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Abstract—Next-generation navigation systems require precise
and robust solutions, providing information about both the sys-
tem position and its attitude, of particular interest in intelligent
transportation systems and robotics applications. Within this
context, Global Navigation Satellite Systems (GNSS) are the
main source of positioning data and, in multiple antenna setups,
can also provide attitude information. Notice that the use of
phase observables is mandatory to obtain a precise solution. In
this contribution, we leverage the recently introduced recursive
GNSS joint position and attitude (JPA) estimation framework,
which has been shown to provide good performance under
nominal conditions. The main goal is to further elaborate the
JPA problem and to propose a new robust filtering solution able
to mitigate the impact of possible outliers, which may otherwise
cause a performance breakdown of standard JPA, because of the
sensitivity of carrier phase measurements. Illustrative results
are provided to support the discussion and show the perfor-
mance improvement of the proposed approach.
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1. INTRODUCTION
Next-generation navigation systems require robust and pre-
cise solutions, two performance criteria that may not be easy
to achieve simultaneously. Within the large navigation field,
Global Navigation Satellite Systems (GNSS) are the main
source of positioning data for a wide range of applications [1].
If using multiple antenna setups, GNSS can in addition be
exploited for attitude determination and/or joint position and
attitude (JPA) estimation, of particular interest in aerospace,
for satellite orbit determination [2–4], and outdoor navigation
in vehicular and robotics applications [5–8]. In such applica-
tions, it is fundamental to ensure a reliable precise positioning
solution, able to operate in harsh propagation conditions such
as urban environments, which implies coping with multipath
and other non-nominal disturbances.

This brings a fundamental dilemma: while carrier phase
measurements must be used to obtain a precise solution, such
observables and the corresponding integer ambiguity resolu-
tion are particularly sensitive to non-nominal conditions (i.e.,

XXXX/$31.00 ©2022 IEEE

much more than code-based observables). This limits the ap-
plicability of carrier phase-based positioning techniques (e.g.,
Real-Time Kinematic (RTK) or Precise Point Positioning
(PPP)) in challenging scenarios, the reason why new robust
solutions must be accounted for.

Similarly, the use of multi-antenna configurations, together
with carrier phase observables, allows to provide precise
estimates on the target platform’s orientation. While a rich
literature on GNSS-based attitude determination exists [5, 9–
11], its estimation is typically decoupled from the positioning
problem. The first proposal for its combined estimation can
be found in Array-PPP [12], which provides a batch least
squares (LS) solution for the PPP and attitude problems.
More recently, a recursive Kalman filter (KF)-based approach
was proposed [13], leveraging on the algebra of the Lie
group to provide an enhanced availability and precision of
the navigation solution. The performance degradation of such
JPA in harsh propagation conditions, and possible ways to
cope with it, has not yet been reported in the literature.

A possible way to account for non-nominal conditions at
the observable level (i.e., propagation effects which deviate
from the Gaussianity assumption) is to consider the typical
contamination model arising in robust statistics: a proportion
of observations under nominal Gaussian-distributed noise,
and another proportion of observations contaminated by an
arbitrary unknown distribution accounting for possible out-
liers (i.e., corrupted observations). In that perspective, a
plethora of batch (robust LS-type) and recursive (robust KF-
like) estimation techniques exist in the literature to detect,
reject, or mitigate the impact of potentially faulty measure-
ments. These techniques have been successfully applied both
in the context of code-based and RTK positioning [14–18],
and have been shown to be a promising solution.

Within the context of multi-antenna carrier phase-based nav-
igation, the goal of this contribution is to further elaborate on
the framework of robust filtering. Hence, a robust quaternion-
parametrized KF-based filtering approach is proposed, able
to mitigate the impact of outlying observations, therefore,
combining and generalizing the previous results in [18] and
[13]. For the purpose of simplicity, and since it is independent
from the filtering part, the integer ambiguity resolution (IAR)
process (i.e., the procedure to map the real-valued ambigu-
ities to integer ones) which follows the filtering estimation
is beyond the scope of this work. Illustrative results are
provided to support the discussion and show the performance
improvement with respect to state-of-the-art solutions.

The article is organized as follows: the JPA problem is
introduced in Sec. 2, and background on nonlinear/robust
filtering in Sec. 3. The new robust filter formulation for JPA
is provided in Sec. 4, and numerical results in Sec. 5.
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2. BACKGROUND ON GNSS JPA ESTIMATION
Addressing the complete dynamics for a platform implies the
estimation of its orientation, velocity and position. GNSS-
based JPA estimation concerns the use of GNSS carrier phase
observations along an array of N + 1 antennas installed on a
vehicle, and a nearby base station of known coordinates, as
illustrated in Fig. 1. This section briefly introduces the JPA
estimation problem as it was proposed in [13]. In particular
its state-space model is described together with the system
dynamics and observation model.

General State-Space Model Formulation

Consider a discrete state-space model (SSM) described by the
evolution of the states over time, through a process model
f(·), and the relationship of these to the observations, through
an observation model h(·), as

xk = f (xk−1,ωk−1,wk−1) , (1)
yk = h (xk) + ηk, (2)

with ωk−1 the angular rates measured at epoch k by an IMU,
wk−1 ∼ N (0,Qk−1) the process noise and ηk ∼ N (0,Σk)
the (nominal) measurement noise. The state of the system is
given by

x>k =
[
q>k ,a

>
k ,p

>
k ,v

>
k ,b

>
k,ω

]
,

xk ∈ S3 × ZM × R3 × R3 × R3,
(3)

where qk denotes the unit-norm quaternion rotation from
the body to the (global) navigation frame –denoted with
subscripts B and G respectively–, ak is the vector of carrier
phase integer ambiguities, pk,vk are the position and speed
respectively, and bω,k is the gyroscope bias of the IMU.
In this work, only gyroscope measurements are taken into
account, for the sake of simplicity. Therefore, a constant
velocity model is assumed (i. e., the acceleration is not
contemplated in the model) and only gyroscope biases are
estimated. Including the linear speed and gyroscope bias in
the state vector allows taking into account the dynamics of
the receiver, through the SSM process equation. The integer
ambiguities are of dimension M = n · (N + 1), considering
n+1 GNSS tracked satellites overN+1 antennas installed on
the vehicle. In general, the recursive estimation of xk, given
measurements up to time k, y1:k, for nonlinear models as in
(1)-(2), is typically tackled by nonlinear KF-type solutions
or sequential Monte Carlo methods. Due to the presence of
the quaternion and integer ambiguities, JPA requires specific
treatments.

The complete JPA pipeline, following the standard RTK
procedure [1], is a three-part process. During the first one,
the integer constraint of the ambiguities is relaxed and they
are estimated as real values. The two subsequent steps aim at
recovering the actual integer values and correcting the state
accordingly, leading to a significant precision gain. These
three steps are described in [13]. This work focuses on
the first filtering step. Therefore, the ambiguities will be
considered as real-valued for the remainder of the paper. This
means that we will consider

x>k =
[
q>k ,a

>
k ,p

>
k ,v

>
k ,b

>
k,ω

]
,

xk ∈ S3 × RM × R3 × R3 × R3 =M.
(4)

Recursive attitude estimation must also take into account and
respect its inherent nonlinear geometric constraints –either
the orthogonality and unit determinant for the rotation matrix

Figure 1. On the left, illustration for the GNSS-based
JPA problem: the base station, the rover with multiple
antennas. On the right, the configuration of the sensors

on the body frame. The master antenna is highlighted in
orange color.

or the unit norm for the quaternion– [19, 20]. This is now a
well-known problem, typically addressed by geometric tools
such as Lie group theory [21]. A possible solution is given by
the so-called Error State KF (ESKF) –also known as Indirect
KF– [22,23], for which the state to be estimated x belongs to
a manifold and its perturbations δx “live” in the tangent space
of that manifold. Thus, the unknown true state is formulated
as the composition of the nominal estimate x̂ and the error
state δx, noted x = x̂⊕ δx, and defined by (7), with the error
state described by

δx>k =
[
δψ>k , δa

>
k , δp

>
k , δv

>
k , δb

>
ω,k

]
,

with δxk ∈ R3 × RM × R3 × R3 × R3,
(5)

and δψk the rotation vector. The Euclidean space for δψk
connects to the Lie algebra uϕ ∈ s3 (with u an unit vector
of rotation and ϕ the rotated angle) with the isomorphism
(·)∧ : R3 7→ s3. Then, the Lie algebra connects with the 3D
unit-sphere S3 manifold through exponential mapping. The
overall procedure is given by

δψ ∈ R3 (·)∧7−−→ uϕ ∈ s3
exp(·)7−−−−→ δq ∈ S3, (6)

(δψ)∧ :

{
u = δψ

‖δψ‖2
ϕ = ‖δψ‖2

, exp(uϕ) :

[
cos(ϕ/2)

u sin(ϕ/2)

]
.

Therefore, the method q{ψ} corresponds to the mapping
between the Euclidean space and the unit quaternion one via
the relationships established in (6), such that

q{ψ} , euϕ/2 = cos
ϕ

2
+ u sin

ϕ

2
=

[
cos(ϕ/2)

u sin(ϕ/2)

]
,

where e(·) is an extension of the Euler formula, eiθ = cos θ+
i sin θ, for imaginary numbers. In a compact expression, the
composition of nominal and error state is as follows

x = x̂⊕ δx =


q̂ ◦ δq
â + δa
p̂ + δp
v̂ + δv

b̂ω + δbω

, (7)

δx = x	 x̂ (8)

with ◦ the quaternion product, and δq the quaternion obtained
from δψ via (6). For a more detailed discussion on Lie group
theory, please refer to [21, 24, 25].
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Process Model: Constant-Speed Dynamics

A typical dynamical model regards a vehicle to move accord-
ing to the constant-velocity model [26],

f(xk−1,ωk−1) =


qk−1 ◦Ωk−1
ak−1
pk−1 + dt vk−1
vk−1
bω,k−1

,

with, Ωk−1 = exp(dt (ωk−1 − bω,k−1)∧)

(9)

where ωk−1 corresponds to the three-component angular rate
vector, observed at the local frame. The associated Jacobian
of f(xk−1) can be easily obtained

Fk =


Ω>k −dt I3

IM
I3 dt I3

I3
I3

 . (10)

Observation Model: GNSS-Based Position and Attitude

Consider the platform configuration depicted in Fig. 1, such
that one of the antennas is considered as master and center of
the body frame, and the remainingN antennas are denoted as
slaves. The global frame G is typically centered on the base
station location. To eliminate atmospheric delays and other
nuisance parameters, the “original” GNSS measurements at
the base and slave antennas are mixed with those of the master
antenna using the double difference (DD) combination [1].
The DD code and carrier phase combinations constitute the
positioning- and attitude-related observations. The subscripts
m, b, and j = 1, . . . , N refer to the GNSS measurements
for the master, base and slave antennas, respectively, where
N corresponds to the t For simplicity, the time index k is
dropped for the observation description.

• Position-related observations

These observations, noted ypos, only involve the master an-
tenna and are described as

ypos =

[
Φb,m
ρb,m

]
, Φb,m,ρb,m ∈ Rn, (11a)

[Φb,m]i = −u>i pk + λ · ari + εb,mi
, (11b)

[ρb,m]i = −u>i pk + εb,mi
, (11c)

where, for a generic vector α, [α]i and/or αi denote the i-
th DD observation, ρ and Φ are the vector of DD code and
carrier phase observations, ui is the DD line-of-sight unit
vector between each tracked satellite i and the base station
b, λ is the GNSS carrier wavelength and εb,mi

, εb,mi
indicate

the carrier phase and code noises for the i-th observation (i =
1, . . . , n) being n+ 1 the total number of GNSS satellites. a
contains the ambiguities and the subscript ri in (11b) refers to
the one associated with the i-th DD observation between the
base station and the master antenna. The model presented in
11 applies for short baselines (i. e., distance between base
station and user up to few kilometers) so that differential
atmospheric delays, as well as satellite orbit errors, can be
neglected.

• Attitude-related observations

Their vector of observations, denoted yatt, is as follows

y>att =
[
Φ>1,m, . . . ,Φ

>
N,m,ρ

>
1,m, . . . ,ρ

>
N,m

]
, (12a)

with Φj,m,ρj,m ∈ Rn, j = 1, . . . , N. (12b)

[Φj,m]i =− u>i R(q)Bbj,m + λ · arj,i + εj,mi
, (12c)

[ρj,m]i =− u>i R(q)Bbj,m + εj,mi
, (12d)

where R(q) is the rotation matrix from the body frame B
to the global navigation frame G, derived from the associated
quaternion, and Bbj,m denotes the baseline vector between
the j-th slave and master antennas, measured in the body
frame B of the vehicle. The subscript rj,i in (12c) refers to the
ambiguity associated with the i-th DD observation between
the j-th slave and master antennas.

The complete vector of observations is y> =
[
y>pos, y>att

]
,

the associated covariance matrix Σ and the Jacobian matrix
Hk are defined in [13].

Standard Error-State KF Formulation

The ESKF adapts the EKF framework to a chosen nonlinear
parametrization, here given by (7) to preserve the unit-norm
quaternion constraint, while using a minimal parametrization
of the covariance matrix. That is, it uses the ⊕ operator,
instead of the standard addition, to linearize and update the
system, to ensure that the estimate stays on the smooth
(usually Riemannian) manifoldM. Let x̂k−1|k−1 denote the
estimate at step k − 1, and Pk−1|k−1 its estimation error
covariance. Then the propagation and update steps of the
ESKF are given by

x̂k|k−1 = f(x̂k−1|k−1,ωk−1) (13a)

Pk|k−1 = Fk−1Pk−1|k−1F
>
k−1 + Qk−1, (13b)

Sk = HkPk|k−1H
>
k + Σk, (13c)

Kk = Pk|k−1H
>
k S−1

k , (13d)
x̂k|k = x̂k|k−1 ⊕Kk(yk − h(x̂k|k−1)), (13e)
Pk|k = (I−KkHk)Pk|k−1. (13f)

The matrices Fk−1,Hk represent the Jacobians of the process
and observation models, fh, with respect to the composition
of nominal and error states, which is expressed using the
mathematical operator ⊕.

3. BACKGROUND ON NONLINEAR AND
ROBUST FILTERING

A Primer on the Iterated ESKF

It is well-known that, due to linearization errors, the EKF
loses the optimality guarantees of the linear KF, that is, for
nonlinear systems it may not provide unbiased minimum
variance estimates. One way to tackle this problem is using
the iterated EKF, which aims at finding the best linearization
point for the measurement Jacobian at each update. It later
appeared that it is in fact the application of a Gauss-Newton
scheme to the following optimization problem [27]:

x̂k|k = argmin
x
‖x− x̂k|k−1‖2Pk|k−1

+ ‖h(x)− yk‖2Σk

= argmax
x

P
(
xk|x̂k|k−1,yk

)
. (14)

3
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Then, applying a Gauss-Newton scheme brings the well-
known iterative sequence (x

(i)
k )i≥0 to compute x̂k|k. x

(0)
k =

x̂k|k−1, and, for all i ≥ 0

x
(i+1)
k = x̂k|k−1 (15)

+ K(i)
(
yk − h(x

(i)
k ) + H(i)(x

(i)
k − x̂k|k−1)

)
,

where H(i) is the Jacobian computed at x
(i)
k , and K(i) the

Kalman gain computed from Pk|k−1 and H(i). Note that
hereafter subscript i is reused to refer to the ith iteration step
of the Gauss-Newton iterative process.

This scheme can be readily adapted to states living on man-
ifolds, using the associated ⊕,	 operators. Indeed, (14) can
be reformulated for the ESKF as

x̂k|k = argmin
x∈M

‖x	 x̂k|k−1‖2Pk|k−1
+ ‖h(x)− yk‖2Σk

.

(16)

And, in turn, the recursive formula (15) becomes [28, 29]

x
(i+1)
k = x̂k|k−1

⊕K(i)
(
yk − h(x

(i)
k ) + H(i)(x

(i)
k 	 x̂k|k−1)

)
2. (17)

The iterated ESKF (I-ESKF) is particularly useful when the
linearization errors of the measurement function are the main
source of instability. Since Fk given in (10) does not depend
on the estimate, this nicely fits the JPA problem. The main
advantage of this formulation is that it will allow, in Section 4,
to easily adapt the M-estimators derived in the vectorial case,
and explained hereafter.

M-Estimators for Robust Filtering

The robust statistics framework provides score functions that
mitigate the effect of outliers on the state estimates. A generic
filter robust against outlying observations reformulates (14)
as

x̂k|k = argmin
x
‖x−x̂k|k−1‖2Pk|k−1

+‖h(x)−yk‖2Σ̄k
, (18)

where Σ̄k is the observations’ covariance matrix conditional
on a set of estimated weights, such that

Σ̄k = Σ
1/2
k W−1Σ

>/2
k , (19)

where Σ
1/2
k is the Cholesky factorization of Σk and W is a

weighting matrix given by

W = diag
[
w
(
Σ
−1/2
k

(
yk − h(xk)

))]
, (20)

with w(·) a function derived from a robust score function.
The underlying idea behind robust functions is to down-
weight or nullify the effect that observations not fitting the
underlying model have over the actual estimates. Such robust
functions can be distinguished between monotone or hard-
redescending, based on their shape. Redescending functions
allow for completely erasing the influence of a particular
observation, at the cost of being non-convex and leading

2Some additional corrective terms, used e.g. in [28], are negligible here

to potential numerical problems when performing inverse
matrix operations. Fig. 2 illustrates the standard Huber
and Tukey weighting functions, which are the most distinct
examples of monotone and redescending functions, respec-
tively. Note that robust weighting functions generally present
a tuning parameter that allows controlling the efficiency at
the normal model –i.e., how similar the mean squared error
(MSE) of a robust estimator would be in comparison with
an optimal maximum likelihood estimator under nominal
normal distributed noises–.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

w
(x

)

Huber Tukey

Figure 2. Weight functions associated to the Huber and
Tukey robust cost functions with tuning parameters set

to 95% efficiency in the Gaussian model.

The application of robust estimation over conventional KF
can be realized in two manners: i) via Robust Information
Filters (RIF) [30]; ii) via Generalized M-based KF (GM-KF)
[31]. While GM-KF provides additional robustness against
innovation outliers (i.e., those occurring during the prediction
step of a filter), it does not allow using hard-redescending
functions. Hereinafter, this work focuses only on RIFs.

Thus, RIF approximates (18) with an iterative procedure over
the information vector zk = P−1

k xk and information matrix
Zk = P−1

k , until a certain convergence criteria is reached.
Thus, for x̂(0) = x̂k|k−1,W

(0) = I and for all i ≥ 0

z(i+1) = zk|k−1+ (21)

H
(i)
k

>
Σ
−>/2
k W(i) Σ

−1/2
k

(
yk − h(x̂(i)) + H

(i)
k x̂k|k−1

)
and updating the information matrix once the convergence is
reached, as

Zk|k = Zk|k−1 + H>k Σ
−>/2
k W Σ

−1/2
k Hk . (22)

This formulation results particularly interesting for robust fil-
ters which employ “aggressive” weighting functions. Hence,
the use of such redescending functions (where the weights
can become zero) may cause numerical issues within the
standard robust regression KF, due to matrix inversion. In-
stead, the RIF formulation makes it possible to avoid these
numerical issues and still exploit redescending cost functions.

Unfortunately, a formulation for the RIF compatible with
state elements “living” on a manifold (e.g., such as the
quaternion) is not available. In the sequel, we extend the
formulation of the original RIF for its application to JPA.

4
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4. ROBUST JPA FILTER FORMULATION
Standard JPA, as introduced in [13], only relies on the con-
ventional ESKF. Indeed, the estimates are accurate enough
for the measurement Jacobian to be properly linearized.
However, in the presence of outliers and when integrating
inertial information, this turned out to be insufficient. In this
work, we thus consider two filters for JPA, which differ from
each other and the ESKF on the realization of the correction
step:
• The standard I-ESKF given in (16)-(17) for the nominal
Gaussian distributed case.
• A robust I-ESKF, exploiting the M-estimation RIF form,
which we detail hereafter.

Just as the I-ESKF uses an adapted version of the cost
function of the iterated EKF, its robust versions adapt the cost
function (18) of M-estimators as

x̂k|k = argmin
x∈M

‖x	x̂k|k−1‖2Pk|k−1
+‖h(x)−yk‖2Σ̄k

, (23)

Adapting RIFs to attitude-related problems requires con-
verting the filters’ innovation vectors to error state vectors.
Taking the RIF as example case, one would provide a robust
estimate by expressing the innovation over the information
vector in (21) as error state, as

xk|k = x̂k|k ⊕ δxk|k, (24)
δxk|k = Pk|kδzk|k , (25)

where δzk|k is a robust estimate over the change of the
information vector. As in the vectorial case [18], estimating
δzk|k requires two cascaded iterative procedures. Indeed,
consider a given fixed weight matrix W. For this weighting,
the estimate is obtained recursively, starting from x̂(0) =
x̂k|k−1, and for i ≥ 0 by

δz(i+1) = H
(i)
k

>
Σ
−>/2
k WΣ

−1/2
k · (26)(

yk − h(x(i)) + Hk(Z(i))−1δz(i)
)
,

Z(i+1) = Zk|k−1 + H
(i)
k

>
Σ
−>/2
k WΣ

−1/2
k H

(i)
k (27)

x(i+1) = xk|k−1 ⊕ (Z(i+1))(−1)δz(i+1) (28)

Note that, in (26), (Z(i+1))−1δz(i+1) = δx(i+1) = x
(i+1)
k 	

x̂k|k−1, similar to (15). The recursion (26) needs to be
solved for each value of the weighting matrix, which itself
is recomputed afterwards. This double recursion, given in
Algorithm 1, forms the robust iterated ESKF update phase. In
this paper, as explained in Section 5, we considered the Huber
and Tukey robust cost functions, whose weighting functions
were given in Fig. 2

5. RESULTS
The impact of outliers on standard JPA and the proposed
robust JPA was evaluated through simulation experiments.
We considered a medium-sized vehicle (e.g., a small ship, a
small plane or a car), containing 3 slave antennas in addition
to the master one, and observing ten satellites (the skyplot

shown in figure 3 coincides with [32]). Each slave antenna
is assumed to be separated from the master antenna by a
distance ‖Bb̂j,m‖ = 1 m. The vehicle starts at a distance
of 5 km from the base station, and its velocity follows a
random walk as well as the gyroscope biases. GNSS data
was obtained at 1 Hz, and recorded for 1000 s. The number
of Monte Carlo runs is set to 100. Stochastic modelling
for the undifferenced GNSS observations follows a satellite
elevation-dependent model [33], with the zenith-referenced
code and carrier standard deviations given in Table 1.
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Figure 3. Skyplot for the simulated constellation.

Within the simulated trajectory, we defined two types of
behaviours, a nominal one and a corrupted one (indicated as
shaded gray areas in upcoming figures). In the grey zones,
we aimed for 20% of outliers, so satellites G20 and G24 were
corrupted across all antennas. In this case, their phase noise
distribution does not change but they are affected by a cycle
slip.

A total of four filters have been evaluated, which we can be
categorized as (a) iterative ESKF (I-ESKF), which includes
an ideal I-ESKF (i.e., a filter with information on which
observations are outliers and sets the best possible solution by
discarding those degraded observations) and an I-ESKF (i.e.,
a classical filter heavily affected by the presence of outliers);
and (b) robust filters, as defined in Section 3, based on Huber
and Tukey cost functions.

Algorithm 1 Robust Iterated ESKF Correction Step
Input: Observations: y,Σ,

Robust-estimator parameters: w(·), c
Predicted estimate: x̂k|k−1, Pk|k−1

Output: Updated estimate x̂k|k, Pk|k

Initialize W(0) = I, x̂(0) = x̂k|k−1,
for p = 1, . . . until convergence do

Solve (23) via (26)-(28) to obtain x̂(p),Z(p)

Update the weighting matrix:
W(p) = diag

(
w
(
Σ
−1/2
k (y − h(x̂(p)))

))
end for
x̂k|k = x̂(p)

Pk|k =
(
Z(p)

)−1
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We computed the root mean squared error (RMSE) of the
position, angles, and bias, in addition to the cumulative dis-
tribution function (CDF) for the positioning error. Moreover,
we assessed the efficiency of the robust filters in the nominal
case, defined here as the relative performance of a particular
estimator with respect to the I-ESKF in nominal conditions
under normal-distributed noise. Such metric is defined for an
exact noise model F and a target estimator θ̂(F ) as the ratio
in asymptotic variance between the optimal estimator (i.e.,
the MLE for the F model) and the target estimator, as

Eff
(
θ̂(F ), F

)
=

var
(
θ̂MLE(F ), F

)
var
(
θ̂(F ), F

) , (29)

such that the efficiency is delimited by 0 ≤ Eff
(
θ̂(F ), F

)
≤

1.

Table 1. Monte Carlo simulation parameters.

Initial
std. dev.

Position: 10 [m]
Velocity: [2, 2, 2 · 10−3] [m/s]
Attitude: 10 [deg]
Gyroscope bias: 2 · 10−3 [◦/

√
s3]

Ambiguities: 4 [cycles]

Process noise
std. dev.

Velocity (East-North-Up): [1, 1, 10−3] [m/s]
Gyroscope: 2 · 10−3 [◦/

√
s3]

Bias random walk: 2 · 10−5 [◦/(
√
s3)]

Ambiguities: 1 · 10−16 [cycles/
√
s]

Obs. noise
std. dev.

Code zenith-referenced: 0.3 [m]
Carrier phase zenith-referenced: 3 [mm]

Outliers rate 20%

Cost func.
parameters

Huber: 1.345
Tukey: 4.685

Nominal case:

First, a nominal (outlier-free) case was considered, in order
to assess the efficiency of the different robust methods [34].
Indeed, robust solutions are expected to have lower perfor-
mance in nominal cases, so their design should allow them
to be close-to-optimal. Quantitatively, this means having an
efficiency as close as possible to 1. As shown in Fig. 4, both
filters manage to achieve it.

Non-nominal case:

After validating the efficiency of the proposed filters, we can
analyse their behavior in a non-nominal scenario. We thus
considered the contamination of the measurements from 20%
of the satellites. The RMSE of the position, attitude and
gyroscope bias for each filter is presented in figure 6. The
moments where outliers are present are illustrated by the grey
zones.

Since attitude and gyroscope bias are less affected by these
outliers, the I-ESKF still manages to correctly estimate them,
and slightly better than the robust filters. However, its perfor-
mance for the position is significantly degraded when outliers
are present. Indeed, these observations get directly affected
by the outliers, and the I-ESKF does not recover afterwards
when conditions are back to nominal. The robust filters, on
the other hand, achieve much better performance, especially
during the outliers intervals. Interestingly, they show jumps in
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Figure 4. Nominal case: Efficiency over time for robust
ESKFs.

the error when the conditions go back to nominal, but manage
to recover from them. More intriguing, using the Tukey cost
function performs actually better in non-nominal case. A first
intuition could be that the outliers actually help it identify the
corrupted satellites since it can put weights to zero. However,
this needs further research to fully understand this behavior.
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Figure 5. Non-nominal case: Empirical cumulative
distribution function (CDF) of the float positioning

errors.

6. CONCLUSION
In this paper, we elaborated on the recent JPA estimation
framework, to propose a robust counterpart to it in order to
alleviate the presence of potential outliers. To do so, we
built on the robust estimation methodology, which had been
already applied to RTK estimation. However, fusing JPA
and robust estimators brought the necessity of better handling
nonlinearities, in an iterative manner. We thus proposed
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Figure 6. Non-nominal case: Evolution of the root mean squared error (RMSE) for the float solution over time.

to use a robust iterated ESKF, whose update uses an inner
reweighting loop. The impact of outliers on standard JPA,
and the capacity of the proposed filter to mitigate them, were
illustrated on numerical examples. It appeared that the robust
filters are less impacted by the outliers and that they manage
to quickly recover from them, contrary to standard JPA.
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[32] D. Medina, J. Vilà-Valls, E. Chaumette, F. Vincent,
and P. Closas, “Cramér-Rao Bound for a Mixture of
Real- and Integer-Valued Parameter Vectors and Its
Application to the Linear Regression Model,” Signal
Processing, vol. 179, 2021.

[33] H.-J. Eueler and C. C. Goad, “On Optimal Filtering of
GPS Dual Frequency Observations Without Using Orbit
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