

Vers une prospective de la contamination par la déséthylatrazine (DEA) dans le bassin de la Seine

Session « Suivi des pesticides et monitoring »

A. Mattei ^(1,5), <u>H. Blanchoud</u> ⁽²⁾, N. Fauchon ⁽¹⁾, F. Baratelli ⁽³⁾, N. Flipo ⁽³⁾, V. Heim ⁽⁴⁾ et J.-M. Mouchel ⁽²⁾

(1) VEDIF, Veolia Eau d'Ile de France, Nanterre
(2) UMR METIS, UPMC-CNRS-EPHE, Paris
(3) MINES-ParisTech, Centre de Géosciences, Fontainebleau
(4) SEDIF, Direction Etude Prospective, Paris
(5) GEOTOP, Univ. du Québec, Montreal, Canada

Pourquoi la DEA

Métabolite de l'atrazine interdite en 2003 (donc plus de source actuelle)

Contamination actuelle encore préoccupante

Taux de détection annuel (a) et valeurs >0,05 μg/L (b) de la DEA sur le bassin de la Seine dans les eaux de surface (ESU)

Pourquoi la DEA

Métabolite de l'atrazine interdite en 2003 (donc plus de source actuelle)

Concentrations d'Atrazine et DEA mesurées dans les eaux souterraines (ESO) sur le bassin de la Seine

Pourquoi la DEA

- Métabolite de l'atrazine interdite en 2003 (donc plus de source actuelle)
- Contamination actuelle encore préoccupante
- Base de données importante
 - Les données ESU de l'AESN 1999-2013 sur 230 stations
 Les données ESO d'ADES 1997-2013 sur 3500 piézomètres
 Les données VEDIF aux prises d'eau 1997-2014 sur 3 stations

 Evolution temporelle aux trois prises d'eau : Neuilly-sur-Marne, Choisy-le-Roi et Méry-sur-Oise

Démarche

- Evolution temporelle aux trois prises d'eau : Neuilly-sur-Marne, Choisy-le-Roi et Méry-sur-Oise
- Déterminer la contribution des masses d'eau au débit des rivières
- Vérifier l'évolution temporelle de la contamination ESO
- Tendances prospectives des ESO et estimation prévisionnelle de fin de contamination

- Evolution temporelle aux trois prises d'eau : Neuilly-sur-Marne, Choisy-le-Roi et Méry-sur-Oise
- Déterminer la contribution des masses d'eau au débit des rivières
- Vérifier l'évolution temporelle de la contamination ESO
- Tendances prospectives des ESO et estimation prévisionnelle de fin de contamination

Résultats : contribution du débit de base

Calcul de la contribution du débit de base au débit total

$$Q_b(t) = \frac{\alpha}{2-\alpha}Q_b(t-1) + \frac{1-\alpha}{2-\alpha}Q(t)$$

Où : Q: débit observé Q_b: débit d'écoulement de base Q_f: débit d'écoulement rapides α: le paramètre de récession

Résultats : contribution du débit de base

Contribution de l'écoulement de base à la contamination des cours d'eau

Résultats : contribution du débit de base

Contribution de l'écoulement de base à la contamination des cours d'eau

Mise en évidence de l'origine souterraine de la DEA

Résultats : la contamination des ESO

Tendances d'évolution de la contamination des masses d'eau souterraines

Résultats : la contamination des ESO

Tendances d'évolution de la contamination des masses d'eau souterraines

A partir des travaux de B. Lopez et al. (2011)

Résultats : la contamination des ESO

Tendances d'évolution de la contamination des masses d'eau souterraines (2003-2014)

Résultats : restitution au cours d'eau

Concentrations moyennes estimées à l'horizon 2030 dans les eaux de surface à partir de la contribution moyenne des différents aquifères au cours d'eau et de leurs concentrations moyennes estimée à l'horizon 2030

- Mise en œuvre d'une démarche ascendante visant à rapprocher qualité des eaux de surface et qualité des eaux souterraines
- Réalisation d'un état des lieux de la contamination
- Réflexion sur la méthodologie à mettre en place pour estimer les tendances d'évolution des concentrations
- Proposition d'un scénario tendanciel simple à partir des premières estimations des contributions des aquifères aux cours d'eau

- Relier le niveau de contamination des nappes aux usages passés et aux caractéristiques hydrologiques locales :
 >> usage intense ou vulnérabilité ?
- Intégrer la dynamique de transfert dans la zone insaturée et dans chaque nappe (cf présentation N. Chen) :

Épuisement du stock dans le sol ?

• Prendre en compte les changements hydrologiques

Merci pour votre attention

Références :

Chapman, T. (1999). A comparison of algorithms for stream flow recession and baseflow separation. *Hydrol. Process.* 13, 701-714.

- Lopez, B., A. Leynet and N. Baran (2011). Evaluation des tendances d'évolution des concentrations en polluants dans les eaux souterraines. *Technical Report* RP-59515-FR, BRGM
- Stewart, M., J. Cimino, M. Ross (2007). Calibration of base flow separation methods with streamflow conductivity. *Ground Water* 45, 17-27.