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ALMOST KENMOTSU MANIFOLDS

H. G. NAGARAJA AND UPPARA MANJULAMMA

Abstract. The object of this paper is to study generalized φ-recurrent
almost Kenmotsu manifolds with characteristic vector field ξ belonging to
(k, µ)

′
-nullity distribution. We have showed that these manifolds reduce

to Kenmotsu manifolds with scalar curvature -1. Further we establish the
relations among the associated 1-forms and proved the conditions under
which gradient Ricci almost soliton reduce to gradient Ricci soliton.

1. Introduction

Dileo and Pastore [6] introduced the notion of (k, µ)
′
-nullity distribution and

established some classification results on almost Kenmotsu manifolds[9] with
characteristic vector field ξ belonging to (k, µ)-nullity distribution. As a weaker
version of local symmetry Takahashi [17] introduced the idea of local φ-symmetry
on a Sasakian manifold and study extended to the locally φ-symmetric β-
Kenmotsu manifolds by Shaikh and Hui [14]. As a weaker version of local φ
symmetry, Dubey [8] introduced generalized recurrent manifolds and this no-
tion with generalized Ricci recurrent manifolds have been extensively studied
by De and Guha [2, 3]. Generalizing the idea of local φ-symmetry, De et al.
[4] introduced the notion of φ-recurrent Sasakian manifolds and De et al.[5]
extended the study to φ-recurrent Kenmotsu manifolds. The investigation of
almost Ricci solitons was presented by Pigola et al. [12] by including the con-
dition the parameter λ to be a variable and changed the meaning of Ricci
solitons.

Motivated by above studies, in this paper, we study generalized φ-recurrent
almost Kenmotsu manifolds with characteristic vector field ξ belonging to
(k, µ)

′
-nullity distribution. In section 3, we proved the relations between as-

sociated 1-forms and found eigen value and the corresponding eigenvector of
Ricci operator Q. Also we consider generalized concircularly φ- recurrent and
generalized projective φ- recurrent almost Kenmotsu manifolds. In section 4,
we show that almost gradient Ricci solitons in a generalized concircularly φ-
recurrent and generalized projective φ- recurrent almost Kenmotsu manifolds
reduce to gradient Ricci solitons.
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concircular φ-recurrent, generalized projective φ-recurrent, quasi generalized Ricci-recurent,
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2. Preliminaries

An almost contact manifold is an n-dimensional smooth manifoldM endowed
with a (1, 1)-tensor field φ, a global vector field ξ and a one-form η on M such
that

φ2 = −Id+η⊗ξ, φξ = 0, η◦φ = 0, η(ξ) = 1. (2.1)

In this case, such a manifold will be denoted by (M,φ, ξ, η). A Riemannian
metric g on an almost contact manifold M is said to be compatible with the
almost contact structure (φ, ξ, η) if

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (2.2)

for any vector fields X, Y on M . An almost contact manifold (M,φ, ξ, η) with
a compatible Riemannian metric g is called an almost contact metric manifold
and will be denoted by (M,φ, ξ, η, g). With this structure a 2-form Φ can be
associated such that Φ(X, Y ) = g(X,φY ) for any vector fields X and Y .
An almost contact metric manifold (M,φ, ξ, η, g) is said to be an almost Ken-
motsu manifold if the 1-form η is closed and dΦ = 2η ∧ Φ. It is well known
that the normality of almost contact structure is expressed by the vanishing of
the tensor Nφ = [φ, φ] + 2dη⊗ ξ, where [φ, φ] is the Nijenhuis tensor of φ. The
normality of almost Kenmotsu manifold is expressed by [10]

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, (2.3)

for any vector fields X, Y on M .
In [6], the authors introduced the idea of (k, µ)′ - nullity distribution on an
almost Kenmotsu manifold (M,φ, ξ, η, g), which is defined for any p ∈ M and
k, µ ∈ R as follows:

Np(k, µ)′ ={Z ∈ TpM : R(X, Y )Z = k(g(Y, Z)X − g(X,Z)Y )

+ µ(g(Y, Z)h′X − g(X,Z)h′Y )},
(2.4)

where h′ = h ◦ φ and h = 1
2
Lξφ satisfying

hξ = 0, trh = 0, tr(hφ) = 0, hφ+ φh = 0. (2.5)

In an almost Kenmotsu manifold with the characteristic vector field ξ belonging
to (k, µ)

′
-nullity distribution, the following hold:

h
′
ξ = 0, h

′2
= (κ+ 1)φ2, (2.6)

∇Xξ = −φ2X − φhX, (2.7)

φlφ− l = 2(h2 − φ2), (2.8)

where l = R(·, ξ)ξ.
From equation (2.4), we obtain

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h
′
X − η(X)h

′
Y ]. (2.9)

S(Y, Z) = (n− 1)kg(Y, Z)− µg(h′Y, Z). (2.10)

QY = (n− 1)kY − µh′
Y. (2.11)
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r = n(n− 1)k. (2.12)

Also we have

(∇Xh
′
)Y = −g(h

′
X+h

′2X, Y )ξ−η(Y )(h
′
X+h

′2X)−(µ+2)η(X)h
′
Y. (2.13)

A Riemannian manifold (M, g) is called generalized recurrent [2] if its curvature
tensor R of type (1,3) satisfies

∇R = A⊗R +B ⊗G, (2.14)

and (M, g) is called a generalized Ricci-recurrent manifold [3] if its Ricci tensor
S of type (0,2) is not identically zero and satisfies the condition

∇S = A⊗ S +B ⊗ S, (2.15)

where A and B are non-vanishing 1-forms defined by A(·) = g(·, ρ1), B(·) =
g(·, ρ2), where ρ1 and ρ2 are unit vector fields.

Specially, if the 1-form B vanishes, then (2.14) turns into the notion of
recurrent manifold introduced by Walker [18] and (2.15) reduced to the notion
of Ricci-recurrent manifold introduced by Patterson [11].
A Riemannian manifold (M, g) is called a super generalized Ricci-recurrent
manifold [13] if its Ricci tensor S of type (0,2) satisfies the condition

∇S = α⊗ S + β ⊗ g + γ ⊗ η ⊗ η, (2.16)

where α, β, and γ are non-vanishing unique 1-forms. In particular, if β = γ,
then (2.16) reduces to the notion of quasi-generalized Ricci-recurrent manifold
introduced by Shaikh and Roy [15].
A Riemannian manifold (M, g) is said to be an almost Ricci soliton, if there
exist a complete vector field X and a smooth soliton function λ : M −→ R
satisfying

S(X, Y ) +
1

2
LXg(X, Y ) = λg(X, Y ), (2.17)

where LX is the Lie derivative with respect to vector field X. An almost Ricci
soliton (M, g,X, λ) will be called expanding, steady or shrinking, if λ < 0,
λ = 0 or λ > 0 respectively. If the vector field X is gradient of a smooth
function f : M −→ R, the manifold will be called a gradient almost Ricci
soliton. In this case, the preceding equation becomes

S +∇2f = λg, (2.18)

where ∇2f represents the Hessian of f .

3. Generalized φ-recurrent Almost Kenmotsu manifolds

Definition 3.1. An almost Kenmotsu manifold is said to be generalized φ-
recurrent if it satisfies the relation

φ2((∇WR)(X, Y )Z) = A(W )(R(X, Y )Z) +B(W )(G(X, Y )Z), (3.1)
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for all X, Y, Z,W ∈ χ(M), where A and B are non-vanishing 1-forms defined
by A(·) = g(·, ρ1), B(·) = g(·, ρ2), where ρ1 and ρ2 are unit vector fields and
the tensor G of type (1,3) is given by

G(X, Y )Z = (X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y, (3.2)

for all X, Y, Z ∈ χ(M);χ(M) being the lie algebra of smooth vector fields on
M and ∇ denotes the operator of covariant differentiation with respect to the
metric tensor g. The 1-forms A and B are called the associated 1-forms of the
manifolds.

Proposition 3.1. A generalized φ- recurrent almost Kenmotsu manifold M
with ξ belonging to (k, µ)

′
nullity distribution, the vector fields of associated

1-forms are co-directional. Further in M the following are equivalent:
(i) φ2((∇ρ1R)(X, Y )Z) = 0
(ii) M is of constant sectional curvature k.

Proof. We suppose that the manifold M is a generalized φ-recurrent almost
Kenmotsu manifold.

Differentiating (2.9) covariantly with respect to W , we obtain

(∇WR)(ξ, Y )Z =k[η(Z)η(W )Y − g(Z, h
′
W )Y + η(∇WZ)h

′
Y ]

+ µ[g(Z, h
′
W )h

′
Y − η(Z)η(W )h

′
Y + η(Z)

(∇Wh
′
)(Y )− η(∇WZ)h

′
Y ].

(3.3)

By virtue of (2.1) and (3.1), we get

−(∇WR)(X, Y )Z + η((∇WR)(X, Y )Z)ξ = A(W )R(X, Y )Z+

B(W )[g(Y, Z)X − g(X,Z)Y ].
(3.4)

Setting X = ξ in (3.4), we have

−(∇WR)(ξ, Y )Z + η((∇WR)(ξ, Y )Z)ξ = A(W )R(ξ, Y )Z+

B(W )[g(Y, Z)ξ − g(ξ, Z)Y ].
(3.5)

Using (2.4), (3.3) in (3.5), we obtain

k{g(Z, h
′
W )Y − η(∇WZ)Y − η(Z)η(W )Y }+ µ{η(Z)(∇Wh

′
)Y

− η(Z)η(W )h
′
Y + g(Z, h

′
W )h

′
Y − η(∇WZ)h

′
Y }+ k{η(Z)η(W )

η(Y )ξ − g(Z, h
′
W )η(Y )ξ + η(∇WZ)η(Y )ξ} − µ{η(Z)η(∇Wh

′
)

η(Y )ξ} = A(W )
[
k{g(Y, Z)ξ − η(Z)Y } − µ{η(Z)h

′
Y }
]

+B(W )
[
g(Y, Z)ξ − η(Z)Y

]
.

(3.6)

For any vector fields Y , Z orthogonal to ξ, (3.6) takes the form

k[g(Z, h
′
W )Y−η(∇WZ)Y ] + µ[g(Z, h

′
W )h

′
Y − η(∇WZ)h

′
Y ]

= A(W ){kg(Y, Z)ξ}+B(W )g(Y, Z)ξ.
(3.7)
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Contracting the above equation with ξ , we obtain

B(W ) = −kA(W ). (3.8)

Putting (3.8) and (3.2) in (3.1), we obtain

φ2((∇WR)(X, Y )Z) = A(W )
[
R(X, Y )Z − k{g(Y, Z)X − g(X,Z)Y }

]
. (3.9)

Taking W = ρ1 in (3.9), we get

φ2((∇ρ1R)(X, Y )Z) = R(X, Y )Z − k{g(Y, Z)X − g(X,Z)Y }. (3.10)

The result follows from (3.10). �

We have the following result due to Dileo and Pastore [7]:

Theorem. A: An almost Kenmotsu manifold of constant sectional curvature
K is a Kenmotsu manifold and K = −1.

From Theorem A and Proposition(3.1), we have the following:

Corollary 3.1. If a generalized φ- recurrent almost Kenmotsu manifold M
with ξ belonging to (k, µ)

′
nullity distribution satisfies φ2((∇ρ1R)(X, Y )Z) = 0

then it reduces to a Kenmotsu manifold, where ρ1 is a vector field of associated
1-form of M . In this case sectional curvature K = k = −1.

Theorem 3.1. In a generalized φ-recurrent almost Kenmotsu manifold (M, g),
the characteristic vector field ξ and the vector field ρ1k + ρ2 associated to the
1-form Ak +B are co-directional.

Proof. Taking inner product of (3.4) with ξ and using first Bianchi’s identity,
we get

A(W )η(R(X, Y )Z) + A(X)η(R(Y,W )Z) + A(Y )η(R(W,X)Z)

+B(W )[η(X)g(Y, Z)− η(Y )g(X,Z)] +B(X)[η(Y )g(W,Z)

− η(W )g(Y, Z)] +B(Y )[η(W )g(X,Z)− η(X)g(W,Z)] = 0.

(3.11)

Using (2.4) in (3.11), we obtain

(A(W )k +B(W ))[g(Y, Z)η(X)− g(X,Z)η(Y )]

+ (A(X)k +B(X))[g(W,Z)η(Y )− g(Y, Z)η(W )]

+ (A(Y )k +B(Y ))[g(X,Z)η(W )− g(W,Z)η(X)] = 0,

(3.12)

for any vector fields X, Y , Z, W . Let {ei, i = 1, 2, 3....n} be a local orthonormal
basis of tangent space at each point of the manifold M . Setting Y = U = ei in
the above equation and taking summation over i : 1 ≤ i ≤ n, we get

[A(W )k +B(W )]η(X) = [A(X)k +B(X)]η(W ). (3.13)

Putting X = ξ in (3.13), we obtain

[A(W )k +B(W )] = [η(ρ1)k + η(ρ2)]η(W ), (3.14)

for any vector field W . The result follows from equations (3.13) and (3.14). �
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Theorem 3.2. In a generalized φ-recurrent almost Kenmotsu manifold ρ1
is an eigen vector of the ricci operator Q corresponding to the eigen value(−(n− 1)

2

)
.

Proof. Taking cyclic sum of (3.4) in W , Y , X and then by virtue of Bianchi’s
second identity we have

A(X)R(Y,W )Z + A(Y )R(W,X)Z + A(W )R(X, Y )Z

+B(W )[g(Y, Z)X − g(X,Z)Y ]

+B(X)[g(W,Z)Y − g(Y, Z)W ]

+B(Y )[g(X,Z)W − g(W,Z)X] = 0.

(3.15)

Contracting (3.15) with U , we obtain

A(X)g(R(Y,W )Z,U) + A(Y )g(R(W,X)Z,U) + A(W )g(R(X, Y )Z,U)

+B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)]

+B(X)[g(W,Z)g(Y, U)− g(Y, Z)g(W,U)]

+B(Y )[g(X,Z)g(W,U)− g(W,Z)g(X,U)] = 0.
(3.16)

Setting Y = U = ei in (3.16), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold and summing over i = 1, 2, 3...n, we get

A(X)S(W,Z) + A(ei)g(R(W,X)Z, ei) + A(W )g(R(X, ei)Z, ei)

+B(W )[g(X,Z)(1− n)] +B(X)[(n− 1)g(W,Z)]

+B(ei)[g(X,Z)g(W, ei)− g(W,Z)g(X, ei)] = 0.

(3.17)

Again taking Z = X = ei in (3.17) and then taking summation over i, 1 ≤ i ≤
n, we get

S(W, ρ1) =
(n− 1)2

2
B(W ) +

r

2
A(W ). (3.18)

Using (3.8), (2.12) in (3.18), we obtain

Qρ1 =
(−(n− 1)

2

)
ρ1.

�

In an almost Kenmotsu manifold for any (1,3) tensor K, we define

φ2((∇WK)(X, Y )Z) = A(W )(K(X, Y )Z) +B(W )(G(X, Y )Z), (3.19)

for all X, Y, Z,W ∈ χ(M), where A and B are defined as in (3.1).
The concircular curvature and projective curvature tensors of type (1,3) are
respectively given by

C̃(X, Y )Z = R(X, Y )Z − r

n(n− 1)
G(X, Y )Z, (3.20)
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and

P (X, Y )Z = R(X, Y )Z − 1

n− 1
(S(Y, Z)X − S(X,Z)Y ), (3.21)

for all X, Y , Z ∈ χ(M).

Theorem 3.3. A generalized concircularly φ-recurrent almost Kenmotsu man-
ifold M is a super generalized Ricci recurrent manifold.

Proof. If M is an almost Kenmotsu manifold where (3.19) holds, then for a
concircular curvature tensor C̃, we have

φ2((∇W C̃)(X, Y )Z) = A(W )(C̃(X, Y )Z) +B(W )(G(X, Y )Z), (3.22)

where A and B are defined as in (3.1).
Using (2.1) in (3.20), we get

−(∇W C̃)(X, Y )Z + η((∇W C̃)(X, Y )Z)ξ = A(W )(C̃(X, Y )Z)

+B(W )[g(Y, Z)X − g(X,Z)Y ].
(3.23)

Contracting with U in (3.23), we obtain

− g((∇W C̃)(X, Y )Z,U) + η((∇W C̃)(X, Y )Z)η(U)

= A(W )
[
g(C̃(X, Y )Z,U) +B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].

(3.24)

Setting X = U = ei in (3.24), and using (3.20), we get

(∇WS)(Y, Z) = −A(W )S(Y, Z) +

[
(Wr)− n(n− 1)2B(W )

n(n− 1)

]
g(Y, Z)

−
[

(Wr)

n(n− 1)

]
η(Y )η(Z).

(3.25)

Above equation can be written as

∇S = A1 ⊗ S + ψ ⊗ g +H ⊗ η ⊗ η, (3.26)

where

A1(W ) = −A(W ),

ψ(W ) =
(Wr)− n(n− 1)2B(W )

n(n− 1)
,

H(W ) = −
[ (Wr)

n(n− 1)

]
.

�

Theorem 3.4. In a generalized projectively φ-recurrent almost Kenmotsu man-

ifold M with constant scalar curvature we have B(W ) =
−r

n(n− 1)
A(W ).
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Proof. We assume that an almost Kenmotsu manifold M is generalized projec-
tively φ-recurrent. Then from (3.19), we have

φ2((∇WP )(X, Y )Z) = A(W )(P (X, Y )Z) +B(W )(G(X, Y )Z), (3.27)

where A and B are defined as in (3.1).
By virtue of (2.1), it follows from (3.27), that

−(∇WP )(X, Y )Z + η((∇WP )(X, Y )Z)ξ = A(W )(P (X, Y )Z)

+B(W )[g(Y, Z)X − g(X,Z)Y ].
(3.28)

Taking inner product of (3.28) with U , we obtain

−g((∇WP )(X, Y )Z,U)+η((∇WP )(X, Y )Z)η(U) = A(W )(g(P (X, Y )Z,U))

+B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].
(3.29)

Setting X = U = ei in (3.29) and summing over i = 1, 2, 3....n, we get

(∇WS)(Y, Z) = −A(W )S(Y, Z)− [(n− 1)B(W )]g(Y, Z). (3.30)

Letting Y = Z = ei in (3.30), we obtain

(Wr) = −
(
rA(W ) + n(n− 1)B(W )

)
.

�

4. Gradient Almost Ricci Solitons on Almost Kenmotsu
manifolds

In this section we consider gradient almost Ricci soliton (M, g,X, λ). i.e. an
almost Ricci soliton (M, g,X, λ) when the vector field X is the gradient of a
smooth function f ∈ C∞(M). Accordingly equation (2.18) becomes

∇YDf = QY + λY, (4.1)

where D is the gradient operator of g and Q is Ricci operator.

Theorem 4.1. Let M be an almost Kenmotsu manifold admitting gradient al-
most Ricci soliton. If M is generalized concircularly φ-recurrent or generalized
projectively φ-recurrent then the following are equivalent :
(i) Xλ = (ξλ)η(X). for any vector field X
(ii) f is constant along kφ2X − µh′

X.

Proof. By virtue of (4.1), we obtain

R(X, Y )Df = (∇XQ)Y − (∇YQ)X − (Y λ)X + (Xλ)Y, (4.2)



ALMOST KENMOTSU MANIFOLDS 9

Case(i): Suppose M is generalized concircularly φ- recurrent. From (3.25),
we get

(∇YQ)X = A(Y )QX +
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)A(Y )
+ (n− 2)B(Y )

]
X

−
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
A(Y )−B(Y )

]
η(Y )ξ.

(4.3)

Substituting (4.3) in (4.2), we get

R(X, Y )Df = A(Y )QX − A(X)QY

+
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
)A(Y ) + (n− 2)B(Y )

]
X

−
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
)A(Y )−B(Y )

]
η(X)ξ

−
[ (Xr)

n(n− 1)
− (k − r

n(n− 1)
)A(X) + (n− 2)B(X)

]
Y

+
[ (Xr)

n(n− 1)
− (k − r

n(n− 1)
)A(X)−B(X)

]
η(Y )ξ

− (Y λ)X + (Xλ)Y.

(4.4)

Taking inner product with ξ in (4.4), we obtain

g(R(X, Y )Df, ξ) = A(Y )g(X,Qξ)− A(X)g(Y,Qξ)

+
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
)A(Y ) + (n− 2)B(Y )

]
η(X)

−
[ (Y r)

n(n− 1)
− (k − r

n(n− 1)
)A(Y )−B(Y )

]
η(X)

−
[ (Xr)

n(n− 1)
− (k − r

n(n− 1)
)A(X) + (n− 2)B(X)

]
η(Y )

+
[ (Xr)

n(n− 1)
− (k − r

n(n− 1)
)A(X)−B(X)

]
η(Y )

− (Y λ)η(X) + (Xλ)η(Y ).
(4.5)

Interchange Df by ξ and using (2.10) in (4.5), we get

g(R(X, Y )ξ,Df) = (Y λ)X − (Xλ)Y. (4.6)

Using (2.9), (2.11) in (4.6), we obtain

k
[
g(X,Df)η(Y )− g(Y,Df)η(X)

]
+ µ
[
g(h

′
X,Df)η(Y )− g(h

′
Y,Df)η(X)

]
= (Y λ)η(X)− (Xλ)η(Y ).

(4.7)
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Putting Y = ξ in (4.7), we get

k
[
g(X,Df)− η(X)η(Df)

]
+ µ
[
g(h

′
X,Df)

]
= (ξλ)η(X)− (Xλ). (4.8)

The above equation may be rewritten in the form

(kφ2X − µh′X)f = Xλ− (ξλ)η(X). (4.9)

Case (ii): Suppose M is generalized projectively φ-recurrent. Then from
(3.30), we have

(∇YQ)X = A(Y )QX −
[
A(Y )k(

2n− 3

n− 1
) + (n− 2)B(Y )

]
X

+
[
A(Y )k(

2n− 3

n− 1
) +B(Y )

]
η(X)ξ

− (Y λ)X + (Xλ)Y.

(4.10)

Using (4.10) in (4.2) and proceeding as in case (i), we obtain (4.9). This
completes the proof. �

Remark 4.2. In view of Theorem 4.1, we note that gradient almost Ricci soli-
ton on a generalized concircularly φ-recurrent (or generalized projectively φ-
recurrent) almost Kenmotsu manifold M reduces to gradient Ricci soliton if f
is constant along kφ2X − µh′

X.
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