Improved electrochemical performance for high voltage spinel LiNi0.5Mn1.5O4 modified by supercritical fluid chemical deposition - Archive ouverte HAL Access content directly
Journal Articles ACS Applied Materials & Interfaces Year : 2023

Improved electrochemical performance for high voltage spinel LiNi0.5Mn1.5O4 modified by supercritical fluid chemical deposition

Abstract

Among candidates at the positive electrode of the next generation of Li-ion technology and even beyond post Li-ion technology as all-solid-state batteries, spinel LiNi0.5Mn1.5O4 (LNMO) is one of the favorites. Nevertheless, before its integration into commercial systems, challenges still remain to be tackled, especially the stabilization of interfaces with the electrolyte (liquid or solid) at high voltage. In this work, a simple, fast, and cheap process is used to prepare a homogeneous coating of Al2O3 type to modify the surface of the spinel LNMO: the supercritical fluid chemical deposition (SFCD) route. This process is, to the best of our knowledge, used for the first time in the battery field. Significantly improved performance was demonstrated vs those of bare LNMO, especially at high rates and for highly loaded electrodes.
Embargoed file
Embargoed file
Embargoed file
0 9 8
Year Month Jours
Avant la publication
Embargoed file
0 9 8
Year Month Jours
Avant la publication

Dates and versions

hal-03947373 , version 1 (19-01-2023)

Identifiers

Cite

Gwenaëlle Courbaron, Emmanuel Petit, Jon Serrano-Sevillano, Christine Labrugère-Sarroste, Jacob Olchowka, et al.. Improved electrochemical performance for high voltage spinel LiNi0.5Mn1.5O4 modified by supercritical fluid chemical deposition. ACS Applied Materials & Interfaces, 2023, 15 (2), pp.2812-2824. ⟨10.1021/acsami.2c14777⟩. ⟨hal-03947373⟩
23 View
1 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More