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ABSTRACT The number of research papers on decision-making systems in automated driving has increased
significantly over the last few years. Decision-making for automated driving can be performed at different
levels: (i) strategic level: generating the optimal route up to the destination; (ii) tactical level: identifying and
ranking feasible high-level maneuvers that the vehicle can perform, considering the dynamic objects that
are in the surroundings; (iii) operational level: generating a collision-free trajectory (path and speed profile)
up to the planning horizon; (iv) stability level: computing the motion control commands for tracking the
trajectory. Additionally, supervision can be understood as a combination of one or more decision-making
levels. Previous reviews have focused either on one of the levels of decision-making or on a specific
environment where the approaches are applied, without any distinction between the contexts in which they
are applied (robotics, unmanned vehicles or automated driving). This review studies the state-of-the-art on
the decision-making approaches applied specifically to automated driving, during the last lustrum.

INDEX TERMS Automated driving, strategic level, tactical level, operational level, stability level, route

planning, maneuver planning, motion planning.

I. INTRODUCTION

A. CONTEXT

Decision-making and planning are common terms for both
robotics and automated driving domains. Sometimes these
terms are used interchangeably, other times a large variety
of terms are used without unanimity. For the sake of clarity,
we refer to decision-making as the plan primitive of the sense-
plan-act [1] robotics primitives. In the automated driving
domain, the authors consider that decision-making can be
found in planning, supervision and control systems.

In this work we present the state-of-the-art on the planning
approaches for decision-making, focusing on the automated
driving application and not in the robotics domain. Thus, the
related works during the last lustrum were studied in this
article.

B. CLASSIFICATIONS OF DECISION-MAKING AND
PLANNING APPROACHES

Different classifications of decision-making in general and
planning approaches in particular have been presented in the
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automated driving field. In this chapter, first, a classification
based on the type of planning task ordered by computation
time is presented; and second, some of the most common
classifications are presented.

1) CLASSIFICATION BASED ON PLANNING TASK TYPE AND
COMPUTATIONAL TIME

Automated driving tasks in which decision-making can be
found are planning tasks, control tasks and even supervision
tasks. Planning tasks can be divided into route (or mission)
planning, maneuver (or behavioral) planning, and motion (or
trajectory) planning.

A classification of these decision-making tasks is pre-
sented in Figure 1. There, a pyramid where the different
levels are increasingly ordered by the time consumption of
the decision-making tasks performed on it, that is, from
long-term to short-term. This pyramid is inspired by the
classification of decision-making in management [2], which
divides decision-making into strategic, tactical, and opera-
tional levels. In the proposed classification, the strategic level
corresponds to route planning, the tactical level corresponds
to maneuver planning, and the operational level corresponds
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FIGURE 1. Levels of decision-making according to classification based on
the planning task type and the computational time.
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FIGURE 2. Architectures for decision-making based on the sequential or
simultaneous execution of the planning tasks [3].

to motion planning. There is an additional level called the
stability level, which corresponds to control tasks. The final
level is supervision, which is the most reactive system. It is
not presented in the pyramid since the functions presented
here may override the tactical, operational or stability level
if needed in case a fallback function is required, such as an
emergency braking or a minimum risk maneuver.

2) CLASSIFICATION BASED ON THE COMPONENTS
ARCHITECTURE

According to the architectures for decision-making presented
in Figure 2 [3], the planning approaches can be divided into
three different types depending on the architecture: sequen-
tial, behavior-aware or end-to-end planning, depending on the
kind of architecture used for the planning modules.

Sequential planning (depicted in blue in Figure 2) consists
of representing the driving tasks as individual elements per-
formed consecutively in time: from the sensor inputs, passing
through the perception stage, then maneuver planning as the
fist element of the planning stage, and motion planning as the
second element of the planning stage, ending with the control
stage.

Behavior-aware or interaction-aware planning (depicted
in green in Figure 2) considers both maneuver and motion
planning tasks are done in the same stage.

Finally, end-to-end planning (depicted in red in Figure 2)
represents all the learning-based approaches. They can be
divided into the following approaches: (i) End-to-end: A fully
end-to-end approach where perception, planning and control
tasks are all performed in the neural network, receiving the
sensor data as input and generating the control data as output.
(i1) End-to-mid: The neural network receives the sensor data
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as input, performs the perception and planning tasks to gen-
erate the planned trajectories as output of the neural network.
(ii1) Mid-to-end: The neural network receives the data from
the perception as input and both planning and control tasks
are considered in the neural network, where the output are
the control commands. (iv) Mid-to-mid: The neural network
receives as input the perception data and generates as output
the planned trajectories for the control stage.

The main contribution of this review is to present the most
relevant works on decision-making for automated driving
during the last lustrum, dividing the contributions into differ-
ent planning levels according to the decision-making pyramid
presented in Figure 1, which can be summarized in Table 1.
The rest of the paper is organized as follows: Section II
introduces the review of route planning approaches (strategic
level), Section III presents the review of maneuver planning
approaches (tactical level), Section IV shows the review
of motion planning (operational level), Section V briefly
describes the trajectory tracking stage or control (stability
level), and finally Section VI summarizes the conclusions of
this review and the trends of decision-making in automated
driving.

Il. STRATEGIC LEVEL (ROUTE PLANNING)

Route (or mission) planning corresponds to the strategic level,
which is the higher level of the pyramid of decision-making
presented in Figure 1. It computes the sequence of waypoints
from an origin to a destination point. This process is also
called global planning, since all information about the map
is known in advance. Meanwhile, in local planning, most of
the information about the map and environment is unknown
before the vehicle starts moving. Therefore, in global plan-
ning the route or itinerary is planned until the destination;
however, in local planning, the trajectory is computed until
a time horizon (five seconds is the most common horizon for
motion planning in the state-of-the-art).

The route or mission generated by the route planner is at the
top of the planning levels since this route is further used by the
maneuver planner (to plan the next sequences of maneuvers
to perform) and by the motion planner (to plan the geometric
path and speed profile to be tracked by the vehicle). That
is, route planning is the less reactive stage of the planning
architecture: the behavior of the surrounding vehicles in the
short-term will have a lower impact on the route than on
the trajectory. The latter may change to avoid collisions with
other road users. For this reason, the route planning process
does not need to be recomputed with a high frequency; a
reasonable execution period is around a few seconds.

First section of Table 1 summarizes the most relevant route
planning publications described below, which are classified
in more detail in Table 2.

Route planning is one of the main tasks of the Vehicle
Route Planning Problem (VRP), which consists of optimiza-
tion problems found in the transportation, distribution, and
logistics industries [51]. VRP is an NP-hard combinatorial
optimization problem [52]. The main classification of VRP
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TABLE 1. Classification of works in the SoA.

Planning Level Testing Environment Testing Platform
Urban Highway Vehicle Simulation
Route Planning 11, (101, [11] (6], 91 12H14 7 o) [41-16], [81, [121, 9],

[10], [11]

[13], [10], [11]

Maneuver Planning

(151, [16], [17], [18],
[19], [20], [21], [22],
[23]

(171, [24], [25], [26],
[271, [28], [21], [29],
[30], [31]

(17], [26], [27], [32],
(23]

[15], [16], [17], [24],
[25], [26], [18], [27],
(28], [19], [20], [21],
[301, [22], [31]

Motion Planning

[33], [34], [35], [36],
[37], [38], [39], [16],
[40], [41], [42], [43],

(351, [38], [42], [46],
[47], [45]

[33], [34], [35], [36],
(37], [38], [35], [48],

[35], [36], [37], [38],
[49], [48], [39], [16],
[40], [41], [50], [46],

[44], [45] (401, 1421 (471, [43], [44], [45]
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FIGURE 3. Classification of algorithms for VRP problem.

algorithms in the state-of-the-art is based on the method of
solving this problem: either obtaining an optimal solution
(exact algorithms) or a near-optimal solution (approximate
algorithms) [53].

These articles propose the classification shown in
Figure 3, where the algorithms are first divided into exact or
approximate algorithms (heuristics or metaheuristics based)
since we focus on the method of solving the VRP problem.
This classification is detailed in further subsections, where
the algorithms used in the automated driving domain are
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classified. This can be considered an extension of the prior
art. Some previous studies are as follows: [51], [52], [53],
(541, [55], [56], [57].

A. EXACT ALGORITHMS

The exact algorithms aim to obtain an optimal solution for the
VRP problem. The scope of these algorithms is small-scale
problems, as they would not be efficient in large-scale prob-
lems, such as planning the route between different continents,
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for example, where the representation of the road network
would be too large.

These algorithms can be divided into the following sub-
types according to [58]: direct tree search, dynamic program-
ming, and linear programming.

1) DIRECT TREE SEARCH

Among the direct-tree search algorithms, we can highlight the
branch-and-bound and k-degree center tree algorithms. The
branch-and-bound algorithm breaks-up the solution space
into several subsets or branches. The lower bounds for the
objective functions are computed for discarding some of these
subsets or branches, thereby minimizing the solution space.
This algorithm was recently applied in [59] to solve the VRP
problem with customer costs. Some more recent examples of
tree search heuristics are the branch-and-cut [60] and branch-
and-cut-and-price [61] algorithms.

2) DYNAMIC PROGRAMMING

Dynamic programming is an optimization method as well as a
computer programming method that aims to simplify a com-
plicated problem by splitting it into different sub-problems in
a recursive manner.

Dijkstra is a graph-search based algorithm that can be
considered a dynamic programming method because it is
a deterministic optimization method that solves the short-
est route problem. Soderberg [12] developed a bidirectional
Dijkstra search approach for a rapid route planning using
trucks and heavy vehicles. In the context of urban driv-
ing, a Dijkstra-based approach was used by Yu et al. [4] for
the valet parking problem. The authors developed a solu-
tion combining a Dijkstra-based search with V2X commu-
nication for the parking problem. Liu et al. [5] also applied
a Dijkstra-based approach to improve parking efficiency.
Sun et al. [7] proposed a solution for multi objective route
planning in parking scenarios. In addition to the parking prob-
lem, Dijkstra’s algorithm has been used for route planning
with temporary driving bans, road closures, and rated parking
areas [6].

Apart from Dijkstra, we can highlight the following appli-
cations of Dynamic Programming algorithms in automated
driving. Zeng and Wang [8] proposed an approach for
time-optimal route planning, focusing on energy-efficient
vehicle driving within a bounded period of time. For this
purpose, they presented a dynamic programming based
method where the following decision constraints were con-
sidered: stop signs, traffic lights, turns and curved segments,
roads with different grades and speed limits and torque
operation. Sever ef al. [62] proposed a hybrid Approximate
Dynamic Programming (ADP) approach with a determin-
istic look-ahead policy and value function approxima-
tion for the dynamic shortest path problem with travel
time-dependent stochastic disruptions. The problem was for-
mulated as a discrete-time finite-horizon Markov decision
process.
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3) INTEGER LINEAR PROGRAMMING (ILP)

Integer Linear Programming (ILP) is an optimization
algorithm in which some variables are integers. The most
common ILP algorithms for route planning are set partition-
ing and column generation algorithms. Angelelli et al. [9]
proposed a linear programming model as a route plan-
ning approach to minimize both user travel inconvenience
and traffic jams. Their approach consists of optimizing the
travel-time instead of generating the shortest route in terms
of distance. Rahmani et al. [13] studied the accuracy of the
predicted travel times and proposed a solution based on a
fixed-point formulation of the simultaneous path inference
and travel time prediction problem. Lee et al. [14] focused
on the evaluation of travel-time reliability and proposed a
measurement method based on the Gini coefficient, which is
a well-known measure of statistical dispersion.

B. APPROXIMATE ALGORITHMS
Approximate algorithms (bottom part of Figure 3 can be
divided into two categories: fully heuristics-based or hybrid
approaches, combining exact algorithms and heuristics.
Heuristics are basic approximate algorithms that find in
a reasonable computation time a solution that is as good as
possible, but not optimal.
The same way, heuristics can be divided into classical
heuristics and metaheuristics.

1) CLASSICAL HEURISTICS
Classical heuristics can be classified into constructive heuris-
tic, improvement heuristics and 2-phase heuristics. Con-
structive heuristics include the following types of heuristics:
saving heuristic, route-first cluster-second, cluster-first route-
second, and insertion heuristics. (i) Saving heuristic: This
solves the problem in which the number of vehicles is not
fixed. It generates n routes consisting of only one starting
vertex and ending vertex. It then computes the saving cost
for combining each of the two routes and sorting the values.
(i1) Nearest neighbor method: starts from the starting vertex
and searches for the nearest unvisited customer (destination
vertex) as the next customer (destination). This procedure is
repeated unless it exceeds the capacity limit until all cus-
tomers (destination vertices) are visited. (iii) Insertion heuris-
tics: This starts from a single node, which is usually called a
seed node. This formed the initial route from the depot. Other
nodes are inserted individually to evaluate certain parameters
to select a node and the place in the route for insertion.
Two-phase heuristic algorithms consist of a cluster phase
and a route construction phase. They can be considered
as subtypes of constructive heuristics. One example of a
two-phase heuristic is the Fisher-Jaikumar algorithm. First,
clusters are created using a geometric method that partitions
the plane into several cones, where the cone number is equal
to the vehicle number. Then, in the route construction phase,
customers are inserted into routes according to their increas-
ing insertion cost, and a traveling salesman optimization
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algorithm is applied to obtain the optimal travel cost. A two-
phase heuristic based on the Fisher-Jaikumar algorithm was
proposed in [63] to solve the Capacitated Vehicle Routing
Problem, that is, route planning considering the capacity
constraint, including the implementation of new costs such as
delivery expenses for logistic activities. Another example of a
cluster-first route-second is the sweep algorithm, where a set
of feasible cluster is first formed by rotating a ray centered
at the departure point based on their capacity. Second, the
vehicle routing is obtained for each cluster.

Improvement heuristic: Most algorithms starting with a
constructive heuristic phase are then followed by an improve-
ment heuristic phase, which is typically based on neighbor-
hood search operators, where the neighborhood is the set
of feasible solutions similar to the given one. They start
from any feasible route solution and improve it by successive
small changes related to the neighborhood search. There
are two groups of improvement heuristics based on local
search: intra-route heuristics (such as 2 — opt search or
A — interchange) and inter-route heuristics (such as customer
relocation, customer crossover and customer exchange).

2) METAHEURISTICS
Metaheuristics are higher-level procedures designed to find,
generate or select a heuristic that may provide a sufficiently
good solution to an optimization problem, particularly with
incomplete or imperfect information. Their main goal is to
guide the search process, and efficiently explore the search
space to find the optimal solutions.

Metaheuristics can be classified into population search and
local search algorithms, as depicted in the bottom-right part
of Figure 3.

(i) Population search: These algorithms maintain a proof of
good parent solutions, by continually selecting parent
solutions to produce promising offspring, by updating
the pool, either by combining and pairing existing ones
or by making them cooperate through a learning pro-
cess. Among the most common population search meta-
heuristics we can find evolutionary algorithms (such
as genetic algorithms or evolutionary programming and
memetic algorithms), particle swarm optimization, ant
colony optimization or scatter search. [11] proposed a
real-time based optimization approach to solve the Vehi-
cle Macroscopic Motion Planning (VMMP) problem.
This consists of optimizing simultaneously a vehicle
route and a speed using both traffic data and vehicle
characteristics to improve the fuel consumption as well.
Authors use a genetic algorithm based co-optimization
method to solve the VMMP problem combined with an
adaptive real time optimization process.

(ii) Local search: These metaheuristc algorithms keep
exploring the solution space by iteratively moving from
the current solution to a promising solution in the
neighbourhood. Most common local search metaheuris-
tics are the tabu search, simulated annealing, variable
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neighborhood search, iterated local search, large neigh-
borhood search, greedy randomized adaptive search,
stochastic local search and guided local search.

A* family of methods, that is, Dijkstra derived methods
where a cost function guides the search, can be classified as
local search metaheuristics. A method based on a variant of
the hybrid-state A* search algorithm for global planning was
proposed in [64], where the global path permits searching to
generate steering actions.

A cluster-first route-second 2-phase heuristic-based
approach was proposed in [65]. A variant of the
Fisher-Jaikumar algorithm was investigated to solve Capac-
itated Vehicle Routing Problem. During the constructive
phase, routes are created attempting to minimize the cost
at the same time. On the other hand, during the route opti-
mization phase, three metaheuristic methods are used: genetic
algorithm, ant colony optimization and particle swarm
optimization.

An approach to solving the shortest path problem using a
hybrid metaheuristic was proposed in [10]. The authors com-
bined the Variable Neighborhood search metaheuristic with
genetic algorithms. Unlike standard methods such as Dijkstra,
metaheuristics allow computing multi-objective routes that
meet additional constraints even in large-scale road networks.

3) HYBRID (EXACT AND HEURISTICS)

Apart from the exact and approximate approaches, there
exists a hybrid model in the state-of-the-art in which a heuris-
tic is applied together with an exact algorithm.

Apart from the proposed architecture of route planning
algorithms for solving the Vehicle Routing Problem (VPP),
other classifications in the state-of-the-art divide the methods
depending on the structure used for modeling the space: either
graphs or trees. A common way of diving these approaches is
graph search-based or sampling-based [64], [66].

« Graph search-based approaches: These approaches
model the road with graphs, where a sequence of config-
uration states (position and orientation) from the initial
state of the vehicle up to the destination state is searched
into the feasible space of the configuration space. The
main graph-search algorithms used in the state-of-the-
art for route planning are: Dijkstra and the A* family
(A*, D*, Hybrid-A*, etc).

« Sampling-based approaches: These approaches con-
sist of randomly sampling the configuration space to
solve timing constraints, usually in high-dimensional
spaces. The main sampling-based algorithms used for
route planning are: Rapidly-Exploring Random Trees
(RRT) and Enhanced Rapidly-Exploring Random Tree
(RRT*).

A new trend in the study of route planning problems has
arisen in recent years. The green Vehicle Routing Problem
has been investigated since 2006 and has focused on the
energy optimization in transportation [52]. Green VRP can
be classified into: green-VRP, pollution routing problem and
VRP in reverse logistics. First, it deals with the optimization
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of energy consumption of transportation; second it focuses on
the impact of transportation on the environment considering
gas emissions; third focuses on the distribution aspects of
reverse logistics.

Another trend in route planning is the application of traf-
fic flow optimization. This branch is often referred to as
intelligent route planning. For instance, the authors in [67]
assumed that even if travel times are not precisely known
beforehand, they are bounded both from below and above.
They presented an approach focused on highly dynamic road
environments combining traffic image processing with inter-
val data for dynamic route optimization. Other authors such
as [68] studied the problem of traffic congestion providing to
the route planning system an equilibrium, aiming to enable
future interactive transportation systems comprising urban
planning applications under demand and with a real-time
response. The authors stated that their approach accelerates
the computation of traffic flow patterns, enabling interac-
tive transportation. For instance, the authors claim that their
approach is three times faster than that of the Dijkstra-based
baseline.

Ill. TACTICAL LEVEL (MANEUVER PLANNING)

Maneuver planning corresponds to the tactical level of
decision-making as presented in Figure 1, which is in charge
of identifying and ranking the possible maneuver sequences
to be performed by the vehicle. In the literature, maneuver
planning can also be referred to as manoeuvre planning,
behavioral planning, maneuver decision-making, behavior
decision-making, or a combination of the previous. A maneu-
ver is a high-level characterization of the motion of the
vehicle regarding its behavior on the road in terms of direction
and/or speed changes. Some examples of maneuvers are:
go straight, turn, stop, overtake, turn around, park, keep
lane, change lane, merge, wait or follow the leading vehicle.
Certain maneuvers are combinations of other maneuvers.
For instance, the overtake maneuver is an ordered sequence
of three maneuvers: change lane, keep lane, and change
lane.

Maneuver planning approaches commonly consist of the
following tasks: 1) scenario recognition, comprising the
identification of environmental constraints and motion pre-
diction of the surrounding dynamic obstacles; and 2) iden-
tification and ranking of feasible maneuvers. These tasks
represent most of the work in the state-of-the-art regarding
decision-making. They define the criteria to determine which
maneuvers can be performed by the vehicle, ranking them
using evaluation criteria.

The following sections describe the algorithms and
approaches used for obstacle motion prediction and for the
identification and ranking of feasible maneuvers for auto-
mated driving used in the state-of-the-art during the last few
years.

Second section of Table 1 summarizes the most relevant
maneuver planning publications described below, which are
classified in more detail in Table 3.
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FIGURE 4. 1st stage of Maneuver Planning - Scenario recognition:
comprising scenario identification and motion prediction.

A. OBSTACLES MOTION PREDICTION

Since motion prediction for obstacles also makes part of the
trajectory planning tasks, this section is common to both
chapters (Chapters III and IV).

Obstacles motion prediction consists of determining the
future motion of dynamic obstacles in a short-term time
horizon, where these obstacles may be pedestrians, bikes,
motorbikes, cars, trucks, etc.

A common classification of motion prediction approaches
was proposed in [70], where the authors classified them based
on the kind of hypotheses they made about the modeled
entities. Thus, they propose the following three-level classi-
fication with an increasing degree of abstraction:

1) Physics-based motion models: These models consider
that the motion of obstacles depends only on the laws of
physics. Two different evolution models can be applied:
dynamics and kinematics.

2) Maneuver-based motion models: These models are
more advanced since they consider that the future
motion of a vehicle not only depends on the laws of
physics but also on the maneuvers that the obstacles may
perform, independent of the interaction with the other
surrounding obstacles.

3) Interaction-aware motion models: These models are
the most advanced since they take into account the
interactions among obstacles including the ego-vehicle.

In the last few-years some reviews of motion prediction
on automated vehicles have been published [71], where the
authors present the trends in objects motion prediction and
discuss the challenges and non-fulfilled gaps in the automated
driving domain. In addition, research works such as [27]
covered in his thesis work the state-of-the-art on motion
prediction approaches.

Although the main scope of this paper is focused on
decision-making and not on motion prediction, a few appli-
cations of these three motion prediction models can be found
below.

1) APPLICATIONS OF PHYSICS-BASED MOTION MODELS

A tool-set for the prediction of traffic participants consider-
ing both physical constraints as traffic rules was proposed
in [72]. This tool-set targets the motion prediction problem
through a reachability analysis. The authors predicted both
the future occupancy of other traffic participants and their
maneuvers on arbitrary road networks. Hang et al. [21] used
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TABLE 2. Mission planning works in the State-of-the-Art.

Mission Planning References Description Testing Environment Testing Platform
Algorithm Urban Highway Vehicle  Simulation
Exact algorithms:
Bidirectional Dijkstra for fast route plan-
| ning; Valet-parking scenarios; parking; park- B [4]-[6],
Dijkstra (41171, 1121, [69] ing; Considering temporary driving restric- (4171 (61, [12] (73, 112] [12]
tions; Multi-modal route planner framework;
. Time-optimal route planning; dynamic
Dynamic . .
Programmin [8], [62] shortest path problem with travel time- [8] [8]
g & dependent stochastic disruptions
Optimization for traffic jams and inconve- 9]
Integer Linear Pro- [9]. [13]. [14] niences; simultaneous path inference and the 9] [13] ’ (9], [13]
gramming ’ ’ travel time prediction problem; evaluation of [ 4]’ ’
travel-time reliability
Approximate
algorithms:
Two-phase heuristic based Fisher and Jaiku-
[63] mar algorithm to solve the Capacitated Vehi-

Clasical Heuristics

cle Routing Problem

GA population combined with a Variable

Neighborhood Search; reduction of fuel con-
sumption optimizing both route and speed
simultaneously; Multi-modal route planner

Metaheuristics [10], [11], [69]

framework;

[10], (101, [1o1,
[11] [11] [11]

a motion prediction approach based on Model Predictive
Control (MPC) for obstacle avoidance in lane change, merg-
ing and overtaking scenarios.

2) APPLICATIONS OF MANEUVER-BASED MOTION MODELS
Maneuver-based motion prediction approaches consist of two
phases: first, the system predicts the maneuver being executed
by moving objects; and second, the corresponding trajectory
for this maneuver is calculated [27]. Izquierdo et al. [73] used
a Support Vector Machine (SVM) classifier to predict the
occurrence of a lane change three seconds before it actually
occurs. Zyner et al. presented a supervised learning-based
approach for predicting driver intentions at unsignalized
intersections [74]. A prediction method based on Recurrent
Neural Networks (RNNs) was used in a roundabout scenario.

3) APPLICATIONS OF INTERACTION-AWARE

MOTION MODELS

A framework for motion prediction that integrates social
psychology metrics was proposed in [29]. The authors
used Social Value Orientation (SVO) to quantify the degree
of selfishness or altruism of other drivers in order to
enhance the prediction of their behavior. A probabilistic
approach was presented in [18]. The authors formulated the
motion prediction problem considering the uncertainty of the
prediction system using a Partially Observable Markov
Decision Process (POMDP) where the intended route of
the surrounding vehicles are hidden variables. The proposed
system determines the optimal acceleration of the ego-vehicle
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along a pre-planned path. Besides predicting the motion of
other vehicles, there are works such as [32] and [75] that
propose an interaction-aware approach for predicting the
decisions of multiple humans that interact with each other
during navigation. For this purpose, the authors use the
game-theory approach of Nash equilibrium to anticipate col-
lisions with humans and propose several avoidance maneu-
vers. The behavior of pedestrians when negotiating the road
crossings with motorized vehicles was studied in [76]. The
authors presented the state-of-the-art in vehicle-pedestrian
interaction and they provide an interaction process where
this interaction can be divided into five different phases:
monitoring of potential conflict zone, indication of pedestrian
crossing intention, assessment of the environment, commu-
nication methods among them and decision of maneuver
strategies for both vehicle and pedestrian. A motion predic-
tion approach using a Long Short-Term Memory (LSTM)-
based Recurrent Neural Network (RNN) for multi-lane turn
intersection scenarios was proposed in [23]. The authors
focused on improving the decision-making at intersections to
achieve human-like accelerations with this learning approach,
where the RNN is trained with data of surrounding objects
and with the trajectories generated by an MPC-based motion
planner for the ego-vehicle, reflecting the interactions among
ego and objects. Apart from the previous methods, there is
a branch of the interaction-aware motion prediction model
called model-based motion prediction. This model assumes
that drivers behave in a risk-averse manner, selecting the
maneuvers that keep the vehicle away from collision-risk sce-
narios [27]. This model-based behavior is formulated using
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FIGURE 5. 2nd stage of Maneuver planning: Identification and ranking of
feasible maneuvers: comprising decision-making.

a cost function that contains terms related to risk, comfort,
or driving style.

Beyond using a single motion prediction model, some
authors propose to use the most appropriate prediction model
depending on a continuous evaluation of a group of motion
models, searching the one that predicts better the dynam-
ics of the object. This technique is known as Interacting
Multiple Model (IMM) [77], [78]. The authors in [77] pre-
sented a unified vehicle tracking and behavior reasoning
algorithm for simultaneously estimating the dynamic state
of surrounding vehicles and classifying the behavior of the
vehicle. Lefkopoulos et. al [78] propose an Interacting Mul-
tiple Model Kalman Filter IMM-KF) capable of predict-
ing collision-free trajectories of multiple traffic participants,
combining the three basic motion models.

B. MANEUVER DECISION

The decision-making process in Maneuver Planning is
responsible for the identification and ranking of the feasible
maneuvers that the automated vehicle may perform. Figure 5
depicts a classification of the different approaches in the state-
of-the-art, which are detailed below.

1) RULE BASED APPROACHES

Rule-based approaches consist of statements where there is
first an observation of the environment and then the system
acts consequently. The most common rule-based approaches
can be divided into logical constraints and state machines.

« Logical constraints: Logical constraints can be under-
stood as symbolic planning approaches, where systems
are defined to solve complex tasks using inference rules,
emulating logic and rational human reasoning. These
logical constraints can be applied to select the maneuver
that the vehicle should perform, for instance for planning
lane change maneuvers as in [17].

o State machines: Finite State Machines (FSM) model
the behavior of a system by representing the system
states with actions or conditions, avoiding the declara-
tion of a vast number of rules. Palatti er al. [24] targeted
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safe overtaking trajectories by combining a rule-based
maneuver planner using Finite State Machines and
reachable sets. A predictive maneuver-planning method
for navigation in public highway traffic was proposed
in [25]. The proposed method integrates high-level
discrete maneuver decisions, that is, lane and refer-
ence speed selection automata (state machine), using
an MPC-based motion planning scheme. State machines
were also used for maneuver planning in the 2016 Grand
Cooperative Driving Challenge [26]. This state machine
implemented the interaction protocols for the different
scenarios (merging on highways, intersection crossing,
and giving free passage to an emergency vehicle on
highways). Recently, a maneuver planner based on finite
state machines was used in [24] to seek safe over-
taking maneuvers with aborting capabilities. A finite
state machine based on heuristic rules is used to select
an appropriate maneuver (lane keeping, overtaking or
aborting), and a combination of reachable sets is used
to generate intermediate reference targets based on the
current maneuver.

2) UTILITY BASED APPROACHES

Utility-based approaches use heuristics to evaluate different
candidate maneuvers with respect to specific objectives, that
is, driving goals. These approaches use utility functions (or
cost functions) to measure the level of achievement of each
alternative maneuver.

Examples of utility-based  approaches include
optimization-based solutions such as those in [15]. The
authors presented a time-optimal maneuver planning system
for automatic parallel parking using a simultaneous dynamic
optimization approach. A dynamic optimization method is
proposed using the interior-point method which includes
vehicle kinematics, physical restrictions, collision-avoidance
constraints, and an optimization objective. In addition, online
maneuver planning is performed via receding-horizon opti-
mization.

A hybrid approach was presented in [16], in which a
maneuver-based maneuver planner acts fused with a motion
planner. After the first trajectory set is computed, the maneu-
ver planner extracts tactical patterns depending on the spa-
tial area where the trajectory terminates, how it gets there
around the obstacles, and the overtaking order (if any) it
follows.

3) PROBABILISTIC BASED APPROACHES

One of the well-known approaches to performing
decision-making under uncertainty is the probabilistic-based
family, where the uncertainty may be in the perception or in
the non-deterministic decision effects. The decision-making
process is represented as a graph. Four types of Markov mod-
els are used depending on the context: the Hidden Markov
Model (HMM) and Partially Observable Markov Decision
Process (POMDP) if the states are not completely observable.
Meanwhile, if the states are completely observable, the
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models used are the Markov chain and Markov Decision
Process (MDP). However, since uncertainty is always present
in automated driving, the first two models are the most
commonly used. The difference between HMM and POMDP
lies in the control over the state transitions: in the HMM
model we do not have control over the transitions, whereas in
POMDP we do have it.

A method for making automated longitudinal decisions
along a predetermined path for automated driving in unsignal-
ized urban scenarios was proposed in [19]. The author deals
with this decision-making problem in dynamic and uncertain
environments using a continuous POMDP with a discrete
Bayesian Network to estimate the behavior of the surrounding
traffic participants. By means of this probabilistic approach
the author deals with uncertainty, anticipating the behavior
of occluded vehicles and detecting possible collisions. The
decision-making approach proposed in [20] uses an online
POMDP to consider the interaction and uncertainty in the
prediction on intersections. Another online decision-making
approach for highway scenarios was proposed in [27]. The
author aimed to provide human-like behavior to the system
by means of a POMDP with a behavioral model learned
from demonstrated driving data. Schmidt et al. presented a
probabilistic approach for planning lane change maneuvers
in highway driving scenarios, where the model quantifies the
utility of lane changes [28].

4) GAME-THEORY BASED APPROACHES

Game-theoretic approaches for decision-making consist of
building a tree for the decision-making process with dis-
crete action primitives to model vehicle behavior to max-
imize the expected utility through a reward or utility
function.

A game-theoretic approach for uncertain scenarios such
as merging maneuvers in high-density traffic was presented
in [30]. The authors propose an interactive, multi-player
level-k model that uses cognitive hierarchy reasoning for
decision-making, modeling human decisions in uncertain
situations. In this way, they aimed to anticipate both the
actions of the surrounding vehicles as their reactions to the
automated ego-vehicle movement. A human-like decision-
making framework based on game-theory was proposed
in [21]. The Nash equilibrium and Stackelberg game-theory
are applied to non-cooperative decision-making in intersec-
tions. The authors consider the acceleration and deceleration
behaviors of obstacles in the modeling process to decide
whether the automated vehicle has to change lanes or not,
without considering the lane change intention of the mov-
ing obstacles in the scene. A game-theory based approach
for decision-making in congested urban intersection was
presented in [22]. The authors focused on deciding on the
lane change maneuver, proposing a dynamic non-cooperative
game that uses acceleration as part of the player set of strate-
gies, aiming to allow lane changes even when the destination
lane is occupied.
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5) LEARNING-BASED APPROACHES

Learning-based approaches are based on a Neural Network
trained for a specific purpose. An interaction-aware end-
to-end deep reinforcement learning approach was proposed
in [31]. This work focused on enhancing traffic flow and
safety by inducing altruism in the decision-making process,
focusing on merging scenarios such as the incorporation into
highways. The automated vehicle learns if performing a lane
change is more convenient for allowing the other vehicles to
merge in the lane. Some specific reviews on the state of the
art covering decision-making strategies including maneuver-
planing approaches have been presented recently in [79]
and [80].

6) COOPERATIVE BASED APPROACHES

Cooperative based approaches use V2V communications to
reduce the uncertainty about the motion of the surround-
ing objects and therefore, solve conflict situations with
multiple vehicles. Hess et al. proposed a cooperative maneu-
ver planning approach for planning lane following and lane
change maneuvers using V2V communication allowing to
negotiate space-time reservations in conflict areas. This coop-
eration allows the cooperating vehicle to keep the lane decel-
erating and the requesting vehicle to change lane to the other
vehicle’s lane avoiding further collisions [81]. The authors
in [82] discussed the challenges of cooperative driving and
proposed a system called COMPACT to deal with maneu-
ver planning. They focused on the overtaking scenario on
secondary roads with traffic in front and compared their
approach with elastic bands and tree search based algorithms,
stating that their approach maximizes distances between
objects as the two other vehicles yield, drive to their right
road boundary and decelerate. A two-dimensional maneu-
ver planner in a distributed predictive control framework
was proposed in [83] to reduce energy consumption through
traffic motion harmonization, thereby improving traffic flow
and travel time. The approach includes explicit coordination
constraints between the connected vehicles driving in mixed
traffic on multi-lane roads.

IV. OPERATIONAL LEVEL (MOTION PLANNING)

Motion planning corresponds to the operational level of
decision-making as presented in Figure 1. It is responsible
for defining the sequence of vehicle configurations (position
and orientation in time) that allow the vehicle to move from
the current position up to the planning horizon, considering
both vehicle and environment constraints. In the state-of-the-
art, motion planning can be referred to as trajectory planning
equivalently.

Motion planning consists of two tasks: path plan-
ning, searching the path in the vehicle’s configuration
space; and speed planning, generating a speed profile, that
is, defining a speed (plan in time) per space configura-
tion. These tasks can be performed either sequentially or
simultaneously, as explained in the following subsections.
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TABLE 3. Maneuver planning works in the SoA.

Manel.lver References Description Testing Environment Testing Platform
Planning
Algorithm Urban Highway Vehicle Simulation
Logical-constrains for lane changes; Finite State Ma-
chines for overtaking maneuvers; predictive lane and
5111;22;:3 [[2157]]’[526‘]1]’ reference speed selection state machine in highway traf- [[21'57]]’[564]”’ [17], [26] [[2157]]’[52(3]’
PP ) ’ fic; state machine for merging on highway, intersection ’ ’
crossing and give free passage to emergency vehicles
Cost function for lane change decision making;
receding-horizon multi-objective optimization for au-
Utility-based [211. [15]. torpatlc parallel.parklr}g; fused d601§10n mal_(lpg and [15]. [16]. [15]. [16].
approaches [16] trajectory planning 'w1th cost funct}(?n demd%ng on [17] [17] [17] (7]
PP maneuver-based tactical patterns; Utility function for
mandatory, discretionary and anticipatory lane change
decisions
POMDP for uncertain environments; POMDP based on
Monte-Carlo tree search for decision-making in high-
Probabilistic- [18], [27],  ways; probabilistic model for lane change maneuver in (18], [19] [18], [27],
based [28], [19], highways; POMDP with discrete Bayesian network for [20] ’ ’ [271, [28] [27] 28], [19],
approaches [20] decision making in dynamic and uncertain unsignalized [20]
urban environments; online POMDP considering uncer-
tainty on intersections.
Noncooperative game methods for decision mak-
ing (Nash equilibrium, Stackelberg game); Nash-
Game- equilibrium based decision-making with Nash equilib-
theory based 211, [75], rium and SVO; Nash-equlibrium interaction-aware de- [21], [22] [21], [29], [32] 21}, [30],
, ¢ po2 T . S [30] [22]
approaches cision making for human avoidance; multi-player model
for merge maneuver in high traffic; decision-making for
lane changes in congested urban scenarios.
Learning- . . .
based (23], [31] _I,STM—RNN.motlon pfedlctlon_ mpdel at multi-lane turn (23] [31] (23] [31]
intersections; cooperative altruistic maneuver planning
approaches
cooperative approach using V2V communication for
Cooperative- lane following and lane change maneuvers; COMPACT
baseE)i [81], [82], system focused on overtaking scenario in secondary 81] [82], [83] 81] [81], [82],
approaches [83] roads with in-front traffic; Two-dimensional maneuver ? [83]

planner into distributed predictive control framework to
reduce energy consumption

Motion planning allows the vehicle to adapt to uncertain and
incomplete environments, both static and dynamic, where a
real-time response is necessary to ensure harmless motion.
It considers the vehicle, environment and time horizon con-
straints. As a result, the generated motion must to be smooth
not only for better tracking in the control stage, but also
for increasing the passenger comfort and automated driving
acceptance.

Motion planning approaches can be classified based
on different criteria. In the following sections we
present two different classifications: (i) Classification
based on the vehicle architecture, (ii) Classification
based on the spatio-temporal order in the trajectory
generation.

Third section of Table 1 summarizes the most relevant
motion planning publications described below, which are
classified in more detail in Table 4.
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A. CLASSIFICATION BASED ON THE VEHICLE
ARCHITECTURE

According to the architectures for decision-making presented
in Figure 2, planning approaches can be divided into three
different types depending on the architecture: sequential,
behavior-aware or end-to-end planning.

Motion planning in both sequential and parallel hier-
archical approaches can be mostly found in the modules
highlighted in green in Figure 6.

Sequential approaches (left part of Figure 6) are the most
common method for representing motion planning in auto-
mated driving. The motion planner receives from the upper
stage both the information from the perception as well as
the ranked maneuvers from the behavioral planning (at the
tactical level), and it generates the trajectory or trajectories
that are sent to the control of the vehicle as output to the next
stage.
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FIGURE 6. Hierarchical Planning: Sequential planning and Parallel
planning.

Parallel approaches (right part of Figure 6) consist of
grouping the different automated driving functions into
Advanced Driving Assistance Systems (ADAS). These
ADAS can be considered as individual functions or a com-
bination of multiple functions that can be executed in an
automated vehicle. For instance, the Traffic Jam Assist is
formed by an Adaptive Cruise Control (ACC) module plus a
Lane Keeping module. A few examples of modules (ADAS)
where we can find motion planning algorithms are as follows:
Traffic Jam Assist/Chauffeur, Lane Change Assist, Parking
Assist, or Highway Assist. This is the most common way
to represent functions when different levels of automated
driving are presented.

The behavior-aware or interaction-aware approaches in
Figure 2 consider that both maneuver and motion plan-
ning tasks are performed in the same stage. Since the
maneuver planning approaches were already presented in
the previous chapter, we only focused on motion planning
algorithms. These are usually game-theoretic or probabilistic
based approaches.

Finally, end-to-end planning approaches represent all
learning-based approaches, as shown in Figure 2. Some
relevant works are presented in the following sub-section,
under the learning-based classification.

B. CLASSIFICATION BASED ON THE SPATIO-TEMPORAL
ORDER IN THE TRAJECTORY GENERATION
As stated at the beginning of this chapter, motion planning
consists of generating both the geometry path (planning in
space) and the speed profile (planning in time) to be followed
by the vehicle controller. These subtasks can be performed
sequentially or simultaneously. On the one hand, in the
sequential case the alternatives are: (i) generating the path
and then the speed profile, or (ii) generating the speed profile
and then finding a path to follow it. On the other hand,
for simultaneous approaches both path and speed profile are
generated at the same time.

These approaches can also be classified according to the
algorithm used for the trajectory generation. Among them,
we can distinguish the following approaches:

(i) Interpolating-curve based: These methods are based on
the interpolation of several curves forming the path or
even the speed profile. According to [64], these methods
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can also be called functional methods and can be divided
into closed-form functional methods (methods whose
coordinates have a closed-form expression) and para-
metric functional methods (methods whose curvature
is defined as a parametric curve, which is a function
of their arc length). The most common closed-form
methods are polynomials, Bézier curves, splines and
nurbs; and the most common parametric methods are
Dubins path, clothoids, cubic spirals and quintic G>
splines.

(i) Graph-search based: These methods aim to find the
optimal route on a graph and are mostly used for route
planning (as seen in Chapter II). However, some of these
methods can also be applied for local planning (such as
A*) in static environments such as parking lots.

(iii) Sampling-based: These methods explore the configu-
ration space using either deterministic or probabilis-
tic patterns to divide the vehicle-configuration search.
Among these methods we can highlight Probabilistic
Roadmaps (PRM), Rapidly-Exploring Random Trees
(RRT), enhanced RRT (RRT*), and Artificial Potential
Fields (APF).

(iv) Optimization-based: These methods are based on math-
ematical optimization techniques for solving the motion
planning problem. The most common optimization
method used for automated driving is Model Predictive
Control (MPC), which is used for motion planning,
vehicle control, or both simultaneously.

(v) Learning-based: These methods correspond to the end-
to-end architectural model presented in Figure 2.These
methods are based on artificial intelligence approaches
aimed at mimicking the driving behavior of humans,
as presented in Chapter 1.

Prior surveys [84], [85], [86], [87] studied motion planning
approaches up to 2017. Additionally, other surveys such
as [88] focused on highway environments only. In this section
we cover the work conducted during the last few years in the
entire automated driving domain.

1) PATH PLANNING BEFORE SPEED PLANNING
APPROACHES

A trajectory generation approach for urban environments
based on interpolation of consecutive quintic Bézier curves
was proposed in [33]. The authors used quintic Bézier curves
since they ensure G geometric continuity (the curves share
the same tangent direction and curvature at the joint point)
to provide comfort for motion. For this purpose, the authors
used the Douglas-Peucker algorithm to compute the reference
points for generating the set of quintic Bézier curves that will
be interpolated to generate the path inside a corridor. They
then evaluated the candidate paths and checked if there was
a risk of collision with either static or dynamic obstacles.
In case of collision risk with a static obstacle, a set of collision
avoidance curves was generated by changing the position of
the point perpendicular to the obstacle in the lane. In the
case of collision risk with a dynamic obstacle, they analyzed
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the type of scenario (perpendicular obstacle, obstacle moving
in the same direction, or obstacle moving in the opposite
direction to the vehicle). Additionally, the authors computed a
speed profile for the generated path by first generating a speed
limit curve that considered both the maximum road speed and
the maximum curvature of the vehicle. Then, authors check
the longitudinal acceleration assuming a uniform accelera-
tion between consecutive points. Finally, the generated speed
profile is under the speed limit curve while respecting the
maximum lateral acceleration and maximum speed.

Quartic Bézier curves were used in [89] to generate a
smooth path for optimizing consecutive curves ensuring a
continuous transition between them by limiting the curvature
derivative at the joint point. The author focuses on urban
scenarios where several consecutive turns make the system
adapt in real-time, proposing a virtual lane framework where
the local path is generated into their limits, being recomputed
for obstacle avoidance if needed.

B-spline curves were used in [34] to interpolate the cen-
terline of the reference lane after optimization using the
conjugate gradient nonlinear optimization algorithm. Sub-
sequently, a set of path candidates is generated on the ref-
erence path using the curvilinear coordinate system (Frenet
frame), and a hierarchical velocity profile strategy is defined
to generate the speed profile according to the specific urban
driving situation by using trapezoidal (S-shaped) ramp-up
and ramp-down profiles employing cubic polynomial splines,
considering the road speed limit constraint.

Clothoids were used in [35] as the primitive for generating
a set of possible local paths (tentacles) in dynamic environ-
ments to follow a reference trajectory and avoid obstacles
on it. The candidate paths are evaluated using the reward
system of a Markov Decision Process model regarding sev-
eral criteria, including the uncertainty represented by the
evidential occupancy grid used for modeling the environment
that includes the information of the surrounding obstacles.

A special geometric technique based on discrete shape
patterns built by assembling circular arcs, line segments and
clothoids was proposed in [36] for collision avoidance in real
driving scenarios. The authors aimed to generate robust and
rapid trajectories by discretizing continuous trajectories to
polygonal chains via the deflection of their edges.

Although most graph-search based planning approaches
in automated driving focus on the route planning problem,
there are some works that combine graph-search methods
for motion planning. State lattices allow the discretization
of the configuration space of the vehicle as directed graphs,
where a local path generation method can be applied to
direct the search. For instance, a state-lattice based trajec-
tory planner was proposed in [49] to precompute a set of
paths using splines over the generated state lattice to gen-
erate fast real-time planning in semi-structured race envi-
ronments. The A* graph-search method can also be applied
to local planning. It was combined with RRT for the navi-
gation of an automated vehicle through an unmapped road
scenario in [38].
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An evidential occupancy grid was used in [35] to model
the environment and represent the uncertainty produced by
surrounding obstacles. It serves to determine the path candi-
dates (clothoid tentacles) that are navigable. Chebly also pro-
posed a motion planning approach using the tentacles method
with a clothoid form in [48]. The author combined naviga-
tion through clothoid tentacles selection with a high-level
maneuver planner for the obstacle avoidance application.
Yu et al. [39] proposed a layered motion planning framework
that handles geometry, nonholonomic and dynamic con-
straints with distinct methods. After a global path modifica-
tion layer is used to solve the geometric constraints, a multiple
phase sampling layer is performed generating an occupancy
grid map. The authors combined this occupancy-grid based
discretization with an optimization based path generation to
consider the nonholonomic constraints. Finally, they solved
the speed planning over the path to solve the dynamic con-
straints as a convex optimization problem. Gu et al. proposed
a sampling-based motion planner fused with a tactical maneu-
ver discovery reasoning in [16]. Distinct tactical maneuver
patterns are extracted from the set of feasible trajectories
computed via path generation primitives such as splines (both
for path and speed profile). A cost function is then used to
choose the final trajectory into the more appropriate tactical
pattern set.

Risk assessment is an important element in the evalua-
tion of candidate paths using sampling-based approaches.
Pierson et al. [90] applied risk level sets to measure driving
congestion, learning the common risk thresholds from the
NGSIM and highD driving datasets to classify risk situations
into low, medium and high risk. Qin ef al. [91] focused on
the risk analysis. The authors formulated a safety assessment
of the actions of a level 3 automated vehicle with respect to
its environment as constrained optimization problems, solved
using Dynamic Programming algorithms. For that purpose,
they divided risk into longitudinal risk and lateral risk, regard-
ing the collision risk with the intermediate front object and
the risk of crossing the lane boundaries, respectively. A safety
verification system for merge and crossing scenarios was pre-
sented in [92]. The authors present a Responsibility-Sensitive
Safety (RSS) system and integrate the defined safety con-
straints into motion planning with reachable sets.

Baidu Apollo [40] presented a planning approach in which
both path and speed profile were generated by solving opti-
mization problems iteratively, combining dynamic program-
ming with spline-based quadratic programming. The authors
used the Expectation Maximization (EM) algorithm at the
lane level for both the path and speed profile. A convex-
optimization based approach was proposed in [41] to generate
an optimal speed profile over a fixed path in both static and
dynamic driving environments. This speed planner optimizes
the performance from three aspects: smoothness, time effi-
ciency and speed deviation. For this purpose, it considers
three types of constraints: soft (smoothness, time efficiency,
speed deviations), hard (friction circle, path constraints, time
window and boundary condition) and semi-hard constraints
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(comfort box). A speed planner based on an optimal control
approach to enhance passenger comfort by minimizing the
jerk was presented in [50]. The authors used the minimum
time control method to generate a continuous and smooth
speed profile. This method is equivalent to the well-known
Jerk Limitation method when used under the same condi-
tions. A game-theoretic based motion planner was presented
in [46] combined with an online parameter estimator, called
LUCIDGames. It estimates the objective function parameters
of other objects, allowing an automated vehicle to negotiate
complex driving scenarios while interacting with other vehi-
cles. A robust trajectory planning scheme using using the
ALGAMES dynamic game solver was proposed to enforce
safety constraints that account for uncertainty.

In recent years, the automated driving community has
not only focused on optimizing the trajectory genera-
tion for the ego-vehicle by itself, but also on cooperating
with the surrounding vehicles, aiming to conceive future
smart cities where connectivity is a must. The PhD work
in [93] explored motion planning approaches for coop-
erative and autonomous vehicles. The author presents a
review of the state-of-the-art in cooperative approaches, and
proposes a decision-making algorithm to coordinate up to
twelve autonomous or semi-autonomous vehicles using the
mixed-integer programming optimization method.

The next group of approaches is learning-based approaches.

As described previously, there are four types of sub-models
that try to mimic human driving. For instance, authors in [47]
formulated the planning problem as a constrained Markov
Decision Process focusing on learning the driving constraints
from human driving trajectories, instead of defining them
manually in the cost function. An end-to-end interpretable
neural motion planner was presented in [43] dealing with
traffic lights, yields and populated intersections as urban
scenarios. An end-to-mid approach was presented in [44]
for planning the trajectory of the ego-vehicle and predicting
the trajectories of the surrounding objects by using a proba-
bilistic approach with a Gaussian mixture motion prediction
model constrained by a polynomial formulation. There are
other learning-based approaches such as [45] that focus on
analyzing trajectories from real driving data in order to train
an LSTM model for predicting early failures in the trajectory
generation. Finally, some reviews of deep reinforcement
learning approaches applied for motion planning have been
published recently such as [79], [94], [95], and [80].

2) SPEED PLANNING BEFORE PATH PLANNING
APPROACHES

This approach consists of first specifying a desired speed
profile and then finding a feasible collision-free path. For this
purpose, this strategy has been mostly used in non-structured
or semi-structured environments, where the available driving
space is not strongly defined by lane markings. Therefore,
this strategy is mostly used in the robotics navigation prob-
lem, but not in automated driving. De Beaucorps et al. applied
Reachable Interaction Sets (RIS) and Bézier curves in highly
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dynamic environments to plan collision-free trajectories for
car-like robots. First, the RIS constrains free space by consid-
ering the risk of collision among the obstacles and the ego-
vehicle; and secondly, a path is computed by the interpolation
of Bézier curves surrounding the RIS and allowing the robot
to move up to its destination [37]

3) SIMULTANEOUS PATH AND SPEED

PLANNING APPROACHES

To better account for the interaction between the ego-vehicle
and surrounding objects, some works add time as a dimension
in the configuration space in order to plan simultaneously the
path and speed, increasing the problem complexity. Model
Predictive Control (MPC) based approaches are the most
common for simultaneous path and speed planning, as well
as for simultaneous planning and tracking. An MPC based
method was presented in [42] for obstacle avoidance scenar-
ios, where the reference trajectory was determined consider-
ing both the lateral position and velocity of the ego vehicle
and the velocity and yaw angle of the obstacle, and it was
parameterized as a cubic function in time.

V. STABILITY LEVEL (CONTROL)

The stability level corresponds to the last level of the
decision-making pyramid presented in Figure 1, where con-
trol strategies are applied to select and track a reference
input. In automated driving, this input can be a path, speed
profile, trajectories (paths with speed profile), objects (e.g.
vehicles) or lanes. For each input, the control system selects
the reference to be tracked, and a control law is then applied
to stabilize the vehicle around the selected reference. Thus,
control systems for decision-making are more reactive than
the previous levels in the pyramid, operating in a few tens
of milliseconds to command the vehicle actuators. This com-
mand is often calculated in two control steps: high-level
control, which computes the motion commands to follow
the reference input; and low-level control, which computes
the actuator commands from the motion commands. This
separation allows high-level control to be independent of
the actuators and accounts for the reusability. Additionally,
in the automated driving domain there are two main types
of control: decoupled control, where longitudinal and lateral
references are tracked by two independent controllers; and
coupled, where there is one single control law that tracks both
longitudinal and lateral references.

Since the main focus of this work is on the strategic
(route), tactical (maneuver) and operational (trajectory) lev-
els, we refer to some of the latest and more relevant reviews of
the state-of-the-art in control approaches: a historical review
of lateral and longitudinal control focused on lane follow-
ing, lane keeping and lane change maneuvers was presented
in [96]; a review on control of connected vehicles was studied
in [97]; a survey on longitudinal control of multiple connected
vehicles was presented in [98]; and a survey on lateral control
was carried out in [99]. Additionally, a deep learning-based
control review was recently published in [100].
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TABLE 4. Motion planning works in the SoA.

Motion
Planning

References

Description

Testing Environment

Testing Platform

Algorithm

Urban

Highway

Vehicle

Simulation

Interpolating
curves

(331, (891,
[34], [35],
[36], [37]

Interpolation of quintic Bézier curves for trajectory
planning in urban environments; interpolation of con-
secutive quartic Bézier curves optimizing consecu-
tive curves for generation smooth trajectories; B-spline
curves for the interpolation of centerline of reference
lane for candidate paths generation. Cubic polyno-
mial splines for speed profile generation; Clothoids
based path tentacles in dynamic environments for ob-
stacle avoidance; assembling of circular arcs, line seg-
ments and clothoids for collision avoidance; RIS com-
bined with Bézier curves for path generation in semi-
constrained highly dynamic environments

[33], [34],
[35], [36],
[37]

[35]

(331, [34],
(351, [36],
[37]

[35], [36],
(371

Graph-
search based

[49], [38]

State lattices based discretization combined with splines
for the paths set generation for fast real-time planning
in semi-structured environments; A* graph-search com-
bined with RRT for the navigation of an AV through an
unmapped road scenario

[38]

(38]

[38]

[49], [38]

Sampling-
based

(35], [48],
[391, [16]

Evidential occupancy grid for modeling the envi-
ronment and allowing to represent the uncertainty,
combined with clothoid tentacles; navigation through
clothoid tentacles selection with a high-level maneuver
planner for the obstacle avoidance application; occu-
pancy grid discretization with optimization based path
generation; sampling-based motion planner with tactical
maneuver discovery reasoning

[39], [16]

[35]

[35], [48]

[35], [48],
[391, [16]

Optimization-
based

(40], [41],
[501, [42]

Path and speed profile generation by iterative optimiza-
tion, combining dynamic programming with quadratic
splines; convex optimization for optimal speed profile
generation for static and dynamic environments; speed
profile generation based on optimal control; MPC-based
simultaneous path and speed planning for obstacle
avoidance scenarios

[40], [41],
[42]

[42]

[40], [42]

[40], [41],
[50]

Game-theory
based

[46]

LUCIDGames game-theoretic motion planner com-
bined with online parameter estimator for navigation in
complex scenarios interacting with other vehicles

[46]

[46]

Learning-
based

[47], [43],
[44], [45]

Constrained Markov Decision Process focusing on
learning the driving constraints from human driving tra-
jectories; end-to-end interpretable neural motion plan-
ner dealing with traffic lights, yields and populated in-
tersections as urban scenarios; end-to-mid probabilistic
probabilistic approach for both planning and prediction;
analysis of real driving trajectories for predicting early
failures through a LSTM model

[43], [44],
[45]

[47], [45]

[47], [43],
[44], [45]

Howeyver, there are certain works in the state-of-the-art
where both motion planning (operational level) and track-
ing (stability level) are performed simultaneously. Therefore,
we want to highlight some of the works below. Model Pre-
dictive Control (MPC) based approaches are the most com-
mon for simultaneous trajectory planning and tracking. Some
MPC-based solutions for obstacle avoidance scenarios were
presented in [42], [101], and [102]. An MPC-based approach
for motion planning in overtake scenarios was presented
in [24]. The authors combined reachable sets, to iteratively
generate reference targets based on the current maneuver,
together with a nonlinear MPC to perform collision-free
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trajectories in overtaking scenarios with capabilities for
aborting the maneuver to merge back in the lane.

In addition to MPC, optimal control methods such as
the Linear Quadratic Regulator (LQR) controller can be
used for simultaneous planning and tracking. An Adap-
tive Constrained Iterative LQR based motion planning was
used in [103] in obstacle avoidance scenarios, considering a
two-stage uncertainty aware prediction.

VIi. TRENDS AND CONCLUSION
In this state-of-the-art review, more than 100 scientific arti-
cles written in the last lustrum were studied. These studies
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have shown the capacity of artificial intelligence-based algo-
rithms to solve decision-making problems applied to auto-
mated driving. Although the Vehicle Route Planning Problem
can be considered a solved problem (see the stagnation of
works in recent years in Figure 8), there is still work to
be done in local planning methods, that deal with dynamic
environments. Indeed, to make these local decision-making
and planning systems more robust, and thus increase their
reliability and the level of acceptance by potential customers,
some of the unsolved challenges are:

o An enhancement of the motion prediction approaches,
considering the interaction between the ego-vehicle and
the relevant surrounding objects and acting differently
according to the type of object (vulnerable road user,
motorbike, car, bus, truck, etc) and the type of sce-
nario (urban intersection, roundabout, stop, yield, lane
following, lane change, overtaking, obstacle avoidance,
etc). In particular, most interaction-aware approaches
focus on the interactions among vehicles. Better inter-
action models, particularly for interaction with Vulner-
able Road Users (VRUs). For instance, [76] presented a
review of pedestrian crossing uniquely applied to road-
ways.

o The robustness of current decision-making algorithms
must be improved to cover more diverse driving scenar-
ios. Current works have largely treated specific driving
scenarios: either for urban driving (intersections, obsta-
cle avoidance, parking) or highway driving (lane follow-
ing, stop in lane, minimum risk maneuver). However,
their performance when switching between different
scenarios and handling new contexts has not yet been
sufficiently demonstrated. For instance, these systems
should adapt to different changes in the road surface,
weather and other environmental conditions.

« Furthermore, robustness in decision-making need to be
enhanced by considering the uncertainty and incom-
pleteness of perception and maps. Although some
probabilistic-based approaches have been studied [19],
[27], [35], they are usually constrained either to simula-
tions or very specific driving scenarios.

e The integration of more human factors in the
decision-making process (such as driving profiles and
driver condition) is needed to provide more human-like
behavior and better predict the intentions of other road
users, increasing the acceptance of automated vehicles,
particularly when sharing the road with non automated
road users [104].

o In recent years, the trend in research has been to
use learning-based methods for decision making and
planning in automated driving, achieving good results
in some specific scenarios. These approaches depend
directly on the training phase and require large train-
ing datasets that reflect the environment where the
vehicle will be deployed. In addition, learning-based
approaches have not yet been certified in terms
of verifiability, safety and explainability. Currently,
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no deep-learning method applied to decision mak-
ing and planning has been integrated into production
systems.

Automated vehicles will continue to affect passenger road
transport in the short term. Their impact on urban develop-
ment and relevant challenges were studied in [105]. Among
these challenges we can highlight the following aspects:
(1) Accessibility: Automated vehicles will have to adapt to
operate as either private, shared or public means of transport.
(ii) Traffic: AVs have the opportunity to free public space and
serve areas of limited roadway capacity. (iii) Infrastructure:
AVs will ease the development of new urban infrastructure,
integrate the AV network into energy and telecommunication
networks, developing smart cities.

In terms of communications, V2X systems are still under
development and they have the potential to improve the
decision-making process [106]. For instance, communicating
the position, orientation, speed, route or maneuver intention
of vehicles among them would provide precise information
to complete the current prediction systems.

The Dimensions.ai website [107] was used to quantify the
number of research publications from 2000 to 2021 for the
three planning levels (route, maneuver, and motion) as well
as in decision-making in general term, with special emphasis
on the last lustrum, highlighted in gray. The search queries
used for generating the Figures 7-10 are regular expressions
that include all the previous terms for decision making, and
for each specific topic they include the terms related to the
methods indicated in each Figure. Additionally, we ensure
that in the search there is either the term automated driving
or autonomous vehicle or any of their combinations, to ensure
the coverage of only AV applications.

Figure 7 shows the evolution of decision-making in auto-
mated driving. This figure shows the number of publications
per year containing in the title or abstract the decision-making
general term (depicted in yellow) and the specific terms (and
their equivalences) for each level of decision-making, i.e.
route planning (in blue), maneuver planning (in orange) and
motion planning (in green).

As can be inferred from the figure, research on
decision-making for automated driving has shown a growing
trend during the last lustrum, from less than 100 publications
in 2016 to over 500 publications in 2021. Although energy-
efficient route planning approaches have been studied in
recent years, research on route planning has had almost no
growth in terms of motion planning and decision-making
in general. It should also be noted that maneuver planning
publications by themselves are not so numerous because we
usually refer to them as decision-making systems in the state-
of-the-art.

In terms of Route Planning, Figure 8 shows that exact
algorithms remain the most commonly used, where Dijkstra’s
algorithm is still the most common choice for route plan-
ning. In addition, the impact of metaheuristic algorithms has
significantly increased in the last five years, from less than
200 publications in 2016 to over 800 in 2021.
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The maneuver planning algorithms data depicted in Fig-
ure 9 show a clear trend towards learning-based algorithms.
Since 2014 cooperative-based approaches have become more
popular, but since 2018 leaning-based approaches have sur-
passed all others, passing from around 30 research works in
2017 to over 175 in 2021. However, the growth of most clas-
sical algorithms (rule-based and utility-based) has appeared
to stall in the last few years.

Finally, motion planning algorithms with higher growth
and most used in the last lustrum are optimization-based and
learning-based.

The reason why optimization-based algorithms have kept
the lead since the early 2000s may be a consequence of their
versatility and multi-purpose application: they are suitable
not only for trajectory planning, but also for control, trajec-
tory smoothing or even motion prediction. Learning-based
algorithms have also grown at almost the same pace, from
around 500 publications in 2016 to approximately 3500 in
2021, as depicted in Figure 10.
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