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a b s t r a c t 

A new method based on predictive capacity of Feedforward Artificial Neural Networks (FANN) is pro- 

posed to estimate the divergence of the radiative flux in an axisymmetric domain. Training and validation 

databases have been built thanks to results given by the SNB-CK model and computed accordingly with 

a null collision Monte Carlo algorithm. The major aim of this work is to combine advantages of spectral 

models in terms of accuracy and the computational efficiency of neural networks in order to make possi- 

ble the accurate modeling of radiative heat transfer. As a result, ANNs are able to model the radiative flux 

divergence on the basis of training data and some keys to avoid the pitfalls related to ANNs are provided. 

© 2022 Elsevier Ltd. All rights reserved. 

1. Introduction 

Radiative heat transfer for combustion applications is a major 

issue in coupled simulations. In an environment where tempera- 

tures and concentrations of radiative species are high, this heat 

transfer mode is predominant and has to be well-modeled. An 

accurate computational thermal analysis allows an optimal sys- 

tem design with regards to reduction of weight and fuel con- 

sumption, more accurate modeling of pollutant formation, increas- 

ing of global engine lifetime or more accurate maintenance plan 

among others. Unfortunately, accurate radiative heat transfer mod- 

eling requires a lot of computational resources whereas, in multi- 

physics modeling, most of them are used by Computational Fluid 

Dynamics (CFD) and combustion calculations. Artificial Neural Net- 

works (ANN) have already been investigated in heat transfer ap- 

plications. This tool has been used for heat transfer data analy- 

sis [1] , for thermal engineering [2–5] , for the calculation of heat 

transfer [6,7] . In more specific cases, neural networks have been 

studied several times for radiative transfer calculation. Yarahmadi 

et al. [8] used Monte Carlo method to generate data to train a 

neural network in order to model the radiative transfer within an 

enclosure with homogeneous and heterogeneous wall emissivities. 

∗ Corresponding author. 

E-mail address: alex.royer@univ-lorraine.fr (A. Royer) . 

Sun et al. [9] trained ANN to efficiently compute cross sections for 

SLW model. Mishra and Molinaro [10] used Physic Informed Neural 

Network to model radiative heat transfer. Neural networks com- 

bined with bayesian optimization has also been used to replace ef- 

ficiently heavy lookup table in aim to predict k-distributions [11] . 

An original and effective use of neural networks for modeling ra- 

diative transfers at high temperature is proposed by André et al. 

[12] . The authors implement recurrent networks coupled to an l- 

distribution model. The authors succeed in giving physical mean- 

ing to the network parameters and removing the complex phase of 

defining the topology. 

In this work, we use neural networks to directly predict the di- 

vergence of the radiative flux. We propose a coupling between a 

Monte Carlo algorithm for the generation of training points and 

a Bayesian method to train and determine the network topology. 

The reduced size of networks allows to reduce the training time 

and to suppress the topology optimization phase generally neces- 

sary when using this type of tool. 

Combustion modeling in constrained environments is difficult 

because of the multi-scale and multi-physical phenomena that 

need to be taken into account and radiative heat transfer is only 

one of the critical points. Nevertheless, the search for a reduc- 

tion in computation time can not be achieve by a loss of accu- 

racy. Indeed, the major issue here is to solve with a high degree 

of accuracy transfer phenomena while limiting the use of com- 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123610
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Nomenclature 

Greek Symbols 

α, β Regularization hyperparameters 

δ Dirac impulsion 

� l 
j 

Sensitivity of the cost function towards the jth neu- 

ron of the lth layer 

ε Relative error 

γ Number of effective parameters 

κabs,η Monochromatic absorption coefficient ( m 

−1 ) 

κ soot 
abs,η

Monochromatic absorption coefficient of soot ( m 

−1 ) 

κn,η Null collision coefficient ( m 

−1 ) 
� κη Monochromatic extinction coefficient ( m 

−1 ) 

η Wavenumber ( cm 

−1 ) 

÷q Divergence of the radiation flux ( W · m 

−3 ) 

σ Activation function of the neuron 

σ � Derivative of the activation function of the neuron 

τη Monochromatic transmissivity 

μ Learning rate 

νi i th parameter to be minimized 

Latin Symbols 

a l 
j 

Output of the jth neuron of the lth layer after acti- 

vation function 

b Biais of a neuron 

B, S Coefficients depending on the mole fraction, the 

pressure and other parameters 

C Cost function 

C x Cost of one training set 

E D Mean squared error 

E W 

Sum of squares of the network weights 

f v Soot volume fraction 

f(k) Inverse of the Laplace transformation of the SNB gas 

transmissivity 

g(k) Cumulative of f(k) function 

He Hessian Matrix of the training set 

I Identity matrix 

J Jacobienne matrix 

k SNB gas transmissivity 

L Isothermal and homogeneous path of a photon 

L Length of the geometry (m) 

l Free path of a photon (m) 

I η Monochromatic radiation intensity ( W / m 

−3 / sr / cm ) 

N Number of training set 

Nmc Finite and large integer number

n Total number of parameters in the network 

p X Probability density function 

P Pressure (bar) 

q Wall radiation flux ( W · m 

−2 ) 

R Radius of the geometry (m) 

r Radial coordinate (m) 

r i Randomly generated number between 0 and 1 

T Temperature (K) 

u Photon direction 

v Error vector 

w j jth weight of a neuron 

x Photon location 

x Longitudinal coordinate (m) 

x j jth input of a neuron 

x H 2 O H 2 O mole fraction 

x CO 2 CO 2 mole fraction 

x k Parameter of the network 

z Weighted sum at neuron output 

Superscripts 

b Relative to black body radiative properties 

L Output network layer 

l lth network layer 

puting resources in order to be able to use them to lift other 

important locks. ANN are complex and non-linear approximators 

and have shown in many other domains their ability to gener- 

alize multi-variant functions [13] . Here a Monte Carlo algorithm 

with a spectral model is coupled with an ANN to predict the ra- 

diative heat flux and its divergence over an entire field. The devel- 

opment of Monte Carlo method applied to radiative transfer prob- 

lems dates back to the 1960s with the work of Howell and Perl- 

mutter [14,15] . Benefiting from methodological and computer ad- 

vances, the method is well mastered in applications of thermal ra- 

diation in participating media [16,17] where it is considered as the 

reference and validation method. The extension of this method to 

heterogeneous participating media through the null collision for- 

mulation [18–20] allows the efficient consideration of real appli- 

cation cases. However, although the Monte Carlo method is recog- 

nized as a reference method for radiative transfer, it is most effec- 

tive for performing probe calculations. The use of ANNs makes it 

possible to overcome this limitation to obtain field values of the ra- 

diative quantities of interest. The main objective of this work is to 

demonstrate the multivariate regression capabilities of neural net- 

works in the prediction of a complete field of a value of interest, 

based on a reduced number of training points. The results com- 

municated in this paper, based on a benchmark case known in the 

radiative transfer community, are the basis for the construction of 

new accurate and efficient radiation modeling methodologies. 

This paper is organized as follows: 

• Section 2 is dedicated to the Radiative Transfer Equation (RTE) 

and its resolution by the Monte Carlo method in its classical 

and null-collision formulations. 
• In Section 3 the gas model used and how soot has been taken 

into account are described. 
• Section 4 focuses on Feedforward Artificial Neural Networks 

(FANN) and BackPropagation algorithm, followed by explana- 

tions about how this method is interfaced and connected with 

Monte Carlo algorithm to predict radiative heat flux distribu- 

tions. 
• In Sections 5 and 6 , three well-known benchmark validation 

cases are presented and a validation of the Monte Carlo algo- 

rithm is performed. 
• In Section 7 , results obtained with this new method based on 

regression abilities of FANN are presented and compared with 

Monte Carlo reference results for different study cases. 
• Finally, Section 7.3 presents a comparison between ANN perfor- 

mance and other interpolation methods. 

2. Solving the radiative transfer equation (RTE) with a null 

collision Monte Carlo algorithm 

2.1. Stochastic formulation of the radiative transfer equation (RTE) 

Here we consider radiative transfer in participating and non- 

scattering media. The spectral absorption coefficient is highly de- 

pendent on many variables such as temperature, pressure, soot 

volume fraction or species concentrations. Due to a very differ- 

ent radiative behavior between gas and soot, we usually split the 

absorption coefficient expression into two distinct contributions. 

The models used for gas and soot are presented respectively in 

Section 3.1 and 3.2 . 
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In order to solve the RTE, the choice was made to use the 

Monte Carlo method on the one hand because it is a reference in 

the relevant field and on the other hand because it has the ad- 

vantage of providing information on the accuracy of the result ob- 

tained. Indeed, obtaining the statistical error associated with the 

quantity of interest makes it possible to control the quality of the 

results which will be provided to the neural networks thereafter. 

In this case, RTE is usually expressed in its integral form. Thus, 

the spectral transmissivity τη(x , u , l) is the probability for a pho- 

ton at location x to travel a free path l in the direction u in the 

medium without being absorbed. If we consider that this proba- 

bility is independent of the distance already travelled, in a non- 

scattering medium, we can define the transmissivity according to 

Beer-Lambert’s law [21] [ 22 , chap. 9.11] as described in Eq. (1) . 

τη(x , u , l) = exp 

�
−

� l 

0 

κabs,η(x + l � u )d l � 
�

(1) 

As the transmissivity is equal to the exponential of the optical 

thickness, we can express the radiation intensity at a location x 0 
in the direction u 0 as the spatial integral over the backward path 

] − ∞ , x 0 ] of an emission term attenuated according to the Beer- 

Lambert law. 

I η(x 0 , u 0 ) = 

� x 0 
−∞ 

κabs,η(x )d x exp 

�
−

� x 0 
x 

κabs,η( x 
� )d x � 

�
I b η(x ) (2) 

With this formulation, the spectral radiation intensity is written 

as the expected value of a random variable and can be solved with 

a Monte Carlo algorithm. 

We can then reformulate Eq. (2) introducing the characteristic 

probability density function of the Beer-Lambert’s law and thus ob- 

taining a statistical formulation of the radiation intensity (Eq. (4) ). 

Equation (5) is a probability density which governs the probability 

of a photon to be absorbed by the medium. This probability in- 

creases with the distance between x 0 and x and the value of the 

absorption coefficient. 

I η(x 0 , u 0 ) = 

� x 0 
−∞ 

p X (x )d x I 
b 
η(x ) (3) 

With the probability density function : 

p X (x ) = κabs,η(x ) exp 

�
−

� x 0 
x 

κabs,η( x 
� )d x � 

�
(4) 

I η(x 0 , u 0 ) = E [ I b η(x )] = lim 

N mc −→ ∞ 

� 

1 

N mc 

N mc � 

i =1 

I b η(x ) 

� 

(5) 

In practice, N mc is a finite and large enough number. As men- 

tioned above, the control of uncertainty is probably the main 

strength of Monte Carlo method because it is always possible to 

give a confidence interval with a result of the simulation. If the 

variance is too high, it is possible to reduce it by increasing N mc , 

or with more sophisticated techniques of variance reduction [ 22 , 

20.10]. The wall flux can be defined as the integral of all the spec- 

tral radiation intensities from the the incoming hemisphere. Nu- 

merically, this integral can be estimated as the sum of all the 

Monte Carlo realizations, according to Eq. (3) : 

q (x 0 ) = 

� η

0 

� 2 π

0 

I η� ( x 0 , u 

� ) d η� d u 

� (6) 

The computation of the divergence of the flux ÷q corresponds 

to the integral of the net radiation intensity at point x 0 over the 

space. Here, we consider an isotropic domain. The divergence of 

the flux can be expressed as follows: 

÷q (x 0 ) = 

� η

0 

d η� 
� 4 π

0 

κabs,η( x 0 ) 
	
I 0 η� ( x 0 − I η� ( x 0 , u 

� ) 


d u 

� (7) 

2.2. Null-collision formulation 

In a homogeneous medium, it is easy to calculate the mean free 

path l i of the photons. An analytical solution exists and only de- 

pends on the absorption coefficient of the medium: 

l i = − ln (1 − r i ) 

κabs,η
(8) 

Where r i is a randomly generated number between 0 and 1. In 

a heterogeneous medium, it is no longer possible to define a mean 

free path. Indeed, it is no longer possible to integrate the opti- 

cal thickness of the medium analytically [18] . In terms of resolu- 

tion, this characteristic makes things very complex from a numer- 

ical point of view. There are techniques to overcome this difficulty, 

which usually involve either discretizing the space or inversing the 

optical thickness rather than the free path. In both cases and de- 

spite a very high computational cost, the exact nature of Monte 

Carlo method is lost because a numerical bias appears that is dif- 

ficult to quantify. To overcome this limitation, a null collision al- 

gorithm is used [18] . As highlighted by Howell and Daun [23] , this 

approach leads to computational savings and simplification of the 

equations due to its meshless nature, enabling highly detailed sim- 

ulations of heterogeneous media. 

While it is used in its purely absorbing form here, there is no 

additional difficulty in taking scattering phenomenon into account 

with this method. The principle behind null collision algorithm is 

based on a theoretical field of a new majoring extinction coeffi- 

cient � κη defined as follows: 

� κη = κabs,η + κn,η (9) 

In practice, the null collision coefficient κn,η is completely ar- 

bitrary and is never expressed. It is simply defined as the differ- 

ence between � κη and κabs,η . The principle is that � κη is a majo- 

rant of the absorption coefficient field. The null collision coefficient 

then becomes an adjustment variable. However, the integration of 

this new coefficient should not change the physics of the problem. 

We can thus consider that the events related to null collisions fi- 

nally correspond to a forward scattering. Mathematically, adding 

this type of collision to the differential form of the RTE leads to: 

u . ∇I η(x , u ) = −
	
κabs,η(x ) + κn,η(x ) 



I η(x , u ) + κabs,η(x ) I 

b 
η

+ κn,η(x ) 

� 

4 π
δ(u − u 

� ) I η(x , u 

� ) d u 

� (10) 

This formulation is therefore rigorously equivalent to the clas- 

sical formulation of the RTE for a purely absorbing medium. Based 

on the Eq. (10) , a more relevant equation is deduced. Null collision 

is a forward scattering event represented by a Dirac phase func- 

tion. We can thus complete Eq. (3) in the following way: 

I η( x 0 , u 0 ) = 

� + ∞ 

0 

dl � � p X ( x 
� ) 

×
�
κabs,η( x 

� ) 
� κη( x � ) 

I b η( x 
� ) + 

κn,η( x � ) 
� κη( x � ) 

� 

4 π
δ( u 0 − u 

� ) I η( x � , u 

� ) d u 

� 
�

(11) 

Where x = x 0 − l and � p X ( x 
� ) is analogous to p X (x ) (see Eq. (4) ): 

� p X ( x 
� ) = 

� κη(x ) exp 

�
−

� l 

0 

� κη( x 0 − l � u 0 ) dl 
� 
�

(12) 

This last expression can easily be reformulated in a recur- 

sive form as proposed by Galtier [24] . The new extinction coeffi- 

cient previously defined allows to work with an artificial but uni- 

form coefficient field. Then, it becomes possible to sample a free 

length path according to the probability density function � p X ( x 
� ) 

(see Eq. (12) ). Then a new coordinate of the next collision point 

x � is computed and its nature is then determined, real absorption 

3 
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or null collision, thanks to a random number uniformly sampled 

between 0 and 1: 

• If this random number is lower than 
κabs,η( x � ) 

� κη ( x � ) , this means that 

the event at this point is an absorption. The optical path of the 

photon is then completed and we can calculate the Monte Carlo 

weight associated with this point, equal to the radiative inten- 

sity of the black body I b η( x � ) 
• Else, the event is a null-collision which is equivalent to a for- 

ward scattering. We will then sample a new free path with- 

out changing the direction of propagation of the photon in the 

same way as before and so on until we reach a collision point 

where the chosen event is an absorption. 

Provided that the coefficient � κη majors the whole real field, the 

heterogeneities of the environment does not raise any difficulty. 

Moreover, there is no approximation here in the formulation which 

implies that this method guarantees the preservation of the refer- 

ence character of the Monte Carlo method. In practice, the calcula- 

tion of the coefficient � κη for each spectral band requires a neces- 

sary pre-processing phase. Depending on the thermophysical con- 

ditions it is possible to define a priori the values of the absorption 

coefficient field and set the highest values for each band in order 

to major the field at any point. Recent studies use this approach in 

an optimized way, by majoring the field of κabs,η by zone thanks 

to a hierarchical grid, within which the values of the absorption 

coefficient are close [20] . This method greatly reduces the compu- 

tational time by limiting the probability of occurrence of the null 

collision event and is particularly recommended in very heteroge- 

neous media. 

3. Gas and soot modeling 

3.1. Spectral gas model 

The approach presented here is not dependent on the model 

used for gas properties. In order to be close to the benchmark 

cases used in the Section 5 [25] without adding bias, the SNB- 

CK is selected. The SNB model of Malkmus [26] , commonly con- 

sidered as a reference due to its accuracy uses a different for- 

malism and describes the radiative properties of the medium us- 

ing the transmissivity which cannot been implemented with this 

resolution method. The SNB-CK approach can be considered as a 

roundabout way to take advantage of an accuracy close to that of 

a narrow band model by using an absorption coefficient formula- 

tion [27] . In the SNB model, the transmissivity over an isothermal 

and homogeneous path can be written as follows: 

τ ν (L ) = exp 


 

−πB 

2 

� � 

1 + 

4 SL 

πB 
− 1 

� � 

(13) 

Where B and S are coefficients depending on the mole fraction, 

the pressure and other parameters which are described in details 

by Rivière and Soufiani [28] . The transmissivity of a gas mixture 

can be approximated by the product of the transmissivity of each 

radiative species ( H 2 O and CO 2 mainly, for combustion applica- 

tions). In the SNB-CK version, we take the inverse Laplace trans- 

formation of the SNB gas transmissivity f (k ) on each of the 367 

bands considered and its cumulative g(k ) [29,30] . We uniformly 

discretized the absorption spectrum of the two radiating species 

into 367 narrow bands of 25 cm 

−1 thickness, over a range from 

150 cm 

−1 to 9300 cm 

−1 . Beyond these bands, the radiation of the 

gases considered is negligible. In practice, a wavenumber is sam- 

pled on the whole spectrum according to the Planck’s law. If the 

wavenumber is sampled outside the SNB-CK limits, the absorption 

coefficient of gases is considered as zero ( κabs,η = 0 ), on the other 

hand, the radiation of soot are taken into account which can be 

significant for large wavenumbers as highlighted in Section 3.2 . For 

combustion applications, it is very efficient to deal with radiative 

species separately [19] which means that a separate k-distribution 

is introduced for each specie supposed independent [31] . We use 

a 7 points Gauss- Legendre quadrature to determine the absorp- 

tion coefficient of each gas at the randomly selected spectral band 

before summing them. The value of each absorption coefficient at 

each quadrature point can be determined by the inversion of g(k ) 

function thanks to a Newton-Raphson method with a very good 

efficiency [30] . Here this calculation step is performed at each lo- 

cation of the optical path without pre- calculation of the absorp- 

tion coefficient field. Any radiative observable that depends only 

on the absorption coefficient can then be calculated. We use the 

Eymet et al. [19] procedure to calculate the flux divergence for all 

the following cases. 

3.2. Soot radiation modeling 

The radiative behaviour of soot is relatively straightforward 

as it is assumed that there is no scattering due to these parti- 

cles. In sooting media, the RTE is unchanged. The soot radiation 

contributes to the expression of the absorption coefficient as ex- 

pressed in Eq. (14) . 

We assume here that soot is unagglomerated and its optical 

properties follow the Rayleight small particle limit [22] .It leads to 

consider that soot radiation is linearly proportional to the total 

soot volume fraction as proposed by Solovjov and Webb [32] . Thus, 

this leads to: 

κabs = κgas 

abs 
(T , P, [ H 2 O ] , [ CO 2 ] , η) + κ soot 

abs ( f v , η) (14) 

κ soot 
abs,η = 5 . 5 f v η (15) 

Where f v is the soot volume fraction. The value of the constant 

of this model is empiric and can be discussed. It can possibly be 

modified in some more specific applications. This constant depends 

on the type of flames for combustion applications. This constant 

could take another value depending on the fuel and the oxidizer. 

We have chosen for these academic cases a commonly used value 

[33] . 

4. Artificial neural network and radiative transfer

Artificial Neural Networks (ANN) are part of the tools used in 

applications related to Artificial Intelligence. Radiative transfer is a 

great field of application to introduce this type of tools in mod- 

eling science and engineering issues. The critical point in the ra- 

diative transfer is the computational resources needed to solve the 

RTE a large number of times to finally compute a single source 

term embedded in other complex equation systems. In the field of 

engineering sciences, thermal modeling is in most cases part of a 

multi-physics problem, applied to a complex geometry. The para- 

dox lies in the fact that a fine and accurate modeling of radiative 

transfer is often fundamental in the design of systems subjected 

to high temperatures and therefore needs to be given great atten- 

tion. The objective of this work is to demonstrate the predictive 

ability of an ANN to model radiative transfer with the accuracy 

of a spectral model at a low cost in terms of computing power 

required. 

4.1. Definition: Neurons, activation functions and networks 

The main idea of ANN is to copy the behavior, connections and 

abilities of our brain to solve complex problems such as image 

recognition, language comprehension, etc. Even if these tasks seem 

very natural and without any real difficulties, they actually call 

4 
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Fig. 1. Simple neuron representation. 

upon laws that are extremely difficult to reconstruct. Tools such 

as artificial neural networks are not based on deterministic or sta- 

tistical laws like most models. We can consider them as approx- 

imators of complex non-linear functions that try to reproduce a 

behavior observed from known tests in order to deduce more gen- 

eral laws, applicable to “unseen” tests. The ANN principle was was 

originally proposed by McCulloch and Pitts [34] , shortly after the 

development of the Turing machine. The elementary component 

of an ANN is the neuron which has been introduced by Rosenblatt 

[35] namely a Perceptron. This type of neurons is a binary object 

with a threshold which defines the value of the output as a func- 

tion of the input : 

output = 

⎧ 

⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 i f 
� 

j 

w j x j + b ≤ threshold 

1 i f 
� 

j 

w j x j + b > threshold 
(16) 

Where x j is the jth input, weighted by the coefficient w j (see 

Fig. 1 ). Perceptrons are quite obsolete today because of their bi- 

nary character. The Heaviside function which is called the activa- 

tion function of the Perceptron, has been replaced by continuous 

functions. In this work, we used a sigmoöd transfer function: 

output = σ

� 

� 

j 

w j x j + b 

� 

= σ (z) = 

2 

1 + exp (−2 z) 
− 1 (17) 

Where b is the bias of the neuron which is simply an offset 

of the sigmoid response. This function has the advantage to be 

bounded, symmetric and continuous. In practice, others functions 

with these characteristics can be used for regression tasks. For 

some specific applications such as image recognition, unbounded 

function as ReLU (“Rectified Linear Unit”) are possible but they 

will not be discussed here. An ANN consist in an interconnected 

panel of neurons, which are able to transmit information with each 

other. There are many different possible architectures depending 

on the task at hand. We will focus on one of the simplest, namely 

the single-hidden layer FeedForward Network which will be des- 

ignated by FANN in all this paper. As shown in Fig. 2 this type of 

network is composed of: 

• An input layer which is basically the parameters of the modeled 

function that the network take into account, 
• Only one “hidden” layer which corresponds to the computa- 

tional layer. Each neuron of this layer is linked to all the input 

neurons. Weights of each branch and biases of each neuron are 

the parameters of the network and change during the training 

phase to determine the best combination of them and the ex- 

trapolation and interpolation abilities of the FANN, 
• An output layer which can possibly contain several neurons de- 

pending on the problem to be treated. Each output neuron is 

also connected to all the neurons of the hidden layer and sup- 

ports modifiable weights and biases during the training phase. 

Fig. 2. An example of a simple FANN. 

The choice of this basic architecture has been made for sev- 

eral reasons. First, it has been shown that this type of networks 

possesses the universal approximation property with arbitrary ac- 

curacy. It means that theoretically, a single hidden layer FANN is 

able to approximate any continuous function on its interval of 

definition under conditions on the activation function in particu- 

lar and without limitation on the number of neurons [36] . More- 

over, adding other hidden layers can lead to a difficult training 

step [37] . In addition, this choice allows a certain control over 

the calculations performed compared to more complex topologies 

as it results in a simplified set of equations. Finally, the bayesian 

paradigm (see Section 4.3 ) allows to define easily the optimum 

topology. 

4.2. Backpropagation and Levenberg-Marquardt algorithm 

The science of neural networks is an immense field of possi- 

bilities and in that way, there is plenty of manners to train and 

test these tools. Backpropagation algorithm and all its derivatives 

are probably one of the most common and efficient method to- 

day, particularly for FANN as introduced by Rumelhart et al. [38] . 

By “learning ” we mean modifying the weights and biases of the 

network allowing the approximation of the function to be mod- 

eled. We use a cost function to determine whether a modification 

of these parameters is favorable or not to the modeling. We seek to 

minimize this cost function through learning. In practice, this func- 

tion depends on a very large number of parameters and the search 

for an extremum for each of them is utopian. The goal is to find a 

global set of parameters satisfying an accuracy criterion fixed up- 

stream and depending on the function to be modeled. Backpropa- 

gation algorithm is based on the gradient descent as explained by 

Nielsen [37] and Keller et al. [39 , chap. 3.2]. 

Levenberg Marquardt algorithm is used for the optimization of 

the network parameters [40] . This variant of the classical back- 

propagation methods allows a faster convergence but for a higher 

computational cost. This algorithm is therefore particularly well 

suited for training using small databases (from a few hundred 

training sets to a few thousand) mostly due to consequent matrix 

inversion operations. This method also requires the use of a cost 

function of the type MSE. The main steps of this algorithm are as 

follows: 

• First, a forward pass is necessary to calculate the error vectors 

and the associated MSE 
• Secondly, the Jacobian matrix J(x k ) of the whole training 

database is built. For that, we compute first the Marquardt sen- 

sivities on the last layer and they are back-propagated into the 

entire network. 
• We then solve eq. (18) in order to deduce the new value of 

the network parameters. We notice that by applying the Gauss- 

Newton method, the Hessian matrix He is calculated by the 
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product of the Jacobian matrix and its transpose. This theorem 

allows us not to have to calculate second derivatives. Neverthe- 

less, this matrix may not be invertible, that is why we approx- 

imate it by adding a μI diagonal matrix which ensures its in- 

vertibility. The term μ is the equivalent of the hyperparameter 

called learning rate in classical backpropagation algorithms. 
• We finally recalculate the value of the error vector after chang- 

ing the value of the parameters. If the new value of the MSE 

is lower than the old one, these modifications are kept and 

μ is divided by 10 then we start a new iteration of the algo- 

rithm until convergence. Otherwise, μ is multiplied by 10 and 

we start the algorithm again at the previous step. 

�x k = −
	
J T (x k ) J (x k ) + μI 


−1 
J T (x k ) v (x k ) (18) 

This algorithm is rather straightforward nevertheless, as all back- 

propagation algorithm, its performance depends a lot on the value 

of the learning rate μ. Usually, the best value of this hyperparam- 

eter is never known in advance. It exists some heuristic principles 

to know approximately the range in which μ belongs but nothing 

more. In addition, its value must change over the training for accu- 

racy to continue to increase and once again, the law of motion of 

this parameter can not be known in advance. With this algorithm 

and according to Hagan et al. [40] , the value of μ and its evolution 

is given at all iteration. This is one other avantage of Levenberg 

Marquardt training method. 

4.3. Overfitting and Bayesian regularization 

One of the major problems with ANN in regression tasks is 

overfitting. The phenomenon can happen for many reasons and has 

to be controlled during the training phase. BackPropagation algo- 

rithms are particularly prone to this type of problem which occurs 

when the training is not stopped in time. If a network is trained 

too much, it loses its ability to generalize: the accuracy of the net- 

work will be extremely high compared to training point, but it will 

not be able to interpolate or extrapolate results from “unseen” data 

sets. This phenomenon is not always easy to avoid because the 

cost functions are based on the correspondence between the ex- 

pected output and the actual output of the network. However, in 

case of overfitting, this correspondence will always be very good 

with the data used to train the network. ANNs with many free 

parameters (weight and bias) are much more prone to this phe- 

nomenon than simpler ANNs (Single Layers FANN for example), 

which is why it is important not to use oversized topologies if it 

is not necessary. There are some techniques to limit the impact of 

overfitting : 

• Increase the number of test data which also increases the train- 

ing time, 
• Reduce the size of the network, 
• Use a regularization technique. 

Regularization techniques are almost always used with Back- 

Propagation. They are based on a simple principle: keep network 

weights low which means that network behavior will change lit- 

tle when inputs change little. In other words, an entry that is very 

similar to another will result in a similar response, so the ANN will 

not learn the “noise” that may be contained in the learning data. 

The techniques of regularization are not sufficient on their own 

and will not be able to replace an incomplete training database, 

however they allow most of the time to limit the overfitting and 

to strongly increase the capacities of generalization of a neural net- 

work. In this work, we used the Bayesian regularization. Although 

it requires more time and resources to train networks, it is very 

efficient with small or noisy datasets. We note C the cost function 

error and E D the mean squared error (MSE). Without any regular- 

ization, we have C = E D . Here, we introduce E W 

, the sum of squares 

of the network weights and two hyperparameters α and β . 

C = αE D + βE W 

(19) 

These parameters represent the competition between the min- 

imization of the MSE and the weights. If α � β , then the training 

algorithm will promote small weights whereas, if β � α, a small 

MSE value will be preferred. Actually, as well as for the learning 

rate, these hyperparameters can not be a priori known because 

they depend on the modeled function : if α is too small, the net- 

work will ignore training data and if it is too high it could become 

overfitted. MacKay [41] proposed to apply the laws of Bayes, based 

on conditional probabilities, to determine these parameters dur- 

ing the training. It has been shown that BackPropagation algorithm 

combined with Bayesian regularization is very effective for regres- 

sion tasks with good abilities to generalize, even when the mod- 

eled function fluctuates a lot [13] . The application of the Bayesian 

paradigm in the case of neural networks implies a certain num- 

ber of assumptions on the training data which, in the majority of 

cases, are not rigorously adapted. Actually, to determine the set of 

motion laws of the hyperparameters of a Bayesian neural network, 

we consider that the training output data are defined as the sum of 

an exact value and a Gaussian noise centered in zero. This asser- 

tion is usually false but in this work, the theoretical output data 

are generated by a Monte Carlo algorithm. The computed values 

are therefore naturally of the form exact value + standard deviation . 

Bayesian neural networks are therefore particularly adapted. More- 

over, this method has the great advantage of intrinsically allowing 

the application of a strong and essential philosophical principle in 

engineering called Occam’s Razor which can be understood as an 

injunction to parsimony [42] . The main idea behind this principle 

is to always make sure to exploit as much as possible the hypothe- 

ses already used before posing new ones. Thus, it is not the sim- 

plicity of the assumptions that counts but rather the low complex- 

ity of the set of assumptions made to solve a problem. In practice 

here, Bayes’ laws allow us to determine, thanks to the Hessian ma- 

trix calculated during the application of the Levenberg-Marquardt 

algorithm, an effective number of parameters γ used by the neu- 

ral network [40] . Thanks to this parameter, it is possible to adjust 

the topology of the neural network during the computation in or- 

der not to oversize it and hence, to optimize the training time and 

strongly limit overfitting. This characteristic of Bayesian networks 

also allows us to eliminate the time-consuming phase of determin- 

ing the topology. The algorithm as a whole is then automated to 

adapt to new cases of study without difficulty or redundant task. 

In practice, all these hyperparameters can be computed iteratively 

during the execution of the algorithm according to the following 

relations: 

α = 

γ

2 E W 

(20) 

β = 

N out − γ

2 E D 
(21) 

γ = n − 2 αTr He −1 (22) 

Where n is the total number of parameters, N is equal to the 

number of training output data and He , the hessian matrix of the 

training set in the Levenberg-Marquardt algorithm [40] . At the first 

iteration, γ is initialized to n then α and β can be deduced eas- 

ily. In practice and to ensure that the network is large enough we 

slightly increase the number of effective parameters by 20% com- 

pare to the calculated value of γ [13] . If the number of free param- 

eters is too close to the γ value, the training may not be optimal 
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because γ may increase beyond its final value before reaching a 

converged solution. 

4.4. Train an ANN with MC reference probe points 

As mentioned in previous sections, the major aim of this 

method is to combine advantages of Monte Carlo algorithms and 

ANNs. Statistical methods allow a control of uncertainty at precise 

points. However, these methods are not well suited to compute an 

entire field of variables. With ANNs, it becomes possible to gen- 

eralize Monte Carlo results efficiently and accurately in terms of 

computational resources required and to switch from probe calcu- 

lation to field calculation. This needs to happen under the condi- 

tion of a good and complete ANN training. Thanks to the cost func- 

tion, we have a quality criterion characterising the confidence we 

can place in the ANN results. The main idea is to sample a num- 

ber of reference points in the domain and to calculate the value of 

the radiative quantity of interest, for instance, the flux divergence 

thanks to a Monte Carlo algorithm solving the radiative transfer 

equation in its integrated form (see Eqs. (2) to (7) ). These points 

will constitute the training base of a neural network thanks to 

which prediction of this quantity in the rest of the domain. The 

construction of the databases and the neural networks used de- 

pend on the complexity of the study cases: 

• For the homogeneous cases, the training points are sampled 

randomly in the domain according to a uniform distribution. 

The input data of the neural networks are the spatial coordi- 

nates of the training points. The output data is the divergence 

of the radiative flux. 
• For the heterogeneous case, the training points are sampled ac- 

cording to a low-discrepancy Halton sequence in two dimen- 

sions [43] . It leads to a significant gain on the performance of 

the neural network thanks to this type of sampling. It allows 

to limit the appearance of white areas in the training points 

of the network and to improve the quality of predictions for 

a zero additional computation cost. The neural network used 

in this case is also different. In a highly heterogeneous case, 

a simple spatial interpolation based on the coordinates of the 

training points is not satisfactory. Indeed, similar performances 

could be obtained with more classical and faster interpolation 

methods (see Section 7.3 ). We then added three additional in- 

Fig. 3. Description of the algorithm. 

7 



A. Royer, O. Farges, P. Boulet et al. International Journal of Heat and Mass Transfer 201 (2023) 123610 

puts containing thermophysical data at the training point: tem- 

perature, H 2 O and CO 2 concentrations. The addition of this data 

allows the network to implicitly model the emissive contribu- 

tion at the point of interest and, in particular, allows the diver- 

gence of the flux at the points with the highest temperatures 

to be modeled with much better accuracy in interpolation and 

even in extrapolation. 

Once neural networks are trained, the predictions of the AI 

are compared against the Monte Carlo calculation on “unknown”

points and the average and maximum relative or absolute errors 

are calculated, depending on the case. It is quite unrealistic to 

imagine a very large network that will be able to predict the ra- 

diative heat transfer in all situations as well as there is no advan- 

tage in using ANNs if learning requires many expensive numerical 

simulations. Thus the method proposed here consists in training 

small ANNs during the simulation with a reduced but very tar- 

geted database. For this method to be feasible, it is necessary to 

keep the number of neurons as small as possible in order to train 

the networks in a short time. As mentioned earlier, the network 

topology is fixed according to the value of the number of effective 

parameters γ for each case of study and networks used include 

only one hidden layer. The entire algorithm is describe in details 

in Fig. 3 . 

5. Benchmark academic cases 

To highlight the performance of the code presented here for 

radiative heat transfer modeling, academic benchmark cases are 

studied. Attention is focused on the divergence of the radiative 

flux, noted ÷q and expressed in kW · m 

−3 within the domain. The 

geometry used in the three cases is an axisymmetric enclosure. For 

the first two cases of study, we consider a cylinder of 3m length 

and 0.5m radius with black walls. The temperature of the walls is 

300 K and a homogeneous mixture of radiative species is consid- 

ered. The volumetric composition is 20% H 2 O , 10% CO 2 and 70% N 2 . 

The soot volumetric fraction is set to 10 −7 and the temperature of 

the medium is equal to 1200 K in the first case and 1800 K in the 

Fig. 4. Comparison of our results with referenced data [25] . 
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second one. In the third situation, we consider a cylinder of 1.2m 

length and 0.3m radius with black walls. The wall temperature is 

set at 800 K except the right wall, maintained at 300 K. In this 

more complex case, we deal with an heterogeneous distribution in 

temperature and in molar fraction of species following : 

T (x, r) = 800 + 1200 

�
1 − r 

R 

��
x 

L 

�
(23) 

x H 2 O (x, r) = 0 . 05 

� 
1 − 2 

�
x 

L 
− 0 . 5 

�� �
2 − r 

R 

�
(24) 

x CO 2 (x, r) = 0 . 04 

� 
1 − 3 

�
x 

L 
− 0 . 5 

�� �
2 . 5 − r 

R 

�
(25) 

These cases were the subject of a benchmark between sev- 

eral reference methods in radiative transfer, namely Ray Tracing 

Method, Monte Carlo Method-Net Exchange Formulation and Dis- 

crete Ordinates Method [25] . These results are used to compare 

and validate our simulations. A modified version of HTRDR code 

[44] , developed by Meso-Star and based on Star-Engine open- 

source library is used to compute the radiative quantities of in- 

terest. 

6. Validation of Monte Carlo algorithm 

In this section, the Monte Carlo algorithm used to build the 

training database for the ANN is validated. Each simulation is made 

for a standard deviation of less than 1% of the quantity being eval- 

uated. The first case addresses a homogeneous environment. As 

presented on Fig. 4 comparison between the study of Coelho et al. 

[25] and the data calculated by our code shows a good agreement 

for both the wall flux and the divergence of the flux. 

For the heterogeneous case, Fig. 5 also shows a very good 

agreement between the results. Each point takes about 4 min and 

45 s in the first case and around 30 s in the second one to calcu- 

late with four cores of a standard desktop computer equipped with 

an Intel®Core TM i5-8265U processor and 15.5 GB of RAM. 

Fig. 5. Flux divergence at the centerline of the heterogeneous case. 

Fig. 6. Predictions of a trained ANN using three databases of different sizes (100, 

200 and 500 points) for T = 1800 K. 

7. Predictive abilities of ANNs for radiative heat transfer 

modeling: Results and discussions 

7.1. Homogeneous cases 

For homogeneous cases, training points are randomly sampled 

in the domain according to a uniform distribution. Inputs of the 

ANN correspond to the spacial coordinates of the probe points. 

Tables 1 and 2 compile the average and maximum relative er- 

rors for flux divergence at these points obtained with Monte Carlo 

method and predicted by ANNs. Three different databases sizes 

(10 0, 20 0 and 50 0 points) are tested. All results presented in this 

Fig. 7. Flux divergence at the centerline of the heterogeneous case - Comparison 

between Coelho’s data [2003] and ANN predictions for different databases. 
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Table 1 

ANN’s predictions when T = 1200 K. 

Training points Neurons Parameters γ ε mean % ε max % 

100 11 45 36 0.86% 39.74% 

200 11 45 37 1.53% 23.51% 

500 17 69 55 0.23% 1.69% 

Table 2 

ANN’s predictions when T = 1800 K. 

Training points Neurons Parameters γ ε mean % ε max % 

100 13 53 44 0.29% 5.25% 

200 14 57 45 0.32% 7.05% 

500 17 69 57 0.07% 1.54% 

paper ensure a relative deviation on the training data of less than 

1 % . As mentioned before, the topology of the neural network and 

more specifically, the number of hidden neurons in the hidden 

layer has been determined according to the value of γ computed 

during the training phase. We can notice that the number of neu- 

rons needed increases with the number of training points. This 

means that the computational time will rapidly increase with the 

number of training points and concomitantly of neurons. At least 

500 probe points are needed to reach a certain confidence in ANN 

results everywhere according to Tables 1 and 2 . Actually, even if 

the mean relative error for 10 0 or 20 0 probe points is close to 1%, 

there are some points which are far from the reference values with 

a maximal relative error close to 40% in certain cases. However, we 

noticed that these high values of relative error were reached near 

the walls where the value of the flux divergence is very low. There- 

fore, a very small absolute error can lead to a large relative error 

without the result being harmful from a more macroscopic point 

of view for the simulation as a whole. 

Actually, if the training database is too small, the ANN perfor- 

mances are highly dependent of the initialization of the weights 

and biases of the networks. According to Tables 1 and 2 , we rec-

ommend to use 500 probe points here to ensure a good modeling 

of the flux divergence, including close to the walls or this type of 

case and for this geometric dimensions. 

Figure 6 shows an ANN trained with three very converged 

databases. Then predictions of the flux divergence on the center- 

line for different database sizes are plotted. We can notice that the 

training with 100 probe points is clearly not sufficient. Results are 

better with 200 points but we can notice a small gap on the points 

very close to the wall. This difference does not exist anymore with 

a database of 500 points. The curve overlaps almost perfectly with 

the reference. It should be noted that for this type of network with 

a database of 500 points, the training phase is almost instanta- 

neous. The time required is of the order of a second without par- 

allelization and with the same desktop as mentioned before. 

7.2. Heterogeneous case 

The last case treated here is heterogeneous in species and tem- 

perature [25] . This case presents the interest to test the neural net- 

Fig. 8. Reference fields of radiative source term ( kW · m 

−3 ) calculated by Monte Carlo method and subtraction between the field predicted by the ANN’s - Comparison 

between the different databases. 
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Table 3 

ANN’s predictions in the heterogeneous case. 

Training points Neurons Parameters γ Mean AE kW · m 

−3 Max AE kW · m 

−3 

200 15 106 86 0.784 kW · m 

−3 26.86 kW · m 

−3 

500 15 106 87 0.577 kW · m 

−3 9.433 kW · m 

−3 

1000 16 113 94 0.544 kW · m 

−3 9.432 kW · m 

−3 

works on complex distributions of thermophysical conditions. In 

this more complexe case, the sampling of training points is carried 

out through a low-discrepancy sequence as mentionned by Mishra 

and Molinaro [10] . We used the Halton method in base 2 and 3

to determine the coordinate of each training points [43] . For this 

case an ANN with 5 inputs is implemented, i.e. the spatial coordi- 

nates, the concentrations of CO 2 and H 2 O and the temperature at 

the point considered. The soot volume fraction and the pressure 

being constant, these parameter is not used as an input. In this 

situation, the indicators used in the previous study are no longer 

appropriate. Indeed, the values of the divergence of the radiative 

flux can be particularly low here. Thus, small absolute error on this 

quantity can lead to very large relative errors without any impact 

on the other quantities of interest in a problem of this type (calcu- 

lation of the wall temperature, the wall flux, etc.). We preferred to 

use indicators like the mean absolute error and the maximum ab- 

solute error. On this case, databases containing 200, 500 and 1000 

points are used. 

In the Table 3 , the mean and maximum absolute error are par- 

ticularly low for each database and in particular for 500 and 1000 

points. The average value of the flux divergence in the whole do- 

main is equal to 155 . 34 kW · m 

−3 . Thus the mean absolute errors 

represent respectively 0.51%, 0.37% and 0.35% compared to this 

value for 200, 500 and 1000 point databases. 

The final objective of our tool coupling Monte Carlo method and 

neural networks is to be able to compute entire fields of a radiative 

quantity independently of the number of cells. We have tested this 

functionality by discretizing the study domain very finely and by 

computing the radiative source term in each cell. The study area 

is 1.2m long and 0.6m high (from -0.3m to 0.3m). We discretized

the whole area according to a uniform mesh of 2 500 cells (50 in 

the x direction and 50 in the y direction). Figure 8 shows a refer- 

ence field of the radiative source term computed thanks to Monte 

Carlo method in its null collision formulation. 3 field subtractions 

between the reference and the predictions of the neural networks 

trained on the different databases are presented. The CPU time for 

each picture of Fig. 8 depends of the number of training points. 

The Monte Carlo algorithm used here is highly parallelizable. The 

calculation time could thus be strongly decreased on more conse- 

quent machines. The ANN training time is never higher than 30 s 

on a standard laptop computer. Then, the regression in each cell is 

almost instantaneous. 

Figure 7 and 8 show that a database of 200 points guarantees 

a good interpolation of the value of interest globally. However, we 

note a larger underestimation of the flux divergence in the hottest 

areas on the central line between 1m and 1.2m. Table 3 highlights 

a significantly larger maximum absolute error than for the two 

databases. Very concretely, we can thus say that if a database of 

200 points can be sufficient for a quick estimation of the flux di- 

vergence, it is nevertheless recommended to use at least 500 refer- 

ence points for applications requiring more precision on this type 

of study case. 

7.3. Comparison with other interpolation methods 

The proposed method is based on the powerful interpolation 

and generalization capabilities of artificial neural networks. Be- 

yond the classical terminology of Artificial Intelligence , these tools 

are more precisely advanced statistical tools which, thanks to su- 

pervised learning, model non-explicit laws drawn from available 

data. In this section, we compare the interpolation capabilities 

of neural networks on the complex heterogeneous case against 

more classical spatial interpolation techniques: cubic spline inter- 

polation (CS), natural neighbour radial point interpolation method 

(NNRP) and bi-linear interpolation (BL) [45,46] . Comparisons be- 

tween these different spatial interpolation methods are numerous 

in the literature, particularly in cartography, geology and imaging 

[47–49] . However, depending on the case, the efficiency of neural 

networks for simple spatial interpolation is questionable compared 

to more direct methods. Their use becomes especially relevant in 

the presence of noisy or error-prone data. The training algorithms 

of neural networks allow a tolerance on the correspondence be- 

tween the theoretical training data and the predicted data when 

the other interpolation methods are based exactly on the values 

between which the interpolation is done. In our case, the neural 

networks are not only supplied with spatial coordinates: thermo- 

physical data at the point of interest are also provided. In this way, 

the network interpolates the divergence of the flux based on the 

known surrounding points but also, implicitly, on the radiation in- 

tensity of the black body emitted at the point of interest depend- 

ing on these data. The neural network then becomes a much more 

robust method because it is able to handle more unpredictable 

variations in the physical properties of the field of study even 

without immediate proximity to a reference point. In this part, a 

database made of 500 highly converged points following a Halton 

sequence is used. As in the previous section, this database will be 

used as a training tool for a 5 inputs neural network but also as a 

basis for the different interpolation methods.

Figure 9 presents the value of the radiative flux divergence on 

the centerline in the previously described heterogeneous case. We 

Fig. 9. Flux divergence at the centerline of the heterogeneous case - Comparison 

between ANN prediction and interpolation methods. 
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Fig. 10. Reference fields of radiative source term ( kW · m 

−3 ) calculated by Monte Carlo method and subtraction between the field predicted by the ANN’s - Comparison 

between the different databases. 
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Table 4 

Comparison of RMSE value between different interpolation 

methods. 

Method RMSE 

ANN 1.007 kW · m 

−3 

Cubic Splines 15.79 kW · m 

−3 

NNRP 15.21 kW · m 

−3 

Bi-linear 14.05 kW · m 

−3 

notice a very clear difference between the standard interpolation 

methods and the multivariate neural network interpolation. 

The interpolation of a full field of radiative source term is also 

tested. Figure 10 shows that the trend observed on the central line 

can be generalized to the whole field. Finally, Table 4 displays an 

order of magnitude difference between the root mean square error 

values computed from the neural network results and the other 

interpolation methods. The Bayesian paradigm also allows to keep 

the computation time for training the neural network low and to 

maintain an important competitive advantage compared to other 

interpolation methods. 

8. Conclusion 

In this work, several neural networks are trained to predict 

an entire field of the radiative heat flux divergence, in homoge- 

neous and heterogeneous conditions. The results show the abil- 

ity of ANNs to predict very efficiently and accurately a multi- 

variant quantity such as radiative heat flux divergence. Concerning 

the topology of the network, we show that the five input neural 

network requires far fewer neurons in the hidden layer and thus 

significantly improves interpolation capabilities in heterogeneous 

cases. The Bayesian framework allows us to eliminate the phase 

of choosing the topology and the potentially arbitrary choices that 

can result from it. Moreover, this regularization technique allows 

to strongly limit the overfitting and to automatically optimize the 

arbitration between the different hyperparameters according to the 

available training data. Finally, we show that this type of training 

algorithm is adapted to small databases and exploits the maximum 

information. 
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