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REVIEW ARTICLE

Neuroprosthetics: from sensorimotor
to cognitive disorders
Ankur Gupta1, Nikolaos Vardalakis 1 & Fabien B. Wagner 1✉

Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and

biomedical engineering, which aims at replacing or modulating parts of the nervous system

that get disrupted in neurological disorders or after injury. Although neuroprostheses have

steadily evolved over the past 60 years in the field of sensory and motor disorders, their

application to higher-order cognitive functions is still at a relatively preliminary stage.

Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromo-

dulation strategies might also be useful in alleviating some cognitive and memory deficits, in

particular in the context of dementia. Here, we review the evolution of neuroprosthetics from

sensorimotor to cognitive disorders, highlighting important common principles such as the

need for neuroprosthetic systems that enable multisite bidirectional interactions with the

nervous system.

Neural oscillations are ubiquitous throughout the nervous system, subserving sensory,
motor, and cognitive functions in the brain and the spinal cord1. These oscillations are
often disrupted in neurodegenerative and neuropsychiatric disorders2, after stroke3,

traumatic brain injury4, or spinal cord injury (SCI)5. Despite different underlying mechanisms,
abnormal or even abolished neural oscillations seem to be a hallmark of neurological disorders
and to play a causative role in their behavioral symptoms6. In recent years, bioelectronic devices
that interface with the nervous system and affect or reestablish these oscillations have become an
alternative to pharmacological treatments, opening a new era of medicine consisting of elec-
troceuticals, Brain-Computer or Brain-Machine Interfaces (BCI/BMI), and neuroprostheses7–10.

These bioelectronic devices can now treat some motor symptoms of Parkinson’s disease
(PD)11 or restore motor function after SCI12–14. However, cognitive disorders still elude this new
therapeutic modality, due to the intrinsic complexity of the neural mechanisms underlying
cognition and to technological challenges for modulating the associated networks. Whether they
result from brain injury or neurodegenerative diseases such as Alzheimer’s disease (AD), cog-
nitive disorders do not yet have efficient pharmacological treatments, represent a major public
health issue, and could potentially benefit from neuromodulation strategies15.

Here, we review the current state of the art on neuromodulation and neuroprosthetic
approaches for sensorimotor and cognitive disorders, with a focus on invasive neurotechnologies
tested in non-human primates (NHP) and humans. We first introduce the concept of motor
neuroprostheses for motor impairments resulting from stroke or SCI, and somatosensory
neuroprostheses for providing sensory feedback after limb amputation or paralysis. Next, we
present deep brain stimulation (DBS) for motor and cognitive symptoms of PD. We then discuss
the neural oscillations that characterize cognitive functions, especially learning and memory, and
their alterations in memory disorders. This is followed by a state of the art on neuromodulation
approaches for AD and other memory impairments. Finally, we present the enticing hypothesis
that cognitive deficits would particularly benefit from the development of a new generation of
neuroprosthetic systems that target large-scale brain network oscillations and facilitate the
associated neurological functions.
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Motor neuroprostheses. Motor neuroprostheses refer to a parti-
cular type of neuroprostheses that aim at restoring motor function
by electrical stimulation of the structures involved in the genera-
tion of movement (muscles, peripheral nerves, spinal cord, or
brain), after neuromotor disorders such as stroke or SCI16. The
very first motor neuroprosthesis was a peroneal nerve stimulator
invented in 1961 by Liberson and colleagues to treat foot drop
after hemiplegia17. The term neuroprosthesis itself was first coined
in the scientific literature in 1971 to refer to an intraspinal implant
that allowed bladder voiding after paraplegia18. Since then, the
definition of motor neuroprostheses has also been extended to
technologies that extract motor commands from brain signals to
control external devices, also called BCI or BMI (e.g. refs. 19,20). In
this section, we briefly review the different types of motor neu-
roprostheses, ranging from neurostimulation of muscles, periph-
eral nerves, and spinal cord, to implantable BMIs.

Functional electrical stimulation (FES). FES is a clinically
approved neurostimulation technology that activates the efferent
axons innervating specific muscles to produce a desired
movement21. The stimulation can be delivered in the vicinity of
the targeted muscle or to a motor nerve innervating it, in which
case it is called peripheral nerve stimulation (PNS), using either
non-invasive, percutaneous, or fully implanted electrodes. These
electrodes are in turn connected to an electrical stimulator, which
can typically control up to 16 independent channels. Such sti-
mulation systems may simply be used to build up muscle
strength, often referred to as NeuroMuscular Electrical Stimula-
tion, or they can assist in functional tasks. Moreover, FES can
serve as an assistive technology, reducing impairment in the
execution of a given movement, or as part of a rehabilitation
therapy that may lead to neuroplasticity and functional
improvements, depending on the underlying disorder and its
severity21.

FES has been applied over the past 60 years to both upper- and
lower-limb motor tasks, such as standing, walking, reaching, and
grasping21,22. Several FDA-approved or CE-marked systems are
now commercially available for these applications. Clinically,
FES has been mostly used for hemiplegia resulting from stroke,
for example, as a foot-drop stimulator17, and for the rehabilita-
tion of upper-limb motor function23. In the context of SCI, FES
has also been extensively tested in research studies24,25 but has
not yet become standard clinical practice. Overall, FES systems
represent the main class of neuroprostheses that have been
clinically accepted, but they remain mostly restricted to post-
stroke motor rehabilitation. However, FES suffers from a
conceptual limitation as it recruits motor axons in a non-
physiological order. The large-diameter motor axons that
produce large forces but are not resistant to fatigue are indeed
recruited first26–28, which makes it challenging for FES to sustain
large forces during extended periods of time. To circumvent this
limitation, methods that target sensory afferents and activate
reflex circuits within the spinal cord are desirable.

Spinal cord stimulation (SCS). Well established as a treatment for
chronic pain, SCS has recently received significant attention for
its applications in motor control29. Epidural SCS can be delivered
via percutaneous or fully implanted leads containing up to 16
electrodes placed in the posterior epidural space, which are then
connected to an external or an implantable pulse generator (IPG).
The mechanisms underlying its motor effects involve the acti-
vation of large-diameter afferent fibers located in the posterior
roots, which in turn recruit motoneuron pools at the innervated
spinal segment30,31.

The first observation that SCS may be used as a motor
neuroprosthesis after SCI was made by Barolat and colleagues in

198632. They showed that one subject with incomplete SCI (i.e.
with residual sensory or motor fibers crossing the injury site)
regained voluntary motor control with SCS after several months
of stimulation. A decade later, Dimitrijevic and colleagues
demonstrated that SCS delivered over the lumbar spinal cord
could produce rhythmic electromyographic responses and
flexion-extension leg movements similar to stepping33. These
results were obtained in six subjects with complete SCI (i.e. with
no residual fiber across the injury) and provided indirect evidence
for the existence of a Central Pattern Generator (CPG) in
humans34. Later studies showed that varying stimulation
frequency could also produce a bilateral extension of the lower
limbs35,36.

The first combination of SCS with locomotor training was
performed in 2002 in a subject with incomplete SCI placed in a
partial weight-bearing system37–39. SCS led to an immediate
facilitation of walking, which further improved during training
but was not maintained without SCS. The combination of SCS
and neurorehabilitation was then revived in 2011 by Harkema
and colleagues, who showed that SCS allowed independent, full
weight-bearing standing after 80 sessions of intensive training in
one subject with complete SCI40. Importantly, this study re-
discovered that SCS can enable voluntary movements of
paralyzed muscles, as first observed by Barolat in 1986. Similar
results were then confirmed in three more participants41,42 and
later replicated at the Mayo Clinic43. One subject continued to
train with SCS for 3.7 years, which led to a partial recovery of
voluntary leg movements without SCS, indicating that SCS has
the potential to trigger neuroplasticity mechanisms44.

A milestone for the application of SCS in people with SCI
was reached in 2018. For the first time, three independent
groups demonstrated in a total of six subjects that SCS
combined with intensive rehabilitation, could enable indepen-
dent overground walking13,45,46. At the Kentucky SCI Center,
four participants with motor-complete SCI performed training
sessions for standing, body-weight-supported treadmill step-
ping and overground walking, all with continuous SCS45. When
using SCS, all participants achieved assisted standing and
improved trunk stability while sitting. Moreover, the two
participants with motor-complete, sensory-incomplete SCI
gained the ability to walk overground with continuous SCS
and assistive devices after a period of 15 and 85 weeks.
Similarly, at the Mayo Clinic, an individual with chronic motor-
and sensory-complete SCI was trained to perform step-like
movements with SCS in a side-lying position43 and then on a
treadmill and overground46. After 43 weeks of training and
with continuous SCS, this participant was able to stand, step on
a treadmill and walk overground with a walker and manual
assistance for hip stability.

In parallel, Courtine and Bloch’s team in Lausanne pioneered a
new paradigm termed spatiotemporal SCS13. Based on prior
preclinical work47,48, they leveraged an IPG with real-time
control capabilities to develop a stimulation protocol that
alternated between the swing, weight acceptance, and propulsion
phases of the gait cycle. These functionalities were targeted by
spatially-specific electrode configurations, which were triggered
either at a pre-defined pace or in real-time by residual kinematic
events. Spatiotemporal SCS led to an immediate facilitation of
walking and a long-term recovery of motor function within
6 months of training in three subjects with chronic incomplete
SCI13. This approach was recently expanded to a total of nine
participants49, including three patients with motor-complete SCI
implanted with a new electrode array tailored for both leg and
trunk motor functions14. Overall, these results have created a
surge of interest to now integrate SCS into rehabilitation
protocols after SCI.
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Brain-controlled motor neuroprostheses. Both FES and SCS are
neuroprostheses that can be controlled manually or by external
kinematic events through external sensors that detect specific
state changes. These state changes can also be extracted directly
from brain signals through the use of BCI/BMI technologies. Such
technologies record brain activity either non-invasively by elec-
troencephalography (not discussed here), or invasively by elec-
trocorticographic (ECoG) grids placed above or below the dura
mater, or directly inside the brain by intracranial electrodes50.

Intracortical BMIs take their roots in early studies by
Georgopoulos and colleagues in 1982, who showed that neurons
in the motor cortex of NHPs performing a reaching task are
tuned to the direction of movement51. With the advent of high-
density microwire or microelectrode arrays (MEA), such as the
Utah array, neurophysiologists then became able to record tens or
hundreds of cells simultaneously from motor cortices. In the early
2000s, three groups led by Nicolelis, Donoghue and Schwarz,
demonstrated in NHPs that these intracortical MEAs, combined
with signal processing and machine learning, allowed to decode
in real-time the intended hand trajectory and to control artificial
devices such as a computer cursor or robotic arms20,52–54.

A few years later, Hochberg and colleagues translated these
findings into a tetraplegic individual implanted with a 96-channel
MEA in the hand area of the primary motor cortex55. Neural
signals still showed movement-related modulation of spiking
activity even after several years of paralysis. Moreover, algorithms
to decode 2D movement intentions and discrete neural states
enabled the participant to open and close a prosthetic hand,
control a computer cursor and operate various software. The
same group later demonstrated that two additional subjects could
use this technology to control a robotic arm with three degrees of
freedom (DOF) for the end-point trajectory and discrete states for
hand grasping56. In parallel, Collinger and colleagues trained a
participant implanted with two 96-channel MEAs in the motor
cortex to control a robotic arm with up to seven DOF57. To
control more complex movements that require bilateral coordi-
nation, intracortical BMIs can also be combined with additional
control strategies, as demonstrated by Tenore’s work on the
control of two prosthetic limbs (up to 12 DOF) for bimanual self-
feeding58. In a recent application, Shenoy’s group expanded
intracortical BMIs to the decoding of handwriting (31 characters),
which allowed one subject to type sentences at speeds comparable
with typical smartphone typing speeds59.

Less invasive than intracortical MEAs, ECoG implants consist of
grids or strips of electrodes placed over the cortical surface or the
dura mater, and are routinely used in neuromonitoring for
epilepsy. In 2016, Ramsey’s group implanted subdural ECoG strips
over the motor cortex of a person with amyotrophic lateral
sclerosis, and connected them to an IPG with real-time recording
capabilities60. This fully implanted BMI allowed the participant to
control a typing program after 28 weeks of training. In 2019,
Benabid and colleagues tested a new fully implantable ECoG
recording system with 64 epidural electrodes placed bilaterally over
the motor cortices in a subject with tetraplegia61. The participant
trained to control a virtual avatar and a four-limb exoskeleton,
achieving up to eight DOF without any recalibration over seven
weeks. Recently, Chang’s group also applied subdural ECoGs to
speech neuroprostheses, decoding both full words based on a 50-
word vocabulary62, and individual letters to produce sentences
from a >1000-word vocabulary63. Future applications will likely
require the development of novel micro-ECoG implants character-
ized by smaller electrodes, increased electrode densities, and
flexible substrates able to conform to the cortical surface64.

Lastly, BMIs should not be seen as a separate type of
neuroprosthesis from neurostimulation methods, but rather as a
potential source of control signals for operating them. Indeed,

two groups showed in 2016–2017 that tetraplegic subjects with
intracortical MEAs could control FES systems to achieve
respectively finger, hand, and wrist movements65, or reaching
and grasping movements involving the elbow, wrist, and hand66.
Similarly, spatiotemporal SCS can be controlled directly by brain
signals, as demonstrated in 2018 using intracortical MEAs in
NHPs with a unilateral spinal cord injury12, and envisioned in
humans using ECoG implants67. These various studies pave the
way towards neuroprostheses that bidirectionally interface with
the nervous system and harness both recording and stimulation
capabilities (Fig. 1).

Somatosensory neuroprostheses. Electrical neurostimulation can
be used to induce movement as in motor neuroprostheses, but
also to elicit somatic sensations such as touch or proprioception
in individuals with limb amputation or paralysis68. In this section,
we present somatosensory neuroprostheses that target either the
peripheral sensory nerves of the somatosensory cortex, and the
additional cognitive benefits associated with these bidirectional
systems.

Peripheral somatosensory neuroprostheses. Peripheral somato-
sensory neuroprostheses, which are based on sensory PNS, have
been developed to provide sensory feedback to amputees wearing
a mechanical prosthesis of the missing limb. Early proof-of-
concept studies by Clippinger and colleagues in the 70’s delivered
stimulation through a single-channel non-penetrating cuff elec-
trode wrapped around the median or sciatic nerve for, respec-
tively upper- and lower-limb amputees69,70. Similar cuff
electrodes have been used more recently in conjunction with an
osseointegrated anchor to provide robust and chronic bidirec-
tional communication with a prosthesis in upper-limb amputees
over three to 7 years71,72. To generate more natural touch sen-
sations, the traditional cuff electrode design has also been
improved and scaled up to 16 stimulation contacts, which pro-
vided long-term natural tactile sensations in upper- and lower-
limb amputees implanted for more than a year73,74.

The specificity of PNS depends on the ability to target specific
bundles of nerve fibers, called fascicles, within a nerve. Higher
specificity can therefore be achieved by electrodes that penetrate
inside the nerve and reach individual fascicles. This led to the
development of longitudinal intrafascicular electrodes, which
were used to provide discrete and graded tactile sensations in
upper-limb amputees75–77. Furthermore, fascicles innervating
different body parts are somatotopically organized along the
transverse section of a nerve, which motivated the design of
transverse intrafascicular electrodes that offer higher spatial
selectivity of multiple fascicles and have been applied to both the
upper78,79 and lower extremities80,81. Finally, a slanted version of
the Utah 96-MEA has also been used for transverse PNS and
could evoke up to about a hundred different sensations in upper-
limb amputees82,83.

Cortical somatosensory neuroprostheses. Somatosensory feedback
can be delivered to the peripheral nerves, but also directly to the
brain structures underlying somatosensation. The scientific
foundations for cortical somatosensory neuroprostheses were first
laid by Penfield and Boldrey back in 1937 during their mapping
of sensory and motor cortices in epileptic patients84. These
concepts were then revived in 1998 by Romo and colleagues, who
demonstrated in NHPs that the sensation of mechanical flutter
can be artificially induced by electrically stimulating quickly-
adapting neurons in the somatosensory cortex at the frequency of
the mimicked stimulus85,86. This observation led several other
groups to show that intracortical microstimulation (ICMS) can be
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used as a cue to induce natural or learned behavioral
responses87–90. Ultimately, ICMS was combined with intracor-
tical BMIs to generate bidirectional neuroprostheses that extract
motor commands from motor or association cortices and deliver
feedback to the somatosensory cortex, as first demonstrated in
NHPs in 201191,92.

These preclinical ICMS studies paved the way for the clinical
translation of cortical somatosensory neuroprostheses. In 2016
and 2018, the groups of Gaunt and Andersen implanted
paralyzed individuals with chronic intracortical MEAs in the
somatosensory cortex93–97. ICMS was shown to evoke somato-
topically organized tactile sensations93, which included both
cutaneous and proprioceptive modalities94. These sensations
depended on stimulation frequency95, were stable over months
and even years96, and improved the quality of BMI control in
motor tasks97. In 2022, Tenore’s group refined the intraoperative
mapping procedure to target specific fingertips with this
technology, which allowed a participant to distinguish up to
seven finger-specific locations98. In parallel with these chronic
implantations, acute experiments in epileptic patients have
demonstrated that ECoG can also be used to deliver sensory
feedback by stimulating the cortical surface, but provide lower
dermatome specificity than intracortical MEAs99–102.

Cognitive benefits of bidirectional sensorimotor neuroprostheses.
Finally, we would like to highlight that somatosensory feedback

provides not only sensorimotor but also cognitive benefits to their
users as shown by the groups of Raspopovic and others81,103–107.
These benefits include an improved embodiment of the prosthesis
and reduced abnormal phantom limb perceptions in
amputees81,103,105,107, better multisensory integration104, more
physiological kinematics and sensorimotor strategies106,
decreased weight perception of the prosthesis107 and better cog-
nitive integration in dual tasks81,107. These exciting outcomes
provide a strong rationale for the clinical adoption of bidirec-
tional and biomimetic neuroprostheses that improve sensor-
imotor and cognitive functions after injury (Fig. 1).

Neuromodulation for PD: from motor to cognitive symptoms.
In parallel with the development of sensorimotor neuro-
prostheses, the electrical stimulation of deep brain structures,
called DBS, was first introduced for Parkinson’s tremor by
Benabid and colleagues in 1987108 and has since then become the
main neuromodulation therapy for several motor disorders. PD is
characterized by the progressive loss of dopaminergic neurons in
the substantia nigra pars compacta (SNc), which results in a range
of motor and non-motor symptoms. Motor symptoms include
mainly tremor, limb stiffness (rigidity), slowness of movement
(bradykinesia), impaired posture and balance. Non-motor
symptoms include autonomic dysfunction, mood disorders, and
cognitive impairment, which can range from Mild Cognitive

a) Cortical implants for sensorimotor neuroprostheses

b) Peripheral and spinal implants for sensorimotor neuroprostheses
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Fig. 1 Neuroprosthetic technologies for sensorimotor disorders. a Cortical implants typically used for sensorimotor neuroprostheses can be divided into
two categories: intracortical MEAs such as the Utah array (10 × 10 Utah array, picture extracted with permission from ref. 55), and epidural or subdural
ECoG strips or grids with different specifications (illustrated for a 8 × 8 ECoG grid, 4 mm contact diameter, 10mm pitch, with permission from CorTec
GmbH). These implants can both record neurophysiological signals and deliver electrical stimulation. b Peripheral and spinal implants for sensorimotor
neuroprostheses target either the motor nerves or muscles in the case of FES (adapted with permission from ref. 66), the spinal cord in epidural SCS
(adapted with permission from ref. 13), or the sensory nerves in PNS for somatosensory feedback (adapted with permission from ref. 80). All applications
shown here used these implants for delivering electrical stimulation. Lightning bolts indicate neurostimulation.
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Impairment (MCI) to Parkinson’s disease dementia (PDD) as the
disease progresses109,110.

PD affects the whole basal ganglia (BG) circuitry, a set of
subcortical areas that comprise the subthalamic nucleus (STN),
the external and internal parts of the globus pallidus (GPe, GPi),
the striatum, and the SNc. These nuclei interact with cortical
areas via the thalamus, thus giving rise to several parallel BG-
thalamo-cortical loops (Fig. 2). The loss of dopaminergic cells in
the SNc reduces dopamine levels, leading to an abnormal BG-
thalamo-cortical network activity, which in turn impacts motor
cortical areas involved in the generation of movement, and
prefrontal areas involved in cognitive functions. Given that
dopamine is also a key element in reward-based learning, these
anatomical substrates explain how the symptoms of PD can affect
both the motor and cognitive domains111,112. Here, we review the
different neuromodulation targets and strategies that have been
investigated to treat both motor and cognitive symptoms of PD.

Conventional DBS of STN or GPi for motor symptoms. The two
main strategies for treating motor symptoms associated with PD
are dopaminergic medication (levodopa) and DBS of the
STN113,114 or GPi115, which leads in both cases to an improve-
ment in motor symptoms and a reduction in the required levo-
dopa medication116. Conventional DBS protocols, which employ
frequencies in the high-gamma range (100–185 Hz), improve
bradykinesia, rigidity and tremors, but are poorly effective for
axial motor symptoms such as freezing of gait and swallowing.
Instead, these symptoms may be better controlled by low-
frequency DBS, delivered at frequencies in the lower gamma
range (60–80 Hz)117,118.

Unfortunately, conventional DBS for PD brings little to no
improvement, or sometimes even a worsening, of cognitive
functions119–121. In particular, a meta-analysis of 41 articles
gathering a total of 1622 patients reported that DBS of the
STN worsens psychomotor speed, memory, semantic fluency,

phenomic fluency and general cognitive functions119. In another
study, patients who had long-term follow-up (3.6–10.5 years
post-surgery) showed an overall cognitive decline and conversion
from MCI to dementia, indicating that conventional DBS of the
STN did not stop the cognitive decline observed in PD120.
Although the literature on the non-motor effects of DBS of the
GPi is more scarce, the cognitive outcomes seem to be slightly
better when targeting GPi rather than STN116,122. Importantly, a
recent study in 91 PD patients with bilateral DBS of the STN has
shown that the precise location within the STN itself could also
have an impact on the non-motor effects, including mood/apathy,
attention/memory, and sleep/fatigue, which would explain the
large variability observed across patients122.

The nucleus basalis of Meynert (NBM): a potential target for
cognitive impairment. In addition to the loss of dopaminergic cells
in the SNc, PD patients with cognitive impairment or dementia
present a loss of cholinergic output from a basal forebrain nucleus
called the NBM123. This observation has motivated several studies
based on DBS of the NBM for improving cognitive function in
PDD and other conditions, such as AD and dementia with Lewy
bodies (DLB)124–132.

In an encouraging case study from 2009, a patient with PDD
was implanted with four leads, placed bilaterally in the STN and
NBM to treat both motor and cognitive symptoms125. This
patient showed an improvement in cognitive functions (attention,
concentration, alertness, drive and spontaneity) and changes in
apraxia, when DBS was delivered simultaneously to the NBM (at
20 Hz) and STN leads, but not when stimulation was applied only
to the STN125,126. This case study triggered a series of small-scale
(six patients each) randomized, double-blind sham-controlled
trials of NBM DBS at 20 Hz in patients with AD127,133, PD128,
or DLB130,134. Although these studies validated safety and
feasibility, they were rather inconclusive in terms of efficacy on
cognition. Interestingly, the main outcome was an improvement

Fig. 2 Neuromodulation targets for motor symptoms in PD. a Anatomical locations of the BG, cortical and thalamic areas involved in the pathophysiology
of PD. DBS targeting either the STN or the GPi (lightning bolts) is one of the main treatments for motor symptoms of PD. b The loss of dopaminergic cells
within the SNc in PD induces dysfunction of the direct and hyperdirect pathways of the cortico-BG-thalamocortical circuit, which affects both motor and
cognitive functions, and can be partially restored using DBS of the STN or GPi.
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in neuropsychiatric symptoms in some patients with PD or DLB,
especially a reduction in visual hallucinations128,130.

Recently, simultaneous DBS of the NBM together with
either the STN or GPi has been revisited, to treat both motor
and cognitive symptoms of PD as in the original study from
2009. A case report published in 2019 showed the feasibility to
target both the GPi and NBM unilaterally with a single lead,
which had its most distal contact in the NBM and its second-
most distal contact in the GPi129. Furthermore, current IPGs
allow to stimulate simultaneously with different frequencies on
different contacts, which was used to deliver pulses at 20 Hz
and 130 Hz, respectively, in the NBM and GPi. This study
showed a partial improvement in cognitive functions 3 months
after the combined stimulation, which warrants further
investigation.

Theta DBS for cognitive impairment in PD. Motor and cognitive
symptoms of PD may be treated by targeting specific anatomical
structures with DBS, but also by applying different stimulation
frequencies to a given structure, which may in turn recruit dif-
ferent network dynamics. In particular, there is ample evidence
for the role of theta oscillations (4–12 Hz) in cognitive processes.
This observation has led several groups to compare the
cognitive effects of STN DBS in the theta range (at either 5 or
10 Hz) with more standard protocols in the high-gamma range
(130 Hz)135–138.

A first study in 2006 reported that 10-Hz stimulation of the
STN significantly improved verbal fluency compared to standard
130-Hz stimulation in 12 patients with PD135. There was also a
non-significant trend towards improvement when compared to
the absence of stimulation. A later study in 15 subjects showed
that 5-Hz DBS of the STN significantly improved performance on
verbal processing speed and response inhibition through color-
word interference, when compared to no stimulation and 130-Hz
DBS136. Recently, two additional studies revisited these concepts.
One clinical trial in 12 patients systematically assessed verbal
fluency for episodic and non-episodic categories, color-word
interference, and random number generation, during DBS of the
STN at 130 Hz, at 10 Hz, or in the absence of stimulation137. The
results indicated a significant improvement specifically for the
episodic verbal fluency task when theta DBS was delivered, an
interesting finding given the prominence of this rhythm in
episodic memory. Finally, the latest study investigated the impact
of stimulation location (ventral vs dorsal part of the STN) and
frequency (personalized theta vs 130 Hz) on verbal fluency in
nine patients138. Theta DBS was delivered at frequencies between
4 and 8 Hz depending on the subject (mean 5.7 Hz). Importantly,
it was found that theta DBS of the dorsal part of the STN yielded
significantly better cognitive outcomes than no stimulation or
gamma stimulation of either the dorsal or ventral part of the STN.

Neural oscillations underlying cognition in health and memory
disorders. In the previous section, we reviewed how neuromo-
dulation strategies originally designed for motor symptoms could
be adapted to cognitive symptoms in the context of PD, by either
targeting different anatomical targets or tapping into different
networks based on the stimulation frequency. Hereafter, we focus
on the role of neuronal oscillations in cognitive processes in
general, and memory in particular, with the intent to develop
neuromodulation strategies for neuronal disorders that are pri-
marily cognitive by nature, such as memory impairments
and AD.

Neural oscillations in normal cognitive functions. Cognitive
functions are associated with neural oscillations in specific

frequency ranges affecting higher order neocortical areas, called
association cortices, and other limbic or subcortical structures
such as the hippocampus, especially in the theta (4–12 Hz) and
gamma (~40 Hz) ranges139. These oscillations usually affect
simultaneously multiple brain structures, which belong to a
common large-scale brain network subserving a given cognitive
function140,141. It is thought that long-range phase synchroniza-
tion in the low frequencies (especially theta) allows remote areas
to communicate with each other142–144. Moreover, coupling
between oscillations in two different frequency bands, known as
cross-frequency coupling (CFC), allows these long-range inter-
actions to influence local gamma oscillations and information
processing. The most widely studied example is the coupling
between the phase of theta oscillations and the amplitude of
gamma oscillations in limbic circuits145–152. Together, long-range
phase synchronization and both local and long-range CFC allow
complex interactions between remote areas belonging to the same
large-scale brain network153. Understanding these interactions,
how they are affected in cognitive disorders, and how to restore
them using neuromodulation, is therefore critical for the devel-
opment of future therapies15,154.

Among all cognitive processes, learning and memory have
received considerable research attention because of their pivotal
role in our daily lives. We will focus here on the circuit
underlying episodic memory (Fig. 3), which is a form of long-
term memory underlying the learning and recollection of past
events. Episodic memory involves bidirectional interactions
between the hippocampus and other cortical areas, including
the prefrontal cortex (PFC)155,156. These interactions are partly
mediated by the entorhinal cortex (EC), which acts as a hub
between the hippocampus and these cortical areas. The
dorsolateral part of the PFC (dlPFC) is thought to be mostly
associated with working memory, or the maintenance of
information (e.g., from sensory cortices) for a short time period
before being used by other cognitive processes. The medial PFC
(mPFC) is involved in memory consolidation and provides
contextual information during episodic memory retrieval. In
addition to the connections mediated by the EC, there is a direct
projection from the ventral/anterior hippocampus to mPFC,
which may be associated with this role in processing contextual
information.

In summary, there is strong evidence that functional interac-
tions between the hippocampus and PFC involve theta oscilla-
tions in both structures, theta phase synchronization, and theta-
gamma CFC142–152. Recent evidence in NHPs shows that other
oscillations such as alpha and beta in the hippocampus and PFC
are also involved in associative learning157. Overall, these
oscillations seem to be not just an epiphenomenon, but to play
a causative role in efficient memory encoding and retrieval6.

Alteration of network connectivity and neural oscillations in AD
and memory disorders. Memory disorders occur when a part of
this episodic memory circuit gets disrupted. This finding has been
supported by a large body of evidence showing structural and
functional disconnections between nodes of the large-scale epi-
sodic memory network in neurodegenerative diseases158,159, post-
traumatic amnesia160 and other forms of memory disorders161.
For example, the EC is one of the first areas to be affected in
the early stages of AD, even before the first symptoms are diag-
nosed, and plays a key role in the communication between neo-
cortical areas and the hippocampus162. In post-traumatic
amnesia, mechanical damage to the long-range white matter
tracts connecting these structures also mediates the associated
deficits160.

This structural and functional disconnection results in an
alteration of neural oscillations and impacts cognitive processes.
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Such alterations in theta and gamma rhythms and their CFC have
been observed in AD and temporal lobe epilepsy161. A long
history of EEG studies in patients with AD has shown an increase
in low-frequency delta and theta rhythms, and a decrease in faster
alpha and beta rhythms163. Some studies have also reported either
a decrease164 or an increase165,166 in gamma oscillations, a
change in the modulation of theta during a working memory task
in subjects with AD or MCI167, and either a reduced165 or a
larger168,169 theta-gamma CFC. Overall, the observed changes are
not always consistent from one clinical study to another and may
depend on the recording condition (resting-state, steady-state
evoked potentials, or during a cognitive task), on interindividual
variability, and on potential compensatory mechanisms that
cloud the interpretation of these reports.

Despite the variability and relative scarcity of human studies on
this topic, the changes in theta and gamma rhythms, as well as
their CFC, have also been thoroughly investigated in animal
models of AD. The results in individual theta and gamma
rhythms were not quite conclusive in these models or did not
mirror the observations in patients161, but a reduced theta-
gamma CFC was consistently observed in several transgenic
mouse models of AD159,170–172. Only one study has found an
opposite trend in a rat model of hyperglycemia, which is a risk
factor for AD173. Although more work is needed in different
animal models and at different timepoints during the evolution of
each phenotype, theta-gamma CFC appears as the most
reproducible oscillatory alteration both in animal models and in
humans with AD. This observation is quite compelling given the
role of CFC in non-pathophysiological learning and memory
processes.

Neuromodulation for AD and memory disorders. The obser-
vation that neural oscillations play a key role in cognitive pro-
cesses and are disrupted in a range of memory disorders,
including AD, leads us to the enticing hypothesis that restoring
these oscillations and their couplings might rescue the associated
symptoms15,154. In turn, chronic restoration of these oscillations
might trigger neuroplasticity mechanisms, slow down the pro-
gression of neurodegenerative processes, or even lead to long-
lasting improvements174. Below, we review the main intracranial
neuromodulation studies that have aimed at improving cognition
and memory in patients with AD chronically implanted with DBS
electrodes, or in epileptic patients who underwent acute intra-
cranial monitoring prior to resective surgery (Table 1).

DBS of the NBM in AD. Historically, the NBM was the first DBS
target to be investigated as a potential symptomatic treatment of
AD. As discussed previously, this structure has been targeted in
PDD, AD and DLB to increase the release of acetylcholine, which
led to improved neuropsychiatric outcomes in some patients131.
In the context of AD, an original case study from 1985 showed
increased glucose metabolic activity in the ipsilateral temporal
and parietal lobes but no effect on cognition or memory124. More
recently, bilateral DBS of the NBM led to stable or improved
cognitive function 12 months after surgery in four out of six
patients with mild to moderate AD127. In a follow-up study, the
same procedure was applied to two patients at an earlier phase of
the disease133. In both of them, overall cognitive function was
improved or stable during the first year of DBS and either
returned to baseline or degraded during the following year, while
memory function was stable over these 2 years. Additionally,

Fig. 3 Possible neuromodulation strategies for cognitive impairment and dementia. a Limbic and cortical structures involved in cognition, in particular
episodic memory. These structures are part of a common large-scale brain network. b Schematic representation of the connections between these
structures, including intra-hippocampal circuitry (red dashed box), the original circuit of Papez (open arrowheads), and additional connections between
them (filled arrowheads). The NBM provides widespread cholinergic innervation to neocortical areas and has therefore received attention as a
neuromodulation target for cognition. The fornix has been the main chronic DBS target in AD patients. Other areas (hippocampus, EC, neocortical areas)
have been mainly targeted in acute studies in epileptic patients.
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clock agnosia completely disappeared in one patient. Although
inconclusive due to the small number of subjects, these results
motivate future work and possible refinements to modulate
cholinergic brain networks in AD. For example, intermittent
stimulation of the NBM (20 s every minute) has been shown to
improve working memory in NHPs, whereas continuous stimu-
lation impaired memory175.

DBS of the fornix in AD and epileptic patients. The fornix is a
bundle of fibers that contains both the main output tract of the
hippocampus and some afferent fibers from areas such as the
basal forebrain. Because its integrity is critical to episodic mem-
ory, it appears as a target of choice for modulating memory
function. In 2008, Lozano and colleagues made the serendipitous
observation that DBS of the fornix evoked vivid recollection of
memories in a patient treated with hypothalamic DBS for
obesity176. This prompted them to perform a phase I safety and
feasibility study of fornix DBS in six patients with mild AD177.
DBS was delivered continuously, with stimulation amplitudes
lower than those used to evoke vivid memories. Positron Emis-
sion Tomography (PET) revealed that glucose metabolism
increased after both 1 month and 1 year of stimulation, especially
in the temporal and parietal cortices. Some patients showed stable
or improved cognitive or memory functions at six and/or
12 months post-surgery, but the results were not consistent across
subjects and varied with the type of assessment. Similar results
were later reported in one patient with mild AD by an inde-
pendent group178.

In a subsequent report, the authors investigated the volume
change of the hippocampus, mammillary bodies, and fornix
following 1 year of stimulation in the same six patients179. Unlike
the expected hippocampal atrophy normally seen in AD patients,
an increased hippocampal volume was observed bilaterally in two
of the patients, including the one who showed improved cognitive
performance after one year. By contrast, bilateral hippocampal
volume increase was never observed among the 25 matched
subjects from the AD Neuroimaging Initiative database179.

In a follow-up double-blinded phase II clinical trial, DBS was
applied bilaterally to the fornix of 42 patients with mild
AD180,181. Half of the patients received DBS immediately after
implantation, while the other half only received DBS after 1 year
of sham stimulation (i.e. with the stimulator turned off). Fornix
DBS significantly increased cerebral glucose metabolism after
6 months in the group receiving stimulation, but it did not reveal
any statistically significant effect on cognitive functions. Post-hoc
analyses indicated a non-significant trend towards cognitive
benefits in older patients (>65-year old), which may be due to the
fact that younger patients are usually affected by more malignant
forms of the disease.

In all the above studies, stimulation was applied at 130 Hz as
commonly used for PD. However, several animal studies have
investigated other frequencies and patterns of fornix DBS, in
particular theta and theta-burst stimulation182,183. Theta-burst
stimulation consists of high-frequency bursts (typically 4–20
pulses at 100–500 Hz), nested within a low-frequency envelope in
the theta range (4–8 Hz). It is optimal for inducing Long-Term
Potentiation (LTP) in the hippocampus in vitro184, and superior
to both conventional high-frequency stimulation (130 Hz) and
low-frequency theta stimulation for improving learning and
memory in a rat pharmacological model of amnesia182 and a rat
model of traumatic brain injury183. Based on these results, one
clinical study tested the immediate effects on memory of theta-
burst DBS of the fornix in four epileptic patients185. They showed
an immediate and reversible improvement in a visuospatial
memory task in all four patients, but inconsistent results in other
tasks related to verbal memory or naming.

DBS of the entorhinal area and other limbic structures in epileptic
patients. Because of its major role in learning and memory, the
hippocampus appears as an obvious neuromodulation target for
memory enhancement. However, direct electrical stimulation of
the hippocampus was shown to impair memory processes in early
reports from 1985 that used amplitudes above the threshold to
elicit epileptiform afterdischarges186,187. More recently, a similar
impairment was also shown with stimulation amplitudes below
the afterdischarge threshold188,189.

Instead of the hippocampus itself, its afferents from the EC
could also be stimulated. In a first pivotal study in seven epileptic
patients, Suthana and colleagues showed that DBS of the EC
during spatial memory encoding improved subsequent retrieval at
the group level190. The same stimulation applied to the
hippocampus did not reveal any significant effect. However, in
an attempt to replicate these results, Jacobs and colleagues found
that DBS of either the EC or the hippocampus during spatial and
verbal memory encoding actually disrupted subsequent
retrieval191, probably due to differences in the exact DBS location
between the two studies. In follow-up work, theta-burst
microstimulation, known to optimally induce hippocampal
LTP, was delivered to the right EC through thin microelectrodes
during memory encoding, resulting in improved performance on
a face recognition task192. The same group also compared the
effects of stimulating the grey versus white matter of the
entorhinal area, the lateralization of these effects, and the impact
of electrode size (macro- versus microelectrode) in 22 epileptic
patients193. Importantly, they identified the right entorhinal white
matter (so-called angular bundle) as the optimal stimulation site
to improve memory encoding. By contrast, electrode size was not
a significant predictor of memory performance.

Further research is still needed to ask whether these results are
robust across subjects and experimental conditions. For example,
one study showed improvement in memory encoding during
direct hippocampal stimulation, and this discrepancy was
attributed to differences in the memory tasks194. Memory
enhancement or disruption could also be achieved by stimulating
other targets within the limbic circuit, such as the amygdala195 or
the posterior cingulate cortex196. Finally, other approaches such
as multisite synchronized197 and/or closed-loop stimulation198

within the limbic circuit could be used to refine these protocols,
as detailed in the last paragraph of this section.

Direct cortical stimulation of neocortical areas in epileptic patients.
In parallel with DBS of limbic structures, the effects of neocortical
stimulation on memory performance have also been investigated.
The earliest report that temporal lobe stimulation can evoke
visual and auditory experience of past memories dates back to
Penfield and Perot in 1963199. Recently, a series of collaborative
studies led by Worrell and Kahana, respectively, at the Mayo
Clinic and the University of Pennsylvania revisited this
concept200–203.

Kucewicz and colleagues investigated the effects of electrical
stimulation of four structures (hippocampus, parahippocampal
neocortex, PFC and temporal cortex) in 22 patients with epilepsy
(each structure was stimulated in only a subset of the
patients)200,201. Stimulation was delivered during the encoding
phase of a verbal memory task using depth electrodes and
subdural ECoG grids. They found that only stimulation of the
lateral temporal cortex was able to enhance subsequent retrieval,
which was observed both at the group level and in two of the four
tested participants200. Electrophysiologically, word presentation
induced high-gamma activity (62-118 Hz) in several areas.
Stimulation caused an increase of this induced activity in the
lateral temporal cortex, which was associated with memory
enhancement, but a decrease in the other brain areas. Therefore,
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high-gamma activity could be a reliable biomarker for predicting
stimulation effects201.

Additionally, Ezzyat and colleagues trained machine learning
algorithms to discriminate between trials of good and bad
encoding based on neural activity preceding the stimulation
period202. They showed that stimulation delivered during trials of
bad encoding improved memory performance, while stimulation
during good encoding trials decreased performance. This
dependency on the encoding state was deemed to account for
the variability observed in the effects of stimulation across
patients and trials.

Closed-loop and multi-site approaches for intracranial neuromo-
dulation of memory. All results described so far employed open-
loop stimulation delivered either continuously or applied during
memory encoding to improve subsequent retrieval. Such proto-
cols do not take into account the ongoing activity of the
implanted brain areas, which is influenced not only by the sti-
mulation but also by intrinsic changes in neural activity. To
mitigate this limitation, the patterns and parameters of stimula-
tion could be adjusted in real-time based on the current neural
state, a strategy called closed-loop stimulation198,203,204.

A closed-loop approach was demonstrated by Ezzyat and
colleagues following their discovery that stimulation effects
depend on the ongoing neural state. Using multivariate classifiers
able to classify trials with good or bad encoding202, they delivered
stimulation to the lateral temporal cortex only when a trial of bad
encoding was detected203. This protocol improved retrieval in a
more consistent way than open-loop stimulation.

To further refine these techniques, neurostimulation could also
be applied to multiple sites, corresponding to different nodes of
the distributed memory network, with the appropriate phase
relationship to mimic physiological processes. In this spirit,
Alagapan and colleagues applied network-targeted stimulation,
which was delivered at two cortical locations (frontal and
parietal) either in-phase or in anti-phase, within the theta or
alpha range depending on the participant205. Tested in three
epileptic patients during a working memory task, this strategy
affected phase synchronizations within the targeted network and
improved working memory.

Finally, the most versatile neurotechnologies should probably
include both aspects: closed-loop and multisite stimulation. A
memory neuroprosthesis based on these concepts was pioneered
by Berger and colleagues in rats206, later tested in NHPs207, and
recently in epileptic patients198,208. The authors extracted
neuronal signals from microelectrodes implanted into the CA1
and CA3 fields of the hippocampus to build a multi-input multi-
output non-linear model able to predict the spiking activity of
CA1 neurons based on the activity of CA3 neurons. This model
was then used to control spatiotemporal patterns of electrical
stimulation delivered to the CA1 field based on real-time
recordings from CA3 neurons. Stimulation applied during the
encoding phase of a working memory task led to improved
performance. Importantly, the effect in epileptic patients was
more pronounced in those having a prior history of brain injury
and memory impairments, demonstrating the suitability of this
approach for memory disorders208. This conceptually very
interesting approach would be suitable when memory impair-
ments originate specifically from dysfunction within the hippo-
campus, but does not target the overall large-scale brain networks
involved in episodic memory.

Outlook: towards large-scale memory neuroprostheses
The need for novel neurostimulation strategies. Considering that
episodic memory relies on a distributed network of brain areas

that interact via long-range connections through phase synchro-
nization mechanisms and phase-amplitude CFC, we hypothesize
that a physiological stimulation paradigm for memory enhance-
ment or restoration should include the following key features:

• Spatial specificity: different areas (hippocampus, EC, PFC,
etc.) should be targeted independently by the stimulation.

• Spectral specificity: each area should be stimulated with a
particular frequency or a set of superimposed frequencies (e.g.
theta to promote long-range interactions and gamma for local
information processing).

• Temporal specificity: this aspect can be divided into two
different timescales. On a long timescale (on the order of
hundreds of milliseconds to seconds), the pattern of brain
activation should depend on the task being carried out (e.g.
encoding or retrieval) and potentially on the stage within this
task. On a short timescale (tens of milliseconds), the phase of
each stimulation pulse within each area should be carefully
adjusted so that different areas are stimulated with the
appropriate phase relationship (in-phase, out-of-phase, etc.).

These different features require a technological framework for
spatially, temporally, and spectrally patterned neuromodulation
of the large-scale episodic memory network to improve memory
encoding and retrieval (Fig. 4), which critically depends on two
key elements:

• the ability to simultaneously record and stimulate the large-
scale episodic memory network through novel neural implants
that target distributed brain areas, for example through
intracerebral depth macroelectrodes classically used for stereo-
encephalography (stereo-EEG), and subdural ECoG implants.

• the development of novel neurostimulation strategies that
promote physiological oscillations throughout this distributed
network, which require patterned stimulation protocols (such as
theta burst) and the ability to trigger them (responsive
stimulation) or adjust their stimulation parameters in real-time
based on ongoing brain activity (adaptive or closed-loop
stimulation).

Novel electrode technologies: opportunities and limitations. Both
depth macroelectrodes and ECoG grids used in epileptic patients
take their roots back to the middle of the 20th century209–211.
Although clinically validated, these adopted neurotechnologies
suffer from several impediments, namely the relatively small
number of channels and large recording/stimulation volumes,
which may limit the spatial selectivity required for the fine
manipulation of cognitive and memory functions. Cognitive
neuroprostheses might therefore benefit from more refined elec-
trode technologies that can target both deep and cortical struc-
tures in large-scale brain networks at multiple spatial scales9.

For example, recent advances in micro- and nano-fabrication
technologies have led to the development of silicon probes, which
enable the simultaneous recording of tens and even thousands of
neurons deep inside the brain212–223. These ultra-thin shanked
probes (cross section: 20–120 μm, length: up to 20 mm) allow
simultaneous recordings from up to 1356 sites224. Some probes
(Neurotech Alliance, E-beam, Silicon microprobes, etc.) are
designed with multiple shanks for greater cortical and subcortical
area coverage. For single-shank probes such as Neuropixels,
larger brain areas can be targeted using multiple probes, a strategy
that allowed to record from approximately 30,000 neurons
located in 42 regions in the mouse brain224,225.

The use of such high-density multi-electrode and multi-shank
probes presents both advantages and challenges. Compared to
larger conventional electrodes, these much smaller silicon probes
have reduced neural tract damage. However, the ultra-small
cross-sectional area and stiffness may lead to electrode drift due
to blood flow, and make breakages frequent212,215. Like
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conventional electrodes, silicon probes also show inflammatory
response and tissue scarring that deteriorates the quality of
signals over time212, but recordings up to 3 months are
feasible226. To mitigate tissue scarring and electrode drifts, a
dissolvable shaft has also been developed212. Notably, tissue
response was not observed until about 1 year for some
probes216–218, while for others the duration was as short as
2–3 weeks226.

Most of these studies have been focused on rodents, with only a
few reports in NHPs223,227 and humans undergoing intraopera-
tive neurosurgical procedures219,228. Challenges associated with
these early clinical demonstrations include probe breakage and
recording of fewer neurons, due to the short experimental
duration (<1 h) and the time necessary for neuronal activity to
stabilize. An additional limitation is that Neuropixels probes are
currently not suitable for neurostimulation224. Despite these

current challenges, they represent an attractive option for the
next-generation neuroprostheses targeting large-scale brain
networks.

The use of NHPs in cognitive neuroprosthetic research. To allow
the translation of cognitive neuroprosthetic technologies into
clinical practice, and given the regulatory constraints on the
development of novel medical devices, we believe that large ani-
mal models are required. Because of their similarity in anatomy,
functional connections and default-mode network topology with
the human brain229,230, NHPs appear as the best species for
investigating large-scale network dynamics and developing
invasive neuromodulation strategies that should eventually be
used in humans.

Like humans, NHPs develop task-specific cognitive impair-
ments associated with normal ageing, in particular in the fields of

Fig. 4 Towards large-scale bidirectional neuroprostheses for memory disorders. Future neuroprosthetic systems for memory restoration may benefit
from distributed multi-electrode implants targeting large-scale brain networks, combining depth electrodes, ECoG grids and potentially novel electrode
technologies for combined recordings and stimulation. Field potentials measured by these implants would then be sent to computing devices via high-
channel-count recording systems. These computing devices would extract in real-time specific spectral features of these raw neural signals, such as the
instantaneous power, phase and phase-amplitude coupling of theta and gamma oscillations in hippocampal structures. These features would then be used
as control signals in closed-loop algorithms that deliver spatially, temporally and spectrally patterned neurostimulation protocols to enhance the neural
features of successful memory processes (encoding or retrieval). These complex stimulation patterns would next be applied to the distributed neural
implants via high-channel-count neurostimulators. Neurostimulation would finally affect neuronal activity through mechanisms that depend on the
geometry of local fibers, which can be explained or theoretically predicted by computational models of neurostimulation. Schematics of high-channel-count
recording and stimulation systems were adapted with permission from Blackrock Neurotech.
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visuospatial or spatial working memory, which depend on the
PFC alone or in interaction with hippocampal-temporal
structures231–233. These deficits mainly mimic normal cognitive
ageing and are associated with amyloid-beta senile plaques. In
addition to natural ageing, memory deficits can be reversibly
induced by pharmacological agents such as the anticholinergic
drug scopolamine, which has been shown to impair working
memory in both rhesus and cynomolgus macaques during
various tasks234–236.

Until recently, studies had failed to find other signs of AD, such
as tau pathology, neurofibrillary tangles, or behavioral symptoms
in most NHP species237,238, except in the mouse lemur
Microcebus murinus239. However, this picture has recently
changed, with several groups finding evidence of tau pathology
similar to human AD in some (but not all) of aged (more than 20
years) African green monkeys240,241, rhesus242,243 and cynomol-
gus macaques244. To artificially replicate the pathophysiological
features of AD in NHP, several strategies have also been
tested such as the induction of insulin deficiency using
streptozotocin245,246, the intraventricular injection of synthetic
amyloid-beta oligomers247, or the injection into the EC of a viral
vector expressing a double tau mutation248. Finally, the advent of
genetic engineering tools in NHPs has recently led to the
generation of marmoset monkeys carrying mutations in the
PSEN1 gene, which is involved in familial forms of AD249,250.
However, none of these NHP models of AD has been validated at
a behavioral level, which is essential for testing the efficacy of
cognitive neuroprostheses.

Computational models of neurostimulation in the context of
memory processes. Computational modeling has been extensively
used to better understand the effects of electrical neurostimula-
tion, ranging from DBS in PD, to PNS, SCS, cochlear implants,
and retinal prostheses (e.g.251). However, in the context of
memory, even state-of-the-art computational models are limited
in their ability to integrate hippocampal oscillations, memory
processes, and the effects of electrical stimulation on local circuits
and distant connected areas in large-scale brain networks. From a
neuroengineering viewpoint, there is therefore an urgent need to
develop novel biologically realistic computational models that
guide electrode design, placement and stimulation protocols to
enhance the efficacy of memory neuroprostheses252,253.

Computational models of theta-gamma neural oscillations and
memory processes. Neural oscillations such as theta, gamma and
their CFC have been modeled at different levels of resolution,
from abstract neural masses to more biophysically realistic
conductance-based models. Neural masses comprising two
interconnected populations of excitatory and inhibitory neurons
can produce gamma oscillations in the presence of an external
input provided at a theta frequency, hence leading the theta-
nested gamma oscillations254,255. Such oscillations also emerge
from a conductance-based model of the hippocampal formation
containing single-compartment excitatory and inhibitory neurons
in the EC, dentate gyrus, CA3 and CA1 fields of the hippo-
campus, still in the presence of an external theta input256. Theta-
gamma CFC also appears in a conductance-based multi-
compartment model of neocortex, which includes two cortical
layers, a hypercolumn and minicolumn structure, and a built-in
attractor network that represents the reactivation of specific cell
assemblies during memory retrieval257,258.

Linking these oscillations with memory processes represents
another major challenge. One such attempt explored the
biophysical mechanisms of memory encoding and retrieval in a
multicompartment model of the hippocampal CA1 field,
demonstrating that the modulation of dendritic and somatic

inhibition by the theta rhythm influences LTP and cell output259.
Furthermore, another multicompartment study of the hippo-
campal CA3 showed that cholinergic deprivation leads to a
slowing of gamma oscillations produced by the network, which
can potentially affect the ability to store and recall information
accurately260. These works provide the necessary leverage to
investigate how neural oscillations and memory processes are
altered in neurological disorders such as AD.

Computational models of extracellular electrical neurostimulation.
Most models of electrical stimulation have focused on the
mechanisms underlying DBS in motor disorders such as PD
(e.g. refs. 261–264), often approximating stimulation as an
intracellular current that enters into the soma. However, the
effects of extracellular electrical stimulation are much more
complex, as illustrated by a series of modeling studies that date
back to the 80s265–269. McNeal and Rattay initially introduced
cable models to describe axons as a series of capacitance and
resistance circuits, similar to the Hodgkin-Huxley formalism
but as a cable following the axonal trajectory265,266. They found
that the level of activation of nerve compartments depends
on the second spatial derivative of the electrical potential
along the membrane. Subsequent studies investigated in
more detail the effects of tissue properties268, excitation
thresholds269 and action potential propagation267. Cable models
successfully explained the mechanisms underlying various
neuroprostheses251 and reconciled contradictory hypotheses on
the effects of DBS in PD270.

Despite the wealth of computational work that involves
neurostimulation of peripheral nerves or BG, very few studies
have attempted to replicate hippocampal stimulation in a
biologically realistic way. A detailed model of the dentate gyrus,
which involves granule cells and entorhinal afferents271, was
confronted with experimental data during electrical stimulation
in rat hippocampal slices252. This study demonstrated the ability
to predict the optimal electrode placement to maximize
population response within localized structures. However, models
that integrate more widespread brain areas in a biologically
realistic way are still lacking.

Recently, a neuroimaging and computational pipeline for
creating personalized computational models of the spinal cord
was developed to predict the effects of spinal cord stimulation
protocols on the recruitment of afferent fibers in lumbosacral
spinal segments14. This pipeline guided the design of new
electrode arrays and their accurate placement during surgery.
We envision that a similar approach combining neuroimaging
and computational modeling can be used to create personalized
models of the hippocampal formation and predict the effects of
electrical stimulation at various locations within this structure
and with different stimulation parameters and control
protocols.

Conclusion. Since their very first prototypes about half a century
ago, sensorimotor neuroprostheses have steadily evolved, paral-
leling progress in neurophysiology and engineering sciences.
While some of these technologies are already clinically accepted,
others are still making their way through the hurdles of clinical
and regulatory validation, from preclinical and pilot studies to
multicentric clinical trials. Neuromodulation and neuroprosthetic
technologies have also received considerable attention from the
scientific community for their potential in treating cognitive
disorders. Recent exploratory studies open exciting avenues for
the future development of such neuroprosthetic systems
that affect neural oscillations throughout large-scale brain net-
works, palliate the associated deficits and potentially trigger
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neuroplasticity. We believe that these endeavors will require the
elaboration of novel neural implants and neurostimulation pro-
tocols, the use of appropriate preclinical models to test them, and
will be refined by computational approaches derived from
neuroimaging data.
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