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This work aims to autonomously revisit some puncta salientia of the Einstein-Cartan (ec) theory, focusing wholly on the mathematical aspect, or, better still, emphasizing the differential geometry underlying the theory under examination, without the burden of sensible experiences (experiments) of Galilean heritage. a

It is shown that it is possible to describe, or rather, derive an Einsteinian-like gravitational field starting from a Cartan h-subalgebra, and thus produce a couple of formulae for a torsioning in a (1 + 3)-dimensional manifold. Some Cartan k-forms and J -bundles, along with other Clifford bundles, and a Clifford k-form field, will help to circumscribe a 4D torsional spin-space. Follows an overview of quantum Yang-Mills gravity according to a geometro-topological schema. This opens up the exciting issue, not addressed here, of the emergence of space-time, indicating a manifolded-structure including its spin plus torsional foundations.

Introduction

The Einstein-Cartan theory is but one of the generalizations of Einstein's general relativity [34, pp. 844-845] [35, § 4] by means of spaces that are defined with an affine connection elaborated by É. Cartan [START_REF]Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie), chapp. I-IV[END_REF] [10] [START_REF]Sur les variétés à connexion affine, et la théorie de la relativité généralisée (deuxième partie), chapp. VI-X[END_REF] = [14, pp. 23-193] [START_REF]Sur les variétés à connexion projective[END_REF] [START_REF]Les groupes d'holonomie des espaces généralisés[END_REF] but whose root is found [9, p. 325] in H. Weyl [117, § 14. The general relativity represents the core of union between geometry & physics, viz. between space-time & matter, within the Ricci calculus for tensors (and tensor fields); its formulation comes out through the Einstein field equations:

Affin
G µν = R µν - 1 2 g µν R s = κΤ µν b (1a) = R µν - 1 2 g µν R s = 8πG n c 4 Τ µν , (1b) 
= R µν = κ Τ µν - 1 2 g µν Τ , (1c) 
= - ∂ ∂ x ξ µν ξ + µξ ϱ νϱ ξ + ∂ 2 log √ -g ∂ xµ ∂ xν - µν ξ ∂ log √ -g ∂ x ξ . ( 1d 
)
Let us look at some specific details.

(1)

G µν viz = G [µν] = R µν -1 2 g µν R s , G [µν]
= G µν=νµ , is the Einstein tensor, nay, the Ricci-Einstein tensor. c (2) R µν is the Ricci curvature tensor, a symmetric tensor of rank 2, which can be described in four basic ways:

(i) the first form is

Ric ιδ =        R ν µ ⃗ E µ ⊗ ϑ ν as a 1 1 -tensor, R νξ ϑ ν ⊗ ϑ ξ = g νµ R ξ µ ϑ ν ⊗ ϑ ξ as a 0 2 -tensor, R µξ ⃗ E µ ⊗ ⃗ E ξ = g µν ⃗ E µ ⊗ ⃗ E ξ as a 2 0 -tensor, (2a) (2b) (2c) 
videlicet

Ric ∈        Τ 1 1 (M), Τ 0 2 (M), Τ 2 0 (M); (3a) (3b) (3c) 
(ii) the Ricci tensor is congruent with a contraction of the Riemann curvature tensor, so

Ric ιδ = R ν µ ⃗ E µ ⊗ ϑ ν = R µξ ξν ⃗ E µ ⊗ ϑ ν = R µξς ν g ςξ ⃗ E µ ⊗ ϑ ν , R µν ϑ µ ⊗ ϑ ν = g ξϱ R µξϱν ϑ µ ⊗ ϑ ν ; (4a) (4b) 
(iii) via Christoffel symbols, one has an explicit solution,

Ric ιδ = R µν = ∂ ξ Γ µν ξ -∂ ν Γ µξ ξ + Γ µν ξ Γ ξϱ ϱ -Γ µξ ϱ Γ νϱ ξ ; (5) 
(iv) as a 0 2 -tensor, the Ricci curvature is conditioned by the trace of a linear operator, so

Ric( ⃗ X, ⃗ Y ) = tr ⃗ Z → R ⃗ X, ⃗ Z ⃗ Y , (6) 
a Cartan [11, pp. 205-206]: «It is the notion of parallelism that gives a Euclidean connection to the surface, to quote the words of H. Weyl [ . . . ]. In fact, what is essential in the idea of Levi-Civita [START_REF] Levi-Civita | Nozioni di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana[END_REF] is that it allows to connect [raccorder ] two small pieces of a manifold, which are infinitely close to each other, and it is this idea of connection that is fruitful. We can therefore imagine, by developing this idea, the possibility of arriving at a general theory of manifolds with an affine, conformal, or projective connection». b With the addition of the cosmological constant, denoted by Λ, or by λ in [35, p. 151], Gµν -λgµν = -κ Τµν -1 2 gµν Τ , one gets Rµν - 1 2 gµν Rs + Λgµν = κΤµν . c See [23, p. 157].
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which is why Ric is understandable in terms of a trace of the Riemann curvature tensor.

(3) g µν is the metric tensor.

(4) R s is the scalar curvature, aka Ricci scalar [START_REF] Ricci | Lezioni sulla teoria delle superficie[END_REF] [106]; it is the trace of the Ricci curvature tensor, with regard to the Riemannian metric g (R s is a local invariants of g),

R s ∈ C ∞ (M) ιδ =        tr(Ric), R µ µ = g µν R µν = R ν ν , g µξ g νϱ R µνξϱ . (7a) (7b) (7c) 
(5) κ is the Einstein gravitational constant [START_REF]Zur allgemeinen Relativitätstheorie[END_REF],

κ = 8πG c 4 , (8) 
the strength of coupling between matter, or physical dimension, and geometric space. (6) Τ µν is the energy-momentum tensor,

Τ µν = 2 √ -g δ √ -gL = √ -g 1 2 g µν ∂ µ ϝ∂ ν ϝ -U δg µν , (9) 
designating a quantity for the density of matter, which represents a disturbance in space-time, where

L viz = L m = 1 2 ∂ µ ϝ∂ µ ϝ -U (ϝ), ∂ µ ϝ = ∂L ∂(∂ µ ϝ) , (10) 
is the Lagrangian density of the matter-energy, with a scalar field ϝ and a potential U (ϝ). [START_REF] Cartan | Sur certaines expressions différentielles et le problème de Pfaff[END_REF] G n is the Newtonian constant of gravitation, from F = G n m1m2 ρ 2 (m1-m2) . ( 8) µν ξ etc. are the Christoffel symbols of the second kind [START_REF] Christoffel | Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades[END_REF],

Γ ξ µν viz = ξ µν (11a) = g ξϱ Γ ς µν ∂ ∂x ς , ∂ ∂x ϱ (11b) = g ξϱ ∇ ∂ ∂x µ ∂ ∂x ν , ∂ ∂x ϱ (11c) = 1 2 g ξϱ ∂g νϱ ∂x µ + ∂g µϱ ∂x ν - ∂g µν ∂x ϱ (11d) = 1 2 g ξϱ g νϱ,µ + g µϱ,ν -g µν,ϱ , (11e) 

Riemann-Cartan Geometry

Let us look at two of the main features of Cartanian geometry, a or, for the sake of exactness, of Riemannian-Cartanian geometry, denoted by C.

(1) The notion of space is homogeneous or non-homogeneous. The Cartan homogeneous-space is modeled, at least locally, on the Klein geometry/on the coset space G/H. The Cartan nonhomogeneous-space manifests deformations to the Klein structure (it is equivalent to a Klein geometry deformed by some curvature); the criterion by which to visualize a C-deformation is analogous to that used for introducing the Riemannian curvatures in Euclidean space.

(2) The Cartan space can be a flat or non-flat. In the first case, the Riemannian-Cartanian geometry is a generalization of the standard Euclidean one, and the curvature in the Cartanian structure is zero (the curvature vanishes at all points); in the second case, it is a more general conception of Riemannian geometry (see Section 1.2.1), and the fabric of Cartan space has blob-like, or hill-like, values-to recover the vivid language of W.K. Clifford [24, p. 158 We are going to underline some more technical aspects.

(1) The Riemann curvature tensor

R ⃗ X ⃗ Y σ µ is succinctly stated by the 2-forms Ω ν µ , R ⃗ X ⃗ Y σ µ = Ω ν µ ( ⃗ X, ⃗ Y )σ ν , µ, ν = 1, . . . , n, (12) 
for all vectors ⃗ X, ⃗ Y ∈ T(Υ ), where Υ ⊂ M is an open neighborhood, and T(Υ ) is a vector space of vector fields on M. The 2-forms Ω ν µ can alternatively be expressed as

Ω ν µ = dω ν µ -ω ξ µ ∧ ω ν ξ = 1 2 R ν µξϱ ω ξ ∧ ω ϱ , (13) 
which is the second structural equation of É. Cartan [15, p. 133]. From here it is evident that

dω ν µ = ω ξ µ ∧ ω ν ξ + Ω ν µ . (14) 
(2) Let

τ : T(M) × T(M) → T(M)
indicate a 1 2 -tensor field, or a tensor of type (1, 2). It will be the torsion tensor of the connection ∇ on a (pseudo-)Riemannian manifold. The 1 2 -tensor can be symbolized as τ ∈ T 1 2 (M), and it is fixed by

τ ( ⃗ X, ⃗ Y ) = ∇ ⃗ X ⃗ Y -∇ ⃗ Y ⃗ X -[ ⃗ X, ⃗ Y ]. (15) 
For a torsion τ of ∇, it is easy to define a map

τ ν : T(M) × T(M) → C ∞ (M), ν = 1, . . . , n, by τ ( ⃗ X, ⃗ Y ) = τ ν ( ⃗ X, ⃗ Y )σ ν . (16) 
The 2-forms {τ 1 , . . . , τ n } are called torsion forms, useful for demonstrating the first structural equation of É. Cartan,

dφ ν = φ µ ∧ ω ν µ + τ ν . ( 17 
)

Affine Connections by Cartan

What is an affine connection? Take a smooth manifold connecting nearby tangent spaces; given a vector space, an affine connection is a method of differentiating sections of vector bundles, and therefore tangent vector fields, which are treated as functions on the manifold under consideration. Cartan's interpretation of it is as follows.

We can symbolically write H ⊂ G for a Lie subgroup in a Lie group G. Let g be the Lie algebra of G, and P a fiber bundle in which there is a G-fiber (see Marginalia 1.1). From here one can define a Cartanian geometry C = ( P, ω g ) of type (G, H) over a smooth manifold M as a principal fiber H-bundle π :

P H -→ M,
equipped with a g-valued 1-form ω g ∈ Ω 1 ( P, g). Now,

ω g = ω h ⊕ ω p ( 18 
)
is a differential form on P corresponding to the Cartan connection, where p is a Lie-like structure on a vector p-pace, in association with H-or h-module decomposition

g = h ⊕ p. (19) 
In this respect it is noted that ω g is a generalization of the Maurer-Cartan form ω G [START_REF]Sur la structure des groupes infinis de transformation[END_REF], which is a g-valued 1-form on the group manifold G, with left invariant form,

ω G ∈ Ω 1 (G, g) viz = ω l G ∈ Ω 1 (G, g), or ω l G ∈ Ω 1 (G) ⊗ g, and right invariant form, ω r G ∈ Ω 1 (G, g), or ω r G ∈ Ω 1 (G) ⊗ g.
Here is a list of the three main peculiarities of the ω g -connection.

(1) Once introduced the symbol of the adjoint action adj, the first is

(r h ) * ω g = adj(h -1 ) • ω g , h ∈ H. (20) 
(2) The second peculiarity is dictated by a linear isomorphism,

ω g (x) : T x P h⊕p --→ g, (21) 
for each point x ∈ P.

(3) The third one by

ϝ ⃗ X ∈ X(M) = ω -1 g ( ⃗ X), (22) 
for all vector fields ⃗ X ∈ h. It assumes that a fundamental vector field

ϝ ⃗ X (x) = dt d t=0 x exp(tϝ) (23) 
is on M.

Marginalia 1.1 (A hint about the principal G-bundle).

When the principal bundle is over M, P is a surjective smooth map π : P → M, or a C ∞ projection π of P onto M, if there is a smooth right r-action of G on P, that is,

r G : P × G → P, r G (x, g) = x • g, r g : x → x • g,
for each x ∈ P, with g ∈ G. Since the fiber bundle of a principal G-bundle is isomorphic to G-space, we have P/G = M. This causes a principal G-bundle to be regarded as a smooth manifolds, or a C ∞ (smooth) G-bundle.

The left G-action on G corresponds to:

l G : G × G → G, l g : G → G : h → g • h. 1.3.1. Curvature of Cartan space Let κ Ω viz = Ω 2 g = dω g + 1 2 [ω g , ω g ] ∧ = dω g + ω g ∧ ω g , (26) 
designate the curvature form of the connection ω g , knowing that Ω 2 g is a g-valued 2-form on the principal bundle P.

By assigning to the symbol h the value of a subalgebra of a finite-dimensional Lie algebra g, it should be noted that (1) if Ω 2 g take values in the subalgebra h, the C-geometry is torsion free, and the κ-value lying in h is zero;

(2) if Ω 2 g is decomposable, it comes out a reductive geometry with an H-module decomposition,

κ Ω = κ h ⊕ κ p . ( 27 
)
1.3.2. Cartan h h h-subalgebra ⊂ g ⊂ g ⊂ g
Let us spend a few words about the subalgebra h. We write schematically,

h = i g (h), and h ⊂ g 0 (h), (28) 
h = g 0 (h), (29) 
with a finite collection i 1 , . . . , i k ¢ g (and sum i 1

+ • • • + i k ) of nilpotent ideals, i ⊂ g 0 (h) = h.
This means that h is nilpotent, or better, a nilpotent Cartan subalgebra, with such an endomorphisms π : h → gl g 0 (h)/h , as long as

π(h)[x + h] = h ∈ h, x ∈ g 0 (h)\h + h, (30) 
provided that adj(h)x ∈ h. Ad in the end,

h ⊂ g 0 adj(h) ⊂ g 0 adj(x) | x ∈ h = h. (31) 
The splitting Cartan h-subalgebra is simply expressible with

g = h ⊕ φ λ ̸ =0 h φ λ , (32) 
by choosing φ λ : h → K as a linear functional on h (see Marginalia 1.2), being aware that K is an R-field or a C-field.

Marginalia 1.2 (Weight of a 1-dimensional representation of a subspace). Incidentally, it has to be stressed that the linear functional φ λ has to do with the so-called weight of a 1-dimensional representation of a subspace (pompous expression for a simple concept). Let W be this subspace, with weight φ λ . The W-subspace is the direct sum of its weight spaces,

W = φ λ W φ λ (h), (33) 
with the result that (1) The metric C-connection is Dg µν = 0, where D is the covariant derivative, cf. e.g. [START_REF] Trautman | On the structure of the Einstein-Cartan equations[END_REF].

W φ λ (h) = x∈h W φ λ (x) π(x) , (34a) 
W φ λ (h) = x∈h W φ λ (x) π(x) . (34b 
(2) Let

α µ ν = (ω µ ν ) 1 -(ω µ ν ) 0 ( 35 
)
be a g-valued tensorial 1-form of type adj on the principal G-bundle, such that

adj : G → GL(g)
is the adjoint action of G on g, where G is a Lie group. Then

α µν + α νµ = 0, (36) 
Ω νµ + Ω µν = 0, (37) 
and, once it is setted that τ ξµν = g ξϱ τ ϱ µν , 

α µν = 1 2 (τ µϱν + τ νµϱ + τ ϱµν ) ϑ ϱ . (38 

Cartanian Connection and Gravity

The adoption of Riemannian-Cartanian geometry, and its affine connection, consists in inserting two elements into the general theory of relativity.

(1) The first is the torsion

τ µνξ = 1 2 ∂g µν ∂x ξ (39) 
associated with a spin structure, which is absent in the classical general relativity; e.g. in the affine connection ∇, or more properly ∇ T , by Levi-Civita [START_REF] Levi-Civita | Nozioni di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana[END_REF], the torsion is zero, i.e. the torsion of ∇ vanishes identically (∇g = 0), for Einstein's theory of gravity onto a (pseudo-)Riemann geometry. a Be advised that the Cartanian torsion coefficient is but the parts of the Christoffel symbols of the second kind [START_REF]Sur les variétés à connexion projective[END_REF], when in these parts there is a change of sign with indices reversed (antisymmetry).

(2) The second element is the local Lorentz invariance, that is a gauge field, b from Lorentz symmetry [START_REF] Lorentz | De relatieve beweging van de aarde en den aether[END_REF] [79] [START_REF]The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat. A Course of Lectures delivered in Columbia[END_REF].

A Few Formulae: Curved Space-Time + + + Spin & Torsion + + + Gauge Field

Let us try to fix some crucial items, so as to clarify the notions we have seen in the two previous Sections in order to mix them, in a single theory.

(1) Imagine a curved space-time; if it is endowed with torsion, it provides a new version of the Poincaré group (see Marginalia 2.3). The latter is a fundamental group (it is a topological & homotopy invariant), the first homotopy group, of a topological space.

(2) An Einstein-Cartan space-time offers a determination of the potential of the electromagnetic field as (i) a scalar-valued 1-form ω g [ϝ], with an invariance of dω g [ϝ] under the gauge transformation

ω g [ϝ] → ω g [ϝ] + dζ, (40) 
(ii) a covector-valued 0-form ω g [ϝ µ ], having a gauge field of this type:

1 2 ∇ µ ω g [ϝ ν ] -∇ ν ω g [ϝ µ ] ϑ µ ∧ ϑ ν = Dω g [ϝ µ ] ∧ ϑ µ = dω g [ϝ] -ω g [ϝ µ ]Θ µ τ , (41) 
where ∇ is the differential operator, ϑ µ , ϑ ν are 1-forms, or dual coframes of n-tuple of vector fields ⃗ E 1 , . . . , ⃗ E n , constructing an orthonormal basis of the tangent space-the metric tensor field here is g = g µν ϑ µ ϑ ν , putting g µν = g(e µ , e ν ), see Eq. ( 50), Θ τ is the torsion form, or the vector-valued 2-form, of the connection form ω viz = ω g , from which

Θ τ viz = (Θ τ ) µ = d(Θ τ ) µ + ω µ ν ∧ ϑ ν , (42) 
letting ϑ ν be the basis, or a 1 0 -tensor valued 1-form. (3) The curvature of Einstein-Cartan space-time is the surface density of the Lorentz transformations, whilst its torsion is the surface density of the Lorentz translations.

(4) In the Einstein-Cartan space-time there is no need for the Ricci curvature tensor (2) (3) (4) (5) to be symmetric; in fact, the insertion of the spin structure, in Riemann-Cartan geometry, ensures that the energy-momentum tensor Τ µν , on the right side of poly-Eq. ( 1), can be asymmetric:

Τ µν -Τ νµ = Ŝµνξ ,ξ , (43) 
where Ŝµνξ = -Ŝνµξ is the spin, or, to be exact, the spin angular momentum. [START_REF] Cartan | On the Geometry of the of simple and groups[END_REF][START_REF]On Riemannian Geometries admitting an absolute parallelism[END_REF] the curvature is zero [flat metric], thus these are spaces without curvature and with torsion». The notion of absolute parallelism, which is a system preserving the metric but with non-zero torsion, is carefully considered by G. Vitali [START_REF] Vitali | Una derivazione covariante formata coll'ausilio di n sistemi covarianti del 1º ordine[END_REF] already in 1924; but it was not until 1929 that he communicates it to German physicist, by a letter dated 11 February 1929. Einstein's first and independently use of this notion is in [START_REF]Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus[END_REF] [START_REF]Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und Elektrizität[END_REF] during an attempt to unify gravity with electromagnetism.

b See R.J. Petti [START_REF]Translational spacetime symmetries in gravitational theories[END_REF].

(5) At this stage, let us represent the Lagrangian density of the gravitational field, according to its variation:

δL = L r ∧ δω g [ϝ] r + 1 2 τ µν δg µν + δϑ µ ∧ Τ µ - 1 2 δω µ ν ∧ Ŝν µ , (44) 
by imposing ω g [ϝ] = ω g [ϝ] r e r , and L r = 0, because it is the Euler-Lagrange equation for ω g [ϝ].

Consider that if ω g [ϝ] = ω g [ϝ] r e r is a k-form [7], a ergo Dω g [ϝ] r = dω g [ϝ] r + ь rµ sν ω ν µ ∧ ω g [ϝ] s . ( 45 
)
On condition that δL = 0, then

g µξ τ ξν -ϑ ν ∧ Τ µ + 1 2 D Ŝν µ -ь sν rµ L r ∧ ω g [ϝ] s = 0. ( 46 
)
Marginalia 2.1 (Flat metric: Minkowski space-time, and its inner product). Minkowski space-time [START_REF] Minkowski | Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern, Sitzung vom 21[END_REF] [84] [START_REF]Das Relativitätsprinzip[END_REF] is a a pseudo-Euclidean real vector 4-space M 4 viz = M 4 = R 4 1,3 : b its topology, unlike Euclidean 4-space, is not locally homogeneous; indeed, in R 4 1,3 space vectors and time vectors are separated, see E.C. Zeeman [START_REF] Zeeman | The Topology of Minkowski Space[END_REF]. In a sufficiently small neighborhood of a point, the Minkowski space-time is an excellent approximation of the 4-manifold in Einstein's theory of special relativity [START_REF] Einstein | Zur Elektrodynamik bewegter Körper[END_REF]; consequently, it is a flat 4-space, without matter-energy: R µν = 0, since if Τ µν = 0, then g µν R µν -g µν Rs 2 = 0. In the presence of a massive body, with the emergence of gravity, the Minkowski space(-time) transmutes into a non-pseudo-Euclidean 4-space.

Let {e 0 , e 1 , e 2 , e 3 } be a basis, with v = v µ e µ and w = w ν e ν , µ, ν = 0, 1, 2, 3. The 2-fold signature of the Minkowski metric tensor can be marked with (1,3) + , for (+, -, -, -), and with (1,3) -, for (-, +, +, +); conversely, the Euclidean signature has all positive signs. Once fixed the metric tensor of Minkowski space-time, η, η µν , η µν , the Minkowski inner product will be g(v, w) (1,3) 

+ = v 0 w 0 -v 1 w 1 -v 2 w 2 -v 3 w 3 = η µν v µ w ν , (48) 
g(v, w) (1,3) - = -v 0 w 0 + v 1 w 1 + v 2 w 2 + v 3 w 3 = η µν v µ w ν , (49) 
stating that g has index 1, and

η µν = g(e µ , e ν ) =                      1 if µ = ν = 0, with η (1,3) + , µ = ν = 1, 2, 3, with η (1,3) -, -1 if µ = ν = 1, 2, 3, with η (1,3) + , µ = ν = 0, with η (1,3) -, 0 if µ ̸ = ν, with η (1,3) + , µ ̸ = ν, with η (1,3) -. (50) 
We pick out x = x 0 e 0 + x 1 e 1 + x 2 e 2 + x 3 e 3 , with the time (x 0 ) and the spatial (x 1 , x 2 , x 3 ) coordinates. It is customary to put x 0 = ct, x 1 = x, x 2 = y, x 3 = z, in such a way that, in standard coordinates (ct, x, y, z), the metric tensor of Minkowski space-stime is, doubly,

ds 2 = c 2 dt 2 -dx 2 -dy 2 -dz 2 = η (1,3) + µν dx µ dx ν , ( 51 
)
ds 2 = -c 2 dt 2 + dx 2 + dy 2 + dz 2 = η (1,3) - µν dx µ dx ν . ( 52 
)
a Recall that a differential form ω of degree k = Z, or just k-form, is a section of an algebra over an R-field, by the exterior product of the cotangent bundle T * M of a manifold M, so that ω R : M → k T * M. b A distinction is needed here. Minkowski space is a real vector space M n or M n = R 1,n-1 or R n-1,1 of dimension n ⩾ 2, with a bilinear form g viz. gm : M n × M n → R on the tangent space at any point of M, claiming that g is symmetric g(v, w) = g(w, v) and non-degenerate g(v, w) = 0, for each v, w ∈ M n . When a generic map g :

R n ×R n → R is prepared, it is determined that g(v, w) = v 0 w 0 +v 1 w 1 +v 2 w 2 +• • •+v n-1 w n-1 -v n w n or g(v, w) = -v 0 w 0 +v 1 w 1 +v 2 w 2 +• • •+v n w n .
The bilinear form g(v, w) is usually said Minkowski (or Lorentzian) inner product, or Minkowski (or Lorentzian) metric tensor. If {e0, . . . , en-q, en-q+1, . . . , en} is a basis, setting n = dim(M),

with v = v 0 e0 + • • • + v n en and w = w 0 e0 + • • • + w n en, one has g(v, w) = v 0 w 0 + v 1 w 1 + v 2 w 2 + • • • + v n-q w n-q -v n-q+1 w n-q+1 -• • • -v n w n , (47) 
for a non-negative integer q ∈ Z * = {0} ∪ Z+.

The letter c displays the speed of light in vacuum, while t the time, with (t, x, y, z) ∈ {-∞, +∞}.

Eqq. (51) (52) are called line elements, in the course of an infinitesimal displacement vector at any point in R 4 1,3 . a Marginalia 2.2 (Lorentz space-time). Lorentz space-time L 4 viz = L 4 = R 4 1,3 = M 4 is a generalization of the Minkowskian one; it is a connected C ∞ (smooth) 4-manifold, having its correspondence in a T 2 Hausdorff 4-space, with a Lorentzian metric 0 2 -tensor g (1,3) . b The alternative form is R 4 3,1 , g (3,1) . The amphibolic nature of L 4 = R 4 1,3 coincides (1) with the Minkowski's description M 4 viz = M 4 , when the Riemann curvature tensor of the Levi-Civita connection is zero; its denomination is flat Lorentzian space-time, or Lorentz-Minkowski space-time: the infinitesimal neighborhood around any point in a curved 4-space is still a Minkowskilike flat 4-manifold, although there is a variation of g l from point to point;

(2) with an incorporation into the general relativity; it provides a model for geometry of Einsteinian gravity (in which, to be more specific, the gravitational force is a manifestation of the curvature of space-time by the action of matter-energy), when it represents a hyperbolic 4-manifold; its denomination is non-flat (curved) Lorentzian space-time-here Lorentzian space-time and Einstein's gravitationally curved space-time are the same object, of mathematical design, patently.

Synoptically, one has 

L 4 = R 4 1,3
P M = P M(1,3) ∼ = O (1,3) ⋊ R 4 1,3
, and it consists of the semi-direct product of the 4-parameter group of the translations [START_REF]Electromagnetic phenomena in a system moving with any velocity less than that of light[END_REF] and of the 6-dimensional Lorentz group, c

Л = Л ↑ + ∪ Л ↑ -∪ Л ↓ + ∪ Л ↓ -= O 1,3 (R). d (57) 
a Eqq. (51) (52) are rewriteable in spherical coordinates (ct, ρ, θ, ϕ),

ds 2 (1,3) + = c 2 dt 2 -dρ 2 -ρ 2 (dθ 2 -sin 2 θdϕ 2 ), (53) 
ds 2 (1,3) -= -c 2 dt 2 + dρ 2 + ρ 2 (dθ 2 + sin 2 θdϕ 2 ), (54) 
setting

x 0 = t, x 1 = x = ρ sin θ cos ϕ, x 2 = y = ρ sin θ sin ϕ, x 3 = z = ρ cos θ. The set membership: ρ ∈ [0, ∞), θ ∈ [0, π], ϕ ∈ [0, 2π
). Things to know: ρ is the radius corresponding to the line segment moving from a point to the origin, θ is the colatitude, or the polar/zenith angle measured from the z-axis, and ϕ is the longitude, i.e. the azimuthal angle measured from the x-axis within the xy plane. b Lorentz space is an n-dimensional vector R-space L n viz.

L n = R 1,n-1 or R n-1,1 , characterized by a Lorentzian inner product g viz. gl, g(v, w) + = v 0 w 0 + v 1 w 1 + v 2 w 2 + • • • + v n-1 w n-1 -v n w n , (55) 
g(v, w) -= -v 0 w 0 + v 1 w 1 + v 2 w 2 + • • • + v n w n , (56) 
on the tangent space at any point of L, for each v, w ∈ L n , with the signatures (+, -, -, . . . , -) and (-, +, +, . . . , +).

The Lorentzian metric tensor g = gµν dx µ dx ν is a pseudo-Riemannian metric, and the signature of the quadratic form is that of Eqq. ( 55) and [START_REF] Hehl | Elie Cartan's torsion in geometry and in field theory, an essay[END_REF].

c Cf. H. Poincaré [97, p. 130]: «Lorentz's idea [START_REF]Electromagnetic phenomena in a system moving with any velocity less than that of light[END_REF] can be summed up as follows: if we are able to bring a translation upon a whole system, without modification of any observable phenomena, it is because the equations of an electromagnetic medium are not altered by certain transformations, which we will call Lorentz transformations; two systems, one of which is motionless, the other in translation, thus become exact images of each other». d For the benefit of completeness: We can be more accurate. Any transformation of-the Lie algebra of-the Poincaré group is an isometry of the Minkowski space-time, in conformity with the 4-vector generators of the global translations, labeled by Г t , i.e. 4 components of the translation generators, for the Minkowski metric, and the 6-vector generators of the Lorentz rotations, denoted by Г r (vector representation of the Lorentz group by 4 × 4 matrices).

Л =                            Л + (
The commutation relations of Г t plus Г r are

[Г t 1 , Г t 2 ] = 0, (58a) 
[Г t 1 , Г r 23 ] = i (η 12 Г t 3 -η 13 Г t 2 ) , (58b) 
[Г r 12 , Г r 34 ] = i (η 14 Г r 23 -η 13 Г r 24 -η 24 Г r 13 + η 23 Г r 14 ) . ( 58c 
)
About the group of the translations, the final reference is offered by the Lorentz-Minkowski space-time,

L 4 viz = L 4 = R 4 1,3 or R 4 3,1 , that is, M 4 or M 4 viz = M 4 , establishing that M 4 viz = M 4 = R 4 1,3
is the typing for the Minkowski space-time. As a quick reminder, the Minkowski space-time is a 4D real vector space, or, more elaborately, a pseudo-Euclidean vector 4-space with strongly asymptotic flatness. For more details on all this, see e.g. [89, chap. 3].

The P M -group has four disjoint components, P M ↑ ± e P M ↓ ± , each of which contains the Lorentzian components (Л ↑ ± and Л ↓ ± ), so that

P M =          P M ↑ + = P M+ ∩ P M ↑ P M ↑ -= P M-∩ P M ↑ P M ↓ + = P M+ ∩ P M ↓ P M ↓ -= P M-∩ P M ↓ , (59) 
where ↑ and ↓ are the inequalities. It is worth noting that P M ↑ + is non-compact, doubly-connected, not (semi)-simple. 

κ Ω viz = Ω 2 g viz = Ω 12 = 1 2 R µν 12 dx µ ∧ dx ν = ∂ [µ ω ν] + ω [µ| 1 3 ω |ν] 32 dx µ ∧ dx ν = dω 12 + ω 1 3 ∧ ω 32 . ( 60 
)
The equations for the Einstein-Cartan theory will be χ is an antisymmetric tensor-valued 3-form.

1 2 Ω 12 ∧ m 3 ε 1234 = -κ 3 ϑ 4 , (61a) 
1 2 Ω 3 ∧ m 4 ε 1234 = -κ 3 χ 12 , (61b) 

Einstein-Cartan Structure via Palatini Identity (Variational Principle of the Gravitational Action)

Another way to obtain the Einstein-Cartan space-time is to use Palatini identity [START_REF] Palatini | Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton[END_REF] onto a Riemann-Cartan geometry, introducing the constraint constituted by the combo spin + torsion. It is a question of deriving the gravitational equations from a variational principle, as, in ordinary mechanics, the Euler-Lagrange equations [START_REF] Eulero | Curvarum maximi minimive proprietate gaudentium inventio nova et facilis[END_REF] (1) The first thing to do is go back to the energy-momentum tensor (9) and the Lagrangian density of the matter-energy [START_REF]Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie) (Suite), chap. V[END_REF]. Which can be defined as a functional in the calculus of variations.

Let S m be the action functional, referred to as a matter action (to outline the dynamics of gravitational fields within the interactive scheme of matter-geometry), δ be the metric g-variations, and D ⊂ M 4 be a 4-volume-domain of integration of dimension 4-corresponding to a region of Minkowski space-time (Marginalia 2.1).

The variation of the action integral can be written with this symbolism,

δS m = D⊂M 4 ∂ • √ -gL ∂g µν δg µν + ∂ • √ -gL ∂(∂ ξ g µν ) ∂ ξ δg µν + • • • d 4 x = D⊂M 4 δ • √ -gL d 4 x = 1 2 D⊂M 4 √ -gLΤ µν δg µν d 4 x. (62) 
The variation of S m (62) conducts us to the Einstein-Hilbert gravitational action [START_REF] Hilbert | Die Grundlagen der Physik[END_REF] [61], the action from which it is possible to reconstruct the poly-Eq. ( 1),

S eh = - c 4 16πG n R s √ -gd 4 x = - 1 2κ D⊂M 4 R s √ -gd 4 x, (63) 
whilst the variation of S eh is

δS eh = - 1 2κ D⊂M 4 δ R s √ -g d 4 x = - 1 2κ D⊂M 4 δ g µν R µν √ -g d 4 x = - 1 2κ D⊂M 4 R µν √ -gδg µν + g µν R µν δ √ -g + g µν δR µν √ -g d 4 x = - 1 2κ D⊂M 4 √ -g R µν - 1 2 g µν R s δg µν + g µν δR µν d 4 x = - 1 2κ D⊂M 4 √ -g (G µν δg µν δR µν ) d 4 x. (64) 
(2) The second thing to do is set up the variation δR µν of the Ricci curvature tensor (5), and the variation δΓ of the Christoffel symbols

δR µν = ∂ ξ δΓ µν ξ -∂ ν δΓ µξ ξ + δΓ µν ξ Γ ξϱ ϱ + Γ µν ξ δΓ ξϱ ϱ -δΓ µξ ϱ Γ νϱ ξ -Γ µξ ϱ δΓ νϱ ξ . (65) 
Afterwards, take the covariant derivative ∇, with the aim of achieving the Palatini identity,

I p = δR µν = ∇ ξ δΓ µν ξ -∇ ν δΓ µξ ξ . ( 66 
)
The variation formula for the Einstein-Hilbert (64) will look like:

δS p = - 1 2κ D⊂M 4 R µν - 1 2 g µν R s δg µν √ -g + √ -g × ∇ ξ g µν δΓ µν ξ -∇ µ δΓ µξ ξ d 4 x, (67a) 
= - 1 2κ D⊂M 4 R µν - 1 2 g µν R s δg µν √ -gd 4 x, a (67b) 
It is the Palatini formalism of f (R) gravity. Finally, the above-mentioned combo must be added, see D.E. Neville [START_REF] Neville | Gravity theories with propagating torsion[END_REF].

a In Eqq. (62) (63) (67) d 4 x stands, concisely, for a 4-dimensionality, d 4 x = d(t, x, y, z); alternatively, dx 0 dx 1 dx 2 dx 3 , or dx 1 dx 2 dx 3 dx 4 .

The Kibble-Sciama Model

The Kibble-Sciama (kb) model [63] [111] produces his own version of the Einstein-Cartan theory. In the words of T.W.B. Kibble [63, p. 212], his argument leads from the Lorentz invariance of the Lagrangian to the introduction of the gravitational field [ . . . ], by considering the parameter group of inhomogeneous Lorentz transformations, involving variation of the coordinates as well as the field variables. It is then unnecessary to introduce a priori curvilinear coordinates or a Riemannian metric, and the new field variables introduced as a consequence of the argument include the vierbein [tetrad] components a [ . . . ] as well as the "local affine connection".

Let us get to the brass tacks, with the two princely equations of the kb model:

R µν - 1 2 g µν R s = 8πΤ µν , (69) 
and

τ ξ µν + δ ξ µ τ ϱ νϱ -δ ξ ν τ ϱ µϱ = 8π Ŝξ µν , (70) 
from which one has

τ ξ µν = 8π Ŝξ µν + 1 2 δ ξ µ Ŝϱ νϱ + 1 2 δ ξ ν Ŝϱ ϱµ . (71) 
3. Einstein-Cartan Space-Time Owing to J J J -Bundle, plus Clifford Bundles

Cℓ(•M 4 ß,τ , •) Cℓ(•M 4 ß,τ , •) Cℓ(•M 4 ß,τ , •) 3.1. 4-Dimensional Structure by (Riemann-)Einstein-Cartan
Eqq. ( 61), for the Einstein-Cartan theory, are specified by the spin-torsion interaction. The algebro-topological identity-which is none other than a Lorentz-Minkowski's space-oriented and time-oriented manifold (Marginalia 2.1 and 2.2), whose provenance is (pseudo-)Riemannian and Cartanian-can be called Riemann-Einstein-Cartan space-time, or Einstein-Cartan space-time, and thus symbolized: space-time in a 4D spin-torsion balancing

     R 4 ß,τ (1,3) , g ec , ∇ ω P , R 4 ß,τ (1,3) = M 4 ß,τ viz = M 4 ß,τ ιδ = M 4 ß,τ , (72a) (72b) 
where ∇ ω P is a covariant derivative (operator) on R 4 ß,τ (1,3) , cf. Eq. ( 95).

Lorentz & Spinor Bundles

Returning to what has already been mathematized [89, sec. 3.5.1], let us go to define the Lorentz bundle and the spinor bundle.

(1) The Lorentz bundle is the principal Л ↑ + -bundle over R 4 1,3 (space-time), with PЛ ,

SO + 1,3 (R) = Л ↑ + → Л (R 4 1,3 ) PЛ --→ R 4 1,3 . (73) 
(2) The spinor bundle is the principal SL 2 (C)-bundle over R 4 1,3 (space-time), with Pß ,

SL 2 (C) ∼ = Spin + 1,3 (R) → ß(R 4 1,3 ) Pß --→ R 4 1,3 . (74) 
The spinor configuration is the spinor bundle (74) plus the map

φ : ß(R 4 1,3 ) → Л (R 4 1,3 ), under three conditions, (i) PЛ φ(x) = Pß (x), (ii) PЛ • φ = Pß (x),
a Set of four linearly independent vector fields. The tetrad formalism of the vector fields, for the tetrad bases, can be expounded in this manner, {ε (α) } or {ε α }, with α = 1, 2, 3, 4, and the Ricci rotation coefficients γ αβλ undergo the following math-symbolization,

γ (α)(β)(λ) = ε (α) µ ε (λ) ν ∇ν ε (β)µ , (68a) 
γ α β λ = ε αµ ε λν ∇ν ε βµ . (68b) 3.3 Cartan k-Forms & J -Bundles; Cℓ-Bundles, Cℓ-k-Form, and 4 k -Space 15 (iii) φ(x • g) = φ(x) • Spin(g), for all x ∈ ß(R 4 1,3 ) and g ∈ SL 2 (C). (3) Let us recall that (i) SL 2 (C) ∼ = Spin + 1,3 (R)
, the-3-dimensional complex a/o 6-dimensional real-special linear group of 2 × 2 matrices over the complex field, a is the 2-fold covering of SO + 1,3 (R); (ii) SO + 1,3 (R) is the indefinite special orthogonal group of linear transformations of M 4 = R 4 1,3 , oka the restricted Lorentz group (cf. Marginalia 2.3), SO + 1,3 (R) = Л ↑ + . b With the aforementioned groups the famous spinor map can be built, in order to have the universal covering group SL 2 (C) → SO + 1,3 (R),

SL 2 (C) ∼ = Spin + 1,3 (R) SO + 1,3 (R) = Л ↑ + GL(M) ς н•ς н
thru the representation of Л ↑ + on a vector R-space M as a homomorphism н in 6D of SO + 1,3 (R) into a general linear group GL(M), relying on the spinor map

ς : SL 2 (C) ∼ = Spin + 1,3 (R) -→ SO + 1,3 (R) = Л ↑ + . (4)
We are ultimately able to achieve the following diagram:

SL 2 (C) ∼ = Spin + 1,3 (R) ß(R 4 1,3 ) R 4 1,3 viz = M 4 SO + 1,3 (R) = Л ↑ + Л (R 4 1,3 ) Pß φ PЛ under which φ × Spin : ß(R 4 1,3 ) × SL 2 (C) → Л (R 4 1,3 ) × SO + 1,3 (R) = Л ↑ + .
(5) The Lorentz and spinor bundles are equivalent to the product bundle,

SO + 1,3 (R) = Л ↑ + → R 4 1,3 × SO + 1,3 (R) = Л ↑ + → R 4 1,3 , (75) 
SL 2 (C) ∼ = Spin + 1,3 (R) → R 4 1,3 × SL 2 (C) → R 4 1,3 , (76) 
respectively.

Cartan

k k k-Forms & J J J -Bundles; Cℓ Cℓ Cℓ-Bundles, Cℓ Cℓ Cℓ-k k k-Form, and 4 k 4 k 4 k -Space (1)
The bare Cartan bundle over the cotangent bundle of an n-dimensional (pseudo-)Riemannian manifold (M, g) is the set of equalities

T * M = x∈M T * x M = x∈M n k=0 k T * x M, k = 0, . . . , n. (77) 
a It has 4 complex numbers, a/o 8 real numbers: C 4 equates R 8 ; except that the unit determinant takes away 2 of its 8 degrees of freedom: 8 -2 = 6. Geometrically, SL2(C) is diffeomorphic to the 3-sphere. For an inclusion map, one has ι :

S 3 → C 2 = R 4 .
b Do not forget these congruences:

SO + 1,3 (R) = Л ↑ + ∼ = Möb( Ĉ) ∼ = P SL2(C) ∼ = SL2(C) {±I} ,
related to the Möbius group, and SO + 1,3 (R) ∼ = SL2(C)/Z2, in close liaison with the Klein 4-group [65] = [START_REF]Lectures on the Ikosahedron and the Solution of Equations of the Fifth Degree[END_REF]:

O1,3(R) SO + 1,3 (R) ∼ = Z2 × Z2.
Once the set

k T * M = x∈M k T * x M is isolated, the k-forms bundle is the piece k T * M ⊂ T * x M, (78) 
with the exterior algebra T * x M of the cotangent (vector) space T * x M. (2) Let Cℓ(M4 ß,τ , g) be a Clifford bundle (of differential forms). The Cartan J 1 -bundle, or 1-jet bundle, over T * M → Cℓ(M 4 ß,τ , g), wh. Eq. (72b) holds, with an embedding in the Cℓ-bundle, is explicated by

J 1 T * M 4 ß,τ = x∈M 4 ß,τ J 1 x T * M 4 ß,τ , wh. Eq. (72b) holds. ( 79 
)
It is noteworthy that: (i) the above-mentioned Cℓ-bundle is a vector bundle involved with a principal G-bundle PSO + 1,3 (R) of orthonormal frames, in the contingent case, of oriented Lorentzian tetrads (see Section 3.2); we explicitly add the spin-Clifford principal G-bundle, or covering spin-bundle, PSpin + 1,3 (R) , et voilà:

Cℓ(M 4 ß,τ , g) = P{SO + 1,3 (R), Spin + 1,3 (R)} R 4 ß,τ (1,3) × adj (R 1,3 ); (80) 
(ii) the Clifford bundle Cℓ(T * x M 4 ß,τ , g x ) is a vector R-space isomorphic to the exterior algebra

T * x M 4 ß,τ = 4 k=0 k T * x M 4 ß,τ , wh. Eq. (72b) holds, (81) 
of the cotangent space

T * x M 4 ß,τ . The bit k T * x M 4 ß,τ is a 4 k -space of k-forms, or a k-space of dimension 4
k . (3) Each space section, which we typify with Γ ς , of Cℓ(M 4 ß,τ , g), is a Clifford k-form field

ω α Cℓ ∈ Γ ς T * M 4 ß,τ
→ Γ ς Cℓ(M 4 ß,τ , g) , α = 1, . . . , n, for k = 0, . . . , 4. Then the Lagrangian density, for the 4-dimensional Einstein-Cartan structure, in the prescription of ω α Cℓ , gains this explicitness:

L ec : Γ ς J 1 T * M 4 ß,τ n+2 Lm for 4D space-time with spin-torsion | ω α Cℓ -----------------------------→ Γ ς 4 T * M 4 ß,τ . (82) 
N B. In Eq. ( 82), for convenience, this 1-jet bundle is chosen:

J 1 T * M 4 ß,τ n+2 = x∈M 4 ß,τ J 1 x T * M 4 ß,τ × T * M 4 ß,τ × • • • × T * M 4 ß,τ (83) 
over

T * M 4 ß,τ n+2 → Cℓ(M 4 ß,τ , g) n+2 .
Marginalia 3.1 (Exterior covariant derivative). On that account, the symmetries of space-time (72) can be revised-rewritten by virtue of geometro-physical differential notions, the first of which is the exterior covariant derivative. Suppose

С µ1•••µr ν1•••νs ∈ Γ ς T k+r s
M is a set of components, when there is a system of coordinates x 1 , . . . , x n , such that

С µ1•••µr ν1•••νs (x 1 , . . . , x n ) ∈ Γ ς k T * M ,
where the fields С µ1•••µr ν1•••νs are the (r + s)-indexed k-forms. The exterior covariant derivative, in such a backdrop, is a covariant differential of vector-valued differential k-forms, or, with greater precision, of (r + s)-indexed k-form fields of

С µ1•••µr ν1•••νs .
Labeled by d ∇ , we state the exterior covariant derivative as

d ∇ : Γ ς k T * M C ∞ → Γ ς k+1 T * M C ∞ , for 0 ⩽ k ⩽ 4.
The spin-torsional symmetries of the 4-manifold [START_REF]Mécanique analytique, Nouvelle édition, revue et augmentée par l'auteur. Tome premier, M me V e Courcier[END_REF], which rest on the 3-forms of energymomentum of all matter fields, cf. Eq. (61a), are perfectly regulated by Eq. ( 96), exhibiting the Euler-Lagrange equations for the Yang-Mills theory (see Section 4.1.5).

Quantum Yang-Mills Gravity

The gauge status of Einstein's theory of gravitation is still inconsistent with the quantum gauge theory in comparison with the other three fundamental interactions. Nevertheless the Einstein-Cartan theory is the confirmation [1] that a geometry of Yang-Mills (ym) [START_REF] Yang | Conservation of Isotopic Spin and Isotopic Gauge Invariance[END_REF], when it comes to treating with a gravitational field, can take root on a Cartanian background, in which the Yang-Mills Lagrangian equation,

L ym = - 1 2 tr (F µν F µν ) (84a) = - 1 4 F α µν F µν α (84b) = - 1 4 α ∂ µ A α ν -∂ ν A α µ + в (g) f αβγ A β µ A γ ν 2 , (84c) 
stands out; remember that

F α µν = ∂ µ A α ν -∂ ν A α µ + f αβγ A β µ A γ ν (85) 
is the Yang-Mills strength tensor. In poly-Eq. ( 84) F µν /F µν is the electromagnetic (field) tensor, or Maxwell tensor, oka (field) strength tensor, and it is invariant under global and local Lorentz transformations, A α µ is the vector potential, or vector A-field, a whose triple entity epitomizes three gauge bosons, f αβγ are the (gauge group) structure constants of SU 2 , the special unitary group of degree 2, в (g) is the (gauge) coupling constant. For those interested in learning more, it is advisable to read E.W. Mielke [82, chap. 

Geometro-topological Yang-Mills Schema

Yang-Mills geometry is a gauge theory with non-Abelian symmetry. Let us now try to explore some mathematical essential knots.

Yang-Mills Lagrangian via Electromagnetic 2-Form

It is possible to write a Lagrangian for the Yang-Mills schema, by embracing an alternative comprehension to that of poly-Eq. ( 84), namely, by identifying the electromagnetic (field) tensor

F µν F µν with a 2-form F = 1 2 F µν dx µ ∧ dx ν (86) 
in Minkowski space-time (Marginalia 2.1) having a signature of the metric tensor η (1,3) -viz = (-, +, +, +). Let ⋆ be the Hodge dual (the reference is the Hodge star operator, e.g. in de Rham cohomology). By selecting-through a gauge fixing (gf) procedure-a vector potentials, or A-field, as a gauge, more neatly, as a gauge potential, the L-invariant 4-form will bear this aspect:

L ym [A gf ] = - 1 2 F ∧ ⋆F. (87) 
a An arrow above, ⃗ A, is sometimes included, in some literature.

Yang-Mills

O n (K) O n (K) O n (K)-Action
Imagine some massive body m. For simplicity, we grab the orthogonal group O n (K), and a scalar field ϝ и . The Yang-Mills action, dropped in a perspective of algebraic & Lie groups, is

S ym = K n и=1 1 2 ∂ µ ϝ и ∂ µ ϝ и - 1 2 m 2 ϝ 2 и d 4 x. (88) 
4.1.3. Yang-Mills Topological Action, with Second Chern Number

Eq. ( 88) also has its own topological variant. Take a connection ω P on the principal G-bundle over a 4-manifold M, a and let Ω ∇ be the curvature 2-form of ω P . And here is a 4D-map,

⋆ : Ω ∇ (M) R → Ω ∇ (M) R , i.e. Ω ∇ (R 4 ) ⋆ -→ Ω ∇ (R 4 ),
making use of the Hodge operator, under the now-familiar ⋆ (\star) symbol, again.

If we connote the self-dual and anti-self-dual parts of Ω ∇ with

Ω ∇ ± = 1 2 Ω ∇ ± ⋆Ω ∇ , b (89) 
and the second Chern number with

c2 = - 1 8π 2 R 4 tr Ω ∇ ∧ Ω ∇ = 1 8π 2 R 4 Ω ∇ + 2 -Ω ∇ - 2 , (90) 
the Yang-Mills action, in the first instance, becomes

S ym = 1 2 R 4 (F ∧ ⋆F ) = 1 4 R 4 det(g µν ) 1 2 F µν F µν d 4 x, (91) 
by placing F in the guise of a 2-form, just like in Eq. ( 86); and, subsequently, it comes to be

S ym [ω P ] = R 4 Ω ∇ 2 dµ = R 4 -tr Ω ∇ ∧ ⋆Ω ∇ (92a) = Ω ∇ 2 L 2 = R 4 Ω ∇ 2 dµ = R 4 Ω ∇ + 2 + Ω ∇ - 2 dµ (92b) = 1 2 R 4 Ω ∇ [+] 2 dµ + 8π 2 c2 , (92c) 
by requiring that dµ = det(g µν ) 1 2 = det(g µν ) is the (Riemannian) volume element, c L 2 is a (pre-)Hilbert-space with an inner product in the norm ∥ • ∥, c2 is directly related to the second Chern class C2 (M), d see S.-S. Chern [START_REF] Chern | Characteristic classes of Hermitian Manifolds[END_REF] and A. Grothendieck [START_REF] Grothendieck | La théorie des classes de Chern[END_REF].

4.1.4. Yang-Mills-Higgs Action on R n R n R n through the Principal G G G-bundle
We start with the usual n-dimensional (pseudo-)Riemannian manifold (M, g). Let us say that ω P is the value of a gauge connection form-trivially known as gauge connection-on P. A gauge transformation of a principal G-bundle π ω P : P → M is a diffeomorphism Φ : P → P, so that

π ω P • Φ = π ω P , (93) 
Φ(x • g) = Φ(x) • g, (94) 
for each x ∈ P, and g ∈ G.

a M is for M4 or M 4 viz. M 4 , that is, M 4 viz. M 4 = R 4 . b If Ω ∇ + = 0 a connection is remarked as anti-self-dual. c The µ (\bbmu) symbol is for a measure on a space/on a set. d The c2-number of M is but its Euler class; and c2 may coincide with the so-called instanton number.

Let ϝ H 0 be the Higgs scalar field, alias a space-time scalar ϝ H 0 -field. The reference articles are those of F. Englert & R. Brout [START_REF] Englert | Broken Symmetry and the Mass of Gauge Vector Mesons[END_REF], P.W. Higgs [START_REF] Higgs | Broken Symmetries, Massless Particles and Gauge Fields[END_REF] [58] [START_REF]Spontaneous Symmetry Breakdown without Massless Bosons[END_REF].

The Yang-Mills-Higgs (ymh) bundle action, for the quadruple ( P, π ω P , M, G), can be reported in such terms:

S ymh ω P , ϝ H 0 P Φ -→ P = R n 1 2 Ω ∇ ∧ ⋆Ω ∇ + 1 2 ∇ ω P ϝ H 0 ∧ ⋆∇ ω P ϝ H 0 -(U • ϝ H 0 ) dV g = 1 2 Ω ∇ 2 + 1 2 ∥∇ ω P ϝ H 0 ∥ 2 - R n (U • ϝ H 0 ) dV g , (95) 
by adopting ∇ ω P ϝ H 0 as a covariant derivative, and U • ϝ H 0 = U (ϝ H 0 ) as the Higgs potential; Ω ∇ is, again, the curvature form of ω P , whilst dV g is for the volume form of g on R n .

4.1.5. Yang-Mills-Euler-Lagrange Equation(s)

The Euler-Lagrange equations (cf. Section 2.1.2) for the Yang-Mills theory have, in consequence, a brachylogical equality:

d ω P ⋆ Ω ∇ = 0. (96) 
This is not to say that all Yang-Mills ω P -connections are solution of (96).

A Form of Spin-Torsion Interaction?

The Conundrum of the Discreteness (Discontinuity), Nodularity, and Singularity in R 4

ß,τ (1,3) R 4 ß,τ (1,3) R 4 ß,τ (1,3) 
So do the sums of this short survey. The transition from Einsteinian to Cartanian theory of gravity is only a partial conversion from the notorious mollusc to a tensor networks. Something like that can be dug up clearly in a reflection of P.W. Bridgman [2,p. 199

]:

The events, in terms of which the world is to be described in general relativity theory, are thought of as intersection nodes of the coordinate "mollusc" [38, § § 28-29]. a No matter what the [space-time] transformation of [the four] coordinates, the intersection nodes cannot be transformed away, but persist in all systems, and it is this invariant background of nodes of intersection that corresponds to the physical "reality". But there is no general relativity theory of what the nodes represent. The implication seems to be that they represent some sort of discreteness or singularity in the solution of the underlying equations, and that there is nothing more to be said about the situation than the mere fact of the existence of the discontinuities.

But this has its own complication: the geometry of space-time, to fit quantum theory, must be Euclidean. Already M.P. Bronštejn [3, p. 150] = [4, p. 276] had clear ideas about it:

[I]t is possible [ . . . ] to construct a completely self-consistent quantum theory of gravity within the framework of special relativity (i.e. when the space-time continuum is "Euclidean" [raumzeitliche Kontinuum ein "Euklidisches" ist]). However, within the domain of General Relativity theory, where deviations from "Euclideanness" can be arbitrary large, the situation is quite different.

Could the Bridgman-like nodes of intersection, or more elegantly, the tensor networks, with the entanglement amalgamating them together, be a physico-geometric path to illuminate a type of quantum gravity, showing that a smooth and continuous space-time may emerge from discrete bits of quantum information?

But wait, there is more. The Cartanian spin-torsion coupling, in a Poincaré (see Marginalia 2.3) gauge theory of gravity (thru which the Einstein-Cartan space-time possesses torsion in addition to curvature), is inside a smooth framework; e.g. the (jet) J -bundle (see Section 3.3) is imbued with a smoothness of points, lines, and surfaces; it is not with a series of Cartan-like bundles that it is possible to generate some discrete bits, or nodes. Perhaps it is coercive to change the type of tensor networks; an alternative for e.g. is the AdS/mera (Multi-scale Entanglement Renormalization Ansatz) correspondence, which nonetheless has several deficiencies and ideological niggles.

a Cf. Einstein [38, § 28, pp. 65-66]: «This non-rigid reference-body [nichtstarre Bezugskörper ], which might rightly be called a "reference-mollusc" ["Bezugsmolluske"], is essentially equivalent to any Gaussian 4-dimensional coordinate system. That which gives the "mollusc" ["Molluske"] a certain comprehensibility, as compared to the Gaussian coordinate system, is the (really unjustified) formal preservation of the separate existence of the space coordinates as opposed to the time coordinate [formale Wahrung der Sonderexistenz der räumlichen Koordinaten gegenüber der Zeitkoordinate]. Every point on the mollusc is treated as a space-point [Raumpunkt], and every material point which is at rest relatively to it is at rest, so long as the mollusc is considered as reference-body. The general principle of relativity demands that all these molluscs can be used as reference-bodies with equal rights and equal success in formulating the general laws of nature; the laws must be entirely independent of the choice of mollusc».

How Far Can We Get without the Micro-scale?

The grafting of the algebraic relation between the torsion and spin tensors into general relativity pays off when the density of matter is high, without having to get down to the Planck scale, ℓ p = ℏG n c 3 , or to a quantum foam-like space-time, in keeping with Wheeler's [119, p. 509] [120, pp. 1-2, 6] grandiose audacity. Briefly, the Einstein-Cartan theory is a classical limit of a quantum gravity theory, still in fieri, when its torsional and spinor conception is accepted. Cf. M. Reuter, J. Gutenberg Actually, when the gravitational force becomes infinite (façon de parler), is mandatory to switch to an unknown tiling, whether periodic or aperiodic, as a covering of the plane; we must correspondingly return to a Flatland-like scenario

Infinitesimal Curvature and Torsion vs. Spongiform Topology or Fractal Geodesics

Do not forget that, in the Cartanian context, it is fair to talk of infinitesimal connection, and hence the same curvature & torsion are delineated in infinitesimal granules. But in the quantum world, where one fantasizes about a spongiform topology, this makes no sense, as far as we know.

That is why it is legitimate to conceive a gauge theories where space-time is a non-differentiable continuum but a fractal σχῆμα, as the scale relativity theory does, see L. Nottale and T. Lehner [START_REF] Nottale | Non-Abelian gauge field theory in scale relativity[END_REF] [START_REF] Nottale | Scale Relativity and Fractal Space-Time[END_REF].

The focus argumenti is that the continuum, both in the mathematico-physical and in the purely mathematical domain-see [89, sec. 9.2.1.1., Margo 9.2.1]-arises from the discontinuum, the discretum.

Multi-Dimensionality and Fractality of Fiber Structures

All of this brings up an old problem about dimensionality. There is a passage from B. Mandelbrot & R.L. Hudson [81, VII. A Dimension to Measure Roughness] that best sums up the vexata quaestio:

Look at a ball of thread and think about it first from the idealized viewpoint of Euclid. Assume it is five inches in diameter, made of fiber a fraction of an inch thick. From a long distance away, you can barely see the ball; it is, effectively, a point-of no dimension, according to classical geometry. Hold it in your hand, and it resolves to a normal, three-dimensional ball. Bring it up closer: You see it is a tangle of one-dimensional fibers. Closer still, and the fibers are clearly three-dimensional strands. Keep going until the atoms resolve in an electron microscope: Back to zero-dimensional points again. So what is this ball of thread, anyway? Zero, one, or three dimensions? It depends on your point of view. For a complex natural shape, dimension is relative. It varies with the observer. The same object can have more than one dimension, depending on how you measure it and what you want to do with it. And dimension need not be a whole number; it can be fractional.

A Look Beyond the Hedge I: On the Quandary of the Curvature Tending toward Infinity

This is why the Einstein-Cartan theory (1) is applied to black holes, where the (spin-)torsion of the geometry of the space-time fabric-in which the individual threads in weft and warp are intertwined-is assumed to be relevant. Not without a certain complacency, any physico-mathematical speculation, that wants to bypass the narrow scope of empirical evidence (in the absence of experiments to verify some theoretical prediction), has the same pace as a novelist's imagination; a

(2) is probed to generate models, for avoiding singularities in the presence of astronomical objects capable of generating an extreme deformation of space-time, whose curvature tends toward infinity. See (in order of appearance) A. Trautman [START_REF]Spin and Torsion May Avert Gravitational Singularities[END_REF], B. Kuchowicz [START_REF] Kuchowicz | Friedmann-like cosmological models without singularity[END_REF], N.J. Popławski [START_REF] Popławski | Nonsingular Dirac particles in spacetime with torsion[END_REF] [99] [100] [101] [102], S. Desai and N.J. Popławski [START_REF] Desai | Non-parametric reconstruction of an inflaton potential from Einstein-Cartan-Sciama-Kibble gravity with particle production[END_REF].

A Look Beyond the Hedge II: Black Holes for a Non-singularity

See the #0382E3-point in Fig. 3, where the spiraling #E30382-torsion fatally kisses the spiraling #03E364-torsion. The #0382E3-entity is a math-free spot, or a primitive non-space in which the physico-mathematical dimension is without comprehension. The Einstein-Cartan construction helps to find a narrativum artificium for this bewitching quandary. King [START_REF] King | Differential Equations for Loop Expectations in Quantum Gauge Theories[END_REF], J. Labastida and M. Marino [69, sec. 2.1. Yang-Mills theory on a four-manifold, pp. 12-14], F. Lenz [START_REF] Lenz | Topological Concepts in Gauge Theories[END_REF], J.W. Morgan [START_REF] Morgan | An Introduction to Gauge Theory[END_REF], G.L. Naber [START_REF] Naber | Topology, Geometry and Gauge Fields: Interactions[END_REF], G. Rudolph, M. Schmidt [108, chap. 6. The Yang-Mills Equation, pp. 461-543], L. Sadun and J. Segert [START_REF] Sadun | Constructing Non-Self-Dual Yang-Mills Connections on S 4 with Arbitrary Chern Number[END_REF].

(2) Insights on the Einstein-Cartan theory and surrounding areas, are (abc order) in S. Capozziello, R. Cianci, C. Stornaiolo, S. Vignolo [5] [6], R.T. Hammond [52] [53] [54], F.W. Hehl, P. von der Heyde, and G.D. Kerlick [START_REF] Hehl | General relativity with spin and torsion: Foundations and prospects[END_REF], F.W. Hehl and Y.N. Obukhov [START_REF] Hehl | Elie Cartan's torsion in geometry and in field theory, an essay[END_REF], H. Kleinert [START_REF] Kleinert | Nonholonomic Mapping Principle for Classical Mechanics in Spaces with Curvature and Torsion. New Covariant Conservation Law for Energy-Momentum Tensor[END_REF], A. Lasenby, C. Doran and S. Gull [START_REF] Lasenby | Gravity, gauge theories and geometric algebra[END_REF], E.W. Mielke [82, chap. 5. Einstein-Cartan Theory, pp. 95-107], R.J. Petti [START_REF] Petti | Some Aspects of the Geometry of First-Quantized Theories[END_REF] [94] [START_REF]Translational spacetime symmetries in gravitational theories[END_REF], N.J. Popławski [103, sec. 2.5.1], W.A. Rodrigues, Jr. and E.C. de Oliveira [START_REF] Rodrigues | Clifford Valued Differential Forms, and Some Issues in Gravitation, Electromagnetism and "Unified" Theories[END_REF], V. de Sabbata [START_REF] De Sabbata | The Importance of Spin and Torsion in the Early Universe[END_REF], I.L. Shapiro [START_REF] Shapiro | Physical aspects of the space-time torsion[END_REF].

a Never hurts to remember these words of A. Einstein & L. Infeld [39, p. 33]: «Physical concepts are free creations of the human mind, and are not, however it may seem, uniquely determined by the external world».
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 1 Figure 1. Curved space-time in a #008080-grid within the framework of a (pseudo-)Riemannian geometry, along the z-axis: we are looking at something like a non-3D space-time curvature, or non-(1 + 3)D space-time curvature, to be picky. The massive central body is #800080-colored
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 11 Einstein-Cartan Equations: a Couple of Pocket-Formulae for a Torsioning Force in a (1 Ω 12 be the curvature of the Cartan connection, or rather, a g-valued 2-form on P, better laid down as

where 3 ϑ

 3 is a 3-form field (to which the energy-momentum of the matter field is linked), m is the basis 1-form, κ = 8πG c 4 = 1 is the Einstein gravitational constant (8), and 3

  [START_REF]Methodus inveniendi lineas curvas Maximi Minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti[END_REF] [START_REF]Elementa Calculi Variationum[END_REF] [START_REF]Analytica explicatio methodi Maximorum et Minimorum[END_REF] [45][START_REF] Lagrange | Essai d'une nouvelle méthode pour déterminer les maxima et les minima des formules intégrales indéfinies[END_REF] [71][START_REF]Mécanique analytique, Nouvelle édition, revue et augmentée par l'auteur. Tome premier, M me V e Courcier[END_REF][START_REF]Mécanique analytique[END_REF] are derived from the principle of Hamilton[49, pp. 10-11] [50][START_REF]Second Essay on a General Method in Dynamics[END_REF]. The equations must maintain a totally invariant condition.

7 .

 7 Yang's Theory of Gravity, pp. 137-159], and J.-P. Hsu & L. Hsu [62, part II. Quantum Yang-Mills Gravity, pp. 91-213].

  [104, 9.1. Quantum Einstein-Cartan Gravity, pp. 220-223].

Figure 2 .

 2 Figure2. Semi-destruction of a non-3D-or non-(1+3)D-spatio-temporal #FF7518-grid with increasing gravitational field strength. Exactly like in the Fig.1, here is a crude representation along the z-axis. Actually, when the gravitational force becomes infinite (façon de parler), is mandatory to switch to an unknown tiling, whether periodic or aperiodic, as a covering of the plane; we must correspondingly return to a Flatland-like scenario

Figure 3 .

 3 Figure 3. Graphic simplification of a Cartanian non-3D-or non-(1 + 3)D-space-time with double spiraling torsion. Try to visualize, imaginatively, an action à la Petti-Popławski[START_REF]On the Local Geometry of Rotating Matter[END_REF] [102] of a #E30382black hole, on one side, and of a #03E364-white hole, on the other

1.1 Einstein Field Equations: betwixt Geometry & Physics, i.e. Space-Time & Matter

Cartanian Connection and Gravity

Einstein-Cartan Space-Time Owing to J -Bundle, plus Clifford Bundles Cℓ(•M

ß,τ , •)

Quantum Yang-Mills Gravity 

A Form of Spin-Torsion Interaction? The Conundrum of the Discreteness . . . in R 4 ß,τ (1,3)

Bibliography • List of Works Mentioned in the Article

my thanks go to

Thierry, mon ami fraternel, fin connaisseur of the attractive perils of mathematics in the fascinating structuring principles of physical theories, stimulateur d'idées créatives et des suggestions raffinées, together with his wife, Silvia, for the support-from Paris-given to me, during an excrucians periodus of precarious health.