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SPIN & TORSION TENSORS ON GAUGE GRAVITY:
A RE-EXAMINATION OF THE

EINSTEIN–CARTAN SPATIO-TEMPORAL THEORY

EDOARDO NICCOLAI

Abstract. This work aims to autonomously revisit some puncta salientia of the Einstein–
Cartan (ec) theory, focusing wholly on the mathematical aspect, or, better still, emphasizing the
differential geometry underlying the theory under examination, without the burden of sensible
experiences (experiments) of Galilean heritage.a

It is shown that it is possible to describe, or rather, derive an Einsteinian-like gravitational
field starting from a Cartan h-subalgebra, and thus produce a couple of formulæ for a torsioning
in a (1+3)-dimensional manifold. Some Cartan k-forms and J -bundles, along with other Clifford
bundles, and a Clifford k-form field, will help to circumscribe a 4D torsional spin-space. Follows
an overview of quantum Yang–Mills gravity according to a geometro-topological schema. This
opens up the exciting issue, not addressed here, of the emergence of space-time, indicating a
manifolded-structure including its spin plus torsional foundations.

Keywords: black (and white?) hole(s), Cartan h-subalgebra, Cartanian affine connections,
Clifford bundles, Einstein–Cartan space-time, gauge gravity, J -bundles, k-forms, Lagrangian
density, Lorentz space(-time), Minkowski space(-time), Poincaré group, Riemann–Cartan ge-
ometry, singularity, space-time manifold in a 4-dimensional spin-torsion balancing, spin-torsion
tensor, Yang–Mills–Euler–Lagrange equation(s), Yang–Mills–Higgs equations, Yang–Mills-like
geometry, Yang–Mills–Higgs bundle.

Note. The three figures 1, 2, and 3 are build by availing the tikzpicture code, and subsequently
enhanced with Sketch, a vector graphics editor.
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1.1 Einstein Field Equations: betwixt Geometry & Physics, i.e. Space-Time & Matter 3

1. Introduction

The Einstein–Cartan theory is but one of the generalizations of Einstein’s general relativity [34,
pp. 844-845] [35, § 4] by means of spaces that are defined with an affine connection elaborated by É.
Cartan [9] [10] [12] = [14, pp. 23-193] [11] [13] but whose root is found [9, p. 325] in H. Weyl [117,
§ 14. Affin zusammenhängende Mannigfaltigkeit ] = [118, § 14. Affinely Connected Manifolds].a

1.1. Einstein Field Equations: betwixt Geometry & Physics, i.e. Space-Time & Matter

The general relativity represents the core of union between geometry & physics, viz. between
space-time & matter, within the Ricci calculus for tensors (and tensor fields); its formulation comes
out through the Einstein field equations:

Gµν = Rµν − 1

2
gµνRs = κΤµν

b (1a)

= Rµν − 1

2
gµνRs =

8πGn

c4
Τµν , (1b)

= Rµν = κ

(
Τµν − 1

2
gµνΤ

)
, (1c)

= − ∂

∂xξ

{
µν

ξ

}
+

{
µξ

ϱ

}{
νϱ

ξ

}
+

∂2 log
√
−g

∂xµ
∂xν

−
{
µν

ξ

}
∂ log

√
−g

∂xξ

. (1d)

Let us look at some specific details.
(1) Gµν

viz
= G[µν] = Rµν− 1

2gµνRs, G[µν] = Gµν=νµ, is the Einstein tensor, nay, the Ricci–Einstein
tensor.c

(2) Rµν is the Ricci curvature tensor, a symmetric tensor of rank 2, which can be described in
four basic ways:

(i) the first form is

Ric
ιδ

=


Rν

µE⃗µ ⊗ ϑν as a
(
1
1

)
-tensor,

Rνξϑ
ν ⊗ ϑξ = gνµRξ

µϑν ⊗ ϑξ as a
(
0
2

)
-tensor,

RµξE⃗µ ⊗ E⃗ξ = gµνE⃗µ ⊗ E⃗ξ as a
(
2
0

)
-tensor,

(2a)

(2b)

(2c)

videlicet

Ric ∈


Τ

1
1(M),

Τ
0
2(M),

Τ
2
0(M);

(3a)

(3b)

(3c)
(ii) the Ricci tensor is congruent with a contraction of the Riemann curvature tensor, so

Ric
ιδ

=

{
Rν

µE⃗µ ⊗ ϑν = Rµξ
ξνE⃗µ ⊗ ϑν = Rµξς

νgςξE⃗µ ⊗ ϑν ,

Rµνϑ
µ ⊗ ϑν = gξϱRµξϱνϑ

µ ⊗ ϑν ;

(4a)

(4b)

(iii) via Christoffel symbols, one has an explicit solution,

Ric
ιδ

= Rµν = ∂ξΓµν
ξ − ∂νΓµξ

ξ + Γµν
ξΓξϱ

ϱ − Γµξ
ϱΓνϱ

ξ; (5)

(iv) as a
(
0
2

)
-tensor, the Ricci curvature is conditioned by the trace of a linear operator, so

Ric(X⃗, Y⃗ ) = tr
(
Z⃗ 7→ RX⃗,Z⃗ Y⃗

)
, (6)

a Cartan [11, pp. 205-206]: «It is the notion of parallelism that gives a Euclidean connection to the surface, to quote
the words of H. Weyl [ . . . ]. In fact, what is essential in the idea of Levi-Civita [76] is that it allows to connect [raccorder ]
two small pieces of a manifold, which are infinitely close to each other, and it is this idea of connection that is fruitful. We
can therefore imagine, by developing this idea, the possibility of arriving at a general theory of manifolds with an affine,
conformal, or projective connection».

b With the addition of the cosmological constant, denoted by Λ, or by λ in [35, p. 151], Gµν−λgµν = −κ
(
Τµν − 1

2 gµνΤ
)
,

one gets Rµν − 1
2 gµνRs + Λgµν = κΤµν .

c See [23, p. 157].
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which is why Ric is understandable in terms of a trace of the Riemann curvature tensor.
(3) gµν is the metric tensor.
(4) Rs is the scalar curvature, aka Ricci scalar [105] [106]; it is the trace of the Ricci curvature

tensor, with regard to the Riemannian metric g (Rs is a local invariants of g),

Rs ∈ C∞(M)
ιδ

=


tr(Ric),

Rµ
µ = gµνRµν = Rν

ν ,

gµξgνϱRµνξϱ.

(7a)
(7b)

(7c)

(5) κ is the Einstein gravitational constant [33],

κ =
8πG

c4
, (8)

the strength of coupling between matter, or physical dimension, and geometric space.
(6) Τµν is the energy-momentum tensor,

Τµν =
2√
−g

δ
[√

−gL =
(√

−g
(
1
2g

µν∂µϝ∂νϝ− U
))]

δgµν
, (9)

designating a quantity for the density of matter, which represents a disturbance in space-time,
where

L
viz
= Lm =

1

2
∂µϝ∂

µ
ϝ− U(ϝ), ∂µ

ϝ =
∂L

∂(∂µϝ)
, (10)

is the Lagrangian density of the matter-energy, with a scalar field ϝ and a potential U(ϝ).
(7) Gn is the Newtonian constant of gravitation, from F = Gn

m1m2

ρ2(m1−m2)
.

(8)
{
µν
ξ

}
etc. are the Christoffel symbols of the second kind [20],

Γ ξ
µν

viz
=

{
ξ

µν

}
(11a)

= gξϱΓ ς
µν

〈
∂

∂xς
,

∂

∂xϱ

〉
(11b)

= gξϱ
〈
∇ ∂

∂xµ

∂

∂xν
,

∂

∂xϱ

〉
(11c)

=
1

2
gξϱ
{
∂gνϱ
∂xµ

+
∂gµϱ
∂xν

− ∂gµν
∂xϱ

}
(11d)

=
1

2
gξϱ
(
gνϱ,µ + gµϱ,ν − gµν,ϱ

)
, (11e)

1.2. Riemann–Cartan Geometry

Let us look at two of the main features of Cartanian geometry,a or, for the sake of exactness, of
Riemannian–Cartanian geometry, denoted by C.

(1) The notion of space is homogeneous or non-homogeneous. The Cartan homogeneous-space
is modeled, at least locally, on the Klein geometry/on the coset space G/H. The Cartan non-
homogeneous-space manifests deformations to the Klein structure (it is equivalent to a Klein
geometry deformed by some curvature); the criterion by which to visualize a C-deformation is
analogous to that used for introducing the Riemannian curvatures in Euclidean space.

(2) The Cartan space can be a flat or non-flat. In the first case, the Riemannian–Cartanian
geometry is a generalization of the standard Euclidean one, and the curvature in the Cartanian
structure is zero (the curvature vanishes at all points); in the second case, it is a more general
conception of Riemannian geometry (see Section 1.2.1), and the fabric of Cartan space has blob-like,
or hill-like, values—to recover the vivid language of W.K. Clifford [24, p. 158] = [26, p. 21]—in
C-shape.

a See e.g. [89, secc. 1.4, 1.5, 1.7].
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Figure 1. Curved space-time in a #008080-grid within the framework of a (pseudo-)Riemannian
geometry, along the z-axis: we are looking at something like a non-3D space-time curvature, or
non-(1 + 3)D space-time curvature, to be picky. The massive central body is #800080-colored

1.2.1. Apostil: Cartanian Structurality and Torsion Forms

We are going to underline some more technical aspects.
(1) The Riemann curvature tensor

RX⃗Y⃗ σµ

is succinctly stated by the 2-forms Ων
µ,

RX⃗Y⃗ σµ = Ων
µ(X⃗, Y⃗ )σν , µ, ν = 1, . . . , n, (12)

for all vectors X⃗, Y⃗ ∈ T(Υ ), where Υ ⊂ M is an open neighborhood, and T(Υ ) is a vector space of
vector fields on M. The 2-forms Ων

µ can alternatively be expressed as

Ων
µ = dων

µ − ωξ
µ ∧ ων

ξ

=
1

2
Rν

µξϱω
ξ ∧ ωϱ, (13)

which is the second structural equation of É. Cartan [15, p. 133]. From here it is evident that

dων
µ = ωξ

µ ∧ ων
ξ +Ων

µ. (14)

(2) Let
τ : T(M)× T(M) → T(M)

indicate a
(
1
2

)
-tensor field, or a tensor of type (1, 2). It will be the torsion tensor of the connection

∇ on a (pseudo-)Riemannian manifold. The
(
1
2

)
-tensor can be symbolized as τ ∈ T1

2(M), and it is
fixed by

τ(X⃗, Y⃗ ) = ∇X⃗ Y⃗ −∇Y⃗ X⃗ − [X⃗, Y⃗ ]. (15)

For a torsion τ of ∇, it is easy to define a map

τν : T(M)× T(M) → C∞(M), ν = 1, . . . , n,

by
τ(X⃗, Y⃗ ) = τν(X⃗, Y⃗ )σν . (16)

The 2-forms {τ1, . . . , τn} are called torsion forms, useful for demonstrating the first structural
equation of É. Cartan,

dφν = φµ ∧ ων
µ + τν . (17)
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1.3. Affine Connections by Cartan

What is an affine connection? Take a smooth manifold connecting nearby tangent spaces; given
a vector space, an affine connection is a method of differentiating sections of vector bundles, and
therefore tangent vector fields, which are treated as functions on the manifold under consideration.
Cartan’s interpretation of it is as follows.

We can symbolically write H ⊂ G for a Lie subgroup in a Lie group G. Let g be the Lie algebra
of G, and P̊ a fiber bundle in which there is a G-fiber (see Marginalia 1.1). From here one can
define a Cartanian geometry C = (P̊, ωg) of type (G,H) over a smooth manifold M as a principal
fiber H-bundle

π : P̊ H−→ M,

equipped with a g-valued 1-form ωg ∈ Ω1(P̊, g). Now,

ωg = ωh ⊕ ωp (18)

is a differential form on P̊ corresponding to the Cartan connection, where p is a Lie-like structure
on a vector p-pace, in association with H- or h-module decomposition

g = h⊕ p. (19)

In this respect it is noted that ωg is a generalization of the Maurer–Cartan form ωG [8], which is
a g-valued 1-form on the group manifold G, with left invariant form,

ωG ∈ Ω1(G, g)
viz
= ωl

G ∈ Ω1(G, g), or ωl
G ∈ Ω1(G)⊗ g,

and right invariant form,
ωr
G ∈ Ω1(G, g), or ωr

G ∈ Ω1(G)⊗ g.

Here is a list of the three main peculiarities of the ωg-connection.
(1) Once introduced the symbol of the adjoint action adj, the first is

(rh)
∗ωg = adj(h−1) ◦ ωg, h ∈ H. (20)

(2) The second peculiarity is dictated by a linear isomorphism,

ωg(x) : TxP̊
h⊕p−−→ g, (21)

for each point x ∈ P̊.
(3) The third one by

ϝX⃗ ∈ X(M) = ω−1
g (X⃗), (22)

for all vector fields X⃗ ∈ h. It assumes that a fundamental vector field

ϝX⃗(x) =
dt

d

∣∣∣
t=0

x
(
exp(tϝ)

)
(23)

is on M.

Marginalia 1.1 (A hint about the principal G-bundle). When the principal bundle is over M, P̊
is a surjective smooth map π : P̊ → M, or a C∞ projection π of P̊ onto M, if there is a smooth
right r-action of G on P̊, that is,

rG : P̊ ×G → P̊, rG(x, g) = x · g,
rg : x 7→ x · g,

for each x ∈ P̊ , with g ∈ G. Since the fiber bundle of a principal G-bundle is isomorphic to G-space,
we have P̊/G = M. This causes a principal G-bundle to be regarded as a smooth manifolds, or a
C∞ (smooth) G-bundle.

The left G-action on G corresponds to:

lG : G×G → G,

lg : G → G : h 7→ g · h.
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1.3.1. Curvature of Cartan space

Let

κΩ
viz
= Ω2

g = dωg +
1

2
[ωg, ωg]

∧ = dωg + ωg ∧ ωg, (26)

designate the curvature form of the connection ωg, knowing that Ω2
g is a g-valued 2-form on the

principal bundle P̊.
By assigning to the symbol h the value of a subalgebra of a finite-dimensional Lie algebra g, it

should be noted that
(1) if Ω2

g take values in the subalgebra h, the C-geometry is torsion free, and the κ-value lying
in h is zero;

(2) if Ω2
g is decomposable, it comes out a reductive geometry with an H-module decomposition,

κΩ = κh ⊕ κp. (27)

1.3.2. Cartan hhh-subalgebra ⊂ g⊂ g⊂ g

Let us spend a few words about the subalgebra h. We write schematically,

h = ig(h), and h ⊂ g0(h), (28)

h = g0(h), (29)

with a finite collection i1, . . . , ik � g (and sum i1 + · · ·+ ik) of nilpotent ideals, i ⊂ g0(h) = h. This
means that h is nilpotent, or better, a nilpotent Cartan subalgebra, with such an endomorphisms

π : h → gl
[
g0(h)/h

]
,

as long as

π(h)[x+ h] =
[
h ∈ h, x ∈ g0(h)\h

]
+ h, (30)

provided that adj(h)x ∈ h. Ad in the end,

h ⊂ g0
[
adj(h)

]
⊂ g0

[
adj(x) | x ∈ h

]
= h. (31)

The splitting Cartan h-subalgebra is simply expressible with

g = h⊕
⊕
φλ ̸=0

hφλ , (32)

by choosing φλ : h → K as a linear functional on h (see Marginalia 1.2), being aware that K is an
R-field or a C-field.

Marginalia 1.2 (Weight of a 1-dimensional representation of a subspace). Incidentally, it has to
be stressed that the linear functional φλ has to do with the so-called weight of a 1-dimensional
representation of a subspace (pompous expression for a simple concept). Let W be this subspace,
with weight φλ. The W-subspace is the direct sum of its weight spaces,

W =
⊕
φλ

Wφλ(h), (33)

with the result that

Wφλ
(h) =

⋂
x∈h

Wφλ(x)

[
π(x)

]
, (34a)

Wφλ(h) =
⋂
x∈h

Wφλ(x)
[
π(x)

]
. (34b)
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1.3.3. Gauge Frame in Riemannian–Cartanian Geometry

Let Υ be an open set of a manifold M, and ϑΥ a g-valued 1-form on Υ in (g, h). The 1-form

ϑ̃Υ : Tυ
(ϑΥ )−−−→ g,

accompanied by a canonical projection,

π : g → g/h,

is a linear isomorphism, for any υ ∈ Υ . The pair (Υ, ϑΥ ) is an illustration of a Cartan gauge.

1.3.4. Metric CCC-connection and 1-form of Type adjadjadj for a Torsion

(1) The metric C-connection is Dgµν = 0, where D is the covariant derivative, cf. e.g. [113].
(2) Let

αµ
ν = (ωµ

ν )1 − (ωµ
ν )0 (35)

be a g-valued tensorial 1-form of type adj on the principal G-bundle, such that

adj : G → GL(g)

is the adjoint action of G on g, where G is a Lie group. Then

αµν + ανµ = 0, (36)
Ωνµ +Ωµν = 0, (37)

and, once it is setted that τξµν = gξϱτ
ϱ
µν ,

αµν =
1

2
(τµϱν + τνµϱ + τϱµν)ϑ

ϱ. (38)

1.4. CCC-Geometro-diagram

Here we summarize the Riemannian–Cartanian geometry with a diagram,

M

P̊ prin. G-bundle P̊ ×H G/H

P̊ ×H G

prin. H-bundle

к

bot Klein-like spaces

in which the maps

к : P̊ → P̊ ×H G,

φ[bot] : P̊ ×H G/H → M,

hold—bot is an abbreviation standing for bundle of tangent Klein-like spaces, for this succession of
H-spaces,

H → G → G/H.

The bundle
P̊ ×H G → M

matches the principal right G-bundle, and it is promptly combined with the principal H-bundle
P̊ → H → M and the action of H on G by left multiplication.

If we apply the diagram in the 4-dimensional (1 + 3) geometry, the Einstein–Cartan space-time
is a manifold usually symbolized with M viz

= U4.
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2. Cartanian Connection and Gravity

The adoption of Riemannian–Cartanian geometry, and its affine connection, consists in inserting
two elements into the general theory of relativity.

(1) The first is the torsion

τµνξ =
1

2

(
∂gµν
∂xξ

)
(39)

associated with a spin structure, which is absent in the classical general relativity; e.g. in the affine
connection ∇, or more properly ∇T̊ , by Levi-Civita [76], the torsion is zero, i.e. the torsion of ∇
vanishes identically (∇g = 0), for Einstein’s theory of gravity onto a (pseudo-)Riemann geometry.a

Be advised that the Cartanian torsion coefficient is but the parts of the Christoffel symbols of the
second kind (11), when in these parts there is a change of sign with indices reversed (antisymmetry).

(2) The second element is the local Lorentz invariance, that is a gauge field,b from Lorentz
symmetry [78] [79] [80].

2.1. A Few Formulæ: Curved Space-Time +++ Spin & Torsion +++ Gauge Field

Let us try to fix some crucial items, so as to clarify the notions we have seen in the two previous
Sections in order to mix them, in a single theory.

(1) Imagine a curved space-time; if it is endowed with torsion, it provides a new version of
the Poincaré group (see Marginalia 2.3). The latter is a fundamental group (it is a topological &
homotopy invariant), the first homotopy group, of a topological space.

(2) An Einstein–Cartan space-time offers a determination of the potential of the electromagnetic
field as

(i) a scalar-valued 1-form ωg[ϝ], with an invariance of dωg[ϝ] under the gauge transformation

ωg[ϝ] 7→ ωg[ϝ] + dζ, (40)

(ii) a covector-valued 0-form ωg[ϝµ], having a gauge field of this type:

1

2

(
∇µωg[ϝν ]−∇νωg[ϝµ]

)
ϑµ ∧ ϑν =

(
Dωg[ϝµ]

)
∧ ϑµ = dωg[ϝ]− ωg[ϝµ]Θ

µ
τ , (41)

where
∇ is the differential operator,
ϑµ, ϑν are 1-forms, or dual coframes of n-tuple of vector fields E⃗1, . . . , E⃗n, constructing an

orthonormal basis of the tangent space—the metric tensor field here is g = gµνϑ
µϑν , putting

gµν = g(eµ, eν), see Eq. (50),
Θτ is the torsion form, or the vector-valued 2-form, of the connection form ω

viz
= ωg, from which

Θτ
viz
= (Θτ )

µ = d(Θτ )
µ + ωµ

ν ∧ ϑν , (42)

letting ϑν be the basis, or a
(
1
0

)
-tensor valued 1-form.

(3) The curvature of Einstein–Cartan space-time is the surface density of the Lorentz transfor-
mations, whilst its torsion is the surface density of the Lorentz translations.

(4) In the Einstein–Cartan space-time there is no need for the Ricci curvature tensor (2) (3)
(4) (5) to be symmetric; in fact, the insertion of the spin structure, in Riemann–Cartan geometry,
ensures that the energy-momentum tensor Τµν , on the right side of poly-Eq. (1), can be asymmetric:

Τµν − Τνµ = Ŝµνξ
,ξ, (43)

where Ŝµνξ = −Ŝνµξ is the spin, or, to be exact, the spin angular momentum.

a This letter from Cartan [16, p. 7, originally in Fr., 8 May 1929] to Einstein is very explanatory: «[S]paces with a
Euclidean connection allow of a curvature and torsion: in the spaces where parallelism is defined in the Levi-Civita way,
the torsion is zero; in the spaces where parallelism is absolute (Fernparallelismus) [116, chap. XIII] [115] [17, 18] the
curvature is zero [flat metric], thus these are spaces without curvature and with torsion».

The notion of absolute parallelism, which is a system preserving the metric but with non-zero torsion, is carefully
considered by G. Vitali [115] already in 1924; but it was not until 1929 that he communicates it to German physicist, by a
letter dated 11 February 1929. Einstein’s first and independently use of this notion is in [36] [37] during an attempt to
unify gravity with electromagnetism.

b See R.J. Petti [95].
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(5) At this stage, let us represent the Lagrangian density of the gravitational field, according to
its variation:

δL = Lr ∧ δωg[ϝ]
r +

1

2
τµνδgµν + δϑµ ∧ Τµ − 1

2
δωµ

ν ∧ Ŝν
µ, (44)

by imposing ωg[ϝ] = ωg[ϝ]
rer, and Lr = 0, because it is the Euler–Lagrange equation for ωg[ϝ].

Consider that if ωg[ϝ] = ωg[ϝ]
rer is a k-form [7],a ergo

Dωg[ϝ]
r = dωg[ϝ]

r + ьrµ
sνω

ν
µ ∧ ωg[ϝ]

s. (45)

On condition that δL = 0, then

gµξτ
ξν − ϑν ∧ Τµ +

1

2
DŜν

µ − ьsν
rµLr ∧ ωg[ϝ]

s = 0. (46)

Marginalia 2.1 (Flat metric: Minkowski space-time, and its inner product). Minkowski space-time
[83] [84] [85] is a a pseudo-Euclidean real vector 4-space M4 viz

= M4 = R4
1,3:

b its topology, unlike
Euclidean 4-space, is not locally homogeneous; indeed, in R4

1,3 space vectors and time vectors are
separated, see E.C. Zeeman [122]. In a sufficiently small neighborhood of a point, the Minkowski
space-time is an excellent approximation of the 4-manifold in Einstein’s theory of special relativity
[32]; consequently, it is a flat 4-space, without matter-energy: Rµν = 0, since if Τµν = 0, then
gµν

(
Rµν − gµν Rs

2

)
= 0. In the presence of a massive body, with the emergence of gravity, the

Minkowski space(-time) transmutes into a non-pseudo-Euclidean 4-space.
Let {e0, e1, e2, e3} be a basis, with v = vµeµ and w = wνeν , µ, ν = 0, 1, 2, 3. The 2-fold signature

of the Minkowski metric tensor can be marked with (1,3)+ , for (+,−,−,−), and with (1,3)− , for
(−,+,+,+); conversely, the Euclidean signature has all positive signs. Once fixed the metric tensor
of Minkowski space-time, η, ηµν , ηµν , the Minkowski inner product will be

g(v, w)(1,3)
+

= v0w0 − v1w1 − v2w2 − v3w3 = ηµνv
µwν , (48)

g(v, w)(1,3)
−
= −v0w0 + v1w1 + v2w2 + v3w3 = ηµνv

µwν , (49)

stating that g has index 1, and

ηµν = g(eµ, eν) =



1 if

{
µ = ν = 0, with η(1,3)

+

,

µ = ν = 1, 2, 3, with η(1,3)
−
,

−1 if

{
µ = ν = 1, 2, 3, with η(1,3)

+

,

µ = ν = 0, with η(1,3)
−
,

0 if

{
µ ̸= ν, with η(1,3)

+

,

µ ̸= ν, with η(1,3)
−
.

(50)

We pick out x = x0e0 + x1e1 + x2e2 + x3e3, with the time (x0) and the spatial (x1, x2, x3)
coordinates. It is customary to put x0 = ct, x1 = x, x2 = y, x3 = z, in such a way that, in standard
coordinates (ct, x, y, z), the metric tensor of Minkowski space-stime is, doubly,

ds2 = c2dt2 − dx2 − dy2 − dz2 = η(1,3)
+

µν dxµdxν , (51)

ds2 = −c2dt2 + dx2 + dy2 + dz2 = η(1,3)
−

µν dxµdxν . (52)

a Recall that a differential form ω of degree k = Z, or just k-form, is a section of an algebra over an R-field, by the
exterior product of the cotangent bundle T̊ ∗M of a manifold M, so that ωR : M →

∧k T̊ ∗M.
b A distinction is needed here. Minkowski space is a real vector space M

n or Mn = R1,n−1 or Rn−1,1 of dimension
n ⩾ 2, with a bilinear form g viz. gm : Mn ×M

n → R on the tangent space at any point of M, claiming that g is symmetric
g(v, w) = g(w, v) and non-degenerate g(v, w) = 0, for each v, w ∈ M

n. When a generic map g : Rn×Rn → R is prepared, it is
determined that g(v, w) = v0w0+v1w1+v2w2+· · ·+vn−1wn−1−vnwn or g(v, w) = −v0w0+v1w1+v2w2+· · ·+vnwn. The
bilinear form g(v, w) is usually said Minkowski (or Lorentzian) inner product, or Minkowski (or Lorentzian) metric tensor.
If {e0, . . . , en−q, en−q+1, . . . , en} is a basis, setting n = dim(M), with v = v0e0 + · · ·+ vnen and w = w0e0 + · · ·+wnen,
one has

g(v, w) = v
0
w

0
+ v

1
w

1
+ v

2
w

2
+ · · · + v

n−q
w

n−q − v
n−q+1

w
n−q+1 − · · · − v

n
w

n
, (47)

for a non-negative integer q ∈ Z∗ = {0} ∪ Z+.
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The letter c displays the speed of light in vacuum, while t the time, with (t, x, y, z) ∈ {−∞,+∞}.
Eqq. (51) (52) are called line elements, in the course of an infinitesimal displacement vector at any
point in R4

1,3.
a

Marginalia 2.2 (Lorentz space-time). Lorentz space-time L4 viz
= L4 = R4

1,3 = M4 is a generalization
of the Minkowskian one; it is a connected C∞ (smooth) 4-manifold, having its correspondence in
a T2 Hausdorff 4-space, with a Lorentzian metric

(
0
2

)
-tensor g(1,3).b The alternative form is R4

3,1,
g(3,1). The amphibolic nature of L4 = R4

1,3 coincides
(1) with the Minkowski’s description M4 viz

= M4, when the Riemann curvature tensor of the
Levi-Civita connection is zero; its denomination is flat Lorentzian space-time, or Lorentz–Minkowski
space-time: the infinitesimal neighborhood around any point in a curved 4-space is still a Minkowski-
like flat 4-manifold, although there is a variation of gl from point to point;

(2) with an incorporation into the general relativity; it provides a model for geometry of
Einsteinian gravity (in which, to be more specific, the gravitational force is a manifestation of the
curvature of space-time by the action of matter-energy), when it represents a hyperbolic 4-manifold;
its denomination is non-flat (curved) Lorentzian space-time—here Lorentzian space-time and
Einstein’s gravitationally curved space-time are the same object, of mathematical design, patently.

Synoptically, one has

L4 = R4
1,3

{
flat pseudo-Euclidean (Minkowskian-like) Lorentzian space-time,
non-flat (curved) non-pseudo-Euclidean Lorentzian space-time.

Marginalia 2.3 (Poincaré group). The Poincaré group [96, § 12] [97], occasionally renamed inhomo-
geneous Lorentz group, is a 10-dimensional non-abelian Lie group

PM = PM(1,3)
∼= O(1,3) ⋊R4

1,3,

and it consists of the semi-direct product of the 4-parameter group of the translations [79] and of
the 6-dimensional Lorentz group,c

Л = Л ↑
+ ∪ Л ↑

− ∪ Л ↓
+ ∪ Л ↓

− = O1,3(R).d (57)

a Eqq. (51) (52) are rewriteable in spherical coordinates (ct, ρ, θ, ϕ),

ds
2
(1,3)+

= c
2
dt

2 − dρ
2 − ρ

2
(dθ

2 − sin
2
θdϕ

2
), (53)

ds
2
(1,3)− = −c

2
dt

2
+ dρ

2
+ ρ

2
(dθ

2
+ sin

2
θdϕ

2
), (54)

setting x0 = t, x1 = x = ρ sin θ cosϕ, x2 = y = ρ sin θ sinϕ, x3 = z = ρ cos θ. The set membership: ρ ∈ [0,∞), θ ∈
[0, π], ϕ ∈ [0, 2π). Things to know: ρ is the radius corresponding to the line segment moving from a point to the origin,
θ is the colatitude, or the polar/zenith angle measured from the z-axis, and ϕ is the longitude, i.e. the azimuthal angle
measured from the x-axis within the xy plane.

b Lorentz space is an n-dimensional vector R-space L
n viz. Ln = R1,n−1 or Rn−1,1, characterized by a Lorentzian inner

product g viz. gl,

g(v, w)
+

= v
0
w

0
+ v

1
w

1
+ v

2
w

2
+ · · · + v

n−1
w

n−1 − v
n
w

n
, (55)

g(v, w)
−

= −v
0
w

0
+ v

1
w

1
+ v

2
w

2
+ · · · + v

n
w

n
, (56)

on the tangent space at any point of L, for each v, w ∈ L
n, with the signatures (+,−,−, . . . ,−) and (−,+,+, . . . ,+).

The Lorentzian metric tensor g = gµνdx
µdxν is a pseudo-Riemannian metric, and the signature of the quadratic form is

that of Eqq. (55) and (56).
c Cf. H. Poincaré [97, p. 130]: «Lorentz’s idea [79] can be summed up as follows: if we are able to bring a translation

upon a whole system, without modification of any observable phenomena, it is because the equations of an electromagnetic
medium are not altered by certain transformations, which we will call Lorentz transformations; two systems, one of which
is motionless, the other in translation, thus become exact images of each other».

d For the benefit of completeness:

Л =



Л+ (proper L. g.),
Л− (improper L. g.),
Л↑ (orthochronous L. g.),
Л↓ (non-orthochronous, or heterochronous, L. g.),
Л↑

+ (proper orthochronous, or restricted, L. g.),
Л↑

− (improper orthochronous L. g.),
Л↓

+ (proper non-orthochronous, or heterochronous, L. g.),
Л↓

− (improper non-orthochronous, or heterochronous, L. g.).



12 2 Cartanian Connection and Gravity

We can be more accurate. Any transformation of—the Lie algebra of—the Poincaré group is an
isometry of the Minkowski space-time, in conformity with

the 4-vector generators of the global translations, labeled by Г t, i.e. 4 components of the
translation generators, for the Minkowski metric, and

the 6-vector generators of the Lorentz rotations, denoted by Г r (vector representation of the
Lorentz group by 4× 4 matrices).

The commutation relations of Г t plus Г r are

[Г t
1 ,Г

t
2 ] = 0, (58a)

[Г t
1 ,Г

r
23] = i (η12Г t

3 − η13Г t
2) , (58b)

[Г r
12,Г

r
34] = i (η14Г r

23 − η13Г r
24 − η24Г r

13 + η23Г r
14) . (58c)

About the group of the translations, the final reference is offered by the Lorentz–Minkowski
space-time, L4 viz

= L4 = R4
1,3 or R4

3,1, that is, M4 or M4 viz
= M4, establishing that M4 viz

= M4 = R4
1,3

is the typing for the Minkowski space-time. As a quick reminder, the Minkowski space-time is a 4D
real vector space, or, more elaborately, a pseudo-Euclidean vector 4-space with strongly asymptotic
flatness. For more details on all this, see e.g. [89, chap. 3].

The PM-group has four disjoint components, PM
↑
± e PM

↓
±, each of which contains the Lorentzian

components (Л ↑
± and Л ↓

±), so that

PM =


PM

↑
+ = PM+ ∩ PM

↑

PM
↑
− = PM− ∩ PM

↑

PM
↓
+ = PM+ ∩ PM

↓

PM
↓
− = PM− ∩ PM

↓,

(59)

where ↑ and ↓ are the inequalities. It is worth noting that PM
↑
+ is

non-compact,
doubly-connected,
not (semi)-simple.

2.1.1. Einstein–Cartan Equations: a Couple of Pocket-Formulæ for a Torsioning Force
in a (1 + 3)(1 + 3)(1 + 3) Signature

Let κΩ
viz
= Ω2

g

viz
= Ω12 be the curvature of the Cartan connection, or rather, a g-valued 2-form on

P̊, better laid down as

κΩ
viz
= Ω2

g

viz
= Ω12 =

1

2
Rµν

12dxµ ∧ dxν =
(
∂[µων] + ω[µ|

1
3ω|ν]

32) dxµ ∧ dxν = dω12+ω1
3 ∧ω32. (60)

The equations for the Einstein–Cartan theory will be
1

2
Ω12 ∧ m3ε1234 = −κ

3

ϑ4, (61a)

1

2
Ω3 ∧ m4ε1234 = −κ

(
3
χ12

)
, (61b)

where
3

ϑ is a 3-form field (to which the energy-momentum of the matter field is linked), mis the
basis 1-form, κ = 8πG

c4 = 1 is the Einstein gravitational constant (8), and
3
χ is an antisymmetric

tensor-valued 3-form.

2.1.2. Einstein–Cartan Structure via Palatini Identity (Variational Principle of the
Gravitational Action)

Another way to obtain the Einstein–Cartan space-time is to use Palatini identity [92] onto a
Riemann–Cartan geometry, introducing the constraint constituted by the combo spin + torsion. It
is a question of deriving the gravitational equations from a variational principle, as, in ordinary
mechanics, the Euler–Lagrange equations [41] [42] [43] [44] [45] [70] [71] [72, 73] are derived from
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the principle of Hamilton [49, pp. 10-11] [50] [51]. The equations must maintain a totally invariant
condition.

(1) The first thing to do is go back to the energy-momentum tensor (9) and the Lagrangian
density of the matter-energy (10). Which can be defined as a functional in the calculus of variations.

Let
Sm be the action functional, referred to as a matter action (to outline the dynamics of gravita-

tional fields within the interactive scheme of matter-geometry),
δ be the metric g-variations, and
D ⊂ M4 be a 4-volume—domain of integration of dimension 4—corresponding to a region of

Minkowski space-time (Marginalia 2.1).
The variation of the action integral can be written with this symbolism,

δSm =

∫
D⊂M4

{
∂ ·

√
−gL

∂gµν
δgµν +

∂ ·
√
−gL

∂(∂ξgµν)
∂ξδg

µν + · · ·
}
d4x

=

∫
D⊂M4

(
δ ·

√
−gL

)
d4x =

(
1

2

∫
D⊂M4

√
−gLΤµνδg

µν

)
d4x. (62)

The variation of Sm (62) conducts us to the Einstein–Hilbert gravitational action [60] [61], the
action from which it is possible to reconstruct the poly-Eq. (1),

Seh = − c4

16πGn

∫
Rs

√
−gd4x = − 1

2κ

∫
D⊂M4

Rs

√
−gd4x, (63)

whilst the variation of Seh is

δSeh = − 1

2κ

∫
D⊂M4

δ
(
Rs

√
−g
)
d4x = − 1

2κ

∫
D⊂M4

δ
(
gµνRµν

√
−g
)
d4x

= − 1

2κ

∫
D⊂M4

(
Rµν

√
−gδgµν + gµνRµνδ

√
−g + gµνδRµν

√
−g
)
d4x

= − 1

2κ

∫
D⊂M4

√
−g

{(
Rµν − 1

2
gµνRs

)
δgµν + gµνδRµν

}
d4x

= − 1

2κ

∫
D⊂M4

√
−g (Gµνδg

µνδRµν) d
4x. (64)

(2) The second thing to do is set up the variation δRµν of the Ricci curvature tensor (5), and
the variation δΓ of the Christoffel symbols

δRµν = ∂ξδΓµν
ξ − ∂νδΓµξ

ξ + δΓµν
ξΓξϱ

ϱ + Γµν
ξδΓξϱ

ϱ − δΓµξ
ϱΓνϱ

ξ − Γµξ
ϱδΓνϱ

ξ. (65)

Afterwards, take the covariant derivative ∇, with the aim of achieving the Palatini identity,

Ip =
{
δRµν = ∇ξ

(
δΓµν

ξ
)
−∇ν

(
δΓµξ

ξ
)}

. (66)

The variation formula for the Einstein–Hilbert (64) will look like:

δSp = − 1

2κ

∫
D⊂M4

{(
Rµν − 1

2
gµνRs

)
δgµν

√
−g +

√
−g ×

[
∇ξ

(
gµνδΓµν

ξ
)
−∇µ

(
δΓµξ

ξ
)]}

d4x,

(67a)

= − 1

2κ

∫
D⊂M4

(
Rµν − 1

2
gµνRs

)
δgµν

√
−gd4x,a (67b)

It is the Palatini formalism of f(R) gravity. Finally, the above-mentioned combo must be added,
see D.E. Neville [88].

a In Eqq. (62) (63) (67) d4x stands, concisely, for a 4-dimensionality, d4x = d(t, x, y, z); alternatively, dx0dx1dx2dx3,
or dx1dx2dx3dx4.
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2.1.3. The Kibble–Sciama Model

The Kibble–Sciama (kb) model [63] [111] produces his own version of the Einstein–Cartan
theory. In the words of T.W.B. Kibble [63, p. 212], his argument leads

from the Lorentz invariance of the Lagrangian to the introduction of the gravitational field [ . . . ], by considering the
parameter group of inhomogeneous Lorentz transformations, involving variation of the coordinates as well as the field
variables. It is then unnecessary to introduce a priori curvilinear coordinates or a Riemannian metric, and the new field
variables introduced as a consequence of the argument include the vierbein [tetrad] componentsa [ . . . ] as well as the “local
affine connection”.

Let us get to the brass tacks, with the two princely equations of the kb model:

Rµν − 1

2
gµνRs = 8πΤµν , (69)

and
τ ξµν + δξµτ

ϱ
νϱ − δξντ

ϱ
µϱ = 8πŜξ

µν , (70)
from which one has

τ ξµν = 8π

{
Ŝξ

µν +
1

2
δξµŜ

ϱ
νϱ +

1

2
δξν Ŝ

ϱ
ϱµ

}
. (71)

3. Einstein–Cartan Space-Time Owing to JJJ -Bundle, plus Clifford Bundles
Cℓ(·M4

ß,τ , ·)Cℓ(·M4
ß,τ , ·)Cℓ(·M4
ß,τ , ·)

3.1. 4-Dimensional Structure by (Riemann–)Einstein–Cartan

Eqq. (61), for the Einstein–Cartan theory, are specified by the spin-torsion interaction. The
algebro-topological identity—which is none other than a Lorentz–Minkowski’s space-oriented and
time-oriented manifold (Marginalia 2.1 and 2.2), whose provenance is (pseudo-)Riemannian and
Cartanian—can be called Riemann–Einstein–Cartan space-time, or Einstein–Cartan space-time,
and thus symbolized:

space-time in a 4D spin-torsion balancing


(
R4

ß,τ(1,3), gec,∇
ωP̊

)
,

R4
ß,τ(1,3) = M4

ß,τ
viz
= M4

ß,τ
ιδ

= M4
ß,τ ,

(72a)

(72b)

where ∇ωP̊ is a covariant derivative (operator) on R4
ß,τ(1,3), cf. Eq. (95).

3.2. Lorentz & Spinor Bundles

Returning to what has already been mathematized [89, sec. 3.5.1], let us go to define the Lorentz
bundle and the spinor bundle.

(1) The Lorentz bundle is the principal Л ↑
+-bundle over R4

1,3 (space-time), with P̊Л ,

SO+
1,3(R) = Л ↑

+ ↪→ Л (R4
1,3)

P̊Л−−→ R4
1,3. (73)

(2) The spinor bundle is the principal SL2(C)-bundle over R4
1,3 (space-time), with P̊ß,

SL2(C) ∼= Spin+
1,3(R) ↪→ ß(R4

1,3)
P̊ß−−→ R4

1,3. (74)

The spinor configuration is the spinor bundle (74) plus the map

φ : ß(R4
1,3) → Л (R4

1,3),

under three conditions,
(i) P̊Л

(
φ(x)

)
= P̊ß(x),

(ii) P̊Л ◦ φ = P̊ß(x),

a Set of four linearly independent vector fields. The tetrad formalism of the vector fields, for the tetrad bases, can
be expounded in this manner, {ε(α)} or {εα̂}, with α = 1, 2, 3, 4, and the Ricci rotation coefficients γαβλ undergo the
following math-symbolization,

γ(α)(β)(λ) = ε(α)
µ
ε(λ)

ν∇νε(β)µ, (68a)

γα̂β̂λ̂ = εα̂
µ
ελ̂

ν∇νεβ̂µ. (68b)
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(iii) φ(x · g) = φ(x) · Spin(g), for all x ∈ ß(R4
1,3) and g ∈ SL2(C).

(3) Let us recall that
(i) SL2(C) ∼= Spin+

1,3(R), the—3-dimensional complex a/o 6-dimensional real—special linear
group of 2× 2 matrices over the complex field,a is the 2-fold covering of SO+

1,3(R);
(ii) SO+

1,3(R) is the indefinite special orthogonal group of linear transformations of M4 = R4
1,3,

oka the restricted Lorentz group (cf. Marginalia 2.3), SO+
1,3(R) = Л ↑

+.b

With the aforementioned groups the famous spinor map can be built, in order to have the
universal covering group SL2(C) → SO+

1,3(R),

SL2(C) ∼= Spin+
1,3(R) SO+

1,3(R) = Л ↑
+

GL(M)

ς

н◦ς н

thru the representation of Л ↑
+ on a vector R-space M as a homomorphism н in 6D of SO+

1,3(R)
into a general linear group GL(M), relying on the spinor map

ς :
(
SL2(C) ∼= Spin+

1,3(R)
)
−→

(
SO+

1,3(R) = Л ↑
+

)
.

(4) We are ultimately able to achieve the following diagram:

SL2(C) ∼= Spin+
1,3(R) ß(R4

1,3) R4
1,3

viz
= M4

SO+
1,3(R) = Л ↑

+ Л (R4
1,3)

P̊ß

φ
P̊Л

under which
φ× Spin : ß(R4

1,3)× SL2(C) → Л (R4
1,3)× SO+

1,3(R) = Л ↑
+.

(5) The Lorentz and spinor bundles are equivalent to the product bundle,

SO+
1,3(R) = Л ↑

+ ↪→ R4
1,3 ×

(
SO+

1,3(R) = Л ↑
+

)
→ R4

1,3, (75)

SL2(C) ∼= Spin+
1,3(R) ↪→ R4

1,3 × SL2(C) → R4
1,3, (76)

respectively.

3.3. Cartan kkk-Forms & JJJ -Bundles; CℓCℓCℓ-Bundles, CℓCℓCℓ-kkk-Form, and
(
4
k

)(
4
k

)(
4
k

)
-Space

(1) The bare Cartan bundle over the cotangent bundle of an n-dimensional (pseudo-)Riemannian
manifold (M, g) is the set of equalities∧

T̊ ∗M =
⋃

x∈M

∧
T ∗
x M =

⋃
x∈M

n⊕
k=0

k∧
T ∗
x M, k = 0, . . . , n. (77)

a It has 4 complex numbers, a/o 8 real numbers: C4 equates R8; except that the unit determinant takes away 2 of its 8
degrees of freedom: 8 − 2 = 6. Geometrically, SL2(C) is diffeomorphic to the 3-sphere. For an inclusion map, one has
ι : S3 ↪→ C2 = R4.

b Do not forget these congruences:

SO
+
1,3(R) = Л↑

+
∼= Möb(Ĉ) ∼= PSL2(C) ∼=

SL2(C)
{±I}

,

related to the Möbius group, and SO+
1,3(R) ∼= SL2(C)/Z2, in close liaison with the Klein 4-group [65] = [66]:

O1,3(R)
SO+

1,3(R)
∼= Z2 × Z2.
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Once the set
∧k T̊ ∗M =

⋃
x∈M

∧k T ∗
x M is isolated, the k-forms bundle is the piece

k∧
T̊ ∗M ⊂

∧
T ∗
x M, (78)

with the exterior algebra
∧
T ∗
x M of the cotangent (vector) space T ∗

x M.
(2) Let Cℓ(M4

ß,τ , g) be a Clifford bundle (of differential forms). The Cartan J 1-bundle, or 1-jet
bundle, over ∧

T̊ ∗M ↪→ Cℓ(M4
ß,τ , g), wh. Eq. (72b) holds,

with an embedding in the Cℓ-bundle, is explicated by

J 1
(∧

T̊ ∗M4
ß,τ

)
=

⋃
x∈M4

ß,τ

J 1
x

(∧
T̊ ∗M4

ß,τ

)
, wh. Eq. (72b) holds. (79)

It is noteworthy that:
(i) the above-mentioned Cℓ-bundle is a vector bundle involved with a principal G-bundle

P̊SO+
1,3(R)

of orthonormal frames, in the contingent case, of oriented Lorentzian tetrads (see Section

3.2); we explicitly add the spin-Clifford principal G-bundle, or covering spin-bundle, P̊Spin+
1,3(R)

, et
voilà:

Cℓ(M4
ß,τ , g) = P̊{SO+

1,3(R),Spin
+
1,3(R)}

(
R4

ß,τ(1,3)

)
× adj(R1,3); (80)

(ii) the Clifford bundle Cℓ(T ∗
x M4

ß,τ , gx) is a vector R-space isomorphic to the exterior algebra

∧
T ∗
x M4

ß,τ =

4⊕
k=0

k∧
T ∗
x M4

ß,τ , wh. Eq. (72b) holds, (81)

of the cotangent space T ∗
x M4

ß,τ . The bit
∧k T ∗

x M4
ß,τ is a

(
4
k

)
-space of k-forms, or a k-space of

dimension
(
4
k

)
.

(3) Each space section, which we typify with Γς, of Cℓ(M4
ß,τ , g), is a Clifford k-form field

ωα
Cℓ ∈ Γς

(∧
T̊ ∗M4

ß,τ

)
↪→ Γς

{
Cℓ(M4

ß,τ , g)
}
, α = 1, . . . , n,

for k = 0, . . . , 4. Then the Lagrangian density, for the 4-dimensional Einstein–Cartan structure, in
the prescription of ωα

Cℓ, gains this explicitness:

Lec : Γς

{
J 1
(∧

T̊ ∗M4
ß,τ

)n+2
}

Lm for 4D space-time with spin-torsion | ωα
Cℓ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Γς

(
4∧
T̊ ∗M4

ß,τ

)
. (82)

NB. In Eq. (82), for convenience, this 1-jet bundle is chosen:

J 1

{(∧
T̊ ∗M4

ß,τ

)n+2
}

=
⋃

x∈M4
ß,τ

J 1
x

(∧
T̊ ∗M4

ß,τ ×
∧

T̊ ∗M4
ß,τ × · · · ×

∧
T̊ ∗M4

ß,τ

)
(83)

over
(∧

T̊ ∗M4
ß,τ

)n+2

↪→
{
Cℓ(M4

ß,τ , g)
}n+2.

Marginalia 3.1 (Exterior covariant derivative). On that account, the symmetries of space-time (72)
can be revised-rewritten by virtue of geometro-physical differential notions, the first of which is the
exterior covariant derivative. Suppose Сµ1···µr

ν1···νs
∈ Γς

(
T k+r
s M

)
is a set of components, when there

is a system of coordinates x1, . . . , xn, such that

Сµ1···µr
ν1···νs

(x1, . . . , xn) ∈ Γς

(
k∧
T̊ ∗M

)
,

where the fields Сµ1···µr
ν1···νs

are the (r + s)-indexed k-forms. The exterior covariant derivative, in such
a backdrop, is a covariant differential

of vector-valued differential k-forms, or, with greater precision,
of (r + s)-indexed k-form fields of Сµ1···µr

ν1···νs
.
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Labeled by d∇, we state the exterior covariant derivative as

d∇ : Γς

(
k∧
T̊ ∗M

)
C∞

→ Γς

(
k+1∧

T̊ ∗M

)
C∞

,

for 0 ⩽ k ⩽ 4.
The spin-torsional symmetries of the 4-manifold (72), which rest on the 3-forms of energy-

momentum of all matter fields, cf. Eq. (61a), are perfectly regulated by Eq. (96), exhibiting the
Euler–Lagrange equations for the Yang–Mills theory (see Section 4.1.5).

4. Quantum Yang–Mills Gravity

The gauge status of Einstein’s theory of gravitation is still inconsistent with the quantum
gauge theory in comparison with the other three fundamental interactions. Nevertheless the
Einstein–Cartan theory is the confirmation [1] that a geometry of Yang–Mills (ym) [121], when it
comes to treating with a gravitational field, can take root on a Cartanian background, in which
the Yang–Mills Lagrangian equation,

Lym = −1

2
tr (FµνF

µν) (84a)

= −1

4
Fα
µνF

µν
α (84b)

= −1

4

∑
α

(
∂µA

α
ν − ∂νA

α
µ + в(g)f

αβγAβ
µA

γ
ν

)2
, (84c)

stands out; remember that
Fα
µν = ∂µA

α
ν − ∂νA

α
µ + fαβγAβ

µA
γ
ν (85)

is the Yang–Mills strength tensor. In poly-Eq. (84)
Fµν/F

µν is the electromagnetic (field) tensor, or Maxwell tensor, oka (field) strength tensor,
and it is invariant under global and local Lorentz transformations,

Aα
µ is the vector potential, or vector A-field,a whose triple entity epitomizes three gauge bosons,

fαβγ are the (gauge group) structure constants of SU2, the special unitary group of degree 2,
в(g) is the (gauge) coupling constant.
For those interested in learning more, it is advisable to read E.W. Mielke [82, chap. 7. Yang’s

Theory of Gravity, pp. 137-159], and J.-P. Hsu & L. Hsu [62, part II. Quantum Yang–Mills Gravity,
pp. 91-213].

4.1. Geometro-topological Yang–Mills Schema

Yang–Mills geometry is a gauge theory with non-Abelian symmetry. Let us now try to explore
some mathematical essential knots.

4.1.1. Yang–Mills Lagrangian via Electromagnetic 2-Form

It is possible to write a Lagrangian for the Yang–Mills schema, by embracing an alternative
comprehension to that of poly-Eq. (84), namely, by identifying the electromagnetic (field) tensor
FµνF

µν with a 2-form
F = 1

2Fµνdx
µ ∧ dxν (86)

in Minkowski space-time (Marginalia 2.1) having a signature of the metric tensor η(1,3)
− viz

=
(−,+,+,+). Let ⋆ be the Hodge dual (the reference is the Hodge star operator, e.g. in de Rham
cohomology). By selecting—through a gauge fixing (gf) procedure—a vector potentials, or A-field,
as a gauge, more neatly, as a gauge potential, the L-invariant 4-form will bear this aspect:

Lym [Agf ] = −1

2
F ∧ ⋆F. (87)

a An arrow above, A⃗, is sometimes included, in some literature.
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4.1.2. Yang–Mills On(K)On(K)On(K)-Action

Imagine some massive body m. For simplicity, we grab the orthogonal group On(K), and a
scalar field ϝи . The Yang–Mills action, dropped in a perspective of algebraic & Lie groups, is

Sym =

∫
K

(
n∑

и=1

1

2
∂µϝи∂

µ
ϝи − 1

2
m2
ϝ
2
и

)
d4x. (88)

4.1.3. Yang–Mills Topological Action, with Second Chern Number

Eq. (88) also has its own topological variant. Take a connection ωP̊ on the principal G-bundle
over a 4-manifold M,a and let Ω∇ be the curvature 2-form of ωP̊ . And here is a 4D-map,

⋆ : Ω∇(M)R → Ω∇(M)R, i.e. Ω∇(R4)
⋆−→ Ω∇(R4),

making use of the Hodge operator, under the now-familiar ⋆ (\star) symbol, again.
If we connote the self-dual and anti-self-dual parts of Ω∇ with

Ω∇
± =

1

2

(
Ω∇ ± ⋆Ω∇) ,b (89)

and the second Chern number with

c̊2 = − 1

8π2

∫
R4

tr
(
Ω∇ ∧Ω∇) = 1

8π2

∫
R4

∣∣Ω∇
+

∣∣2 − ∣∣Ω∇
−
∣∣2 , (90)

the Yang–Mills action, in the first instance, becomes

Sym =
1

2

∫
R4

(F ∧ ⋆F ) =
1

4

∫
R4

(
det(gµν)

1
2FµνF

µν
)
d4x, (91)

by placing F in the guise of a 2-form, just like in Eq. (86); and, subsequently, it comes to be

Sym[ωP̊ ] =

∫
R4

∣∣Ω∇∣∣2 dµ =

∫
R4

− tr
(
Ω∇ ∧ ⋆Ω∇) (92a)

=
∥∥Ω∇∥∥2

L2 =

∫
R4

∣∣Ω∇∣∣2 dµ =

∫
R4

∣∣Ω∇
+

∣∣2 + ∣∣Ω∇
−
∣∣2 dµ (92b)

=
1

2

∫
R4

∣∣∣Ω∇
[+]

∣∣∣2 dµ + 8π2c̊2, (92c)

by requiring that
dµ = det(gµν)

1
2 =

√
det(gµν) is the (Riemannian) volume element,c

L2 is a (pre-)Hilbert-space with an inner product in the norm ∥ · ∥,
c̊2 is directly related to the second Chern class C̊2(M),d see S.-S. Chern [19] and A. Grothendieck

[48].

4.1.4. Yang–Mills–Higgs Action on RnRnRn through the Principal GGG-bundle

We start with the usual n-dimensional (pseudo-)Riemannian manifold (M, g). Let us say that
ωP̊ is the value of a gauge connection form—trivially known as gauge connection—on P̊. A gauge
transformation of a principal G-bundle

πωP̊
: P̊ → M

is a diffeomorphism Φ : P̊ → P̊, so that

πωP̊
◦ Φ = πωP̊

, (93)
Φ(x · g) = Φ(x) · g, (94)

for each x ∈ P̊, and g ∈ G.

a M is for M4 or M
4 viz. M4, that is, M4 viz. M4 = R4.

b If Ω∇
+ = 0 a connection is remarked as anti-self-dual.

c The µ (\bbmu) symbol is for a measure on a space/on a set.
d The c̊2-number of M is but its Euler class; and c̊2 may coincide with the so-called instanton number.



19

Let ϝH0 be the Higgs scalar field, alias a space-time scalar ϝH0 -field. The reference articles are
those of F. Englert & R. Brout [40], P.W. Higgs [57] [58] [59].

The Yang–Mills–Higgs (ymh) bundle action, for the quadruple (P̊, πωP̊
,M, G), can be reported

in such terms:

Symh

[
ωP̊ , ϝH0

∣∣ P̊ Φ−→ P̊
]
=

∫
Rn

(
1

2
Ω∇ ∧ ⋆Ω∇ +

1

2
∇ωP̊ϝH0 ∧ ⋆∇ωP̊ϝH0 − (U ◦ ϝH0) dVg

)
=

1

2

∥∥Ω∇∥∥2 + 1

2
∥∇ωP̊ϝH0∥2 −

∫
Rn

(U ◦ ϝH0) dVg, (95)

by adopting ∇ωP̊ϝH0 as a covariant derivative, and U ◦ ϝH0 = U (ϝH0) as the Higgs potential; Ω∇

is, again, the curvature form of ωP̊ , whilst dVg is for the volume form of g on Rn.

4.1.5. Yang–Mills–Euler–Lagrange Equation(s)

The Euler–Lagrange equations (cf. Section 2.1.2) for the Yang–Mills theory have, in consequence,
a brachylogical equality:

dωP̊
⋆ Ω∇ = 0. (96)

This is not to say that all Yang–Mills ωP̊ -connections are solution of (96).

5. A Form of Spin-Torsion Interaction? The Conundrum of the Discreteness
(Discontinuity), Nodularity, and Singularity in R4

ß,τ(1,3)R4
ß,τ(1,3)R4
ß,τ(1,3)

So do the sums of this short survey. The transition from Einsteinian to Cartanian theory of
gravity is only a partial conversion from the notorious mollusc to a tensor networks. Something
like that can be dug up clearly in a reflection of P.W. Bridgman [2, p. 199]:

The events, in terms of which the world is to be described in general relativity theory, are thought of as intersection
nodes of the coordinate “mollusc” [38, §§ 28-29].a No matter what the [space-time] transformation of [the four] coordinates,
the intersection nodes cannot be transformed away, but persist in all systems, and it is this invariant background of nodes
of intersection that corresponds to the physical “reality”. But there is no general relativity theory of what the nodes
represent. The implication seems to be that they represent some sort of discreteness or singularity in the solution of the
underlying equations, and that there is nothing more to be said about the situation than the mere fact of the existence of
the discontinuities.

But this has its own complication: the geometry of space-time, to fit quantum theory, must be
Euclidean. Already M.P. Bronštejn [3, p. 150] = [4, p. 276] had clear ideas about it:

[I]t is possible [ . . . ] to construct a completely self-consistent quantum theory of gravity within the framework of special
relativity (i.e. when the space-time continuum is “Euclidean” [raumzeitliche Kontinuum ein „Euklidisches“ ist]). However,
within the domain of General Relativity theory, where deviations from “Euclideanness” can be arbitrary large, the situation
is quite different.

Could the Bridgman-like nodes of intersection, or more elegantly, the tensor networks, with the
entanglement amalgamating them together, be a physico-geometric path to illuminate a type of
quantum gravity, showing that a smooth and continuous space-time may emerge from discrete bits
of quantum information?

But wait, there is more. The Cartanian spin-torsion coupling, in a Poincaré (see Marginalia 2.3)
gauge theory of gravity (thru which the Einstein–Cartan space-time possesses torsion in addition to
curvature), is inside a smooth framework; e.g. the (jet) J -bundle (see Section 3.3) is imbued with
a smoothness of points, lines, and surfaces; it is not with a series of Cartan-like bundles that it is
possible to generate some discrete bits, or nodes. Perhaps it is coercive to change the type of tensor
networks; an alternative for e.g. is the AdS/mera (Multi-scale Entanglement Renormalization
Ansatz) correspondence, which nonetheless has several deficiencies and ideological niggles.

a Cf. Einstein [38, § 28, pp. 65-66]: «This non-rigid reference-body [nichtstarre Bezugskörper ], which might rightly be
called a “reference-mollusc” [„Bezugsmolluske“], is essentially equivalent to any Gaussian 4-dimensional coordinate system.
That which gives the “mollusc” [„Molluske“] a certain comprehensibility, as compared to the Gaussian coordinate system,
is the (really unjustified) formal preservation of the separate existence of the space coordinates as opposed to the time
coordinate [formale Wahrung der Sonderexistenz der räumlichen Koordinaten gegenüber der Zeitkoordinate]. Every point
on the mollusc is treated as a space-point [Raumpunkt], and every material point which is at rest relatively to it is at rest,
so long as the mollusc is considered as reference-body. The general principle of relativity demands that all these molluscs
can be used as reference-bodies with equal rights and equal success in formulating the general laws of nature; the laws must
be entirely independent of the choice of mollusc».
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5.1. How Far Can We Get without the Micro-scale?

The grafting of the algebraic relation between the torsion and spin tensors into general relativity
pays off when the density of matter is high, without having to get down to the Planck scale,

ℓp =

√
ℏGn

c3
,

or to a quantum foam-like space-time, in keeping with Wheeler’s [119, p. 509] [120, pp. 1-2, 6]
grandiose audacity. Briefly, the Einstein–Cartan theory is a classical limit of a quantum gravity
theory, still in fieri, when its torsional and spinor conception is accepted. Cf. M. Reuter, J.
Gutenberg [104, 9.1. Quantum Einstein–Cartan Gravity, pp. 220-223].

Figure 2. Semi-destruction of a non-3D—or non-(1+3)D—spatio-temporal #FF7518-grid with increasing
gravitational field strength. Exactly like in the Fig. 1, here is a crude representation along the z-axis.
Actually, when the gravitational force becomes infinite (façon de parler), is mandatory to switch to an
unknown tiling, whether periodic or aperiodic, as a covering of the plane; we must correspondingly
return to a Flatland-like scenario

5.2. Infinitesimal Curvature and Torsion vs. Spongiform Topology or Fractal Geodesics

Do not forget that, in the Cartanian context, it is fair to talk of infinitesimal connection, and
hence the same curvature & torsion are delineated in infinitesimal granules. But in the quantum
world, where one fantasizes about a spongiform topology, this makes no sense, as far as we know.

That is why it is legitimate to conceive a gauge theories where space-time is a non-differentiable
continuum but a fractal σχῆμα, as the scale relativity theory does, see L. Nottale and T. Lehner
[90] [91].

The focus argumenti is that the continuum, both in the mathematico-physical and in the purely
mathematical domain—see [89, sec. 9.2.1.1., Margo 9.2.1]—arises from the discontinuum, the
discretum.

5.3. Multi-Dimensionality and Fractality of Fiber Structures

All of this brings up an old problem about dimensionality. There is a passage from B. Mandelbrot
& R.L. Hudson [81, VII. A Dimension to Measure Roughness ] that best sums up the vexata quæstio:

Look at a ball of thread and think about it first from the idealized viewpoint of Euclid. Assume it is five inches
in diameter, made of fiber a fraction of an inch thick. From a long distance away, you can barely see the ball; it is,
effectively, a point—of no dimension, according to classical geometry. Hold it in your hand, and it resolves to a normal,
three-dimensional ball. Bring it up closer: You see it is a tangle of one-dimensional fibers. Closer still, and the fibers are
clearly three-dimensional strands. Keep going until the atoms resolve in an electron microscope: Back to zero-dimensional
points again. So what is this ball of thread, anyway? Zero, one, or three dimensions? It depends on your point of view.
For a complex natural shape, dimension is relative. It varies with the observer. The same object can have more than one
dimension, depending on how you measure it and what you want to do with it. And dimension need not be a whole number;
it can be fractional.
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5.4. A Look Beyond the Hedge I: On the Quandary of the Curvature Tending toward
Infinity

This is why the Einstein–Cartan theory
(1) is applied to black holes, where the (spin-)torsion of the geometry of the space-time fabric—in

which the individual threads in weft and warp are intertwined—is assumed to be relevant. Not
without a certain complacency, any physico-mathematical speculation, that wants to bypass the
narrow scope of empirical evidence (in the absence of experiments to verify some theoretical
prediction), has the same pace as a novelist’s imagination;a

(2) is probed to generate models, for avoiding singularities in the presence of astronomical
objects capable of generating an extreme deformation of space-time, whose curvature tends toward
infinity. See (in order of appearance) A. Trautman [114], B. Kuchowicz [68], N.J. Popławski [98]
[99] [100] [101] [102], S. Desai and N.J. Popławski [28].

5.5. A Look Beyond the Hedge II: Black Holes for a Non-singularity

See the #0382E3-point in Fig. 3, where the spiraling #E30382-torsion fatally kisses the spiraling
#03E364-torsion. The #0382E3-entity is a math-free spot, or a primitive non-space in which the
physico-mathematical dimension is without comprehension. The Einstein–Cartan construction
helps to find a narrativum artificium for this bewitching quandary.

Figure 3. Graphic simplification of a Cartanian non-3D—or non-(1 + 3)D—space-time with double
spiraling torsion. Try to visualize, imaginatively, an action à la Petti–Popławski [94] [102] of a #E30382-
black hole, on one side, and of a #03E364-white hole, on the other

5.6. In-depth Explorations

(1) Investigations on the Yang–Mills & gauge theories, are (abc order) in R. Cianci, S. Vignolo,
and D. Bruno [21] [22], R.W.R. Darling [27, chap. 10. Applications to Gauge Field Theory, pp.
223-250], S.K. Donaldson [29], C. Doran, A. Lasenby, A. Challinor, and S. Gull [30], T. Eguchi, P.B.
Gilkey and A.J. Hanson [31], M. Göckeler, T. Schücker [47, chap. 4. Gauge theories, pp. 43-60], C.
King [64], J. Labastida and M. Marino [69, sec. 2.1. Yang–Mills theory on a four-manifold, pp.
12-14], F. Lenz [75], J.W. Morgan [86], G.L. Naber [87], G. Rudolph, M. Schmidt [108, chap. 6.
The Yang–Mills Equation, pp. 461-543], L. Sadun and J. Segert [110].

(2) Insights on the Einstein–Cartan theory and surrounding areas, are (abc order) in S.
Capozziello, R. Cianci, C. Stornaiolo, S. Vignolo [5] [6], R.T. Hammond [52] [53] [54], F.W.
Hehl, P. von der Heyde, and G.D. Kerlick [55], F.W. Hehl and Y.N. Obukhov [56], H. Kleinert [67],
A. Lasenby, C. Doran and S. Gull [74], E.W. Mielke [82, chap. 5. Einstein–Cartan Theory, pp.
95-107], R.J. Petti [93] [94] [95], N.J. Popławski [103, sec. 2.5.1], W.A. Rodrigues, Jr. and E.C. de
Oliveira [107], V. de Sabbata [109], I.L. Shapiro [112].

a Never hurts to remember these words of A. Einstein & L. Infeld [39, p. 33]: «Physical concepts are free creations of
the human mind, and are not, however it may seem, uniquely determined by the external world».
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