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In this paper, we propose a method to learn linear time-invariant controllers that completely suppress the vortex-shedding regime past a cylinder at Reynolds number 100, using a single actuator and sensor pair in a feedback configuration. The method is based on the Youla parametrization for guaranteeing closed-loop stability in a neighbourhood of the fixed point. Among the set of controllers stabilizing the fixed point, a derivative-free optimization algorithm searches for a controller suppressing the natural limit cycle oscillation. We show existence of simple single input, single output, linear time-invariant controllers driving the full vortex shedding regime to the natural unstable base flow for large dimension, highly nonlinear Navier-Stokes dynamics.

I. INTRODUCTION

F LOW control has received growing interest in the last decades thanks to its potentially high industrial impact, from reducing drag or increasing lift, to acousticor combustion-related issues. Earlier approaches only made use of passive control, requiring no external input, while some more recent approaches are also oriented towards active control. Active control may be done via open-loop forcing (e.g. periodic), or with closed-loop active control, exploiting online information to tailor the control strategy to the flow state, which often shows lower energy consumption, may reject disturbances, mitigate uncertainties and stabilize unstable systems [START_REF] Brunton | Closed-loop turbulence control: Progress and challenges[END_REF].

Open flows may be classified into two categories, depending of the stability properties of the linearized Navier-Stokes (NS) operator around their fixed point [START_REF] Sipp | Linear closed-loop control of fluid instabilities and noise-induced perturbations: a review of approaches and tools[END_REF]. On the one hand, amplifier flows are characterized by a globally stable linearized operator and may be sensitive to exogenous disturbances, in which case the control objective may be to reduce the perturbations amplification. On the other hand, oscillator flows show a globally unstable linearized operator and are dominated 1 William Jussiau, Fabrice Demourant and Pierre Apkarian are with the Control Department, ONERA -The French Aerospace Lab, 2, avenue Edouard Belin, Toulouse, France. Email: {william.jussiau, fabrice.demourant, pierre.apkarian}@onera.fr. colin.leclercq@onera.fr. by self-sustained oscillations. This paper studies the twodimensional flow past a cylinder, an oscillator flow that exhibits a dynamical attractor: a stable limit cycle oscillation, and a steady unstable fixed point: the base flow. The objective of the closed-loop control is to drive any point from the attractor to the stabilized natural equilibrium.

The control of oscillator flows has been investigated using many different strategies, from linear, model-based to highly nonlinear, model-free controllers. While modeling flows is complex due to their intrinsic high dimensionality and nonlinearity, reduced-order models (ROM; linear or nonlinear) may be extracted by projection of dynamics onto essential modal structures, or direct input-output identification from time or frequency data. In model-based linear control, studies do not always set the stabilization of the nonlinear dynamics as the main goal, but sometimes report it as a byproduct of linear time-invariant (LTI) controller synthesis. On a weakly supercritical wake flow, [START_REF] Flinois | Feedback control of unstable flows: a direct modelling approach using the Eigensystem Realisation Algorithm[END_REF] identified a ROM around the base flow using the diverging time data, then designed a Linear Quadratic Regulator (LQR) and reported full stabilization of the vortex-shedding regime. On a similar case, [START_REF] Jin | Feedback control of vortex shedding using a resolvent-based modelling approach[END_REF] synthesized a controller with H ∞ loop-shaping on a frequency-identified ROM, and reported suppression of the instabilities inducing the limit cycle, in a neighbourhood of the stabilized equilibrium. Investigating a more complex flow, [START_REF] Leclercq | Linear iterative method for closed-loop control of quasiperiodic flows[END_REF] stabilized this nonlinear system using an iterative linear approach. A mean flow was first determined by time-averaging the flow; then, the resolvent response around the mean flow was extracted for frequency identification; finally, a structured H ∞ controller was coupled to the flow, leading to weaker oscillations; and the procedure was iterated until steadiness was reached -thus stabilizing the flow.

On the other hand, model-free data-based control has gained popularity with the rise of machine learning (ML) for fluid dynamics, as show by the very up-to-date review [START_REF] Garnier | A review on Deep Reinforcement Learning for fluid mechanics[END_REF] focusing on deep reinforcement learning (DRL). These studies circumvent the difficulty of building a ROM and usually provide a larger space of actions with nonlinear controllers. In this context, mean drag reduction was the objective in [START_REF] Paris | Robust flow control and optimal sensor placement using deep reinforcement learning[END_REF], [START_REF] Rabault | Artificial neural networks trained through Deep Reinforcement Learning discover control strategies for active flow control[END_REF] on flows past cylinders, for designing control policies represented by neural networks. It led to robust near-stabilization of the flow, but without guarantees that the unstable equilibrium was reached. Minimizing the distance from the mean flow to the equilibrium (through the perturbation kinetic energy) was the major goal in [START_REF] Maceda | Stabilization of the fluidic pinball with gradient-enriched Machine Learning control[END_REF] in the context of a very challenging chaotic configuration of three cylinders. Their control policy consisted of nested basic operations (+, ×, cos, ...), driving the mean flow close to the steady base flow. Deep learning was coupled with Model Predictive Control (MPC) in [START_REF] Bieker | Deep Model Predictive Control with online learning for complex physical systems[END_REF], with a surrogate model of the flow pre-trained with simulation data, and updated online. They did not target flow stabilization specifically, but showed they could efficiently drive the output of the true system to any reference value, thanks to a receding horizon predictionoptimization method.

Linear model-based control offers some powerful convergence guarantees and straightforward analysis, while not being easily able to treat high-dimensional, nonlinear systems directly. Conversely, data-based control offers high performance by only simulating and observing the system, but at the cost of difficult interpretability. Additionally, neural networks in fluid dynamics often rely on a large number of sensors, implement no memory of the past in the controller, and often do not reach equilibrium. We strive to draw benefits from both approaches, by combining model-based controller synthesis with data-based optimization. Our objective is the design of a simple, implementable LTI controller to suppress a fully developed limit cycle and reach the steady equilibrium.

Optimizing a controller with respect to a nonlinear simulation was already proposed in the literature, for example tuning LQG weighting matrices [START_REF] Marco | On the design of LQR kernels for efficient controller learning[END_REF] or H ∞ synthesis parameters [START_REF] Hansen | A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion[END_REF]. Here, we leverage information about the system by only ensuring the stability of the fixed point, and tackle the nonlinearity through simulation-based optimization.

The paper is organized as follows: in section II, we present the flow under investigation. In section III, we build a ROM of the flow in a neighbourhood of the unstable equilibrium. Also, we parametrize the set of controllers stabilizing the ROM. In section IV, we present controller learning, in order to drive the flow from its limit cycle regime near the natural equilibrium, which is stabilized in closed-loop. In section V, we describe some results arising from the method; then we draw perspectives in section VI.

II. CONTEXT AND NUMERICAL SETUP

A. Overall presentation: flow past a cylinder

The configuration we study is the common two-dimensional flow past a cylinder. A cylinder of diameter D is placed at the origin of a domain Ω. The domain is rectangular and extends to x a ∞ = -15D upstream, x ∞ = 20D downstream and to ±y ∞ = ±10D cross-stream. A parallel flow with uniform velocity enters from the left and circulates towards the right of the domain. The geometry is depicted in Figure 1.

In the following, all quantities are rendered nondimensional using the cylinder diameter D, the uniform upstream velocity magnitude u ∞ and the kinematic viscosity ν of the fluid. With these quantities, one may define the Reynolds number Re = u ∞ D/ν balancing convective and viscous terms. The flow is described by its pressure p and velocity u = [u, v] T at every point (x, y) in the domain, and satisfies the incompressible
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Fig. 1: Flow domain geometry (black) and conditions (light gray). Drawing is not to scale.

Navier-Stokes (NS) equations:

∂u ∂t + (u • ∇)u = -∇p + 1 Re ∇ 2 u ∇ • u = 0 (1)
This flow past a cylinder is known to undergo a supercritical Hopf bifurcation at Reynolds number Re c ≈ 46.6. Above this threshold, it exhibits an unstable equilibrium (the base flow, depicted in Figure 2a) and a stable limit cycle (Figure 2b). The system under investigation in this study is found by setting the Reynolds number to Re = 100. 

B. Boundary conditions, control and simulation setups

In this paragraph, we define the boundary conditions at the limits of domain Ω, required for solving [START_REF] Brunton | Closed-loop turbulence control: Progress and challenges[END_REF]. We also present the actuator and sensor feedback configuration.

1) Unactuated flow boundary conditions: The flow is mainly parallel and enters from the left of the domain, directed to the right of the domain. Boundary conditions are represented in Figure 1: on the inlet, the fluid has uniform, parallel, horizontal velocity u i = (u ∞ , 0); on the outlet, standard outflow conditions are imposed with p o n -Re -1 ∇u o • n = 0 where n is the outward-pointing vector; on the walls, set far away from the cylinder to mitigate end effects, we impose an impermeabilitty condition v = 0; on the surface of the cylinder, we impose a no-slip condition with u c = (0, 0).

2) Actuation: Actuating the flow is done by injection or suction of fluid at the poles of the cylinder (respectively at angles π/2 and -π/2 from the horizontal axis x) in the direction normal to the incoming fluid. Actuators are 10°-wide and impose a parabolic profile v p (x) to the normal velocity of the fluid, modulated by the control amplitude ρ(t). This spatial profile ensures continuity of the boundary conditions between the actuators and the rest of the cylinder (where noslip is imposed). On the controlled boundaries, the boundary condition is:

u act (x, t) = (0, v p (x)ρ(t)) (2) 
with the following normalized parabolic spatial profile:

v p (x) = - (x -l)(x + l) l 2 , (3) 
where l = 1 2 D tan δ 2 , δ = 10°. The upper and lower actuators are functioning asymmetrically, so as to maintain a zero mass-flux, i.e. an actuation amplitude ρ(t) > 0 corresponds to blowing from the top and suction from the bottom, and reciprocally with ρ(t) < 0.

3) Sensing: Placing a single sensor for flow control has to balance some trade-offs driven by physical insight. The sensor being too close from the cylinder would not provide sufficient information about instabilities in the wake, whereas the sensor being too far in the wake would suffer delay due to the convective nature of the flow, that may be incompatible with a closed-loop feedback configuration, as it was studied in [START_REF] Jin | Optimal sensor and actuator placement for feedback control of vortex shedding[END_REF]. Knowing these fundamental trade-offs, the sensor is located in the wake of the cylinder, at a distance 3D from the origin, and on the symmetry axis of the base flow (y = 0). The sensor provides the cross-stream component of the velocity: v(x s , y s , t) with (x s , y s ) = (3D, 0). It is assumed perfect and not corrupted by noise. It may be noted that the value of the cross-stream velocity at the sensor location on the base flow is v b (x s , y s ) = 0 due to symmetry of the flow.

4) Numerical methods: Direct numerical simulation of the infinite-dimensional system (1) is performed with the finiteelement toolbox FEniCS [START_REF] Logg | Automated solution of differential equations by the finite element method: The FEniCS book[END_REF] that is widely used for solving Partial Differential Equations (PDEs). The original system is discretized to a large but finite-dimensional system by discretizing the numerical domain Ω into a mesh. Finite elements are chosen as Taylor-Hood elements and the unstructured mesh consists of approximately 24 900 triangles leading to a descriptor system of 112 900 states. The timestepping itself is performed using an implicit linear multistep method of second order with time step ∆t = 5 • 10 -3 , and nonlinear terms are treated with a second-order explicit method. Simulation are run in parallel on 24 cores.

III. FREQUENCY RESPONSE AND PRELIMINARY CONTROLLER SYNTHESIS

As a first step, computation of a ROM around the base flow is addressed, through frequency-domain identification. Frequency-based identification is appropriate for identifying unstable dynamics, as it mitigates the difficulty of dealing with diverging time data [START_REF] Flinois | Feedback control of unstable flows: a direct modelling approach using the Eigensystem Realisation Algorithm[END_REF]. Then, the ROM serves as a baseline for defining a set of controllers stabilizing the unstable equilibrium.

A. Resolvent-based frequency-response

As per II, the system under consideration has a single input and a single output. Its transfer function writes directly:

Y (s) U (s) = H(s) = C(sQ -A) -1 B, (4) 
where the actuation and sensing matrices are B, C and the resolvent operator defined as R(s) = (sQ-A) -1 . Matrix A is the linearized operator around the unstable equilibrium. Matrix Q is a symmetric positive semidefinite matrix that stems from the spatial discretization of the descriptor system (1).

The frequency response H(jω) ∈ C of the linearized system is evaluated from (4) at s = jω on a grid of logarithmically sampled frequencies ω ∈ [ω, ω] ⊂ R by solving highdimensional sparse complex linear systems of equations. It is represented in Figure 3 (blue circles). In our case, 300 points were sampled logarithmically in the frequency interval [10 -2 , 10 2 ].

B. Frequency identification with subspace methods

The frequency response computed in the paragraph above represents a system of order 112 900, that will be approximated with a low-order model accessible to modern robust control methods.

Subspace-based frequency identification methods are a class of non-iterative methods and do not rely on parametric nonlinear optimization, as most iterative model-fitting methods do. The Frequency Observability Range Space Extraction (FORSE) [START_REF] Liu | Frequency domain structural system identification by Observability Range Space Extraction[END_REF] estimates state-space matrices in two distinct steps from the frequency response on a grid of frequencies. Matrices A, C are built directly from a SVD of a Hankel matrix built from the frequency response. Matrices B, D are then found by solving a linear least squares problem.

In this study, the method is applied to the frequency response (4) for the identification of a ROM reproducing the input-output behavior of the high-dimensional system. Applying the method to the frequency response computed in III-A results in a very good fit for a ROM of order 16, that can be seen in Figure 3 (black, solid line). Additionally, it can be verified in Figure 4 that the high-dimensional system and the reduced-order model produce nearly indistinguishable temporal open-loop impulse responses.

C. Initial controller: structured multi-criterion synthesis

In order to define the whole space of controllers stabilizing the unstable fixed point, we first need to define one such controller, denoted K 0 . The requirement for a preliminary controller stabilizing the ROM will be highlighted in the next section (III-D). Given the ROM established in the previous paragraph, we synthesize K 0 using structured multi-criterion methods [START_REF] Apkarian | Nonsmooth optimization for multiband frequency domain control design[END_REF], [START_REF] Apkarian | Multi-model, multi-objective tuning of fixed-structure controllers[END_REF] implemented in the MATLAB routine systune.

The controller K 0 is chosen strictly proper, of minimum order possible, with rather classic specifications. The synthesis uses criteria from classic H ∞ mixed-sensitivity synthesis, as well as a modal constraint on the closed-loop.

In order to provide robustness to model uncertainties arising from the identification process III-B, a minimum modulus margin M is imposed through the sensitivity function S = (I +GK) -1 with the H ∞ constraint S ∞ ≤ M. To mitigate control effort and fast controller dynamics, we constrain the transfer KS to impose a cutoff frequency at 50 rad/s and a 20 dB gain bound in low frequencies, with a frequency weighting KS • W KS ∞ ≤ 1. Finally, in order to robustly stabilize the resonant mode of the linearized flow, we impose a decay rate constraint on the poles of the closed-loop p CL , in the form: (p CL ) ≤ -10 -1 , with the real part. Note that a similar effect could have been achieved by weighting the transfer function GS.

The resulting controller has order 8 and indeed respects the given specifications. It will serve as a baseline for defining the set of controllers stabilizing the unstable fixed point.

D. Parametrizing a set of linear stabilizing controllers

1) Q-parametrization: For any linear stable plant G, it is possible to parametrize the set of linear controllers K that stabilize G when connected in a feedback setup with the Youla formula [START_REF] Zhou | Essentials of robust control[END_REF]. Assuming G is unstable, as in our case, one therefore needs to stabilize G with an arbitrary controller K 0 first. The linear plant stabilized by the initial controller

K 0 is denoted Ḡ = G(1 -GK 0 ) -1 .
Any LTI controller stabilizing G may be obtained [START_REF] Zhou | Essentials of robust control[END_REF] as:

K = K 0 + F l 0 1 1 -Ḡ , Q (5) 
where Q is an arbitrary stable transfer function and F l denotes the lower linear fractional transform.

2) Laguerre basis for transfer functions: Any stable transfer function Q may be decomposed onto an infinite orthonormal basis such as the Laguerre basis [START_REF] Akc | Orthonormal basis functions for modelling continuous-time systems[END_REF]:

Q(s) = ∞ i=0 θ i φ i (s), with:    φ 0 (s) = 1 φ i (s) = -2 (s + ) i-1 (s -) i , i ≥ 1 (6)
In this study, we are using the classic Laguerre basis with a unique real stable pole ∈ R, < 0, treated as a parameter of the basis. For defining parameter Q, we rely on a truncation of the infinite expansion, and render it strictly proper by removing the direct feedthrough φ 0 (s):

Q(s) = N i=1 θ i φ i (s) (7) 
As a summary, we have defined a set of controllers that stabilize a plant G, parametrized by m = N + 1 real decision variables Θ = [ , θ 1 , ...θ N ]. In the following is explained how one can optimize such a controller, in order to suppress the limit cycle from the nonlinear NS dynamics.

IV. GRADIENT-FREE OPTIMIZATION FOR FLOW

STABILIZATION

The search for such a controller can be summarized as follows. First, we define a cost function J (Θ) that indicates how efficient a controller is at bringing the flow from the limit cycle to the base flow. Controllers would be switched on from the fully developed flow and low values of the cost function would indicate convergence to the stabilized natural fixed point. Second, controllers from the set built in III-D are generated from Θ ∈ R m and an optimization algorithm iteratively updates Θ to find the best possible approximation of Θ = arg min Θ J (Θ).

It is thought that the preliminary controller K 0 aims at ensuring some stability and performance on the linear closedloop, while the optimized part Q depending on Θ in [START_REF] Leclercq | Linear iterative method for closed-loop control of quasiperiodic flows[END_REF] focuses on suppressing the nonlinear oscillation.

A. Cost function

In order to define how far a flow state lies from the unstable base flow, we define the perturbation energy relative to the base flow. Denoting the fluid state x = [u, p] T , the energy is E(x) = x 2 Q = x T Qx, with Q the symmetric positive semidefinite matrix evoked in (4), defining a seminorm • Q on the full state x. Note that vectors x, u, p now refer to spacediscretized quantities (and not functions of space and time as in ( 1)). The perturbation energy of a state x relative to the stationary base flow x b is:

E(x) = x -x b 2 Q x b 2 Q (8) 
In order to state whether a controller is efficient at driving the flow from the limit cycle to the base flow, we resort to an integral definition of the cost function inspired by LQR design in the LTI framework:

J = T t0 E(x(t))dt + λ 2 T t0 ρ 2 (t)dt. (9) 
This cost function is evaluated from closed-loop fluid simulations started at time t 0 from the limit cycle, and run until time T = t 0 + 200. The regularization coefficient λ 2 penalizes large control amplitudes ρ(t).

B. Optimization method

1) The use of a black-box, gradient-free method: The cost function J defined in ( 9) is computed from a highly nonlinear fluid simulation, rendering the cost function unpredictable. Adjoint methods would allow gradient evaluation in simulation, but are hardly applicable in experiments. In order to exploit output data, it was chosen to rely on black-box, gradient-free optimization methods.

2) The Nelder-Mead algorithm: We present here the optimization process using the original Nelder-Mead (NM) algorithm [START_REF] Nelder | A simplex method for function minimization[END_REF], often considered a direct search method. In dimension m, the algorithm maintains, at each iteration, a collection of m + 1 function evaluations forming a (nondegenerate) m-simplex in the search space. Each iteration of the algorithm would evaluate the function on a low number of test points, and update the vertices of the simplex accordingly -in order to progress towards a minimum of the function.

3) Initialization and multi-start: Initialization of an instance of the algorithm is done by providing an initial m-simplex. Due to the local nature of the search, some globalization (referred to as exploration) is made by running several initial instances of the algorithm, each initialized in a different zone of the search space. The multi-starting method is the Latin Hypercube Sampling (LHS) proposed in [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] as an alternative to Monte-Carlo sampling.

4) Algorithm parameters: In this paper, parameter Q from ( 7) is expanded on the first N = 10 Laguerre basis transfer functions, and the pole of the basis is also optimized, making the optimization problem of moderate dimension m = 11. For the NM algorithm, the initial simplex is chosen as a centered unit simplex scaled by η = 0.5, and then centered on a point Θ 0 ∈ R m . Multi-start is done with n t = 10 points sampled with LHS in a centered hypercube with edge length L Θ = 20.

V. RESULTS: SUPPRESSION OF NATURAL VORTEX-SHEDDING, AND ADDITIONAL OBSERVATIONS

Following the method presented in the paper, the main result from this study is the discovery of an LTI controller K in the set defined in III-D, stabilizing the nonlinear system.

The results are presented in Figure 5. The fluid is simulated until it reaches its stable limit cycle (solid, black), up to t 0 = 200, then controllers are switched on. It can be first checked that the preliminary controller K 0 from III-C does not cancel the limit cycle: coupling this controller to the flow only increases the limit cycle oscillation frequency after a short transient phase. On the contrary, the optimized controller K (solid, green) stabilizes the nonlinear system, driving the measured cross-stream velocity to its value on the base flow. It can be observed in Figure 6 that the perturbation energy E of the flow coupled to K constant due to new properties of the limit cycle. However, on the nonlinear system stabilized by K , the energy shrinks by a factor 100, in 200 convective time units from the moment the controller is switched on. After 200 additional time units, the energy decays exponentially, suggesting that the flow is in its linear regime and driven to its natural equilibrium. Some flow snapshots are also given in Figure 7.

The energy of actuation is the kinetic energy flux through the actuated boundaries, integrated over time. It is compared to the energy saved by drag reduction, taking into account that the actuation may increase drag locally. It is shown that this actuation strategy becomes beneficial in terms of energy approximately 100 convective time units and in the long run, as ρ(t) t→∞ ---→ 0 without noise or perturbations. In terms of physics of the flow, the actuator seems to seek symmetrization of the flow, by counteracting the rolling of the shear layers (emerging from the top and bottom of the cylinder) that naturally form vortices. However, different control strategies found in the study seem to exhibit different behaviours, so no additional study was performed yet.

Finally, classic Q-parametrization is known to yield controllers of order higher than preliminary controller K 0 , what may be deduced directly from [START_REF] Leclercq | Linear iterative method for closed-loop control of quasiperiodic flows[END_REF]; in our case, controller K has order n K = 42. It was reduced down to order 13 using balanced truncation [START_REF] Enns | Model reduction with balanced realizations: An error bound and a frequency weighted generalization[END_REF], by suppressing modes with the lower observability/commandability gramians. In practice, it is checked that the reduced controller stabilizes the linear ROM (with classical tools) and the high-dimension linear model (with the Nyquist stability criterion). In the nonlinear context, the only stabilization guarantee is evidence through simulation, which is checked a posteriori. 
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Perturbation energy E Fig. 6: Perturbation energy over time, with initial controller K 0 (dashed, red) and optimized controller K (solid, green).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we provided a method for stabilizing the vortex-shedding flow past a cylinder at low Reynolds, using a linear controller in a feedback configuration. The proposed method is built on linear, model-based hypotheses, and the nonlinearity is addressed with direct simulation. The first steps, model-based, include determining the frequency response of the high-dimensional flow linearized around its unstable equilibrium; identifying a reduced-order model with frequency-based techniques; then, building a set of controllers stabilizing said equilibrium with structured multi-criterion synthesis and Q-parametrization. Finally, a simulation-based search is made with a derivative-free optimization algorithm in such set, to determine a controller that would additionally suppress the limit cycle. With this approach, we show existence at Reynolds number 100 of simple SISO LTI controllers completely suppressing the vortex-shedding regime past a cylinder and driving the flow to its stabilized natural equilibrium. Additionally, it is noted that every step of the procedure is compatible with MIMO systems, so that an extension to multiple actuators or sensors can be made.

Future work include assessing the robustness of such controllers with respect to system variations (e.g. off-design Reynolds number), and reducing the limit cycle suppression time. Lastly, this hybrid model-based/simulation-based method will be tested on more complex oscillator flow configurations, including the open cavity [START_REF] Leclercq | Linear iterative method for closed-loop control of quasiperiodic flows[END_REF] (2-torus attractor) or on the fluidic pinball [START_REF] Maceda | Stabilization of the fluidic pinball with gradient-enriched Machine Learning control[END_REF] (chaotic properties).
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 34 Fig. 3: Identified system (black, solid line) with the frequency response around the base flow (blue circles, logarithmic sampling). For clarity, only one third of the points of the frequency response are shown, and ω is restricted to [10 -1 , 10 1 ].
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