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Abstract

Even though Nearest Neighbor Gaussian Processes (NNGP) alleviate MCMC
implementation of Bayesian space-time models considerably, they do not
solve the convergence problems caused by high model dimension. Frugal
alternatives such as response or collapsed algorithms are one answer. An
alternative approach is to keep full data augmentation, but to try and make
it more efficient. Two strategies are presented.
The first is to pay particular attention to the seemingly trivial fixed effects of
the model. Empirical exploration shows that re-centering the latent field on
the intercept critically improves chain behavior. Theoretical elements sup-
port those observations. Besides the intercept, other fixed effects may have
trouble mixing. This problem is addressed by interweaving, a simple method
that requires no tuning, while remaining affordable thanks to the sparsity of
NNGPs.
The second accelerates sampling of the random field using Chromatic sam-
plers. This method boils long sequential simulation down to group-parallelized
or group-vectorized sampling. The attractive possibility for parallelizing
NNGP density can therefore be carried over to field sampling.
A R implementation of the two methods for Gaussian fields is freely avail-
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able1, an extensive vignette is provided. The presented implementation is
run on two synthetic toy examples, along with the state of the art package
spNNGP. Finally, the methods are applied to a real data set of lead contam-
ination on the mainland of the United States of America.

Keywords: Nearest Neighbor Gaussian Process, Space-time models,
Chromatic Sampler, Interweaving

1. Introduction

Many social or natural phenomena happen at the scale of a territory
and must be observed at various sites and possibly times. The rise of mod-
ern GPS and Geographic Information Systems made large and high-quality
point-referenced data sets increasingly available. Assume that, in a collec-
tion of sites S of the space or space-time domain D, we have measurements
z(·) with some kind of space or space-time coherence. This coherence can be
accounted for by introducing a spatially-indexed process w(·) that has a well-
defined joint distribution on any finite subset of the domain. We consider a
Gaussian model where the observations z(·) have been disrupted by a Gaus-
sian noise ε of standard deviation τ . Many models also add linear regression
on covariates X(·), giving the following classical model formulation

z(s) = β0 +X(s)βT + w(s) + ε(s), s ∈ S. (1)

In order to keep notations shorter, for any collection of spatial locations
P ⊂ S, we denote the vector {w(s) : s ∈ P} as w(P). Gaussian processes
(GP) make an elegant prior distribution for w(·) for continuous data, see
[1]. The GP prior distribution of w(S) is N (µ,Σ). The mean parameter of
w(·) is usually fixed to µ = 0 to avoid identification problems with the linear
regression intercept β0. The covariance matrix is computed using a positive
definite function k(·) with covariance parameters θ, such as Matérn’s covari-
ance and its exponential and squared-exponential special cases. It can then
be written as Σ(S, θ), and its entries are Σ(S, θ)i,j = k(si, sj, θ). We denote
f(·|µ,Σ) the GP density, and we abbreviate it as f(·|µ, θ). The covariance
parameters can have modeler-specified hyperpriors developed in [2, 3].

The weakness of GPs is that computing the GP prior density of w(S)
involves the determinant and inverse of Σ(S, θ), incurring a computational

1https://github.com/SebastienCoube/Improving_NNGP_full_augmentation
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cost that is cubic in the size of S. Vecchia’s approximation to Gaussian like-
lihoods has received increased attention in recent years, with the theoretical
developments of [4, 5, 3, 6] and software presented in [7, 8]. The Nearest
Neighbor Gaussian Process (NNGP) is a special case of Vecchia’s approxi-
mation that provides a surrogate of the inverse Cholesky factor of Σ and uses
it to approximate GP prior density. It starts by finding an ordering for the
n locations of S which we will denote (s1, . . . , sn). The ordering may have
an impact on the quality of the approximation, and is discussed in [3, 5].
The joint latent density of w(s1, . . . , sn) is then written under the recursive
conditional form

f(w(s1, . . . , sn)|µ, θ) = f(w(s1)|µ, θ)× Πn
i=2f(w(si)|w(s1, . . . , si−1), µ, θ).

Since f(w(s1, . . . , sn)|µ, θ)) is a Multi-Variate Normal (MVN) distribution
function, the conditional density f(w(si)|w(s1, . . . , si−1), µ, θ), i ∈ 2, . . . , n is
a Normal as well. A NNGP is obtained by replacing the vector w(s1, . . . , si−1)
that conditions w(si) by a much smaller parent subset denoted w(pa(si)) for
each conditional density. The NNGP approximation to the GP prior joint
density of w(·) is defined as

f̃(w(s1, . . . , sn)|µ, θ) = f(w(s1)|µ, θ)× Πn
i=2f(w(si)|w(pa(si)), µ, θ). (2)

This very general principle can be applied to any kind of well-defined multi-
variate density. However, as far as we know, MVN density approximation is
the only application. This may be explained by the fact that non-Gaussian
data can be handled with GP modeling thanks to link functions. More-
over, a NNGP defines a MVN density and it is possible to compute the
sparse Cholesky factor of the precision matrix explicitly and easily. The
choice of the parents is critical, but no universal criterion exists. A popu-
lar choice is to choose the parent locations pa(si) as si’s nearest neighbors
among (s1, . . . , si−1), explaining the denomination “Nearest Neighbors Gaus-
sian Process” given in [3]. However, [3, 9] argue that mixing close and far-
away observations can improve the approximation. This approximation is
cheap and easily parallelisable. The latent density (2) can be split into small
jobs and dispatched to a cluster of calculators ([3]). Its cost is linear in the
number of observations, under the condition that the size of each parent set
is bounded. More advanced strategies exist, such as grouping, proposed by
Guinness in [5].

Although NNGPs work around the bottleneck of GP likelihood computa-
tion, they do not solve the problem of slow MCMC convergence. In [3], the
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Gibbs sampler loops over θ, w(S) and β, µ is fixed to 0. The latent field w(S)
is updated sequentially or by blocks. This sampler suffers from slow mixing,
in particular when n increases. Other strategies have been proposed by Fin-
ley and al. [6] that avoid sampling the field in order to reduce the dimension
of the model. Yet another method [6, 10] is to use convenient conjugate dis-
tributions for models where the range of w(·) and the variance ratio of w(·)
and ε(·) are fixed, and select the fixed parameters by cross-validation. Our
approach is nevertheless to improve implementations of NNGP models where
the latent field is explicitly sampled. Our first reason is that there may be
situations where some of the methods presented in [6] perform poorly while
full data augmentation works well. For example, the collapsed NNGP of [6]
enjoys low dimensionality and nonetheless allows the latent field to be re-
trieved, but demands Cholesky factorization of large sparse matrices, which
may not be feasible depending on n and the dimension of D. The Response
NNGP of [6] retrieves the covariance parameters θ but not the latent field
w(S). Our second reason is that efficient Gibbs sampler architectures can
improve mixing sharply. A NNGP defines a Markov Random Field, allowing
use of the blocking methods of [11]. The sparse Cholesky factor in a NNGP
makes it possible to use the Ancillary-Sufficient Interweaving Strategy (AS-
IS) presented in [12]. The third reason is that full latent field sampling is
all terrain, and can address many data models or be plugged into complex,
non-stationary models like [13], while collapsed MCMC or conjugate models
are much pickier.

Here is an outline of the article. Section 2 focuses on the seemingly trivial
fixed effects of the hierarchical model. In 2.1 we propose a mild but efficient
centering of the latent field on the least squares regression intercept. In 2.2,
we extend centering to other fixed effects, and use interweaving from [12] to
propose a robust, tuning-less application. Section 3 targets the simulation of
the random field. In 3.1, we propose to use the chromatic samplers developed
by Gonzalez and al. in [14] in order to carry the attractive parallelizability
of NNGP density over to field sampling. In 3.2, we analyze the sensitivity of
NNGP graph coloring and we benchmark coloring algorithms. We apply our
methods in section 4. We present our implementation (available at https:

//github.com/SebastienCoube/Improving_NNGP_full_augmentation) in
4.1. We test our implementation along with the state of the art package
spNNGP presented in [8] on synthetic toy examples in 4.2. In 4.3, we present
an application on lead contamination on the mainland of the United States
of America. The article ends by a discussion in Section 5.
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2. Latent field centering

2.1. Centering the latent field on the intercept

The mean parameter µ of the prior density for the latent field w(·) is
usually set to 0 in order to avoid identification problems with the intercept β0.
We call this formulation standard, since it is found in state of the art papers
such as [3, 6]. We name samples of the standard formulation ws(·). Our
proposal is to replace ws(S) by a centered wc(S) = ws(S) + β0 in the Gibbs
Sampler. This substitution is a non-degenerate linear transform that keeps
the model valid, while keeping the possibility of transforming the samples
back to standard parametrization if needed. The centered parametrization
can also be seen as a slightly different model, with (1) becoming

z(s) = X(s)βT + wc(s) + ε(s), s ∈ S (3)

and the prior density of wc(S) becoming

f̃(wc(S)|µ = β0, θ).

These changes impact the full conditional distributions. Table 1 summarizes
the changes in a Gibbs sampler for a Gaussian model found in [3]. We denote
f(·|·, ·) the normal density function, and Q̃ the latent field’s precision matrix
defined by the NNGP. We abbreviate the interest variables X(S) as X. We
denote the vector made of n times 1 as 1. The matrix obtained by adding 1
to the left side of X is named [1|X]. We did not feature prior distributions
on the high-level parameters like θ, τ or β: their full conditionals would not
be affected, since centering changes only the NNGP prior and the observed
data likelihood.

A point that may confuse a careful reader is the presence of an Ordinary
Least Square (OLS) distribution in rows β and (β0, β) of table 1, and later,
in step 2 of algorithm 1: why is there an OLS if there is some spatial auto-
correlation? The point is that this auto-correlation is captured by w(S), and
that conditionally on w(S) the observations are independent. Remember
that in the standard case the likelihood of the Gaussian observations is

f(z|β0, β, ws, θ, τ) ∝ N (ws + β0 +XβT , τ 2In).

This likelihood is then plugged into the full conditional of β, explaining the
OLS:

f(β0, β|z, ws, θ, τ) ∝ f(z|β0, β, ws, θ, τ)︸ ︷︷ ︸
independent Gaussian

f(ws|β0, β, θ, τ)︸ ︷︷ ︸
constant w.r.t β0, β

f(β0, β, θ, τ)︸ ︷︷ ︸
prior

.
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Table 1: Changes in the full conditional distributions

Variable Standard Centered

β0 f(β0, (1
T Q̃1)−1(1T Q̃wc), (1

T Q̃1)−1)
β f(β, (XTX)−1(XT (z − wc))), τ 2(XTX)−1)

(β0, β) f(β, ([1|X]T [1|X])−1([1|X]T (z − ws))),
τ 2([1|X]T [1|X])−1)

θ f̃(ws(S)|0, θ) f̃(wc(S)|β0, θ)
τ Πs∈Sf(z(s)|ws(s) + β0 +X(s)βT , τ) Πs∈Sf(z(s)|wc(s) +XβT , τ)

w(x) f̃(ws(x)|ws(S\x), 0, θ) f̃(wc(x)|wc(S\x), β0, θ)
f(z(x)|ws(x) + β0 +X(x)βT , τ) f(z(x)|wc(x) +X(x)βT , τ)

The reasoning is similar at row β for the centered model, the only difference
being that β0 is excluded. Note that this OLS step is perfectly affordable
whatever the prior distribution of the latent field. On the other hand, the
centered update of β0 implies multiplications with Q̃, and its efficiency is
based on the sparsity of this matrix.

Even if the modification is minor, the improvement in the mixing of the
intercept is clear. We simulated a small toy example with 1000 observations
and ran the two Gibbs samplers. The autocorrelation plots (Figure 1) are
clearly in favor of the centered formulation. In this toy example the standard
model mixes after a few hundred iterations, but this is not the case for larger
models. We observed empirically that there is much more correlation between
w(S) and β0 in the standard implementation. Plotting 1

n
Σw(S) against β0

(Figure 2) displays a clear ridge in the case of the standard model (Figure 2b).
This means that the whole latent field has to shift upwards and downwards for
the intercept to explore its posterior distribution, causing a slow exploration.
Ridge-like densities are a well known plague of Gibbs samplers, and linear
recombination is one of the tools to get rid of it, see [15].

The behavior of the toy example arises from the fact that the fraction of
βt0 that is carried over in wt+1 and βt+1

0 changes following the model. Take a
simpler spatial model where only an intercept and the Gaussian latent field
are estimated, while the Gaussian noise variance τ 2 and NNGP precision Q̃
are known. The intercept coefficient has an improper constant prior. As-
sume that the latent field is sampled in one step (which is usually not the
case unless the data size is very small).
Denote the diagonalization Q̃ = V TλV , V being a square matrix of eigen-
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(a) Centered model
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(b) Standard model

Figure 1: The ACF of β0 drops much faster in the centered model than in the standard
model
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(a) Centered model
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Figure 2: When plotting 1
nΣw(S) against β0, the standard model exhibits a ridge-shaped

point cloud
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vectors and λ being a diagonal matrix of eigenvalues. The eigenvalues are
positive since Q̃ = R̃T R̃. Note αi, i = 1, . . . , n the coordinates of the vector
1 = (1, . . . , 1) in the orthonormal basis V . The following results are proved
in Appendix A.
The first result is that a fraction of β0 is carried over in the empirical mean
of the latent field. Note ρ = Σn

i=1α
2
i (τ

2λ+ In)−1
i,i /n. Then,

wt+1
s = µs − ρβt0 + εt+1

s and wt+1
c = µc + (1− ρ)βt0 + εt+1

c ,

µs and µc being fixed, εs and εc being stochastic innovations, and t being the
index of the iteration. Moreover, we have

0 ≤ ρ ≤ 1.

Thanks to this result, we can see that if a high fraction of β0 is carried over
in the mean of the standard latent field, then a low fraction of β0 will be
carried over in the mean of the centered latent field, and conversely. This is
what can be seen clearly in figure 2.

The next question is why ρ is closer to 1 than to 0. This point is difficult to
clarify because there is no analytic expression for terms where Q̃ is involved.
For example, the range parameters are updated through a Metropolis step
in [3] because a full conditional draw is challenging. However, we can start
from ρ = Σn

i=1α
2
i (τ

2λ + In)−1
i,i /n and make a deduction: if the sum is high,

then λi,i is small when αi is big; and conversely λi,i is big when αi is small.
We can re-formulate : λ−1

i,i is big when αi is big. Now, remark that V
and λ−1 respectively are the spatial basis and coefficients of the Karhunen-
Loève decomposition of the NNGP prior. This means that αi is high for the
first components of the decomposition, where λ−1 is the highest. In other
terms, 1 “resonates” with the first spatial basis functions of the Karhunen-
Loève decomposition. This conclusion is consistent with the fact that Q̃
parametrizes a spatially coherent latent field, inducing that a few spatial basis
functions are enough to describe most of w. For example, in the Predictive
Process model of [16], w is approximated by a degenerate process with a
low-rank covariance matrix.

Now, let’s focus on the expressions of [βt+1
0 |βt0]. Like the mean of the

latent field, they can be expressed with a fixed part, a geometric carry-over,
and an innovation. In the standard model, a fraction ρ of βt0 is carried over.
We already discussed this quantity. As for the centered model, the fraction

8



of βt0 which is conserved in βt+1 is

Σn
i=1

(
(α2

iλi,i)(τ
2λi,i)/(τ

2λi,i + 1)
)
/Σn

i=1α
2
iλi,i.

Once again, the geometric term is between 0 and 1, since 0 ≤ (τ 2λi,i)/(τ
2λi,i+

1) ≤ 1. Like before, suppose that α is big when λ is small. Then, when
αi is the largest, (τ 2λi,i)/(τ

2λi,i + 1) will be much smaller than 1, result-
ing in Σn

i=1 ((α2
iλi,i)(τ

2λi,i)/(τ
2λi,i + 1)) being much smaller than Σn

i=1α
2
iλi,i.

Therefore, we can expect a small proportion of βt0 to remain in βt+1
0 .

2.2. Adaptation to other fixed effects

Field centering can be extended to other fixed effects. In most cases it is
unnecessary because centering and scaling X(S) is enough to considerably
improve chain behavior. What is more, centering the latent field on other lin-
ear effects usually worsens the MCMC behavior of the associated regression
coefficients. However, this general rule is not always working. In particular,
when some covariates have some spatial coherence, their regression coeffi-
cients may have trouble mixing. In this case, it is often useful to try and
center w(·) not only on the intercept, but also on the troublesome covariates’
fixed effect. However, doing preliminary runs and picking manually which
fixed effects the field needs to be centered on would be tedious.

Interweaving, introduced by Yu and Meng [12], combines the advantages
of the two strategies and removes the need to choose. The method takes
advantage of the discordance between two parametrizations to construct the
following step :

[Y1|θt]→ [Y2|Y1]→ [θt+1|Y2],

Y1 and Y2 being two data augmentations and θ the parameter. Usually, it is
complicated to sample [Y2|Y1] directly. Drawing an intermediary θt+0.5 gives

[Y1|θt]→ [θt+0.5|Y1]→ [Y2|θt+0.5, Y1]→ [θt+1|Y2].

It is possible that [Y2|θ, Y1] is a deterministic transformation, giving a degen-
erate joint distribution. Note that interweaving is not alternating: an alter-
nating scheme would be [Y1|θt] → [θt+0.5|Y1] → [Y2|θt+0.5] → [θt+1|Y2]. The
strategy is usually very efficient if the two parametrizations are an ancillary-
sufficient couple, giving an Ancillary-Sufficient Interweaving Strategy (ASIS),
and can even be efficient when neither of the two augmentations performs
well when implemented separately.

9



Algorithm 1 presents the steps to update the regression coefficients with
interweaving. The two parameterizations are w, which is un-centered, and
v, which is centered on all the fixed effects. For the sake of simplicity, we
suppose that there is only one measurement of X per spatial location and
we use an improper constant joint hyperprior on (β0, β). The parameters
that depend on the state in the Gibbs sampler are indexed by t. If the
observations were not Gaussian, step 4 would be left unchanged, while step
2 would be adapted just like in any generalized NNGP model [3].

There are two limitations to this approach. The first is the case where
several measurements of the interest variable z(·) and the regressors X(·) are
done at the same spatial location. The model must be extended as

z(s, i) = X(s, i)βT + w(s) + ε(s, i), s ∈ S, 1 ≤ i ≤ m(s),

m(s) ≥ 1 being the number of observations in the site s. In this setting, some
variables vary within one spatial location, while others do not. For example,
the presence of asbestos in buildings may be considered as a location-wise
regressor, while smoking is an observation-wise regressor. If the regressors
vary within one location, it is impossible to center the field on the corre-
sponding fixed effects. This would mean that the normal random variable
w(s) has several mean parameters at the same time. However, it is still
possible to restrict interweaving to the regression coefficients associated to
the location-wise variables. Our implementation allows us to specify which
regressors are associated with spatial location and which are associated with
individual measurements. As a NNGP is a point-measurement model, re-
gressors obtained through gridded and areal data are immediately eligible
for this method.

The second limitation is the computational cost. With an improper con-
stant prior, the centered regression coefficients follow a MVN distribution
whose mean and variance need to be computed at each update of θ. The
sparsity induced by Vecchia’s approximation is critical for the feasibility of
the method, because it ensures that matrix multiplications involving Q̃ are
affordable. Using a sparse matrix formulation for X could further alleviate
this operation if X has dummy variables or null measurements.

10



Algorithm 1 Regression coefficient updating with interweaving

1: input Q̃t, wt, X, βt, βt0, τ
t

2: simulate βt+.50 , βt+.5 followingN (([1|X]T [1|X])−1([1|X]T z), τ 2([1|X]T [1|X])−1)
3: v = wt +X(βt+.5)T

4: simulate βt+1
0 , βt+1 followingN (([1|X]T Q̃t[1|X])−1([1|X]T Q̃tv), ([1|X]T Q̃t[1|X])−1)

5: wt+0.5 = v −X(βt+1)T

6: return βt+1
0 βt+1, wt+0.5

3. Chromatic sampler for Nearest Neighbor Gaussian Process

3.1. Chromatic samplers and how to apply them to NNGP

In a Gibbs sampler, the parameters of a model are updated sequentially.
If a set of variables happens to be mutually independent conditionally on the
other variables of the model, and are updated consecutively by the Gibbs
sampler, their sampling can be parallelized. Let’s consider a Gibbs sampler
or a Metropolis-Within-Gibbs aiming to sample from a joint multivariate
distribution f(x1, . . . , xn).

xt+1
1 ∼ f(x1|xt2, . . . , xtn)
. . .
xt+1
i ∼ f(xi|xt+1

1 , . . . , xt+1
i−1, x

t
i+1, . . . , x

t
n)

. . .
xt+1
n ∼ f(xn|xt+1

1 , . . . , xt+1
n−1).

Let’s introduce p ≤ n vectors X1, . . . , Xp so that (x1, . . . , xn) = (X1, . . . , Xp),
and suppose that ∀X ∈ X1, . . . , Xp, either X has only one element or the
elements of X are conditionally independent given the other variables. The
Gibbs sampler can then be re-written

xt+1
i ∈ X1 ∼ f(xi|X t

2, . . . , X
t
p)

. . .
xt+1
i ∈ Xi ∼ f(xi|X t+1

1 , . . . , X t+1
i−1 , X

t
i+1, . . . , X

t
p)

. . .
xt+1
i ∈ Xp ∼ f(xi|X t+1

1 , . . . , X t+1
p−1).

Since all elements from Xi are simulated from independent densities, it is
possible to parallelize their sampling.

A NNGP is defined on a Directed Acyclic Graph (DAG) by Datta and
al. [3], see [4] for discussion about other Vecchia’s approximations. Then,
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using the argument of recursive kernel factorization given in [17], it has the
Markov properties on the moral graph obtained by un-directing the edges
and “marrying” the parents in the DAG (Figure 3). Graph vertex coloring
associates one color with each node of a graph while forbidding that two con-
nected nodes have the same color, just like coloring a map while forbidding
two countries that share a border having the same color. Using the Global
Markov property inductively, it is possible to guarantee mutual conditional
independence for the variables or the blocks that correspond to vertices shar-
ing the same color. Chromatic sampling can be applied straightforwardly to
the Gibbs sampler presented in [3]. It also allows normalizing constants to
be computed, and can be combined with the covariance parameter blocking
proposed by Knorr-Held and Rue in [11].

Chromatic samplers can be applied to blocked sampling as well. This
method consists in updating the latent field in various locations at once.
Chromatic sampling is a special case of blocked sampling, because in general
there is no conditional independence within one block. Precisely, sampling
the latent field jointly in a region of the domain reduces the negative im-
pact of spatial auto-correlation on the behavior of MCMC chains. Blocked
sampling may be applied to the latent field alone [3] or improve both co-
variance parameters and field sampling in [11]. Even though there is no
conditional independence within one block, there is some conditional inde-
pendence between the blocks, as long as there is no edge between any pair of
their respective vertices, allowing for chromatic sampling. The matrix BTAB
indicates the connections between the blocks, A being the adjacency matrix
of the NNGP latent field’s Markov graph, and B a vertex-block indicator
matrix (Bi,j = 1 if vertex i belongs to block j).

3.2. Coloring of NNGP moral graphs: sensitivity analysis and benchmark of
the algorithms

Coloring the moral graph Gm is a critical step in chromatic sampling and
determines the attractiveness of the method with respect to the “vanilla”
versions of the algorithms (one-site sequential sampling or blocked sampling
with several blocks). We focus on two variables to summarize the efficiency
of chromatic sampling:

• The number of colors: the smaller this number, the fewer the number
of steps in the chromatic sampler.

12



(a) Directed Acyclic
Graph

(b) Moral Graph (c) Colored Moral Graph

Figure 3: Moralization and coloring of a DAG

• The time needed for coloring, which must be small with respect to the
running time of the MCMC chains.

This section has two objectives. The first is to test the sensitivity of those two
interest variables to the properties of Gm and the coloring algorithm using
variance-based sensitivity analysis. The second objective is to benchmark
various coloring algorithms and find a rule to choose the algorithm.
We test various factors that may change the structure of Gm:

• Size n.

• Number of parents in the DAG m.

• Spatial domain dimension d.

• Ordering of the points.

We also test 3 coloring algorithms, given in detail in Appendix B.1:

• Naive greedy coloring: coloring each vertex with the smallest available
color.

• Degree greedy coloring: reordering the vertices following their number
of neighbors, and applying naive greedy coloring.

• DSATUR heuristic: coloring the node that has the highest number
of distinct colors among its neighbors (Degree of SATURation), and
breaking ties using the number of neighbors.

The full results of the experiments are given in Appendix B.2, and the sen-
sitivity analyses are summarized in table 2.
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3.2.1. Pilot experiment

Design
The objective is to perform preliminary sensitivity analysis and benchmark
on small graphs. We test the three coloring algorithms and graphs with the
following attributes, with each case being replicated 10 times:

• Graph size n = 500, 1000, 2000.

• Number of parents m = 5, 10, 20.

• Dimension d = 2, 3.

• Ordering following the first coordinate from [3], at random, or using
MaxMin heuristic from [5].

Sensitivity
The color count is overwhelmingly driven by the number of parents, the

ordering, and interactions between them. The role of the parents is not
surprising: the larger the parent sets, the more edges in the graph, the more
colors are needed. As for the ordering, it does not change the density but
rather the distribution of the edges, which may explain why the number
of colors is much smaller in the coordinate ordering. In a graph obtained
through coordinate ordering and the Nearest Neighbor heuristic, a vertex
tends to be connected with its immediate spatial surroundings. Its parents
in the DAG will be its predecessors along the coordinate used for ordering, its
children will be its successors, and its co-parents will mostly be a mix of the
closest parents and children. In a graph obtained thanks to random or max-
min ordering, the connections can be much longer, in particular for points
coming early in the ordering. This results in some vertices being connected
to many other vertices, leading to a denser graph. This point is illustrated
in figures 4 and 5.

The number of colors is robust with respect to the graph size because n
and its interactions have very low percentages in table 2. Since the numbers
of colors are small with respect to n (45 colors at the most), this makes
chromatic sampling a good candidate for large data sets.

This point is counter-intuitive because a bigger graph is more complex
than a smaller graph and should therefore be more difficult to color. The
Markovian nature of NNGPs may be a lead to explain this point, because
several sets of vertices that are not linked by a direct edge can be colored

14
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Figure 4: Connections of the same point, with two different orderings.
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Figure 5: Number of connections of a point given its place in the ordering (same graphs
as in figure 4)
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Figure 6: Impact of the spatial domain dimension and the coloring algorithm on the mean
number of colors, for graphs of size n = 2000.

independently. While new vertices are added to the graph, older vertices can
be forgotten and their colors can be re-used.

The dimension of the spatial domain d plays almost no role in the sensi-
tivity analysis, and the choice of the coloring algorithm has a very marginal
effect on the color count. Closer examination of the means reveals nonethe-
less that their effect is not nonexistent, but rather dwarfed by the prominent
role of the ordering of the vertices and the number of parents. For graphs
obtained with max-min or random ordering (6b and 6c), the number of colors
increases if d = 3.

The running time is affected by n, as expected. However, it is mostly
explained by the coloring algorithm and its interactions with n and m. In
Figure 7, we see the results of the experiment when the ordering of the spatial
points is random and d = 2. The number of parents m defines well-separated
vertical clouds of points, showing a clear, positive impact on the number
of colors. It also increases the running time: the clouds of points on the
right are stretched higher along the ordinates axis. The graph size n affects
the running time positively. The other cases with different ordering and
dimension all show this clear, chromatography-like profile.

Benchmark
In order to see if one coloring algorithm has the better of the others, we
compare the average number of colors for each case of the experiment in
table B.5. Regardless of the ordering, m, and n, the number of colors favors
DSATUR systematically but slightly over the two simpler algorithms. In the
case of coordinate ordering, naive greedy coloring reaches the performances
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Figure 7: Repartition of the number of colors and running time with random ordering and
d=2.

of DSATUR. While the two simple methods are very economical, the running
time becomes high in DSATUR when the graph size augments (Figure 7b).
We conclude that regardless of the structure of the graph, DSATUR must be
chosen for smaller graphs. The two other methods must be chosen for larger
graphs because DSATUR will become prohibitively expensive.

3.2.2. Coloring for large graphs

Design
The objective is to test the sensitivity of the two interest variables and to
benchmark coloring algorithms when the graphs are bigger. The experiment
is the same as before, with two differences:

• Only naive greedy and degree greedy coloring algorithms are tested

• The graph size n = 50000, 100000, 200000

Each case is replicated 10 times.
Sensitivity

For the number of colors, the results are the same as before (table 2). It is
mostly determined by the ordering and the number of parents. The robust-
ness of the number of colors with respect to n is confirmed. The running
time is affected mostly by n, but the ordering and m also play a role.

Benchmark
In table B.6, we can see that naive coloring systematically has a lower mean
number of colors than degree coloring. It is also slightly faster due to the
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Table 2: Sensitivity analysis*

Pilot Large Blocked
colors time colors time colors time

ordering 15.4 3.4 10.6 8.7 40.7 1.7
algo 0.8 24.7 0.5 1.3 1.0 8.6

d 0.6 0.0 1.1 0.7 0.4 0.0
m 76.4 2.8 80.6 26.0 17.2 1.0

n/n blocks 0.2 11.8 0.1 40.7 15.2 16.2
ordering:algo 0.3 6.8 0.1 0.3 0.3 3.3

ordering:d 0.3 0.0 0.5 0.4 0.2 0.0
ordering:m 5.3 0.8 5.2 5.4 7.9 0.5
ordering:n 0.0 3.3 0.0 3.0 6.4 6.1

algo:d 0.0 0.1 0.0 0.0 0.0 0.1
algo:m 0.2 5.5 0.2 0.6 0.1 1.9
algo:n 0.0 23.3 0.0 0.7 0.9 31.3

d:m 0.2 0.0 0.4 0.5 0.0 0.0
d:n 0.0 0.0 0.0 0.2 0.1 0.1
m:n 0.0 2.4 0.0 8.0 6.3 3.5

total 99.7 84.8 99.5 96.6 96.6 74.6

* Read: “In the pilot experiment, the ordering of the spatial points explained 15.4
percents of the variance of the number of colors”

fact that the vertices are not sorted. Anyway, the running times are short
in both cases and are never bigger than 15 seconds. We conclude that naive
greedy coloring is the better option for large data sets.

3.2.3. Coloring blocked graphs

Design
The objective is to carry out sensitivity analysis and benchmark to graphs
that correspond to spatial blocks used for a block-update of the latent field.
Spatial clusters of vertices are found using a K-means algorithm on n = 10000
spatial locations, and coloring is applied to the Markov graph between the
blocks. The orderings, numbers of parents, and dimensions remain the same
as in the previous experiments. The parameters that change are:

• The graph size nblocks = 10, 20, 50, 100, 500.
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• All three algorithms (DSATUR, naive greedy, and degree greedy) are
tested

Each case is replicated 10 times.
Sensitivity

The sensitivity of the number of colors (table 2) differs from the previous
experiments. Even though m still matters, it is the ordering that becomes
the most important variable.

This loss of importance of m can be explained by the fact that one edge
is enough to connect two blocks, and once two blocks are connected adding
new edges between them is redundant. On the other hand, the disposition
of the edges in the space, which is induced by the ordering, keeps all its
importance. Short edges induced by a coordinate ordering (4b) will connect
adjacent spatial blocks, while the long edges induced by the max-min heuris-
tic (4a) will connect distant regions. The important interaction between m
and the ordering is well explained by this hypothesis. In table B.7 we see
that m barely plays any role for coordinate ordering, while it keeps having
an important impact for the other two orderings. Indeed, when S is ordered
following a coordinate, adding more short connections between contiguous
spatial blocks does not change anything: those blocks are already connected.
For max-min and random ordering, though, adding long edges may link dis-
tant regions that were not connected yet. After m and the ordering, the
number of blocks is the third most important variable. As expected, the
more blocks there are in the graph, the more colors are needed. However,
we remark that Max-Min and Random orderings perform poorly for graphs
with few blocks, and actually need almost one color per block. Once the
graphs get bigger, the number of colors stabilizes. Therefore, the observed
sensitivity with respect to the number of blocks is mostly induced by the bad
coloring of graphs with few blocks. The point can be visualized in figure 8
for m = 5 and d = 2.

Benchmark
Incontestably, DSATUR has the smallest number of colors, as seen in figure 8
and table B.7. Interestingly, degree greedy coloring has the second smallest
number of colors. If we assume that the number of blocks will always be
smaller than 1000, we can discard the running time from our criteria and say
that DSATUR is the best option for blocked graphs. However, in the cases
with random and Max-Min orderings and low numbers of blocks, chromatic
sampling does not greatly reduce the number of steps with respect to vanilla
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Figure 8: Number of colors following the number of blocks, for spatial domain dimension
d = 2 and number of parents m = 5.

block sampling.

4. Implementation, testing and application

4.1. About our implementation

We tested our implementation with the state of the art package spN-
NGP presented in [8], that uses the Gibbs sampler architecture given in
[3]. spNNGP uses Rcpp [18] and parallelizes the computation of NNGP
density. In order to monitor convergence using the diagnostics from [19,
20], various chains need to be run one after the other. Our implemen-
tation is available at https://github.com/SebastienCoube/Improving_

NNGP_full_augmentation. The code is done in R (see [21]), with the AS-
IS Gibbs sampler architecture of [12]. Chromatic sampling is implemented
for individual locations. We used the package GpGp ([7]) for Vecchia’s ap-
proximation factor computation. Our implementation runs several chains in
parallel thanks to the package parallel (see [22]), but GpGp does not imple-
ment parallel Vecchia’s approximation factor computation within each chain
like spNNGP. We emphasized the ease of use, with real-time Gelman-Rubin
diagnostics and chain plotting, greedy MCMC tuning in the first hundred
iterations, and the possibility to start, stop, and run again easily. For some
data sets, our implementation has an advantage over spNNGP because mul-
tiple measurements at the same spatial site are allowed. However, unlike
spNNGP, we have only implemented a Gaussian model so far.
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4.2. Toy examples

We present two toy examples in order to test our implementation, with
the latent field NNGP implementation of spNNGP as a reference. For both
implementations, 5 nearest neighbors were used for NNGP. The toy exam-
ples are Gaussian. We compare the MCMC behavior using the number of
iterations and the time needed before the chains have mixed following the
Gelman-Rubin-Brooks R̂. We also compare the estimated covariance pa-
rameters with the values that were used to simulate the toy example. The
covariance parameters are reported individually, and in the second toy exam-
ple we report the Mean Square Error (MSE) of the fitted fixed effects with
respect to their true value. Eventually, we compare the quality of the denois-
ing using the MSE of the denoised field predicted by the model with respect
to the simulated latent field. The first toy example is a simple Gaussian field
simulated as follows.

1. Simulate spatial locations S ∼ U([0, 50]× [0, 50])

2. Simulate latent field w(S) ∼ N (0,Σ(S)),Σ(S)i,j = exp(−0.5‖si, sj‖)

3. Simulate observed variable z(S) = w(S) + ε(S), ε(S) ∼ N (0, 5In)

The second toy example intends to highlight the positive effect of our archi-
tecture when covariates have some spatial coherence. We integrate covariates
that are areal indicators, and others that are white noise.

1. Simulate spatial locations S ∼ U([0, 50]× [0, 50]) and note S1 the first
coordinates of the locations

2. Simulate latent field w(S) ∼ N (0,Σ(S)),Σ(S)i,j = exp(−0.5‖si − sj‖)

3. Simulate regressorsX = [X1|X2] withX1 = [11≤S1<2|12≤S1<3 . . . |149≤S1≤50]
and X2 a matrix of side n× 49 with coefficients drawn following inde-
pendent N (0, 1)

4. Simulate regression coefficients β ∼ N (0, I98)

5. Simulate observed variable z(S) = w(S)+XβT+ε(S), ε(S) ∼ N (0, 5In)

The results of the runs on the toy examples are presented in table 3. The
estimates are close to the target and there is no clear gap between the meth-
ods.
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(a) R̂ with spNNGP
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(b) Autocorrelations with spNNGP
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(c) R̂ with response spNNGP
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(d) Autocorrelations with response
spNNGP
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(e) R̂ of our implementation
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(f) Autocorrelations of our implemen-
tation
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(g) R̂ of our implementation without in-
terweaving
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(h) Autocorrelations of our implemen-
tation without interweaving

Figure 9: Behavior of the regression coefficients with spNNGP and with our implementa-
tion

Table 3: Summary of the toy example runs

(a) Summary of the first toy example

method n iter. time (min) MSE latent var. noise var. range
spNNGP 15000 28 0.40 1.07 4.99 1.10
Our code 3000 28 0.38 1.08 5.00 1.01

spNNGP res. 8000 13 1.06 5.00 0.99
true values 1.00 5.00 1.00

(b) Summary of the second toy example

method n iter. time (min) MSE β−MSE latent var. noise var. range
spNNGP 25000 74 0.45 0.053 0.91 5.08 0.90
Our code 3000 36 0.42 0.057 0.98 5.06 1.13

spNNGP res. 10000 50 0.047 0.88 5.10 0.72
true values 1.00 5.00 1.00
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Due to the fast-mixing AS-IS architecture from [12] and [23], our im-
plementation needed far fewer iterations than the latent model of spNNGP
(Even taking into account the fact that one AS-IS iteration needs two co-
variance parameters updates): our model takes thousands of iterations to
converge, while spNNGP needs tens of thousands. The response model, in
spite of its frugality, needed a few thousands iterations to converge, like our
implementation. The running times end up being of the same order, due
to the efficient multi-process implementation of spNNGP which offsets the
number of iterations.

Let’s now focus on the behavior of the regression coefficients in the second
toy example (Figure 9). The best model regarding the mixing of the regres-
sion coefficients is incontestably the response model (9c, 9d). However, the
covariance parameters needed more time to mix than the regression coeffi-
cients, explaining why 10000 iterations were needed. Moreover, the response
model cannot retrieve the latent field, explaining why its MSE could not
be computed. Except for the response model, we can see that the coherent
regression coefficients of X1, in green in 9, mix more slowly than the fuzzy
coefficients of X2, in blue. Nonetheless, for our implementation, the R̂ di-
agnostics dropped to 1 in a few hundred iterations (figure 9e), against the
tenths of thousands needed for spNNGP (figure 9a). For our implementation,
the autocorrelations dropped to 0 after a few dozen iterations (figure 9f). The
auto-correlations of spNNGP for the regression coefficients of X1 were still
between 0.4 and 0.6 after 100 iterations (figure 9b), while the autocorrelation
for the coefficients of X2 remained stuck slightly above 0. It is then clear
that the chains behave much better in our implementation than in spNNGP.
Moreover, the good behavior of our implementation could not be reproduced
if we did not indicate that interweaving could be used, see figures 9g, 9h.

4.3. Application to lead contamination analysis

We used our implementation to study a heavy metal contamination data
set proposed by Hengl in [24]3. The dataset gathers measurements made
by the United States Geological Survey of [25] and several covariates, in-
cluding geophysical and environmental information about the sampling site,
and potential contamination sources nearby. We added the predominant
subsoil rock type given by the USGS study presented in [26]4. We scaled

3https://spatial-analyst.net/book/NGS8HMC
4https://mrdata.usgs.gov/geology/state/
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the quantitative regressors. After removing missing data, there were 64274
observations. We assumed the model

log(z(s)) = w(s) +X(s)βT + ε(s),

s being the sampling location, X(·) being the aforementioned covariates, w(·)
being a latent Gaussian field with exponential covariance on the sphere, and
ε being a white noise. The model converged in 4000 iterations, and 1 hour
and 38 minutes were needed.

We tried to analyze the real data set with spNNGP in order to compare
the results and the running time. Surprisingly, spNNGP had a pathological
behavior in spite of its good performances on simulated data. The scale
parameter kept straying towards values several orders of magnitude above
the variance of the observed field, even with starting points corresponding
to our estimates. This behavior was observed with both latent and response
models, and various orderings of the locations.

We present our implementation’s estimates of the covariance parameters
and some of the fixed effects in table 4. We left out some regressors, such as
the geological classification, indications about nearby mineral observations,
and the geophysical characteristics of the sampling site. The variances of
the latent field and the noise have equivalent orders (σ2 = 0.20, τ 2 = 0.18).
The spatial range is 30 Km. With a rule of the thumb, this means that
the correlation drops to 10% of the scale for locations separated by 60 Km.
The regressors behave as expected: the urbanization level and contamination
indicators have a positive, certain effect on lead concentration. However, the
values of the regression coefficients remain modest with respect to the scale
of the latent field.

We also provide predictions of the latent field on a 5-Km grid on the
territory of the USA mainland. Predictions at un-observed locations are
done using the MCMC samples of the covariance parameters θ and w(S), see
for example [6]. We report the predicted latent mean and standard deviation
in figures 10a and 10b. The standard deviation map must be put in relation
with the sampling sites map (Figure 11). The patches with high standard
deviation correspond to zones with no measurements, while territories with
dense sampling, such as Florida, will have low predicted standard deviation.
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Table 4: Summary of the covariance parameters and a subset of the fixed effects

mean qtile 0.025 median qtile 0.975 st dev
Scale 0.198 0.188 0.198 0.209 0.0053

Noise variance 0.178 0.175 0.178 0.181 0.0017
Range (Km) 35.6 33.3 35.5 38.3 1.2700

(Intercept) 2.83 2.79 2.83 2.87 0.019
Air pollution dsty 0.0403 0.0195 0.0404 0.0605 0.0106

Mineral operations dsty 0.0180 0.0044 0.0182 0.0312 0.0069
Industrial toxic reject dsty 0.0641 0.0433 0.0639 0.0852 0.0107

Carbon biomass dsty -0.0543 -0.0673 -0.0541 -0.0412 0.0066
Population dsty 0.1360 0.1100 0.1360 0.1640 0.0138

Night light 0.0384 0.0303 0.0384 0.0466 0.0042
Roads dsty 0.0193 0.0139 0.0193 0.0248 0.0028

Figure 11: Sampling sites
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5. Discussion

We presented two ways to improve the behavior of NNGPs with full
data augmentation, that can be applied simply to previous implementations.
What’s more, while we assumed a Gaussian data model throughout the ar-
ticle, the two methods we proposed can easily be applied to other models.
While our article focused on a basic NNGP model, our field centering may
have applications in complex models. Space-varying regression coefficients
are an extension to GP models ([3, 16]). If we consider the latent field w(·)
as a space-varying intercept, it seems natural to try to center a spatially
variable parameter on the corresponding fixed effect. The extension to other
fixed effects we presented could prove valuable in the case in which the re-
gressor with a spatially variable β is correlated with other variables from X.
Another possible extension could be a GP defined as the sum of two or more
GPs. It could have an interest in various applications, such as: modelling
seasonality in a space-time process, modelling a process with short-range and
long-range interactions, defining one non-separable space-time process as a
sum of two separable processes. The equivalent of standard parametrization
would be z(·) = β0 + w1(·) + w2(·) + ε, w1(·) and w2(·) being GPs of mean
0. One could try out a Russian doll centering: z(·) = v1(·) + ε where v1(·)
has mean v2(·), and v2(·) has mean β0. In this case, in addition to applying
the extension to other fixed effects we presented, it might be necessary to
interweave the standard and the “Russian doll” parametrizations.
Beyond the improvements of chromatic sampling in the NNGP algorithm,
exploration of the moralized graph could be an interesting approach to study
Vecchia’s approximation and evaluate heuristics concerning ordering and
picking parents. For example, Guinness [5] has explored how various ordering
and grouping strategies affected the Kullback-Leibler divergence of Vecchia’s
approximation with respect to the full GP density. Those strategies have a
graphical translation. Grouping takes an existing graph and adds new edges,
making it closer to the full GP graph (i.e. the saturated DAG and moral-
ized graph). Ordering modifies the structure of the graph and the length of
the edges, just like the mixing of observations explored in [9]. For example,
a coordinate or a middle-out ordering with Nearest Neighbor heuristic will
make a graph where each vertex is connected to its closest neighbors, while
we could use a classical concept of Geography and say that a random or a
max-min ordering will generate graphs not unlike a Christallerian system.
Focusing on the neighbor-picking heuristics provides a close-up shot of what
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is going on and has a direct algorithmic translation, but some descriptive
statistics about the moralized graphs could give a more general view.
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Appendix A. Stochastic form of the intercept-field model

We obtain the full conditionals of wc and ws using the conditional ex-
pectation and variance formulas using precision matrices of [27], the joint

precision of both (ws, z) or (wc, z) being

[
Q̃+ τ 2In −τ 2In
−τ 2In τ 2In

]
. The expec-

tation of ws is 0, the expectation of wc is β0, and the expectation of z is
always β0.

Distributions with the standard model
The full conditional distributions of β0 and ws are:

[β0|ws] ∼ N (z − ws, τ 2/n), [ws|β0] ∼ N (−(Q̃+In/τ
2)−1(−In/τ 2)(z−β0), (Q̃+In/τ

2)−1).

Note 1 the vector of length n and filled with ones. From the second full
conditional, we have a formula for the mean of ws, which is obtained with
ws = 1tws/n. It has 3 terms: one is fixed, the second is a geometric carry-over
of β0, and the third is stochastic:

[ws|β0] ∼ 1T (τ 2Q̃+ In)−1(z)/n︸ ︷︷ ︸
fixed

− (1T (τ 2Q̃+ In)−11/n)(β0)︸ ︷︷ ︸
carry-over

+N ((0,1T (Q̃+ In/τ
2)−11/n2)︸ ︷︷ ︸

innovation

.

Injecting the full conditional of w̄s into β0’s, we identify an expression with
3 terms like before:

[βt+1
0 |βt0] ∼ z − 1T (τ 2Q̃+ In)−1(z)/n︸ ︷︷ ︸

fixed

+ (1T (τ 2Q̃+ In)−11/n)βt0︸ ︷︷ ︸
carry-over

+N (0,1T (Q̃+ In/τ
2)−11/n2 + τ 2/n)︸ ︷︷ ︸

innovation

.

Distributions with the centered model
The full conditional of β0 and wc are:

[β0|wc] ∼ N (1T Q̃wc/1
T Q̃1, 1/1T Q̃1), [wc|β0] ∼ N (β0+(Q̃+In/τ

2)−1(z−β0)/τ 2, (Q̃+In/τ
2)−1)

The mean of wc behaves like the mean of ws except for the term that depends
on β0:

[wc|β0] ∼ 1T (τ 2Q̃+ In)−1(z)/n︸ ︷︷ ︸
fixed

− (1− (1T (τ 2Q̃+ In)−11/n))β0︸ ︷︷ ︸
carry-over

+N (0,1T (Q̃+ In/τ
2)−11/n2)︸ ︷︷ ︸

innovation

.
(A.1)
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Injecting the full conditional of wc into the full conditional of β0, we have

[βt+1
0 |βt0] ∼ 1T Q̃(Q̃+ In/τ

2)−1z/τ 21T Q̃1︸ ︷︷ ︸
fixed

+ 1T Q̃(In − (τ 2Q̃+ In)−1)1β0/1
T Q̃1︸ ︷︷ ︸

carry-over

+N (0,1T Q̃(Q̃+ In/τ
2)−1Q̃1/(1T Q̃1)2 + 1/1T Q̃1)︸ ︷︷ ︸
innovation

.

Passing to the SVD
Let’s compare first the expressions of [ws|β0] and [wc|β0]. Denote the diago-
nalization Q̃ = V TλV , V being a square matrix of eigenvectors and λ being a
diagonal matrix of eigenvalues. The eigenvalues are positive since Q̃ = R̃T R̃.
Using the fact that adding In adds 1 to every eigenvalue without affecting
the eigenvectors,

(τ 2Q̃+ In)−1/n = V T (τ 2λ+ In)−1V/n.

Let α = (α1, . . . , αn) be the coordinates of 1 in the orthonormal basis defined
by V .

1T (τ 2Q̃+ In)−11/n = Σn
i=1α

2
i (τ

2λ+ In)−1
i,i /n.

Using that Q̃ is positive-definite on the left and that Σn
1αi =< 1,1 >= n on

the right, we have
0 ≤ 1T (τ 2Q̃+ In)−11/n ≤ 1.

As for the centered model, we re-write:

Q̃(In−(τ 2Q̃+In)−1) = V T (λ(In−(τ 2λ+In)−1))V = V T (τ 2λ2(τ 2λ+In)−1)V.

Once this is done, we can express the fraction of βt0 which is conserved in
βt+1 in the centered model as

1T Q̃(In−(τ 2Q̃+In)−1)1/1T Q̃1 = Σn
i=1

(
(α2

iλi,i)(τ
2λi,i)/(τ

2λi,i + 1)
)
/Σn

i=1α
2
iλi,i.

Like before, thanks to the fact that the eigenvalues of Q̃ are positive,

0 ≤ (τ 2λi,i)/(τ
2λi,i + 1) ≤ 1.
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Appendix B. Coloring

Appendix B.1. Details about the coloring algorithms

Algorithm 2 Naive greedy coloring

input A . Input adjacency matrix
(c1, . . . , cn) = (0, . . . , 0) . Initialize colors
for ci ∈ (c1, . . . , cn) do . Coloration loop

ci = min((1, . . . , n)\(cJ)) with J = {J/Ai,j = 1} . Using smallest
available color
end for

return (c1, . . . , cn)

Algorithm 3 Degree greedy coloring

input A . Input adjacency matrix
(c1, . . . , cn) = (0, . . . , 0) . Initialize colors
find (nd1, . . . , ndn) = (1, . . . , 1) ·A . Compute connection degrees of nodes
find (o(1), . . . , o(n)), a permutation of 1, . . . , n such that i < j ⇒ ndo(i) ≤
ndo(j) . order nodes by decreasing connection degree
for ci ∈ (co(1), . . . , co(n)) do . Coloration loop

ci = min((1, . . . , n)\(cJ)) with J = {J/Ai,j = 1} . Using smallest
available color
end for
return (c1, . . . , cn)
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Algorithm 4 DSATUR

input A . Input adjacency matrix
(c1, . . . , cn) = (0, . . . , 0) . Initialize colors
(sd1, . . . , sdn) = (0, . . . , 0) . Initialize saturation degrees
(nd1, . . . , ndn) = (1, . . . , 1) · A . Compute connection degrees of nodes
while 0 ∈ (c1, . . . , cn) do . Coloration loop

j = {i/ci == 0}
j = {i ∈ j/sdi == maxi∈j(sdi)} . Saturation degree selection rule
if #j > 1 then

j = {i ∈ j/ndi == maxi∈j(ndi)} . Node degree tiebreaking rule
end if
if #j > 1 then

j = min(j) . lexicographical tiebreaking rule
end if
cj = min((1, . . . , n)\(ci/Ai,j=1)) . Using smallest available color
sdi/Ai,j=1 = sdi/Ai,j=1 + 1 . Updating saturation degrees

end while
return (c1, . . . , cn)
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Appendix B.2. Results of coloring experiments

Table B.5: Case-by-case mean number of colors in the pilot experiment.

Coordinate ordering Max-min ordering Random ordering
m n d degree dsatur naive degree dsatur naive degree dsatur naive

5

500
2 7.4 6.0 6.0 9.8 9.1 10.1 10.3 9.2 10.0
3 7.9 6.0 6.0 10.8 9.6 11.0 10.6 10.0 11.1

1000
2 8.2 6.0 6.0 10.1 9.4 10.3 10.6 9.3 10.2
3 8.0 6.0 6.0 11.8 10.0 11.1 11.3 10.1 11.1

2000
2 8.6 6.0 6.0 10.5 9.6 10.3 10.7 9.9 10.2
3 8.9 6.0 6.0 11.6 10.1 11.7 11.8 10.0 11.4

10

500
2 12.9 11.0 11.0 18.7 17.4 18.9 19.0 17.8 19.4
3 13.0 11.0 11.0 20.9 19.1 21.2 21.0 18.9 21.3

1000
2 13.7 11.0 11.0 19.2 17.8 19.5 19.9 17.9 20.0
3 13.6 11.0 11.0 21.3 19.4 22.3 21.6 19.4 22.0

2000
2 14.8 11.0 11.0 20.2 18.2 20.0 20.7 18.6 19.8
3 15.0 11.0 11.0 22.3 19.7 22.6 22.7 19.9 22.4

20

500
2 23.0 21.0 21.0 36.5 33.9 37.4 36.8 34.2 37.5
3 23.3 21.0 21.0 40.8 37.1 44.1 40.5 37.5 43.4

1000
2 24.9 21.0 21.0 37.6 35.0 38.2 38.6 35.2 38.5
3 23.9 21.0 21.0 42.9 38.4 45.3 43.1 38.8 44.7

2000
2 26.0 21.0 21.0 38.6 35.9 38.8 39.1 36.2 39.1
3 25.7 21.0 21.0 44.8 39.6 46.4 44.7 40.0 45.6
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Table B.6: Case-by-case mean number of colors for large graphs.

Coordinate ordering Max-min ordering Random ordering
m n d degree naive degree naive degree naive

5

50000
2 10.0 8.8 11.3 11.0 12.3 11.1
3 10.0 8.7 13.1 12.6 13.1 12.3

100000
2 10.1 9.0 11.7 11.0 12.1 11.0
3 10.0 9.1 13.1 13.0 13.2 12.3

200000
2 10.1 9.3 11.9 11.2 12.1 11.4
3 10.3 9.7 13.3 13.0 13.5 12.8

10

50000
2 17.1 13.8 21.5 21.0 22.7 20.8
3 17.0 14.0 24.5 24.1 25.5 23.7

100000
2 17.0 15.6 22.0 21.2 22.9 21.0
3 17.0 15.5 24.9 24.2 25.6 23.9

200000
2 17.9 16.7 22.2 21.3 22.9 21.1
3 18.0 16.8 25.2 24.2 26.4 24.3

20

50000
2 31.4 21.1 41.4 40.1 43.0 40.4
3 31.2 21.6 49.7 48.2 50.2 47.8

100000
2 30.8 25.1 41.9 40.7 44.3 40.8
3 31.0 24.6 50.0 48.5 50.8 47.6

200000
2 30.3 28.6 41.7 40.7 44.3 40.8
3 30.2 28.7 50.5 48.9 51.6 48.2
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Table B.7: Case-by-case mean number of colors for blocked graphs.

Coordinate ordering Max-min ordering Random ordering
m blocks d degree dsatur naive degree dsatur naive degree dsatur naive

5

10
2 2.9 2.5 3.0 6.2 6.2 6.6 6.5 6.5 6.7
3 2.7 2.3 2.7 7.5 7.5 7.5 7.3 7.3 7.5

20
2 3.0 2.4 3.0 7.9 7.9 8.6 7.6 7.5 8.3
3 3.0 2.6 3.0 9.0 8.5 9.6 8.6 8.3 9.5

50
2 3.0 2.4 3.0 8.9 8.6 10.8 8.6 8.1 10.2
3 3.0 2.4 3.0 10.9 10.2 12.7 10.3 9.4 12.0

100
2 3.0 2.4 3.0 9.8 9.1 12.0 9.0 8.6 11.3
3 3.0 2.2 3.0 11.8 11.1 14.0 11.0 10.2 13.0

500
2 3.0 2.9 3.1 10.3 9.3 14.7 10.1 9.1 14.3
3 3.0 3.0 3.0 13.2 11.7 17.3 12.4 11.1 16.1

10

10
2 2.9 2.5 3.0 8.1 8.1 8.2 8.6 8.6 8.6
3 2.7 2.3 2.7 9.3 9.3 9.3 9.3 9.3 9.3

20
2 3.0 2.4 3.0 11.4 11.4 12.2 11.9 11.9 12.5
3 3.0 2.6 3.0 13.5 13.4 13.8 12.5 12.3 13.0

50
2 3.0 2.4 3.0 14.8 14.2 17.1 14.0 13.6 16.0
3 3.0 2.4 3.0 17.5 16.6 19.0 16.2 15.5 18.2

100
2 3.0 2.4 3.0 16.7 16.0 20.6 15.7 15.0 19.2
3 3.0 2.2 3.0 19.8 18.5 22.9 18.0 17.1 21.2

500
2 3.6 3.1 4.1 19.6 18.2 26.5 18.6 17.0 24.5
3 3.8 3.4 4.3 22.9 21.0 30.9 20.9 18.8 28.0

20

10
2 2.9 2.5 3.0 9.8 9.8 9.8 9.9 9.9 9.9
3 2.7 2.3 2.7 10.0 10.0 10.0 10.0 10.0 10.0

20
2 3.0 2.4 3.0 16.2 16.2 16.7 16.3 16.3 16.5
3 3.0 2.6 3.0 17.7 17.7 17.7 17.1 17.1 17.2

50
2 3.0 2.4 3.0 25.1 24.5 27.0 23.0 22.9 25.4
3 3.0 2.4 3.0 27.9 27.8 30.4 24.8 24.3 27.4

100
2 3.0 2.4 3.0 30.4 29.1 34.6 26.7 25.7 31.0
3 3.0 2.2 3.0 33.7 32.4 38.2 29.8 28.9 33.9

500
2 5.2 4.7 5.6 37.2 35.2 47.6 34.0 31.2 42.6
3 5.2 4.8 5.8 42.0 39.0 55.0 38.9 35.1 49.1
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