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Timed Automata Verification and Synthesis via
Finite Automata Learning?

Ocan Sankur

Univ Rennes, Inria, CNRS, Rennes, France

Abstract. We present algorithms for model checking and controller
synthesis of timed automata, seeing a timed automaton model as a parallel
composition of a large finite-state machine and a relatively smaller timed
automaton, and using compositional reasoning on this composition. We
use automata learning algorithms to learn finite automata approximations
of the timed automaton component, in order to reduce the problem at
hand to finite-state model checking or to finite-state controller synthesis.
We present an experimental evaluation of our approach.

1 Introduction

Timed automata [1] are a well-known formalism for modeling and verifying real-
time systems. They can be used to model systems as finite automata, while using,
in addition, clocks to impose timing constraints on the transitions. Using clock
variables have advantages. They allow one to describe models that are expressive
thanks to real-valued clock values; moreover, the use of specific clock variables
enable optimizations such as sound and complete abstractions, also known as
extrapolation operators [5]. Model checking algorithms have been developed and
implemented in tools such as Uppaal [8], TChecker [29], PAT [50].

One approach for model checking timed automata is based on representing the
set of clock values with zones, which are particular polyhedra, and using explicit
enumeration on the discrete states. There has been extensive research on sound
and complete abstractions on zones, which improved the performance of the
model checking tools, and made it possible to handle models with more complex
time constraints; see [11] for a survey. However this approach does not scale to
models with large discrete spaces due to explicit enumeration. Several authors
have developed algorithms to remedy this issue, and to attempt to adapt efficient
model checking techniques finite-state systems to timed systems. Extensions of
binary decision diagrams (BDD) with clock constraints have been considered
both for continuous time [53,10,24] and discrete time [43,51]. Another approach
is to use predicate abstraction on clock variables that enables efficient finite-state
verification techniques based on BDDs or SAT solvers [17,16,47].

Controller synthesis is a related problem in which some transitions of the
system are controllable and some are uncontrollable, and the objective is to
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compute a control strategy which guarantees that all induced runs of the system
satisfy a given specification; see e.g. [52]. This problem is formalized using games,
and in the case of real-time systems, using timed games [40,4]. Zone-based
algorithms have been developed to solve timed games and compute control
strategies [14], and are available in the Uppaal TIGA tool [7]. These algorithms
suffer from the same limitations as the zone-based model checking algorithms.
Although they can be efficient on instances with small discrete state spaces,
they do not scale well to large systems. An attempt was made to implement the
counter-example guided abstraction refinement scheme to handle larger discrete
state space in timed games in [45]. On the other hand, there are several efficient
finite-state game solvers, based on BDDs and SAT solvers, which can efficiently
handle relatively large state spaces [32], but cannot handle real time.

In this work, we introduce an approach that is applied both to model checking
and controller synthesis of timed automata with the objective of combining the
advantages of both timed automata and finite-state model checkers and game
solvers. Our suggestion is to see the input model, without loss of generality, as a
parallel composition between a finite-state machine A, and a timed automaton T .
We specifically target instances where A is large, and T is relatively small but
nontrivial. Note that this point of view was considered before in the verification
of synchronous systems within a real-time environment [9]. As a novelty, for
model checking, we apply a compositional reasoning rule on the product A‖T by
replacing the timed automaton T by a (small) deterministic finite automaton
(DFA) H which represents the behaviors of T . To automatically select the DFA H,
we adapt the algorithm [44] to our setting, and use a DFA learning algorithm
(such as L* [3], or TTT [30]) to find an appropriate DFA either to prove the
specification or to reveal a counterexanple.

Our approach enjoys the principle of separation of concerns in the following
sense. A timed automaton model checker is used by the learning algorithm to
answer membership and equivalence queries (see Section 2.2); these are answered
without refering to A, thus, by avoiding the large discrete state space. Therefore,
the timed automaton model checker is used in this approach for what it is
designed for: handling real-time constraints encoded in T , not for dealing with
excessive discrete state spaces. Once an appropriate DFA H is found by the
learning algorithm, the system A‖H is model-checked using a finite-state model
checker whose focus is to deal with large discrete state spaces. We can thus
benefit from the best of the two worlds: a state-of-the-art model checker for timed
automata, which is somewhat used here as a theory solver, and any finite-state
model checker based on BDDs, SAT solvers, or even explicit-state enumeration.

The application of the learning-based compositional reasoning of [44] to
controller synthesis is more involved. Our objective was to find a way to exploit
efficient finite-state game solvers [32] in the context of timed automata even
if this meant having an incomplete algorithm. We describe a setting where a
one-sided abstraction is applied for controller synthesis by replacing the timed
automaton component by a learned DFA. Contrarily to the model checking
algorithm, our controller synthesis algorithm is sound but not complete, that is,



the algorithm may fail although there exists a control strategy, while any control
strategy that is output is correct. More precisely, we consider timed games in
the form G‖T where G is a finite-state game, and T is a timed automaton. We
describe an algorithm that alternates between two phases. In the first phase,
the goal is to find a DFA H that is an overapproximation of T . Once this is
found, we use a finite-state game solver on G‖H; if there is a control strategy, we
prove that it can be applied in the original system G‖T . If not, then we obtain a
counterstrategy S. We then switch to the second phase whose goal is to check
whether the counterstrategy is spurious or not; and it does so by learning an
underapproximation DFA H of T , and checking whether S induces runs that
are all in H. Accordingly, we either reject the instance or switch back to the
first phase. As in the model checking algorithm, the timed automaton model
checker is only used to answer queries independently from G, and a finite-state
game solver and a model checker are used to compute and analyze strategies in a
discrete state-space.

To the best of our knowledge, apart from [45], we present the first algorithm
that can solve timed games with large discrete state spaces. Although the algo-
rithm applies to a subset of timed games and is not complete, we believe it is
of utmost importance to make progress on the scalability of timed game solvers
in order for these methods to be applied in convincing applications. Our paper
makes an attempt in this direction.

We evaluate our algorithms in comparison with state-of-the-art tools and
show that our approach is competitive with the existing tools, and can allow both
model checking and synthesis to scale to larger models. The approach offers an
alternative treatment of timed models, which might be applied in other settings.

We present the model checking algorithm in Section 2 which contains formal
definitions, the description of the algorithm, and the experiments. Section 3
presents our contributions on the controller synthesis problem, and includes
formal definitions, the description of the algorithm, and the experiments. In
Section 4, we provide a broader discussion on related works, and present our
conclusions and perspectives.

2 Compositional Model Checking

2.1 Preliminaries

Labeled Transition Systems and Finite Automata. We denote finite labeled tran-
sition systems (LTS) as tuples (Q, q0, Σ, T ) where Q is the set of states, q0 ∈ Q
is the initial state, Σ is a finite alphabet, T ⊆ Q×Σ ∪ {ε}×Q is the transition
relation (ε labels silent transitions). Because we will consider synchronous product
of LTSs, we will use silent transitions to define internal transitions not exposed
for synchronization. A finite automaton is an LTS given with a set of accepting
states F ⊆ Q, and is written (Q, q0, Σ, T, F ). A run of an automaton is a se-
quence q1e1q2e2 . . . qn where q1 = q0, ei = (qi, σi, qi+1) ∈ T for some σi ∈ Σ∪{ε}
for each 1 ≤ i ≤ n − 1. The trace of the run is the sequence σ1σ2 . . . σn−1. An



accepting run starts at q0 and ends in F . The language of a finite automaton
A is the set of the traces of all accepting runs of A, and is denoted by L(A).
We will consider deterministic finite automata (DFA) which do not have silent
transitions, and have at most one edge for each label from each state.

The parallel composition of two automata Ai = (Qi, q
0
i , Σ, Ti, Fi), i ∈ {1, 2},

defined on the same alphabet, is the automaton A1 ‖ A2 = (Q, q0, Σ, T, F ) with
Q = Q1×Q2, q0 = (q01 , q

0
2), F = F1×F2, and T contains ((q1, q2), σ, (q′1, q

′
2)) for

all (q1, σ, q
′
1) ∈ T1, and (q2, σ, q

′
2) ∈ T2; and ((q1, q2), ε, (q′1, q2)) for all (q1, ε, q

′
1) ∈

T1, and q2 ∈ Q2; and symmetrically, ((q1, q2), ε, (q1, q
′
2)) for all (q2, ε, q

′
2) ∈ T2,

and q1 ∈ Q1.

Finite Automata Learning. We use finite automata learning algorithms such as L∗

[3,46] and TTT [30]. In the online learning model, the learning algorithm interacts
with a teacher in order to learn a deterministic finite automaton recognizing a
hidden regular language known to the teacher. The algorithm can make two types
of queries. A membership query consists in asking whether a given word belongs
to the language, to which the teacher answers by yes or no. An equivalence
query consists in creating a hypothesis automaton H, and asking the teacher
whether H recognizes the language. The teacher either answers yes, or no and
provides a counterexample word which is in the symmetric difference of L(H)
and of the target language. Learning algorithms typically make a large number
of membership queries, and a smaller number of equivalence queries.

Timed Automata. We fix a finite set of clocks C. Clock valuations are the
elements of RC≥0. For R ⊆ C and a valuation v, v[R← 0] is the valuation defined
by v[R← 0](x) = v(x) for x ∈ C \ R and v[R← 0](x) = 0 for x ∈ R. Given
d ∈ R≥0 and a valuation v, v+ d is defined by (v+ d)(x) = v(x) + d for all x ∈ C.
We extend these operations to sets of valuations in the standard way. We write ~0
for the valuation that assigns 0 to every clock.

We consider a clock named 0 which has the constant value 0, and let C0 =
C ∪ {0}. An atomic guard is a formula of the form x ./ k, or x − y ./ k where
x, y ∈ C0, k, l ∈ N, and ./ ∈ {<,≤, >,≥}. A guard is a conjunction of atomic
guards. A valuation v satisfies a guard g, denoted v |= g, if all atomic guards are
satisfied when each x ∈ C is replaced by v(x). Let ΦC denote the set of guards
for C.

A timed automaton T is a tuple (L, `0, Σ, Inv, C, E, F ), where L is a finite
set of locations, `0 ∈ L is the initial location, Σ is the alphabet, Inv : L → ΦC
the invariants, C is a finite set of clocks, E ⊆ L×Σ×ΦC×2C×L is a set of edges.

An edge e = (`, g, σ,R, `′) is also written as `
g,σ,R−−−→ `′. F ⊆ L is the set of

accepting locations.
A run of T is a sequence r = q1e1q2e2 . . . qn where qi ∈ L×RC≥0, q1 = (`0,~0),

and writing qi = (`, v) for each 1 ≤ i ≤ n, we have v ∈ Inv(`). If i < n,
then either ei ∈ R>0 and v + ei ∈ Inv(`), in which case qi+1 = (`, v + ei), or
ei = (`, g, σ,R, `′) ∈ E, in which case v |= g and qi+1 = (`′, v[R ← 0]). The
run is accepting if the last location is in F . The trace of the run r is the word
σ0σ1 . . . σn where σi is the label of edge ei.



The untimed language of the timed automaton T is the set the traces of the
accepting runs of T , and is denoted by L(T ).

A timed automaton is label-deterministic if at each location `, for each label
σ ∈ Σ, there is at most one transition leaving ` labelled by σ; in other terms,
the finite automaton obtained by removing all clocks is deterministic.

We consider the parallel composition of a finite automatonA = (Q, q0, Σ, T, F )
and a timed automaton T = (L, `0, Σ, Inv, C, E, FT ) which is a new timed
automaton. Intuitively, a transition labeled by σ consists in an arbitrary number
of silent transitions of A, followed by a joint σ-transition of both components.
The guard and the reset of the overall transition are those of the transition of
T . Formally, let A‖T = (L′, `′0, Σ, Inv′, C, E′, F ′) with L′ = Q×L, Inv′ : (q, `) 7→
Inv(`), `′0 = (q0, `0), and E′ contains all edges of the form ((q, `), g, σ,R, (q′, `′))
such that (`, g, σ,R, `′) ∈ E, and there exists a sequence q = q0, q1, . . . , qk, qk+1 =
q′ of states of A such that (q0, ε, q1), . . . , (qk−1, ε, qk), (qk, σ, qk+1) are transitions
of A. We let F ′ = F×FT .

It follows from the definition of the parallel composition that L(A‖T ) =
L(A) ∩ L(T ).

Target Timed Automata Instances. Our main motivation is to consider real-time
systems that are modeled naturally as A‖T . Typically, A has a large (discrete)
state space, and T is a relatively small timed automaton, but with potentially
complex time constraints involving several clocks.

It should be clear however that any timed automaton T can be seen as such
a product as follows. Let A be a finite automaton identical to T except that
guards and resets are removed; and for each pair of guard g and reset r, a fresh
label σg,r is defined and added to each edge with the said guard and reset. Now,
define the timed automaton T ′ as a single state with the same clocks as T , with
one self-loop for each pair (g, r): such an edge is labeled by σg,r, has guard g,
and reset r. We have that T is isomorphic to A‖T ′.

An example is given in Figure 1 which shows how a simple scheduling setting
can be modeled in this way. Here, the finite automaton is simple and only stores
the mapping from machines to the tasks they are executing. Typically, if the
machines or the processes executing tasks have internal states, these could be
modeled in A as well without altering the timed automaton.

2.2 Learning-Based Compositional Model Checking Algorithm

We present an algorithm for model checking the untimed language L(A‖T ).
Although it is known that the untimed language is regular [1], the size of the

corresponding finite automaton can be exponential so a direct computation is
not efficient. We will be looking for a finite automaton H which is an overapprox-
imation of T i.e. L(T ) ⊆ L(H). H stands for hypothesis made by the learning
algorithm. We will in fact use the following lemma.

Lemma 1. For all finite automata A and H, and timed automata T on common
alphabet Σ, if L(T ) ⊆ L(H), then L(A‖T ) ⊆ L(A ‖ H).



Finite automaton A:

M0 7→ ⊥
M1 7→ ⊥

M0 7→ 0
M1 7→ ⊥

M0 7→ 0
M1 7→ 1

M0 7→ 1
M1 7→ ⊥

M0 7→ 1
M1 7→ 0

M0 7→ ⊥
M1 7→ 1

M0 7→ ⊥
M1 7→ 0

ready[0]

done[0]

ready[1]

done[1]

ready[1]

done[1]

ready[0]

done[0]

done[0]

ready[0]

done[1]done[1]

ready[1]

done[0]

Timed automaton T :

x0 ≤ 10 x0 ≤ 30

ready[0], x0 ∈ [5, 10]
x0 := 0

done[0], x0 ∈ [20, 30]
x0 := 0

x1 ≤ 10 x1 ≤ 20

ready[1], x1 ∈ [2, 10]
x1 := 0

done[1], x1 ∈ [10, 20]
x1 := 0

Fig. 1. Timed automaton A‖T modeling a simple scheduling policy. The finite au-
tomaton A is given above and models a scheduler which schedules tasks (0 and 1)
immediately when they become ready (ready[0] and ready[1]) on machines M0 and M1,
using M0 first if it is available. The timed automaton T is below, here, as a network of
the timed automata, and models interarrival and computation times for each task.

In other terms, by replacing the timed automaton T by its overapproximation,
we obtain an overapproximation of the compound system in terms of untimed
language. So if a linear property can be established on A‖H for an appropriate H,
then the property also holds on the original system.

Let us present the above property as a verification rule. Assuming that we
want to establish A‖T ⊆ Spec for some language Spec, we have

L(T ) ⊆ L(H) L(A‖H) ⊆ Spec

L(A‖T ) ⊆ Spec.
Asym

(1)

Here, H serves as an assumption we make on T when verifying A; so as in
Lemma 1, we can use H instead of T during model checking. The rule (1) is well
known as the assume-guarantee verification rule [19], and has been used in model
checking finite-state systems as well as timed automata [36]. The assumption H
can either be provided by the user, or automatically computed using automata
learning as in [44]. Intuitively, the model checking algorithm we present in this
section is an application of [44] to our specific case.

Figure 2 presents the overview of the algorithm. The membership queries of the
learning algorithm are answered by the membership oracle; the equivalence query
with conjecture H is answered by the inclusion oracle. When the conjecture H



passes the inclusion check, we model-check H‖A. When this is successful, we stop
and declare that the original system A‖T satisfies the specification. Otherwise, a
counterexample w ∈ L(A‖H) \ Spec was found, and we use a realizability check
to see whether w ∈ L(T ) (this is actually done by the membership oracle). If the
answer is yes, then the counterexample is confirmed, and we stop. Otherwise,
we inform the learning algorithm that w must be excluded, and continue the
learning process.

Note that this algorithm can be used for any regular language specificaton
Spec. We focus on safety properties in our experiments, presented next.

DFA Learning
Algorithm

Membership Oracle
w ∈ L(T )?

Inclusion Oracle
L(T ) ⊆ L(H)?

Finite-State Model
Checking Oracle
L(A‖H) ⊆ Spec?

Realizability Check
w ∈ L(T )?

w ∈ L(T )?

yes/no

conjecture H

no

w ∈ L(T ) \ L(H)
yes

yes
X

no: w ∈ L(A‖H) \ Spec

yes
×no

w 6∈ L(T )

Fig. 2. The learning-based compositional model checking algorithm. The box on the
left is a DFA learning algorithm, while the oracles answering the queries of the learning
algorithm are shown on the right and correspond to the teacher.

2.3 Experiments

We built a prototype implementation of our algorithm in Scala, using the TTT
automata learning algorithm [30] from the learnlib library [31], and the associated
automatalib for manipulating finite automata. We used the TChecker [29] model
checker for implementing membership and inclusion oracles. For the latter, we
complement H into Hc, and check the emptiness of the parallel composition of T
with Hc. We use the NuSMV model checker for finite-state model checking. The
implementation is available at https://github.com/osankur/compRTMC.

The overall input consists in an SMV file describing A, and of a TChecker
timed automaton describing T . We use define expressions in SMV to define the
labels Σ, while TChecker allows us to tag each transition with a label.

We compare our algorithm on a set of benchmarks with the model checkers
Uppaal [8] and nuXmv which has a timed automata model checker [16]. The

https://github.com/ticktac-project/tchecker
https://nusmv.fbk.eu
https://github.com/osankur/compRTMC


Table 1. Model checking benchmarks. The column #Clk is the number of clocks; #C
is the number of conjectures made by the DFA learning algorithm; #M is the number
of membership queries; and |DFA| is the size of the final finite automaton learned. The
safety specification holds on all models but those marked with *. In each cell, — means
out of memory (8GB), and - means time out (30 minutes).

Compositional Uppaal nuXmv

#Clk #C #M |DFA| Time Time Time

Leader Election A 3 13 232 15 157s — —

Leader Election B 3 26 661 29 198s — —

Leader Election C 3 33 997 53 149s — -

Leader Election D 3 - — -

Leader Election (Stateless) A 3 13 232 15 15s 6s —

Leader Election (Stateless) B 3 28 776 33 44s 8s —

Leader Election (Stateless) C 3 33 997 53 17s 6s -

Leader Election (Stateless) D * 3 134 6965 240 10m7s 6s -

FTSP-abstract-2 2 3 54 8 2s 2s -

FTSP-abstract-3 3 17 340 23 47s 7m8s -

FTSP-abstract-4 4 - - -

STS-2 5 7s 19s -

STS-3 6 - - -

Rt-broadcast A 4 49 1324 63 59s - 87s

Rt-broadcast B 4 41 1100 63 101s - 90s

Rt-broadcast C 4 21 590 39 31s - 86s

Rt-broadcast D 4 27 901 52 49s - 80s

Priority Scheduling 2 A 3 35 9859 49 34s 1s 7s

Priority Scheduling 2 B 3 29 1162 42 16s — 2s

Priority Scheduling 3 C 4 - — 6s

Priority Scheduling 3 D 4 - — 8s

Priority Scheduling 3 E * 4 - — 11s

former implements a zone-based enumerative algorithm, while the latter uses
predicate abstraction through IC3IA. We describe some of the benchmarks here.

The leader election protocol is a distributed protocol that can recover from
crashes [22], extended here with periodic activation times and crash durations. The
first four rows of Table 1 correspond to the case where one of the processes crashes
when its internal state enters an error state. Internal states are modeled using
Boolean circuits from from the synthesis competition (SYNTCOMP) benchmarks.
The stateless version is more abstract: there is no internal state model, and crashes
can occur at any time. The letters A, B, C, D indicate different timed automaton
models. Uppaal was more efficient at solving the stateless version but failed in
the full version due to the large discrete state space. The compositional algorithm
was effective in verifying all instances but the D case which required a large
finite automaton to be learned. One can notice an overhead of the compositional
algorithm in the stateless version due to the computation of the finite automaton
H. This was particularly an issue in the stateless D case where Uppaal could find
a counterexample trace faster; nuXmv was not able to solve these instances.

The flooding time synchronization protocol (FTSP) is a leader election algo-
rithm for multi-hop wireless sensor networks used for clock synchronization [41],

https://github.com/SYNTCOMP/benchmarks


and has been the subject of formal verification before [42,35]. We consider the
abstract model used in [48] for parameterized verification allowing one to verify
the model for a large number of topologies. Our algorithm was faster for the
model with 3 processes, although none of the tools scaled to 4 processes.

Overall, the experiments show that our algorithm is competitive with the
state of the art tools; while it does not improve the performance uniformly on all
considered benchmarks, it does allow us to solve instances that are not solvable
by other tools, and sometimes to improve performance both compared to a
zone-based approach (Uppaal) and SAT-based algorithms (nuXmv).

3 Compositional Controller Synthesis

3.1 Preliminaries

Games. A finite safety game is a pair (G,Bad) where G is an LTS (QE∪̇QC , q0, Σ, T )
with the set of states given as a partition QE∪̇QC , namely, Environment states
(QE), and Controller states (QC), and Bad ⊆ QE∪̇QC is an objective. The game
is played between two players, namely, Controller and Environment. At each
state q ∈ QC , Controller determines the successor by choosing an edge from q,
and Environment determines the successor from states q ∈ QE . A strategy for
Controller (resp. Environment) maps finite runs of (QE∪̇QC , q0, Σ, T ) ending
in QC (resp. QE) to an edge leaving the last state. A pair of strategies, one for
each player, induces a unique infinite run from the initial state. A run is winning
for Controller if it does not visit Bad; it is winning for Environment otherwise.
A winning strategy for Controller is such that for all Environment strategies,
the run induced by the two strategies is winning for Controller. Symmetrically,
Environment has a winning strategy if for all Controller strategies, the induced
run is winning. A strategy is positional (a.k.a. memoryless) if it only depends on
the last state of the given run.

The parallel composition of (G,Bad) and a deterministic finite automaton F =
(Q′, q′0, Σ, T

′, F ) on alphabet Σ is a new game whose LTS is G‖F in which the
Controller states are QC×Q′, the Environment states are QE×Q′, and the
objective is Bad×F (Notice that Controller thus has a safety objective).

Finite games were extended to the real-time setting as timed games [40,4]. A
timed game is a timed automaton T = (LE∪̇LC , `0, Σ, Inv, C, E,Bad) with the
exception that its edges are labeled by Σ∪{ε} (and not just by Σ as in the previous
section), and the locations are partitioned as LE∪̇LC into Environment locations
and Controller locations. The semantics is defined by letting Environment choose
the delay and the edge to be taken at locations LE , while Controller choose these
from LC . Formally, a strategy for Environment (resp. Controller) is a function
which associates a run that ends in LE (resp. LC) to a pair of delay and an edge
enabled from the state reached after the delay. A run is winning for Controller if
it does not visit Bad. A Controller (resp. Environment) strategy is winning for
objective Bad if for all Environment (resp. Controller) strategies, the induced
run from the initial state is winning (resp. not winning) for Controller. A run r



is compatible with a strategy S for Controller (resp. Environment) if there exists
an Environment (resp. Controller) strategy S′ such that r is induced by S,S′.

The parallel composition of a finite safety game (G,Bad) and a timed automa-
ton T = (L, `0, Σ, Inv, C, E, F ) on common alphabet Σ is the timed game G‖T
where Controller locations are QC×L, and Environment locations are QE×L.

Positional strategies exist both for reachability and safety objectives in finite
and timed games. Both finite and timed games are known to be determined
for reachability and safety objectives. For instance, if Controller does not have
a winning strategy for the safety objective, then Environment has a strategy
ensuring the reachability of Bad [40,4].

Target Timed Game Instances. We consider controller synthesis problems de-
scribed as timed games in the form of (G‖T ,Bad×F ) where (G,Bad) is a finite
safety game, and T is a timed automaton. In addition, we assume that G‖T is
Controller-silent, defined as follows.

Definition 1. The timed game (G‖T ,Bad×F ) on alphabet Σ is Controller-silent
if 1) all Controller transitions are silent; and 2) all Controller locations in T are
urgent, that is, an invariant ensures that no time can elapse.

Hence, we again separate the game G defined on a possibly large discrete
state space while real-time constraints are separately given in T .

Finite game:

e c
robot

open

close

obs left / obs right

obs up / obs down

εl

εr

εu

εd
r

o

Timed automaton:

x ≤ 5 y ≤ 9 z ≤ 10

x ∈ [4, 5]

robot, x := 0

y ∈ [7, 9]

obs up, y := 0

y ∈ [7, 9]

obs down, y := 0

y ∈ [7, 9]
obs right

y := 0

y ∈ [7, 9]
obs left

y := 0

z ≥ 2, close, z := 0

z = 10, open, z := 0

Fig. 3. The sketch of a timed game G‖T modelling a planning problem. The finite
game models a robot and an obstacle moving in a grid world as shown on top right.
The cells r and o show, respectively, the initial positions of the robot and the obstacle.
The robot cannot cross walls (shown in thick segments), and can only cross the door if
it is open. Here four silent transitions were marked with εr, εl, εu, εd for readability; in
reality, these are all labeled by ε.



The intuition behind the semantics is the following: because the game is played
in G‖T and G is Controller-silent, the timed automaton model T is only used to
disallow some of the Environment transitions according to real-time constraints,
while Controller’s actions are instantaneous responses to Environment’s actions
and thus are unaffected by the contraints of T . One can think of the timed
automaton as some form of scheduler that schedules uncontrollable events in the
system, so the order of these is determined by Environment. This assumption is
restrictive; for instance, this excludes controller synthesis problems where the
control strategy is to choose delays to execute some events. Nonetheless, this
asymetric view enables a one-sided abstraction framework presented in the next
section, where Environment transitions are approximated by a DFA.

An example is given in Figure 3. The finite game drawn here only shows
the structure of the game. It has, in addition, integer variables rob x, rob y,

obs x, obs y encoding the positions of the robot and of the obstacle, and a
Boolean variable door to encode the state of the door. The state e belongs to
Environment, which can move the obstacle in any direction, close or open the
door, or let the robot move by going to state c. The state c belongs to Controller.
All its leaving transitions are silent, and correspond to moving the robot in four
directions. These transitions have preconditions, not shown in the figure, that
check whether the moves are possible, and have updates that modify the state
variables. The timed automaton, given as a network of three timed automata,
determine the timings of these events. One can notice, for example, that the
robot is moving faster than the obstacle, and that whenever the door is closed, it
remains so for 10 time units.

3.2 One-Sided Abstraction

Thanks to the assumption we make on considered timed games, we show that by
replacing T by a DFA H that is an overapproximation, we obtain an abstract
game in which Controller strategies can be transferred to the original game. This
is formalized in the next lemma (the proof is in the appendix).

Lemma 2. Consider a Controller-silent timed game (G‖T ,Bad×F ), and a com-
plete DFA H with accepting states FH , satisfying L(T ) ⊆ L(H).

– If Controller wins (G‖H,Bad×FH), then it wins (G‖T ,Bad×F ).

– If Environment wins (G‖T ,Bad×F ), then it wins (G‖H,Bad×FH), and has
a strategy in (G‖H,Bad×FH) whose all compatible runs have traces in L(T ).

Note that in the above lemma, it is crucial that the game is Controller-silent. In
fact, if Controller could take edges that synchronize with T , then we may not
be able to apply a strategy in G‖H to G‖T , since such a strategy may prescribe
traces that are not accepted in T . Moreover, if Controller locations are not urgent,
we would not know how to select the delays when mapping the strategy to G‖T .
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Fig. 4. The learning-based compositional controller synthesis algorithm for the input
timed game G‖T , with G a Controller-silent finite game, and T a label-deterministic
timed automaton. Two automata learning algorithms run in parallel to learn under-
and over-approximations H and H such that H ⊆ L(T ) ⊆ H.

3.3 Learning-Based Compositional Controller Synthesis Algorithm

We now present our compositional controller synthesis algorithm whose overview
is given in Figure 4. The algorithm for controller synthesis is more involved than
the model checking algorithm due to the alternating semantics for two players
in games. It consists in two phases that alternate: the overapproximation phase,
and the underapproximation phase. Each phase runs a DFA learning algorithm
which is interrupted when we switch to the other phase, and continued when
we switch back, until a decision is made. Together, both phases maintain two
approximations, H and H, such that L(H) ⊆ L(T ) ⊆ L(H).

The objective of the overapproximation phase is to attempt to learn a DFA
H satisfying L(T ) ⊆ H, and such that Controller wins in G‖H. The learning
algorithm uses membership and inclusion oracles just like in Section 2.2. Once
such a candidate DFA H is found, the synthesis oracle checks, using finite-state
techniques, whether Controller has a winning strategy in G‖H. If this is the
case, we stop and conclude that Controller wins in G‖T by Lemma 2. Otherwise,
Environment has a winning strategy S in this game; and we switch to the
underapproximation phase.

The goal of the underapproximation is to check whether the given Environment
strategy S can be proved to be spurious. Intuitively, we would like to check
whether L((G‖H)S) ⊆ L(T ) and reject if this is the case. In fact, by Lemma 2,
we know that a winning Environment strategy in G‖T implies that there is such
a strategy S. This is the source of incompleteness of our algoritithm, since this



condition is necessary but not sufficient for Environment to win; that is, the
condition does not guarantee that Environment actually wins in G‖T .

While L((G‖H)S) ⊆ L(T ) can be checked with a timed automaton model
checker (see Checking Containment below), this would mean exploring the large
state space due to G. Since we want to avoid using timed automata model checkers
on such large instances, we rather learn an underapproximation H of L(T ) using
the membership and containment oracles, and use a finite-state model checker to
check L((G‖H)S) ⊆ L(H). Note that although the learning process does require
inclusion checks of the form L(H) ⊆ L(T ), this check is feasible with a timed
automaton model checker since H is typically much smaller than G. If the above
check passes, then we reject the instance, that is, we declare the system not
controllable. Otherwise, some trace w appears in L((G‖H)S) but not in L(H).
If w ∈ L(T ), then we require that w be included in H, and continue the learning
process. Otherwise, S is not valid since it induces w which is not in L(T ). So
we interrupt the current phase and switch back to the overapproximation phase
requiring w to be removed from H.

Membership and inclusion oracles are implemented with a timed automata
model checker. Here, the synthesis oracle can be any finite game solver; we just
need the capability of computing the controlled system (G‖H)S. Such a system is
finite-state, so the strategy containment oracle can be implemented using a finite-
state model checker (since H is deterministic and can thus be complemented). It
remains to explain how the containment oracle is implemented.

Checking Containment L(H) ⊆ L(T ). First, notice that, even with determinism
assumptions on T , the untimed language of the timed automaton complement
of T is not the complement of L(T ). To see this, consider a timed automaton
with a single state which is both initial and accepting, a single clock x, and a
self-loop with guard x = 1, labeled by σ. Then, both L(T ) and L(T c) are the
language σ∗ where T c denotes the timed automaton complement.

Nevertheless, assuming the label-determinism of T , this check can be done by a
simple adaptation of a zone-based exploration algorithm, as follows. Let us assume
that accepting states are reachable from all states of H, which can be ensured
by a preprocessing step. We start exploring the timed automaton H‖T using a
zone-based exploration algorithm [11]. Consider any search node ((qH , qT ), Z)
encountered during the exploration algorithm, reachable by the trace w, where
(qH , qT ) is a location of H‖T , and Z a zone. The exploration algorithm generates
all available successors for σ ∈ Σ. We make the following additional check: If
there is σ′ ∈ Σ such that qH has a successor by σ′, but not T (either because
there is no such edge, or because the guard of the unique edge labeled by σ′ is
not satisfied by Z), then we stop and return the trace wσ′ ∈ L(H) \ L(T ) as a
counterexample to containment. If no such label can be found, the zone-based
exploration will terminate and the algorithm confirms the containment.

As an alternative, one can use testing such as the Wp-method [37] to establish
the containment, as it is customary in DFA learning. In this case, the answer
is approximate in the sense that the conformance test can fail to detect that



containment does not hold. However, this does not affect the soundness of the
overall algorithm since it can only increase false negatives.

3.4 Experiments

Our tool accepts instances G‖T where G is given as a Verilog module, and T
as a TChecker timed automaton. Some of the inputs of the Verilog module are
uncontrollable (chosen by Environment), some others are controllable (chosen by
Controller). We use outputs of the Verilog module to define the synchronization
labels Σ; while TChecker models tag each transition with such a label.

Table 2. The results of the controller synthesis experiments. The columns #Clks, #C,
#M respectively show the number of clocks in the model, the numbers of conjectures
and membership queries made by the compositional algorithm; while |H|, |H| show the
sizes of the DFAs learned by the two phases.

Compositional Algorithm Uppaal TIGA Controllable

#Clks #C #M |H| |H| Time Time

Scheduling genbuf A 3 50 2178 114 26s — yes

Scheduling genbuf B 3 40 1734 96 15s — yes

Scheduling genbuf C 3 45 1503 88 4s — yes

Scheduling counter64 D 3 54 2098 108 26s 14s yes

Scheduling counter64 E 3 37 1454 83 16s 19s yes

Scheduling counter64 F 3 19 21391 19 19 89s 0s no

Planning genbuf A 2 2 17 4 6s — yes

Planning genbuf B 2 2 24 5 9s — yes

Planning genbuf C 2 9 1156 5 5 266s — no

Planning stateless D 2 3 50 9 2s 22s yes

Planning stateless E 2 2 17 4 2s 4s yes

Planning stateless F 2 8 973 5 5 10s 2s no

Membership, inclusion, and containment queries are answered by TChecker.
For the synthesis oracle, we used the game solver Abssynthe [12]. Abssynthe’s
input format is the and-inverter graphs format (AIG). For translating Verilog
modules to AIG circuits, we use berkeley-abc and yosys. Abssynthe is able to
compute the winning strategy S for the winning player; it also computes the
system controlled by S in this case as an AIG circuit. The strategy containment
oracle is implemented using NuSMV; since H is deterministic, one can complement
it, and check whether the intersection with (G‖H)S is empty.

The tool uses two Java threads to implement both learning phases, which
are interrupted and continued while switching phases. Note that the very first
learning step of H and H can be parallelized since the first underapproximation
conjecture H does not depend on S.

We evaluate our algorithm with two classes of benchmarks. The only tool to
which we compare is Uppaal-TIGA [6] since Synthia [45] is not available anymore,
and we are not aware of any other timed game solver.

https://github.com/gaperez64/AbsSynthe
https://github.com/berkeley-abc/abc
https://github.com/YosysHQ/yosys


In the scheduling benchmarks, there are two sporadic tasks that arrive non-
deterministically, but constrained by the timed automaton. The controller must
schedule these using two machines which have internal states, modeled either by a
simple 8-bit counter, or by a genbuf circuit from the SYNTCOMP database. The
scheduling duration depends on the internal state: some states require executing
two external tasks, some others require executing three. The external task has
a nondeterministic duration constrained by the timed automaton. The internal
states change when a task is finalized. The controller loses if all machines are
busy upon the arrival of a new task, or if it schedules a task on a busy machine.
Uppaal TIGA was able to solve the counter models since they induce a smaller
state space, but failed at the genbuf models. The compositional algorithm could
efficiently handle these models. Uppaal was generally able to determine very
quickly when the model is not controllable by finding a small counterstrategy,
while the compositional algorithm had a overhead: it had to learn H and H
before it can find and check the counterexample.

In the planning benchmarks, a robot and an obstacle is moving in a 6×6 grid
(or 9×9 for the stateless case). Each agent can decide to move to an adjacent cell
when they are scheduled, and the scheduling times are determined by a timed
automaton. The goal of the robot is to avoid the obstacles. In the genbuf case,
there are moreover internal states that can cause a glitch and prevent the agents
from performing their moves, depending on their states. Uppaal TIGA was not
able to manage the large state space unlike the compositional algorithm in this
case, but both were able to solve the stateless case.

4 Conclusion

Related Works Perhaps the most closely related approach to our compositional
model checking algorithm is trace abstraction refinement [26]. This was originally
applied to program verification, and consists in building a network of finite
automata that recognizes the program’s control flow paths that are infeasible.
One refines this language by model checking the control flow graph intersected
with the complement of the automaton. Thus, the semantics of the variables
of the program are abstractly represented by the finite automaton. This idea
was applied to timed automata as well [54,15]. However, the generalization of
the counterexamples which ensures convergence turns out to be less effective
in timed automata. We attempted at obtaining an implementation, but could
only confirm the poor performance for model checking timed automata as in [15]
(we do not include these results here). It might be that simpler graph structures
such as control flow graphs of programs are necessary for this approach to scale;
further investigation is also necessary to study better generalization methods.

The learning-based compositional reasoning approach of [44] is also related
to counter-example guided abstraction refinement (CEGAR) [18]. In fact, the
automata learning algorithm builds an overapproximation of one of the compo-
nents, and refines it as needed, guided by counterexamples. The difference is that,



instead of using predicates, one uses automata to represent the overapproximation.
A discussion can also be found in [44].

Learning algorithms for event-recording automata, a subset of timed automata
were studied in [25]. The algorithm of [44] was extended for these automata in
[36]. In the context of parameter synthesis with learning, parameterized systems
were seen as a parallel composition of a non-parameterized component, and a
parameterized component in [2].

Other approaches targeting the formal verification of real-time systems with
large discrete state spaces include encodings of timed automata semantics in
Boolean logic include [34,49]. An extension of and-inverter graphs were used in
[20] that uses predicates to represent the state space of linear hybrid automata.

The abstract interpretation of games were studied in [28] that presents a theory
allowing one to define under- and over-approximations. Abstraction-refinement
algorithms based on counterexamples were given in [27,21]. These ideas were
applied to timed games in [45]. Several abstraction-refinement and compositional
algorithms were given in [12,13] for solving finite-state games given as Boolean
circuits. The synthesis competition gathers every year researchers who present
their game solvers [32,33].

Perspectives The algorithm we presented builds finite-state abstractions of real-
time constraints, that it represents as DFA. The approach is well adapted when
the interaction alphabet between A and T is small; this is the case, for instance,
for distributed systems where the time constraints are used to describe the
approximate period with which each process communicates with its neighbors; so
the alphabet contains only a few symbols per process. Some of the benchmarks we
considered are models of such systems. The approach is less convenient for time-
intensive systems such as, say, job shop scheduling problems where a separate
alphabet symbol is needed for each task.

As future work, we would like to understand when various abstraction schemes
are efficient among the approach presented here, the predicate-abstraction ap-
proach, and zone-based state-space exploration. Currently, all algorithms fail in
some benchmarks. Understanding the strengths of each algorithm might help
designing a uniformly better solution. Currently, we can only verify linear prop-
erties; one might verify branching-time properties by learning automata with
a stronger notion of equivalence such as bisimulation. In fact, an important
limitation is due to learning being slow for large alphabets. Our setting could be
extended to deal with large or symbolic alphabets e.g. [38,39].

For synthesis, our setting is currently restricted by the abstractions we use
since when the algorithm rejects the instace, we cannot conclude whether the
system is controllable or not. Using both the under- and overapproximations
within the finite-state synthesis, for instance, using the three-valued abstraction
approach [21] might allow us to render the approach complete, and to consider a
larger class of timed games such as those that allow Controller to select nonzero
delays.

http://www.syntcomp.org/
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29. Frédéric Herbreteau and Gérald Point. The TChecker tool and librairies. https:

//github.com/ticktac-project/tchecker.
30. Malte Isberner, Falk Howar, and Bernhard Steffen. The ttt algorithm: a redundancy-

free approach to active automata learning. In International Conference on Runtime
Verification, pages 307–322. Springer, 2014.

31. Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learnlib. In
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Anna Ingólfsdóttir, Axel Legay, and Radu Mardare, editors, Models, Algorithms,
Logics and Tools: Essays Dedicated to Kim Guldstrand Larsen on the Occasion of
His 60th Birthday, pages 146–169, Cham, 2017. Springer International Publishing.

40. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers
for timed systems (an extended abstract). In STACS, pages 229–242, 1995.
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A Appendix

Proof (Proof of Lemma 1). This follows from the observation that L(A‖T ) =
L(A) ∩ L(T ), and L(A ‖ H) = L(A) ∩ L(H).

Proof (of Lemma 2). Consider a winning strategy S for Controller in (G‖H,Bad×FH).
Let us define a set A of runs of G‖T as well as a mapping f from A to the runs

of G‖H. We will at the same time define a strategy S′ on G‖T whose compatible



runs will be A. We will do so by imitating S using the mapping f . We define f
on the runs inductively for increasing lengths.

Initially, we let f((qG0 , q
T
0 )) = (qG0 , q

H
0 ) where qT0 is the initial state of T , and

qG0 that of G, and respectively for qH0 and H.

For n ≥ 0, consider a run ρ = (qG0 , q
T
0 ) . . . (qGn , q

T
n ) of A and assume that

f(ρ) = (qG0 , q
H
0 ) . . . (qGn , q

H
n ) is already defined. We distinguish two cases.

If (qGn , q
T
n ) belongs to Environment, then for all its successors (qGn+1, q

T
n+1)

with label σ, we add ρ · (qGn+1, q
T
n+1) to A, and we define f(ρ · (qGn+1, q

T
n+1)) =

(qG0 , q
H
0 ) . . . (qGn , q

H
n )(qGn+1, q

H
n+1) where qHn+1 is the unique successor of qHn with

label σ ∈ Σ, and qHn+1 = qHn if σ = ε. Such a successor exists because H is
complete, and it is unique because H is deterministic.

Otherwise, (qGn , q
T
n ) belongs to Controller, and we consider the move prescribed

by S at (qG0 , q
H
0 ) . . . (qGn , q

H
n ) in G‖H. This consists in a silent edge e of G by

assumption. Let qGn+1 be the successor of qGn through e. We then define f(ρ ·
(qGn+1, q

T
n+1)) = (qG0 , q

H
0 ) . . . (qGn , q

H
n )(qGn+1, q

H
n ). In this case, we let S′ choose

this move from ρ after a 0 delay (recall that this is the only delay possible for
Controller).

Notice that f maps runs that have the same trace and whose first components
are identical.

Consider any infinite run ρ of G‖T compatible with σ′. For any finite prefix ρ′

of ρ, f(ρ′) is a run of G‖H compatible with S. By assumption, f(ρ′) does not
end in Bad×FH . If the first component of the last state of f(ρ′) is not in Bad,
then this is also the case for ρ′. Otherwise, the second component must be outside
of FH , that is, the trace of f(ρ′) is not in L(H). But then the trace of ρ′ is not
in L(T ) by L(T ) ⊆ L(H). Therefore, ρ is winning for Controller.

The first part of the second statement follows from the determinacy of the
games we consider. In fact, if Environment does not win (G‖H,Bad×FH), then
Controller wins. By the first case, Controller wins (G‖T ,Bad×F ), so Environment
loses.

It remains to show that when Environment wins in (G‖T ,Bad×F ), then it
has a strategy in (G‖H,Bad×FH) whose all compatible runs have their traces
in L(T ). This can be done by a construction that is similar to the first case.
Let S be a winning strategy for Environment in G‖T . We define a set B of runs
of G‖H and a mapping g from B to the runs of G‖T . We also define S′ as an
Environment strategy in G‖H whose compatible runs are exactly B. First, B
contains the initial state (qG0 , q

H
0 ) and we define g((qG0 , q

H
0 )) = (qG0 , q

T
0 ). Consider

a run ρ = (qG0 , q
H
0 ) . . . (qGn , q

H
n ) of B on which g is already defined. Assume that it

ends in an Environment state. We consider the delay and edge (d, e) prescribed
by S to g(ρ). Let (qGn+1, q

T
n+1) be the successor of g(ρ) after (d, e). Let qHn+1 be

the successor of qHn on the label of e, and qHn+1 = qHn if the label is ε. We add

ρ(qGn+1, q
H
n+1) to B, and define g(ρ(qGn+1, q

H
n+1)) = g(ρ)(qGn+1, q

T
n+1). We define S′

so that it assings (qGn+1, q
H
n+1) to ρ. If ρ ends in a Controller state, then for all

successors qGn+1 of ρ (via silent transitions), we add ρ(qGn+1, q
H
n ) to B and define

g(ρ(qGn+1, q
H
n )) = g(ρ)(qGn+1, q

T
n ). It follows that S′ is winning for Environment



in G‖H. As in the proof of the first statement, S and S′ induce the same traces
by the mapping g, so we have that all compatible runs under S′ are in L(T ). ut

B Description of Benchmarks

The STS benchmarks are programming logic controller models from [23] and are
part of the TChecker benchmark database. These are known to be difficult to
model check. The compositional algorithm was faster in STS-2, but none of the
tools could solve STS-3.

The real-time broadcast protocol (rt-broadcast) implements a distributed
algorithm made of n = 3 processes that wake up within a period interval, and
stay active within a given time interval. If at least m = 2 of them are awake at
the same time, they perform one step of a computation together and go back to
sleep. The specification is whether a particular common configuration is reachable
within a time bound. Uppaal could not solve these benchmarks. nuXmv could
solve these although the compositional algorithm was often faster.

In the priority-based scheduling examples, a priority-based scheduling algo-
rithm schedules tasks on a single machine. The interarrival times depend on
the internal state of the processes which evolve over time. The internal states
are modeled again by circuits from the SYNTCOMP benchmarks. The first two
models have two tasks, and the last one has three. nuXmv performed very well
on these benchmarks while the compositional algorithm failed on instances with
three processes.

https://github.com/ticktac-project/benchmarks
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