoder (MVDAE) that allows fusing spectral-and spatial-features, and the semi-supervised graph convolutional network (SSGCN) model. In Section IV, we first describe the HSI dataset; then we detail our experimental protocol. Quantitative evaluations demonstrate the good performances of the MV-DNNet for classification tasks and we conclude in Section V.

Related Works

Recently, various deep learning-based have been developed for the spectralspatial classification of HSI [START_REF] Sellami | Fused 3-d spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification[END_REF][START_REF] Shi | Superpixel-based 3d deep neural networks for hyperspectral image classification[END_REF][START_REF] Li | Hyperspectral image reconstruction by deep convolutional neural network for classification[END_REF][START_REF] Zhao | Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach[END_REF]. Liang et al. [START_REF] Liang | Deep multiscale spectral-spatial feature fusion for hyperspectral images classification[END_REF] proposed a deep multi-scale feature fusion model for spectral-spatial classification of HSI. Zhong et al. [START_REF] Zhong | Spectral-spatial residual network for hyperspectral image classification: A 3-d deep learning framework[END_REF] developed an end-to-end spectro-spatial residual network (SSRN), where the model learns discriminative features from spatial contexts and abundant spectral signatures. An 3-D CNN framework is designed to preserve spectro-spatial deep features, which are discriminative features. In [START_REF] Chen | Spectral-spatial classification of hyperspectral data based on deep belief network[END_REF], a deep architecture based on deep belief network (DBN) has been proposed to combine the spectral-spatial feature extraction and classification together improving the classification accuracy. Their framework is based on PCA, hierarchical learningbased feature extraction, and logistic regression (LR). Furthermore, a method based on fully convolutional neural network (F-CNN) for HSI classification has been proposed in [START_REF] Li | Classification of hyperspectral imagery using a new fully convolutional neural network[END_REF]. Specifically, some works have been proposed to extract jointly spectral and spatial features from HSI to perform the classification [START_REF] Li | Deep learning for hyperspectral image classification: An overview[END_REF].

A common approach consists to extract for each pixel a neighboring region and flatten it into a 1 × D vector. Then, the spatial vector and the spectrum vector are concatenated and fed into deep learning models [START_REF] Chen | Deep learning-based classification of hyperspectral data[END_REF][START_REF] Chen | Spectral-spatial classification of hyperspectral data based on deep belief network[END_REF][START_REF] Ma | Spectral-spatial classification of hyperspectral image based on deep auto-encoder[END_REF]. In [START_REF] Zhou | Learning compact and discriminative stacked autoencoder for hyperspectral image classification[END_REF], Zhou et al. proposed a compact and discriminative stacked autoencoder model for HSI classification HSI, which can learn discriminative low-dimensional feature mappings and train an effective classifier progressively. Cheng et al. [START_REF] Cheng | Exploring hierarchical convolutional features for hyperspectral image classification[END_REF] proposed a method to extract hierarchical deep spatial feature for HSI classification by exploring the power of off-the-shelf CNN models. In [START_REF] Cheng | When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative cnns[END_REF], Cheng et al. proposed a method to learn discriminative CNNs to boost the performance of remote sensing image scene classification. Wan et al. proposed a multiscale dynamic GCN which employs dynamic graphs to encode the intrinsic similar-ities among regions to improve the HSI classification [START_REF] Wan | Multiscale dynamic graph convolutional network for hyperspectral image classification[END_REF]. Moreover, in [START_REF] Liu | Cnn-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification[END_REF] a CNN-enhanced GCN has been proposed to consider pixel-and superpixel-level features for HSI classification . Other methods seeks to extract spectral-spatial features by averaging all spectral vectors within a spatial region. Then, the averaged spectral vector is feed into a deep neural network [START_REF] Sun | Encoding spectral and spatial context information for hyperspectral image classification[END_REF][START_REF] Mei | Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[END_REF]. Moreover, instead of directly extracting the spatial feature within a neighboring region, some filtering methods, including, Gabor filtering [START_REF] Kang | Classification of hyperspectral images by gabor filtering based deep network[END_REF] or attribute profiles [START_REF] Aptoula | Deep learning with attribute profiles for hyperspectral image classification[END_REF],

were proposed to process the original HSI data seeking to extract more relevant spatial features. In [START_REF] Sellami | Fused 3-d spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification[END_REF], the authors proposed a fused 3-D CNN for spectralspatial classification of HSI, which seeks to fuse multiple 3-D CNN applied on a set of groups of similar spectral bands. However, the combination of multiple supervised 3-D CNN is very expensive in time and computations.

Based on previous works, we can notice that deep learning models have shown their high performance in enhancing HSI classification by extracting effective spectral and spatial features. However, there are several issues, especially for CNN, requiring a large number of labeled samples for training and classification. However, it is generally very difficult to obtain enough training labeled samples for HSIs. In addition, most of spectral-spatial feature extraction methods aim to concatenate or average the spectrum vector with the neighboring region. However, some features are not useful for classification and may be noisy. In this regard, we propose an unsupervised multi-view deep autoencoder (MVDAE) model to fuse both spatial and spectral features into joint latent representation in order to improve the classification of HSI. The aim of the proposed MVDAE is to extract only useful features by discarding the noise and finding a shared latent representation, which can be effective for the classification. Moreover, we propose to develop a semi-supervised graph convolutional neural network (SSGCN) in order to consider local vertex features and graph topology in the convolutional layers preserving the spectral-spatial features in the classification of the HSI and using a limited set of labeled training samples.

Proposed methodology

This section details the proposed methodology MV-DNNet, which is composed of three phases as shown in Figure 1. The first phase consists in extracting the spectral and spatial features based on a simple deep autoencoder (AE), which seeks to automatically extract relevant features while preserving the spatial property of HSI. In the second phase, we develop a multi-view deep autoencoder (MVDAE) to combine both views, i.e., spectral and spatial features.

Then, we construct the graph for multi-view latent representation. It seeks to take into account the spatial features by considering distances between neighboring pixels. Afterwards, we propose a semi-supervised graph convolutional network (SSGCN) which integrates graph topology and local vertex features in the convolutional layers, in order to improve the HSI classification by preserving the spectro-spatial features. The main advantage of the proposed methodology is to allow the automatic extraction of relevant spectral and spatial features, and improve the HSI classification by using a few number of labeled samples.

Spectral and spatial feature construction

In this section, we propose two parallel modules to extract and build a set of spectral and spatial features. The aim is to automatically fuse these extracted features with a multi-view representation learning model in order to improve the classification of HSIs. The obtained combined latent representation contains spectral and spatial features that can be useful for classification.

Spectral feature X spe

In spectral feature extraction, we consider the raw data, i.e., all pure spectral features of the HSI X. Usually, a spectral signature is represented as a one dimensional spectrum vector (1 × D) for each pixel, where D is the number of spectral bands. Hence, in order to exploit rich spectral information and leverage limited prior knowledge, we take into consideration the responses of all spectral bands as input. We obtain then a spectral matrix X spe ∈ R N ×D , where N is the number of pixels, and D is the number of spectral bands. Therefore, each row at location i of the spectral matrix X spe is the spectral signature of the pixel p i .

Spatial feature X spa

The aim here is to extract spatial information around each pixels neighborhood and takes all neighbor regions into consideration. Therefore, firstly a simple deep autoencoder (AE) is conducted to reduce the high dimensionality of HSI data from D to d (d << D), by preserving its spatial structure. We use AE model along the spectral dimension of X and only retain several features according to the reconstruction error. Formally, an AE takes as input the original HSI X ∈ R N ×D . It includes an encoder noted E θ (X) and a decoder noted D φ (z) (z is the bottleneck layer). The encoder E θ non-linearly projects

X ∈ R N ×D into a new latent representation space z = E θ (X) (z ∈ R N ×d )
from which the decoder D φ seeks to recover X, i.e. D φ (E θ (X)) ≈ X. The AE aims to minimize the reconstruction error between the input X and its output (reconstructed input) X using a Mean Squared Error (MSE) criterion (see Fig. 

L(θ, φ; x) = E (x -E θ (D φ (x))) 2 (1) 
where E(.) and D(.) are parameterized by θ and φ, respectively. The parameters (θ, φ) are learned together to reconstruct data x same as the initial input x.

Secondly, a neighbor region is extracted around the pixels in the reduced data, i.e., latent representation matrix Z ∈ R N ×d , which has only d features We note z spe and z spa the corresponding latent representations extracted by the two encoders, z spe = E spe (x spe ) and z spa = E spa (x spa ).

A latent representation, z, is extracted from the encoding of the two views X spe and X spa , then this latent multi-view latent representation z is input to two decoders D spe and D spa that each aims at reconstructing both views, xspe = D spe (z) and xspa = D spa (z). The decoders are nonlinear neural networks including one to three hidden layers. The learning criterion of the MVDAE is the sum of the reconstruction error criterion of both views, we used the MSE:

L(x spe , x spa ; θ) = 1 D ||x spe -xspe || 2 + 1 w 2 d ||x spa -xspa || 2 (2) 
The aim of the MDAVE is to find a shared representation from the two encoding data z spe and z spa using a specific merging layer actually implemented as a dense layer z = E(W spe × z spe + W spa × z spa ). We instead use another possibility which relies on sharing weights and define the multi-view representation as :

z = E(W × z spe + W × z s )
. This seeks to find a common space, i.e., shared representation between two views: spectral and spatial features matrices. This is a subtle difference in this scheme that introduces constraints on how the latent representation is defined (see Fig. 4). 180

Spectro-Spatial Graph Construction

After applying an AE upon HSI X, we obtain a reduced 3D cube z = [x 1 , ..., x d ] ∈ R N ×d . We build then an undirected graph G = (V, E, W), where V = {v 1 , ..., v N } is a set of nodes corresponding to the pixels, E is the set of edges, and W ∈ R N ×N is the weighted adjacency matrix of G, where w i,j is a weight attributed to the edge e i,j = (v i , v j ) ∈ E. Each vertex v i in the graph G has a feature vector of size d (i.e., the number of extracted features with AE, i.e., the multi-view latent representation matrix Z). Then, we define an edge e i,j between two nodes (pixels) v i and v j based on a similarity criterion, which is computed by taking into account the spatial information (pixels neighborhoods)

as well as the spectral information (intensity values). Formally, each vertex v i is connected to v j if x j belongs to the neighborhood of x i in some p-by-p window.

The weight w i,j for the edge e i,j is computed using the following formula:

w i,j =      exp -φ(xi,xj ) × exp -dist(xi,xj ) t if dist(x i , x j ) < p 0 otherwise (3) 
where the parameter p is the neighborhood size (window), t ∈ R is a heat kernel which is a parameter that is used to compute the weight matrix W , φ(•) is the spectral angle mapper which is the spectral distance given by the angle between the feature vectors of pixels x i and x j using Min/Max normalization, and dist(•)

is the spatial distance. φ(x i , x j ) is computed as follows:

φ(x i , x j ) = cos -1 < x i , x j > x i • x j (4) 
The spatial distance dist(x i , x j ) is calculated as follows:

dist(x i , x j ) = ((r i -r j ) 2 + (l i -l j ) 2 ) (5) 
where (r i , l i ) and (r i , l i ) are the coordinates of x i and x j respectively. Algorithm 1 reports the different steps for the spectro-spatial graph construction.

Semi-Supervised Classification with Graph Convolutional Network (SSGCN)

In this section, we present our proposed semi-supervised graph convolutional 

V [i][j] ← Z[i][j]
end for end for // Find the list of edges E for each voxel v i and compute their weights

for i = 1 : N do for j = 2 : N -1 do if dist(x i , x j ) < p then E ← E ∪ {(x i , x j )} W [i][j] ← exp -φ(xi,xj ) × exp -dist(xi,xj ) t else W [i][j] ← 0 end if
end for end for // Compute Diag based on the weighted adjacency matrix W

for i = 1 : N do Diag[i] ← 0 for j = 1 : N do Diag[i] ← Diag[i] + W [i][j]
end for end for return V, E, W, Diag graph Fourier transform for a signal z is defined as:

F (z) = U T z = ẑ ∈ R n (6) 
where F -1 (z) = U ẑ, U is the matrix of eigenvectors of the normalized graph

Laplacian L n = I N -Diag -1 2 

WDiag

-1 2 = UΣU T , Diag is the diagonal degree matrix of G, I N is the identity matrix, and Σ is the diagonal matrix of eigenvalues. The graph convolution of the latent representation z with a filter g ∈ R n is calculated using:

x * G g = F -1 (F (x) F (g)) = U (U T (x) U T (g)) (7) 
where denotes the element wise product. According to [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF], we can efficiently compute an approximated convolution of G as follows:

g θ z = θ B z (8) 
where

B = I N + Diag -1 2 WDiag -1 2 + (Diag -1 2 W Diag - 1 
2 ) 2 .

Training SSGCN

For the semi-supervised learning, the optimal neural network weights 1) , . . . , W (K) can be trained using the labeled set of training samples T D L = (i, y i ) L i=1 , by minimizing the standard cross-entropy loss function:

W (0) , W ( 
Loss = - L i=1 y i ln M i ( 9 
)
where M i is the label output of node i in the final layer.

Semi-supervised classification

The proposed SSGCN aims to predict the labels of unlabeled pixels z i ∈ T D nl which will go through various propagation layers. Formally, given a input multi-view latent feature matrix Z and a weighted adjacency matrix W, our SSGCN applies a layer-wise propagation rule using the Rectified Linear Unit (ReLu) as a non linear activation function and sof tmax() as a classifier:

Z (1) = ReLu(B Z (0) W (0) )
. . .

Z (K-1) = ReLu(B Z (K-2) W (K-2) ) Z (K) = sof tmax(B Z (K-1) W (K-1) ) ( 10 
)
where Z (0) = Z, {Z (1) , Z (2) , . . . , Z (K-1) } are the feature map outputs of the different layers and Z (K) = M is the label output of the final layer, i.e., M i is the label of vertex v i .

Experimental Results

HSI Description

To evaluate the effectiveness and the performance of the proposed methodology, we perform our experiments on three real HSIs 1 :

• The Indian Pines HSI collected by the Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) sensor, which represents the north-western Indiana. It consists of 145 × 145 pixels with a spatial resolution of 20 m per pixel and 220 spectral bands in the wavelength range from 0.4 to 2.5 µm.

The ground truth contains 16 classes. Fig. 5 reports the false color image and its ground truth.

• The Salinas image collected by the AVIRIS sensor over Salinas, California, which consists of 512 × 217 pixels with a spatial resolution of 3.7 m per pixel and 224 spectral bands. The ground truth contains 16 classes (see Fig. 6). • The last HSI is the Pavia University data collected by the Reflective Optics System Imaging Spectrometer (ROSIS-03) sensor, which consists of 610 × 610 pixels, and 115 spectral bands in the range from 0.43 to 0.86 µm, with a spatial resolution of 1.3 m. The ground truth contains 9 classes (see Fig. 7).

Performance Evaluation Metrics and Parameters Setting

In order to train our MV-DNNet model, we randomly choose 10% of the samples per class as training samples and the rest as testing samples (see table 1). After several tests, we choose stochastic gradient descent (SGD) optimizer for the training. The learning rate lr is fixed to 10 -3 as training parameter,

the training epoch to 200, and the batch size to 300, with 10000 iterations, a weight decay of 5.10 -4 , and a momentum of 0.9. We variate several encoding dimensions for each HSI from 2 to 100 (d ∈ [2, .., 100]). We tested different pairs of activation functions (hidden layers, output layer) of the MVDAE model:

(linear, linear ), (relu, linear ), and (relu, sigmoid ). It is implemented using the keras toolkit. We fixed the window size s = 3 of the AE in the first step of the spatial feature construction. The diagonal degree matrix Diag is fixed also with a window size p = 3 to take into account the 8-neighbors pixels. We repeated our experiments 10 times with random training samples to get stable classification accuracy. We adopted some metrics of performance to assess the classification rate: overall accuracy (OA), average accuracy (AA), and kappa coefficient (k).

The OA is the number of corrected classified pixels divided by the total number of testing pixels, whereas AA is the mean value of classification accuracy of all classes. The k index is a statistical measurement of consistency between the classification maps and the ground truth.

Analysis of the reconstruction error

In this section, we present the reconstruction errors obtained by different representation learning models, including, PCA, ICA, AE(linear,linear ), AE(relu,linear ), and AE(relu,sigmoid ). We opted for the MSE loss function to compute the reconstruction error between the initial HSI X and the reconstructed input X and we reported then the average MSE versus to the encoding dimension for Indian Pines, Salinas, and Pavia University (see Fig. 8). Thus, we can interpret that the AE(relu,linear ) is the appropriate one for representation learning for three HSIs data with an MSE value equal to 0.069 and an encoding dimension set to 20 for Indian Pines, 0.064 for an encoding dimension of 30

for Salinas, and 0.058 for a dimension defined to 20 for Pavia University. For the other methods, the best average MSE, i.e. M SE < 0.1 is obtained when the size of the latent representation is greater than ≈ 80 features. However, in our case we need a lower encoding dimension due the curse of dimensionality and the overfitting problem. Moreover, Fig. 9 reports the reconstruction error and standard error values of the best model AE(relu,linear ) from 1 to 4 hidden dense layers, where the encoding dimension is 20. We can notice from the obtained results that the best obtained MSE is equal to 0.069(±0.006) for In this section, we compare the obtained classification results using the proposed approach MV-DNNet with other deep learning-based methods, including, deep suppport vector machines (DSVM) [START_REF] Okwuashi | Deep support vector machine for hyperspectral image classification[END_REF], stacked autoencoder (SAE) [START_REF] Chen | Deep learning-based classification of hyperspectral data[END_REF],

CNN [START_REF] Mei | Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[END_REF], discriminative convolutional neural network (DCNN) [START_REF] Huang | Hyperspectral image classification via discriminative convolutional neural network with an improved triplet loss[END_REF], rolling guidance filter and vertex component analysis network (R-VCA) [START_REF] Pan | R-vcanet: A new deep-learning-based hyperspectral image classification method[END_REF], structuralkernel collaborative representation (SKCR) [START_REF] Tu | Spectral-spatial hyperspectral classification via structural-kernel collaborative representation[END_REF], gabor filtering (GF) [START_REF] Kang | Classification of hyperspectral images by gabor filtering based deep network[END_REF], 3D convolutional neural network (3DCNN) [START_REF] Li | A spectral-spatial kernel-based method for hyperspectral imagery classification[END_REF], and fused 3D CNN (F-3DCNN) [START_REF] Sellami | Fused 3-d spectral-spatial deep neural networks and spectral clustering for hyperspectral image classification[END_REF]. R-VCA aims to incorporate the spatial information and spectral characteristics in the classification task using the rolling guidance filter and vertex component analysis network. SKCR seeks to preserve the spatial neighborhood of the pixels in a superpixel belonging to the same class. Furthermore, GF is used to preserve the spatial information in order to improve the performance of the classification.

3D CNN uses a 3D convolution operation to take into account simultaneously the spectral and spatial features. Finally, F-3DCNN is proposed to fuse several 3D CNN in order to enhance the classification rates. OAs are greater than 98%. In Fig. 12, we compare also the obtained classifica- 

Conclusion

In this paper, we proposed a novel approach for spectral-spatial classification of HSI, called MV-DNNet, which is based on multi-view deep autoencoder (MVDAE) and semi-supervised graph convolutional network (SSGCN). The advantage of such an approach is that it works with very small number of labeled 

Figure 1 :

 1 Figure 1: Flowchart of the proposed methodology MV-DNNet

  (d << D) in spectral dimension. For each pixel, we extract a s × s neighbor pixels. Given that d is the number of extracted features with AE model and a pixel can be considered as a box with a size of s × s × d. Finally, we flatten the box into 1 × D vector with a size of s 2 d × 1 elements. All 1-D vectors are then concatenated into the spatial features matrix X spa . Therefore, X spa ∈ R N ×s 2 d contains the spatial features of each pixel taking into account their neighbor regions. Figure3reports the main architecture of the spatial feature extraction procedure.

Figure 2 :Figure 3 : 3 . 2 .

 2332 Figure 2: The architecture of the deep autoencoder model (AE)

Figure 4 :

 4 Figure 4: Different architectures can be considered of MVDAE. (A) a multi-view deep autoencoder model trained on the concatenation of both latent representations xspe and xspa ( z = concat(xspe + xspa) (z is the bottleneck layer). (B) a multi-view deep autoencoder model trained on the shared representations: z = E(Wspe × zspe + Wspa × zspa).

  185 network (SSGCN). The main goal of this model is to perform the spectral-spatial classification by considering the constructed graph G. For semi-supervised learning, let T D l = {z i , y i } L i=1 be a set of labeled training dataset of size L, where z i indicates a feature vector of the i th labeled pixel, and y i is its corresponding label. Moreover, let T D nl = {z i } L+N L i=L+1 be a set of unlabeled training samples of 190 size N L (L + N L = N ). The aim of semi-supervised learning is to predict the labels of unlabeled training samples T D nl , using a non linear function f (Z, W ) such as ReLu [43]. 3.4.1. Convolutional layers Convolution on graphs can be computed by multiplying each graph signal z by a filter g θ parametrized by the Fourier coefficient θ ∈ R N [44]. Usually, the Algorithm 1 Spectro-Spatial Graph Construction Input: X ∈ R N ×D , Z ∈ R N ×d p (window size): integer; t (heat kernel): float Output: G = (V, E, W ) Spectro-Spatial Graph of X and Diag: diagonal degree matrix Initialization:V ← [ ], E ← [ ], W ← [ ], Diag ← [ ] // Compute the list of vertices V for i = 1 : N do // N : Number of pixels for j = 1 : d do // d Number of extracted features

Figure 5 :

 5 Figure 5: (a) False color image of the Indian Pines Dataset. (b) Ground-truth classification map of Indian Pines Dataset.

Figure 6 :

 6 Figure 6: (a) False color image of the Salinas Dataset. (b) Ground-truth classification map of Salinas Dataset.

Figure 7 :

 7 Figure 7: (a) False color image of the Pavia University Dataset. (b) Ground-truth classification map of Pavia University Dataset.

Figure 8 :

 8 Figure 8: MSE of reconstruction versus encoding dimension. (A) Indian Pines, (B) Salinas, and (C) Pavia University

Figure 9 :

 9 Figure 9: MSE of reconstruction error versus encoding dimension using four different layers (d = 20)

  DSVM seeks to use several kernels in the deep SVM model (exponential radial basis function, gaussian radial basis function, neural, and polynomial) to improve the HSI classification. SAE uses the AE model and PCA technique to preserve the spectral and spatial information in the classification task. The CNN model aims to perform the HSI classification by considering both spatial context and spectral features. DCNN uses triplet loss to improve the HSI classification.

Figure 10 :

 10 Figure 10: Classification maps for the Indian Pines HSI obtained by (a) DSVM, (b) SAE, (c) CNN, (d) DCNN, (e) R-VCA, (f) SKCR, (g) GF, (h) 3DCNN, (i) F-3DCNN, and (j) MV-DNNet.

Figure 11 :

 11 Figure 11: Classification maps for the Salinas HSI obtained by (a) DSVM, (b) SAE, (c) CNN, (d) DCNN, (e) R-VCA, (f) SKCR, (g) GF, (h) 3DCNN, (i) F-3DCNN, and (j) MV-DNNet.

Figure 12 :

 12 Figure 12: Classification maps for the Pavia University HSI obtained by (a) DSVM, (b) SAE, (c) CNN, (d) DCNN, (e) R-VCA, (f) SKCR, (g) GF, (h) 3DCNN, (i) F-3DCNN, and (j) MV-DNNet.

Table 1 :

 1 Training and testing sets for Indian Pines, Salinas, and Pavia datasets.

	Indian Pines		Salinas		Pavia University	
	Class	Samples Train Test	Class	Samples Train Test	Class	Samples Train Test
	Alfalfa (C1)	5	49	Broc-W-1 (C1)	200	1809	Asphalt (C1)	132	6499
	Build-G (C2)	38	342	Broc-W-2 (C2)	372	3354	Bare-S (C2)	100	4929
	Corn (C3)	23	211	Fallow (C3)	197	1779	Bitumen (C3)	26	1304
	Corn-M (C4)	83	751	Fallow-P (C4)	139	1255	Gravel (C4)	41	2058
	Corn-N (C5)	143	1291 Fallow-S (C5)	267	2411	Meadows (C5)	373	18321
	Grass-W (C6)	5	21	Stubble (C6)	395	3564	Painted-M (C6)	26	1319
	Grass-P (C7)	50	447	Celery (C7)	357	3222	Self-B (C7)	73	3609
	Grass-T (C8)	75	672	Grapes-U (C8)	1127 10144 Shadows (C8)	19	928
	Hay-W (C9)	49	440	Soil-V-D (C9)	620	5583	Tree (C9)	61	3003
	Oats (C10)	2	18	Corn-W (C10)	327	2951			
	Soyb-C (C11)	62	552	Let-4wk (C11)	106	962			
	Soyb-M (C12)	247	2221 Let-5wk (C12)	192	1735			
	Soyb-N (C13)	97	871	Let-6wk (C13)	91	825			
	Stone-S (C14)	10	85	Let-7wk (C14)	107	963			
	Wheat (C15)	21	191	Viney-U (C15)	726	6542			
	Woods (C16)	130	1164 Viney-T (C16)	180	1627			

Table 2 :

 2 Concatenated inputs (x spe + x spa )Fused latent rep. (z spe + z spa )

		Avg MSE	Avg OA	Avg MSE	Avg OA
	PCA	0.121 (± 0.023)	94.23 (± 0.047)	N/A	N/A
	ICA	0.118 (± 0.019)	95.44 (± 0.092)	N/A	N/A
	AE/MVDAE (lin, lin)	0.093 (± 0.011)	96.23 (± 0.014)	0.085 (± 0.038)	96.52 (± 0.023)
	AE/MVDAE (relu, lin) 0.071 (± 0.020) 96.94 (± 0.013) 0.068 (± 0.095) 97.68 (± 0.042)
	AE/MVDAE (relu, sig) 0.094 (± 0.063)	96.14 (± 0.028)	0.090 (± 0.036)	96.19 (± 0.012)

Best average MSE and OA (± standard error) using spectral and spatial features of Indian Pines data based on PCA, ICA, and different AE/MVDAE models

(3 layers) 

Table 3 :

 3 Best average MSE and OA (± standard error) using spectral and spatial features of Salinas based on PCA, ICA, and different AE/MVDAE models (3 layers) Concatenated inputs (x spe + x spa ) Fused latent rep. (z spe + z spa )

		Avg MSE	Avg OA	Avg MSE	Avg OA
	PCA	0.092 (± 0.039)	95.84 (± 0.013)	N/A	N/A
	ICA	0.101 (± 0.026)	95.62 (± 0.069)	N/A	N/A
	AE/MVDAE (lin, lin)	0.083 (± 0.014)	96.59 (± 0.091)	0.071 (± 0.043)	96.84 (± 0.081)
	AE/MVDAE (relu, lin) 0.073 (± 0.046) 96.72 (± 0.022) 0.063 (± 0.082) 98.24 (± 0.036)
	AE/MVDAE (relu, sig) 0.087 (± 0.054)	96.33 (± 0.082)	0.074 (± 0.024)	96.50 (± 0.044)

Table 4 :

 4 Best average MSE and OA (± standard error) using spectral and spatial features of Pavia University based on PCA, ICA, and different AE/MVDAE models (3 layers) Concatenated inputs (x spe + x spa ) Fused latent rep. (z spe + z spa )

		Avg MSE	Avg OA	Avg MSE	Avg OA
	PCA	0.089 (± 0.092)	96.81 (± 0.077)	N/A	N/A
	ICA	0.094 (± 0.074)	96.34 (± 0.021)	N/A	N/A
	AE/MVDAE (lin, lin)	0.075 (± 0.013)	96.84 (± 0.034)	0.071 (± 0.043)	96.84 (± 0.081)
	AE/MVDAE (relu, lin) 0.070 (± 0.029) 97.12 (± 0.047) 0.051 (± 0.063) 99.16 (± 0.016)
	AE/MVDAE (relu, sig) 0.079 (± 0.031)	96.51 (± 0.011)	0.073 (± 0.031)	96.72 (± 0.072)

Table 5 :

 5 Classification performances using DSVM, SAE, CNN, DCNN,R-VCA, SKCR, GF,

	3DCNN, F-3DCNN, and MV-DNNet (Ours): Indian Pines HSI (d = 20)		
	Class	DSVM SAE	Models CNN DCNN R-VCA SKCR	GF	3DCNN F-3DCNN Ours
	C1	88.22	93.92 93.41	94.21	95.02	93.81 94.01	94.46	96.32	96.42
	C2	92.31	91.24 96.80	95.41	94.91	95.63 95.69	92.19	96.26	96.65
	C3	95.12	93.10 95.26	96.98	97.36	97.58 93.48	98.05	96.97	98.01
	C4	95.96	89.51 93.82	97.56	96.99	97.06 92.69	97.09	96.99	98.12
	C5	97.03	93.18 96.22	95.11	94.78	95.06 96.21	92.16	97.42	97.12
	C6	83.03	88.21 94.02	96.51	98.89	96.28 96.32	95.10	95.18	97.08
	C7	89.64	80.21 95.04	95.63	96.14	97.15 98.01	94.06	97.02	98.61
	C8	92.03	94.31 98.01	97.10	95.31	96.14 97.22	98.91	96.89	98.10
	C9	96.12	92.10 97.02	94.12	93.36	92.78 92.21	97.03	96.56	96.91
	C10	91.22	87.03 98.04	91.85	94.21	95.03 94.02	94.02	97.07	98.07
	C11	85.13	88.21 95.32	93.45	94.21	94.09 96.72	95.21	97.31	97.52
	C12	91.12	91.04 86.14	89.48	92.14	95.47 96.12	95.03	96.84	97.08
	C13	86.12	82.23 94.06	94.25	93.84	95.23 95.06	96.21	96.21	96.89
	C14	95.01	86.07 97.13	93.85	94.96	96.98 96.21	96.12	97.26	97.94
	C15	95.02	93.06 95.23	94.61	95.95	94.86 95.04	94.18	96.61	97.08
	C16	92.38	94.26 96.10	96.85	95.91	96.21 97.02	95.19	96.95	98.51
	OA	92.24	91.85 94.99	94.86	94.26	96.23 96.52	96.54	96.98	97.68
	AA	92.13	91.78 94.81	96.72	94.08	96.11 96.39	96.47	96.85	97.55
	k	92.25	91.77 94.85	94.78	94.18	96.21 96.52	96.40	96.89	97.62
	Time (s)	230	241	322	361	298	267	239	278	274	211

Table 6 :

 6 Classification performances using DSVM, SAE, CNN, DCNN,R-VCA, SKCR, GF,

	3DCNN, F-3DCNN, and MV-DNNet (Ours): Salinas HSI (d = 30)		
	Class	Models DSVM SAE CNN DCNN R-VCA SKCR	GF	3DCNN F-3DCNN Ours
	C1	95.22	97.12 98.04	96.95	95.75	96.23	97.07	95.26	97.01	97.84
	C2	94.93	95.84 96.28	94.21	93.87	95.41	96.18	95.92	96.68	96.71
	C3	93.16	95.89 97.87	96.81	97.25	96.45	97.13	95.86	96.88	97.67
	C4	95.14	95.12 96.24	95.24	96.11	96.36	96.87	96.99	95.98	96.69
	C5	96.42	96.12 96.85	97.01	96.81	96.74	97.62	96.74	96.75	98.26
	C6	96.24	95.29 97.17	96.91	96.85	97.11	97.09	96.12	97.88	98.92
	C7	96.14	95.85 97.42	97.21	97.53	98.01	97.82	96.40	97.51	98.72
	C8	97.02	96.62 97.17	96.12	96.34	97.04 97.80	96.87	96.94	97.55
	C9	96.26	96.84 96.92	97.11	99.94	97.25	97.84	96.74	97.26	98.62
	C10	97.21	94.11 97.21	95.23	96.16	96.98	97.12	96.21	96.23	98.43
	C11	94.62	95.81 97.14	96.74	96.84	97.14	97.47	97.22	97.10	98.32
	C12	93.14	94.06 96.21	95.99	96.47	96.81	97.12	97.08	96.28	97.89
	C13	94.98	96.16 96.82	96.95	97.03	96.96	97.08	97.16	97.21	98.45
	C14	96.24	93.81 97.12	97.23	96.83	97.01	96.92	96.13	97.16	97.51
	C15	96.08	94.92 97.74	97.15	98.12	98.04	98.83	97.84	97.28	98.68
	C16	96.47	96.11 97.94	97.62	96.95	97.74	98.32	97.61	97.62	98.22
	OA (%)	95.12	96.24 97.12	96.56	96.74	97.12	97.18	96.36	97.65	98.24
	AA (%)	95.02	96.19 97.03	96.31	96.61	96.98	97.11	96.22	97.52	98.17
	k × 100	95.07	96.22 97.15	96.30	96.47	97.07	97.16	96.28	97.49	98.20
	Time (s)	320	289	295	344	332	297	230	265	289	259

Table 5

 5 reports the obtained classification accuracies OAs for the Indian Pines HSI. Based on these results, we can notice that the proposed model MV-DNNet gives better classification performance, compared to other deep learningbased methods. In fact, the obtained OA is 97.68%, AA is 97.55%, and k is 97.62%. However, for few classes our results are slightly less. For instance,

	Indian Pines, the proposed method MV-DNNet gives better classification per-
	formance. Fig. 10 reports a visual classification maps for Indian Pines HSI
	with the corresponding classification rates OA for different models. As shown
	in this figure, the SAE and DSVM models present noisy classification results
	because they only exploit the concatenated spectral and spatial information
	into a single vector without select useful features. Moreover, the CNN, DCNN,
	R-VCA, SKCR, and GF methods can provide smoother classification perfor-
	mances. Furthermore, due to the limited number of training labeled samples,
	the CNN, 3DCNN, and F-3DCNN also present noisy classification results. In
	contrast, the proposed MV-DNNet model not only delivers better classification
	performances but also achieves accurate classification on the edges area.
	For the Salinas HSI, the obtained classification rate OA with MV-DNNet
	is 98.24%, AA is 98.17%, and k is 98.29% (see Table 6). Also, we can notice
	that the MV-DNNet method gives better classification rates for 13 out of 16
	classes, with a number of features d = 30. Most classification rates are greater

the 3DCNN and F-3DCNN methods give the best classification rates for three classes 'Corn', 'Corn-N' and 'Grass-T', with an OA of 98.05%, 97.42% and 98.91%, respectively and the CNN model for the 'Building-G' and 'Hay-W', with an OA of 96.80% and 97.02%, respectively. For the remaining 11 classes of

Table 7

 7 reports the obtained classification results for the Pavia University HSI. From this table, we can see that the OA with MV-DNNet is 99.16%, AA is 99.04%, and k is 99.07%. The MV-DNNet model gives better classification rates for all the 9 classes of Pavia University dataset. Also, most classification rates
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