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Abstract
Background: We investigate which procedure selects the predictive model most trustworthy to reason on the effect of anintervention and support decision making.
Methods: We study a large variety of model selection procedures in practical settings: finite samples settings and withouttheoretical assumption of well-specified models. Beyond standard cross-validation or internal validation procedures, we also studyelaborate causal risks. These build proxies of the causal error using “nuisance” re-weighting to compute it on the observed data.We evaluate whether empirically estimated nuisances, which are necessarily noisy, add noise to model selection. We comparedifferent metrics for causal model selection in an extensive empirical study based on a simulation and three healthcare datasetsbased on real covariates.
Results: Among all metrics, the mean squared error, classically used to evaluate predictive modes, is worse. Re-weighting it withpropensity score does not bring much improvements in most cases. On average, the R-risk, which uses as nuisances a model ofmean outcome and propensity scores, leads to the best performances. Nuisance corrections are best estimated with flexibleestimators such as a super learner.
Conclusions: When predictive models are used to reason on the effect of an intervention, they must be evaluated with differentprocedures than standard predictive settings; using the R-risk from causal inference.
Key words: Model Selection, Predictive model, Treatment Effect, G-computation, Machine Learning

Introduction

Extending prediction to prescription needs causality

Prediction models have long been used in biomedical settings, aswith risk score or prognostic models [1, 2]. While these have his-torically been simple models on simple data, this is changing withprogress in machine learning and richer medical data [3, 4]. Healthpredictions can now integrate medical images [5, 6, 7, 8, 9], patientrecords [10, 11, 12] or clinical notes [13, 14, 15]. Complex data isdifficult to control and model, but these models are validated byverifying the accuracy of the prediction on left-out data [16, 17, 18].Crucial to the clinical adoption of a model predicting a health out-come is that it “can support decisions about patient care” [19]. Pre-cision medicine is about guiding decisions: eg will an individualbenefit from an intervention such as surgery [20]? An estimate of

the effect of the treatment can be obtained by contrasting modelpredictions with and without the treatment, but statistical validityrequires causal inference [21, 22, 23].
Indeed, concluding on the effect of a treatment is a difficultcausal-inference task, as it can be easily compromised by con-founding: spurious associations between treatment allocation andbaseline health, e.g. only prescribing a drug to mild cases [24, 25].Predictive modeling is linked to causal inference theory by theconcept of outcome models (or g-computation, g-estimation, g-formula [26], Q-model [21], conditional mean regression [27]).Medical statistics and epidemiology have mostly used other causal-inference methods, modeling treatment assignment with propen-sity scores [28, 29, 30, 31]. Outcome modeling brings the bene-fit of going beyond average effects, estimating individualized orconditional average treatment effects (CATE), central to precisionmedicine. For this purpose, such methods are also invaluable for
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randomized trials [32, 33, 34].
Outcome-modeling methods, even when specifically designedfor causal inference, are numerous: Bayesian Additive Regres-sion Trees [35], Targeted Maximum Likelihood Estimation [36,37], causal boosting [38], causal multivariate adaptive regres-sion splines [38], random forests [39, 40], Meta-learners [41], R-learners [42], Doubly robust estimation [43]... The wide varietyof methods raises the problem of selecting between different es-timators based on the data at hand. Indeed, estimates of treat-ment effects can vary markedly across different predictive models[44, 45, 46, 47] (illustration in Appendix A.1).
Given complex health data, which predictive model is to be mosttrusted to yield valid causal estimates needed to motivate individ-ual treatment decisions? As no single machine-learning methodperforms best across all datasets, there is a pressing need for clearguidelines to select outcome models for causal inference.

Objectives and structure of the paper. The intersection between ma-chine learning and causal inference is growing rapidly [48, 49]. Wefocus on model selection procedures in practical settings, withouttheoretical assumptions often made in statistical literature such as
infinite data or well-specified models (Appendix A.2). Asymptoticcausal-inference theory recommends complex risks, but a practicalquestion is whether model-selection procedures, that rely on datasplit, can estimate these risks reliably enough. Indeed, these riskscome with more quantities to estimate, which may bring additionalvariance, leading to worse model selection.

We first illustrate the problem of causal model selection. Thenwe anchor causal model selection in the potential outcome frame-work and detail the causal risks and model-selection procedure. Wethen rewrite the so-called R-risk as a reweighted version of meansquared difference between the true and estimated individualizedtreatment effect. Finally, we conduct a thorough empirical studycomparing the different metrics on diverse datasets, using a fam-ily of simulations and real health data, going beyond prior worklimited to specific simulation settings [50, 51] (Appendix A.2).

Illustration: the best predictor may not estimate best
causal effects

Using a predictor to reason on causal effects relies on contrasting theprediction of the outcome for a given individual with and withoutthe treatment. Given various predictors of the outcome, which oneshould we use? Standard predictive modeling or machine-learningpractice selects the predictor that minimizes the expected error onthe outcome [17, 18]. However, this predictor may not be the bestmodel to reason about causal effects of an intervention as Figure 1illustrates. Consider the probability Y of an undesirable outcome(e.g.death), a binary treatment A ∈ {0, 1}, and a covariate X ∈
R summarizing the patient health status (e.g.the Charlson index[52]). We simulate a treatment beneficial (decreases mortality) forpatients with high Charlson scores (bad health status) but withlittle effect for patients in good condition (low Charlson scores).

Figure 1a shows a random forest predictor with a counter-intuitive behavior: it predicts well on average the outcome (asmeasured by a regression R2 score) but perform poorly to estimatecausal quantities: the average treatment effect τ (as visible via theerror |τ – τ̂|) or the conditional average treatment effect (the error
E[(τ(x) – τ̂(x))2], called CATE). On the contrary, Figure 1b shows alinear model with smaller R2 score but better causal inference.

The problem is that causal estimation requires controlling anerror on both treated and non-treated outcome for the same indi-vidual: the observed outcome, and the non-observed counterfactualone. The linear model is misspecified –the outcome functions arenot linear–, leading to poor R2; but it interpolates better to regionswhere there are few untreated individuals –high Charlson score–and thus gives better causal estimates. Conversely, the random

a) Random forest, good average prediction but bad causal inference
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b) Linear model, worse average prediction but better causal inference
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Figure 1. Illustration: a) a random-forest predictor with high performance for stan-
dard prediction (high R2) but that yields poor causal estimates (large error between
true effect τ and estimated τ̂), b) a linear predictor with smaller prediction perfor-
mance leading to better causal estimation.
Selecting the predictor with the smallest error to the individual treatment effect
E[(τ(x) – τ̂(x))2] –the τ-risk, eq. 10 – would lead to the best causal estimates; how-
ever computing this error is not feasible: it requires access to unknown quantities:
τ(x).
While the random forest fits the data better than the linear model, it gives worse
causal inference because its error is inhomogeneous between treated and untreated.
The R2 score does not capture this inhomogeneity.

forest puts weaker assumptions on the data, thus has higher R2
score but is biased by the treated population in the poor-overlapregion, leading to bad causal estimates.

This toy example illustrates that the classic minimum meansquared error (MSE) criterion is not suited to choosing a modelamong candidate estimators for causal inference.

Methods

Neyman-Rubin Potential Outcomes framework

We first expose the classic construction of the outcome modeling(or G-computation) estimators of causal effect [53, 21, 24].
Settings. The Neyman-Rubin Potential Outcomes framework [54,55] enables statistical reasoning on causal treatment effects: Givenan outcome Y ∈ R (e.g.mortality risk or hospitalization length),function of a binary treatment A ∈ A = {0, 1} (e.g. a medicalprocedure), and baseline covariates X ∈ X ⊂ Rd, we observethe factual distribution, O = (Y(A), X, A) ∼ D = P(y, x, a). How-ever, we want to model the existence of potential observations (un-observed ie. counterfactual) that correspond to a different treat-ment. Thus we want quantities on the counterfactual distribution
O∗ = (Y(1), Y(0), X, A) ∼ D∗ = P(y(1), y(0), x, a).

Popular quantities of interest (estimands) are: at the populationlevel, the Average Treatment Effect
ATE τ

def= EY(1),Y(0)∼D∗ [Y(1) – Y(0)];
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at the individual level, to model heterogeneity, the Conditional Av-erage Treatment Effect
CATE τ(x)def= EY(1),Y(0)∼D⋆ [Y(1) – Y(0)|X = x].
Causal assumptions. A given data needs to meet a few assumptionsto enable identifying causal estimands [56]. 1) an individual’s out-come Y is solely governed by the corresponding potential outcome:
Consistency assumption, Y = A Y(1) + (1 – A) Y(0) (1)
2) unconfoundedness {Y(0), Y(1)} ⊥⊥ A|X, 3) strong overlap ie. everypatient has a strictly positive probability to receive each treatment,and 4) generalization –no covariate shift. These classic assumptions,called strong ignorability, are formally detailed in A.3.
Identifying treatment effects with outcome models – g-computation
[53]. Should we know the two potential outcomes for a given X,we could compute the difference between them, which gives thecausal effect of the treatment. These two potential outcomes canbe estimated from observed data: the consistency 1 and uncon-foundedness 2 assumptions imply the following equality, linkingthe target quantity to the observed data:

EY(a)∼D⋆ [Y(a)|X = x] = EY∼D[Y|X = x, A = a] (2)
On the left, the expectation is taken on the counterfactual unob-served distribution. On the right, the expectation is taken on thefactual observed distribution conditionally on the treatment. Forthe rest of the paper, the expectations will always be taken on thefactual observed distribution D. This identification leads to out-come based estimators (ie. g-computation estimators [21]):

τ = EY∼D⋆ [Y(1) – Y(0)]
= EY∼D[Y|A = 1] – EY∼D[Y|A = 0] (3)

This equation builds on the conditional expectation of the outcomegiven the treatment E∼D[Y|A]. Outcome based methods target thisquantity conditionally on the covariates, called response function:
Response function µa(x)def= EY∼D[Y|X = x, A = a]

Given a sample of data and the oracle response functions µ0,µ1,the finite sum version of Equation 3 leads to an unbiased estimatorof the ATE written:
τ̂ = 1

n

( n∑
i=1

µ1(xi) – µ0(xi)
) (4)

This estimator is an oracle finite sum estimator by opposition to thepopulation expression of τ, E[µ1(xi) – µ0(xi)], which involves anexpectation taken on the full distribution D, which is observablebut requires infinite data. For each estimator ℓ taking an expec-tation over D, we use the symbol ℓ̂ to note its finite sum version.The formulas in Eq. (2-4) are all partly oracle formulas: they relyon conditional expectations, the response functions, but give nospecific procedures on how to compute or select them. This lastpoint is the topic of our work, describe in the next section.
Similarly to the ATE, at the individual level Eq.2 links the CATEto statistical quantities:

τ(x) = µ1(x) – µ0(x) (5)
Robinson decomposition. G-computation is a choice of decomposi-tion of the CATE estimation. Other choices of decomposition exist,such as the R-decomposition [57]. The latter introduces two new

statistical estimates, the conditional mean outcome and the proba-bility of being treated (known as propensity score [28]):
Conditional mean outcome m(x)def= EY∼D[Y|X = x] (6)

Propensity score e(x)def= P[A = 1|X = x] (7)
with these, the outcome (Eq. 1) can be written
R-decomposition y(a) = m(x) + (

a – e(x))τ(x) + ε(x; a)
with E[ε(X; A)|X, A] = 0 (8)

m and e are often called nuisances [43]. They are unknown and mustbe estimated from the data.

Both the in the ATE and CATE formula Eq. (4, 5), and the Robin-son decomposition involve conditional expectations –the responsefunctions µa(x) or the nuisances m(x) and e(x). In practice thoseare given by statistical models: linear models, random forests, etc[48, 49].

Model-selection, oracle and feasible risks

Causal model selection. We formalize model selection for causal es-timation. Thanks to the outcome model identification (Equation 2),a given model f : X × A → Y –learned from data or built from do-main knowledge– induces feasible estimates of the ATE and CATE(eqs 4 and 5), τ̂f and τ̂f (x). However, the g-computation framework
presented above is written in terms of “perfect” conditional expec-tations (oracles), it does not control an error, eg on both populationsas highlighted in Figure 1. Selection procedures are needed to findthe best conditional-expectation models.

A selection procedure combines a risk ℓ, evaluating the qualityof a model f with observed data O, and a splitting strategy of the datato estimate different regressions (nuisances) involved in the risk.Formally, let F = {f : X × A → Y} be a family of such estimators.Our goal is to select the best candidate in this family for the observeddataset O using a risk ℓ:
f∗ℓ = argmin

f∈F
ℓ(f, O) (9)

We now detail possible risks ℓ, risks useful for causal modelselection, and how to compute them.
The τ-risk: an oracle error risk. As we would like to target the CATE,the following evaluation risk is natural (also called PEHE [59, 35]):

τ-risk(f)def= EX∼p(X)[(τ(X) – τ̂f (X))2] (10)
Given observed data from p(X), the expectation is computed

with a finite sum, as in eq. 4, to give an estimated value τ̂-risk(f).However this risk is not feasible as the oraclesτ(x) are not accessiblewith the observed data (Y, X, A) ∼ D.
Feasible error risks. Table 1 lists feasible risks (Detailed in AppendixA.4), based on the prediction error of the outcome model and ob-
servable quantities. These observable, called nuisances are e –propensity score, eq 7– and m –conditional mean outcome, eq6. We give the definitions as semi-oracles, function of the trueunknown nuisances, but later instantiate them with estimated nui-sances, noted (

ě, m̌
). Semi-oracles risks are superscripted with the

⋆ symbol.
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Table 1. Review of causal risks — The R-risk∗ is called τ-riskR in [50].
Risk Equation Reference
τ-risk = MSE(τ(X), τf (X)) EX∼p(X)[(τ(X) – τ̂f (X))2] Eq. 10 [35]
µ-risk = MSE(Y, f(X)) E(Y,X,A)∼D

[(Y – f(X; A))2] Def. 1 [50]
µ-risk∗

IPW E(Y,X,A)∼D

[(
A

e(X) + 1–A1–e(X)
)(Y – f(X; A))2] Def. 2 [58]

τ-risk⋆
IPW E(Y,X,A)∼D

[(
Y
(

A
e(X) – 1–A1–e(X)

) – τ̂f (X) )2] Def. 3 [39]
U-risk∗ E(Y,X,A)∼D

[( Y–m(X)
A–e(X) – τ̂f (X) )2] Def. 4 [42]

R-risk∗ E(Y,X,A)∼D
[( (Y – m (X)) – (A – e (X)) τ̂f (X) )2] Def. 5 [42]

Model selection procedure

Causal model selection (eq 9) may involve estimating various quan-tities from the observed data: the outcome model f, its inducedrisk as introduce in the previous section, and possibly nuisancesrequired by the risk. Given a dataset with N samples, we split out atrain and a test sets (T , S). We fit each candidate estimator f ∈ Fon T . We also fit the nuisance models (ě, m̌) on the train set T ,setting hyperparameters by a nested cross-validation before fittingthe nuisance estimators with these parameters on the full train set.Causal quantities are then computed by applying the fitted candi-dates estimators f ∈ F on the test set S. Finally, we compute themodel-selection metrics for each candidate model on the test set.This procedure is described in Algorithm 1 and Figure 2.

Algorithm 1 Model selection procedure
Given train and test sets (T , S) ∼ D, a candidate estimator f, acausal metrics ℓ:

i. Prefit: Learn estimators for unknown nuisance quantities(ě, m̌) on the training set Tii. Fit: learn f̂(·, a) on Tiii. Model selection: ∀x ∈ S predict (̂f(x, 1), f̂(x, 0)) and evaluatethe estimator storing the metric value: ℓ(f, S) – possibly functionof ě and m̌

Figure 2. Estimation procedure for causal model selection.

R-risk as reweighted oracle metric

The R-risk can be rewritten as a rebalanced τ-risk.
This rewriting involves reweighted residuals: for each potentialoutcome, a ∈ {0; 1}, the variance conditionally on x is [60]:

σ2
y(x; a) def= ∫

y

(
y – µa(x))2 p(y | x = x; A = a) dy

Integrating over the population, we get the Bayes squared error:
σ2

B(a) = ∫
X σ2

y(x; a)p(x)dx and its propensity weighted version:
σ̃2

B(a) = ∫
X σ2

y(x; a) p(x; a) dx. In case of a purely deterministic

link between the covariates, the treatment, and the outcome, theseresidual terms are null.
Proposition 1 (R-risk as reweighted τ-risk) Given an outcome
model f, its R-risk appears as weighted version of its τ-risk (Proof in
A.5):

R-risk∗(f) = ∫
x

e(x)(1 – e(x))(τ(x) – τf (x))2p(x)dx

+ σ̃2
B(1) + σ̃2

B(0) (11)
The R-risk targets the oracle at the cost of an overlap re-weighting and the addition of the reweighted Bayes residuals,which are independent of f . In good overlap regions the weights

e(x)(1 – e(x)) are close to 14 , hence the R-risk is close to the desiredgold-standard τ-risk. For randomized control trials, this weight isconstant making the R-risk particularly suited for exploring het-erogeneity (Appendix A.5)

Empirical Study

We evaluate the following causal metrics, oracle and feasible ver-sions, presented in Table 1:
µ̂-risk∗

IPW , R̂-risk∗, Û-risk∗, ̂τ-riskIPW
∗, µ̂-risk, µ̂-riskIPW ,

R̂-risk, Û-risk, ̂τ-riskIPW . We benchmark the metrics in a vari-ety of settings: many different simulated data generation processesand three semi-simulated datasets 1.The simulations, designed to evaluate the effect of the overlapparameter, also explore more diverse and noisy covariate distribu-tions. They cover a diversity of causal settings such as differentratio of causal effect to background responses, and functional linksbetween covariates, outcome and treatment.
Caussim: Extensive simulation settings

Data Generation. We use simulated data, on which the ground-truthcausal effect is known. Going beyond prior empirical studies ofcausal model selection [50, 51], we use many generative processes,which is needed to reach general conclusions (Appendix A.7).We generate the response functions using random bases exten-sion, a common method in biostatistics, e.g.functional regressionwith splines [61, 62]. By allowing the function to vary at specificknots, we control the complexity of the non-linear outcome mod-els. We use random approximation of Radial Basis Function (RBF)kernels [63] to generate the outcome and treatment functions. RBFuse the same process as polynomial splines but replace polynomialby Gaussian kernels. Unlike polynomial, Gaussian kernels havedecreasing influences in the input space. This avoids unrealisticdivergences of the functions at the ends of the feature space. Wegenerate 1 000 datasets based on these functions, with randomoverlap parameters. Example shown in Figure 13 and details in A.7.

1 Scripts for the simulations and the selection procedure are available at https:
//github.com/soda-inria/caussim.

https://github.com/soda-inria/caussim
https://github.com/soda-inria/caussim
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Family of candidate estimators. We test model selection across dif-ferent candidate estimators that approximate imperfectly the data-generating process. To build such estimators, we first use an RBFexpansion similar to that used for data generation. We choose tworandom knots and transform the raw data features with a Gaussiankernel. This step is referred as the featurization. Then, we fit alinear regression on these transformed features. We consider twoways of combining these steps for outcome model; we use commonnomenclature [41, 64] to refer to these different meta-learners thatdiffer on how they model, jointly or not, the treated and the nontreated:
• SLearner: A single learner for both populations, taking the treat-ment as a supplementary covariate.• SftLearner: A single set of basis functions is sampled at randomfor both populations, leading to a given feature space used tomodel both the treated and controls, then two separate differentregressors are fitted on this shared representation.• TLearner: Two completely different learners for each popula-tion, hence separate feature representations and regressors.

For the regression step, we fit a Ridge regression on the trans-formed features with 6 different choices of the regularization pa-rameter λ ∈ [10–3, 10–2, 10–1, 1, 101, 102], coupled with a TLearneror a SftLearner. We sample 10 different random basis for learningand featurization yielding a family F of 120 candidate estimators.
Semi-simulated datasets

Datasets. We also use three semi-simulated data adding a knownsynthetic causal effect to real –non synthetic– healthcare covariate.ACIC 2016 [45] is based on the Collaborative Perinatal Project [65],a RCT studying infants’ developmental disorders containing 4,802indivduals and 55 features. We used 770 dataset instances: 10 ran-dom seeds for each of the 77 simulated settings for the treatmentand outcomes. ACIC 2018 [66] simulated treatment and outcomesfor the Linked Births and Infant Deaths Database (LBIDD) [67] with
D = 177 covariates. We used all 432 datasets of size N = 5 000. Twins[68] is an augmentation of real data on twin births and mortalityrates [69]. There are N = 11 984 samples, and D = 50 covariates forwhich we simulated 1,000 different treatment allocations. AppendixA.7 gives datasets details.
Family of candidate estimators. For these three datasets, the fam-ily of candidate estimators are gradient boosting trees for boththe response surfaces and the treatment 2 with S-learner, learn-ing rate in {0.01, 0.1, 1}, and maximum number of leaf nodes in{25, 27, 30, 32, 35, 40} resulting in a family of size 18.
Nuisance estimators. Drawing from the TMLE literature that usescombination of flexible machine learning methods [37], we modelthe nuisances ě (respectivley m̌) with a meta-learner: a stackedestimator of ridge and boosting classifiers (respectively regressions)(hyperparameter selection in Appendix A.7).
Measuring overlap between treated and non treated

Good overlap between treated and control population is crucial forcausal inference (Assumption 3). We introduce the NormalizedTotal Variation (NTV), a divergence based on the propensity scoresummarizing the overlap between both populations (Appendix A.6).

2 Scikit-learn regressor, HistGradientBoostingRegressor, and classifier, Hist-GradientBoostingClassifier.

Results: factors driving good model selection

The R-risk is the best metric on average. Figure 3 shows the agree-ment between the ideal ranking of outcome models given the oracle
τ-risk and the different feasible causal metrics. We measure thisagreement with relative3 Kendall tau κ (eq. 20) [70]. Given theimportance of overlap in how well metrics approximate the oracle
τ-risk, we separate strong and weak overlap.Among all metrics, the classical mean squared error (ie. fac-tual µ-risk) is worse and reweighting it with propensity score(µ-riskIPW ) does not bring much improvements. The R-risk,which includes a model of mean outcome and propensity scores,leads to the best performances. Interestingly, the U-risk, whichuses the same nuisances, deteriorates in weak overlap, probably dueto variance inflation when dividing by extreme propensity scores.Beyond rankings, the differences in terms of absolute ability toselect the best model are large: The R-risk selects a model with a
τ-risk only 1% higher than the best possible candidate for strongoverlap on Caussim, but selecting with the µ-risk or µ-riskIPW–as per machine-learning practice– leads to 10% excess risk andusing τ-riskIPW –as in some causal-inference methods [71, 72]–leads to 100% excess risk (Figure 16). Across datasets, the R-riskconsistently decreases the risk compared to the µ-risk: from 0.1%to 1% on ACIC2016, 1% from to 20% on ACIC2018, and 0.05% fromto 1% on Twins.
Model selection is harder for low population overlap. Model selectionfor causal inference becomes more and more difficult with increas-ingly different treated and control populations (Figure 4). The ab-solute Kendall’s coefficient correlation with τ-risk drops from 0.9(excellent agreement with oracle selection) to 0.6 on both Caussimand ACIC 2018 (15).
Nuisances can be estimated on the same data as outcome models. Us-ing the train set T both to fit the candidate estimator and the nui-sance estimates is a form of double dipping which can lead errorsin nuisances correlated to that of outcome models [42]. In theory,
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Figure 3. The R-risk is the best metric: Relative Kendall’s τ agreement with τ-risk.
Strong and Weak overlap correspond to the first and last tertiles of the overlap
distribution measured with Normalized Total Variation eq. 17. A.7 presents the same
results by adding semi-oracle risks in Figure 14, measured with absolute Kendall’s
in Figure 15 and with τ–risk gains in Figure 16. Table 4 gives median and IQR of the
relative Kendall.

3 To remove the variance across datasets (some datasets lead to easier modelselection than others), we report values for one metric relative to the mean ofall metrics for a given dataset instance: Relative κ(ℓ, τ–risk) = κ(ℓ, τ–risk) –
meanℓ

(
κ(ℓ, τ–risk))

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
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Figure 4. Model selection is harder for low population overlap: Kendall’s τ agree-
ment with τ-risk. Strong, medium and Weak overlap are the tertiles of the overlap
measured with NTV eq. 17. Supplementary materials presents results for all metrics
in Figure 18 in absolute Kendall’s and continuous overlap values in Figure 15.
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Figure 5. Nuisances can be estimated on the same data as outcome models: Re-
sults for the R-risk are similar between the shared nuisances/candidate set and the
separated nuisances set procedures. Figure 17 details results for all metrics.

these correlations can bias model selection and, strictly speaking,push to split out a third separated dataset –a “nuisance set”– tofit the nuisance models. The drawback is that it depletes the dataavailable for model estimation and selection. However, Figure 5shows no substantial difference between a procedure with a sepa-rated nuisance set and the simpler shared nuisance-candidate setprocedure.
Empirically, the best split is 90 %/10 %: using 90 % of the datato estimate both the nuisances and candidates, then computing therisks on the remaining test set for model selection (experiments inAppendix A.8).

Stacked models are good overall estimators of nuisances. Stacked nui-sances estimators (boosting and linear) lead to feasible metricswith close performances to the oracles ones: the corresponding es-timators recover well-enough the true nuisances. One may wonderif simpler models for the nuisance could be useful, in particularin data-poor settings or when the true models are linear. Figure 6compares causal model selection estimating nuisances with stackedestimators or linear model. It comprises the Twins data, where thetrue propensity model is linear, and a downsampled version of thisdata, to study a situation favorable to linear models. In these set-tings, stacked and linear estimations of the nuisances performsequivalently. Detailed analysis (Figure 20) confirms that usingadaptive models –as built by stacking linear models and gradient-boosted trees– suffices to estimate nuisance.
R-risk is robust to a wide range of effect ratio values. Beyond overlap,we study for caussim simulations, the effect on model selectionof different causal effect ratio to baseline. We vary the empiricalmean absolute difference between the causal effect and the baseline,
∆µ = 1

N
∑N

i=1 ∣∣ µ1(xi)–µ0(xi)
µ0(xi)+µ1(xi)– 1

N
∑N

j=1 µ0(xj)+µ1(xj)
∣∣, covering a ratio
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Figure 6. Stacked models are good overall estimators of the nuisances: Results
are shown only for the R-risk; Figure 19 details every metrics. For Twins, where
the true propensity model is linear, stacked and linear estimations of the nuisances
performs equivalently, even for a downsampled version (N=4,794).
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Figure 7. R-risk is robust to a wide range of effect ratio: Kendall’s τ agreement
with τ-risk. Strong, medium and Weak Causal effect ratio are the tertiles of the
absolute ratio causal effect to baseline response, ∆µ: Low [0.04; 2.86[, Medium
[2.86; 16.65[, High [16.65; 206.53[. Appendix A.9 details this simulation.

range from 0.04 to 206 (median = 9.1). Appendix A.9 details thissetup as well as an alternive measure of effect ratio. Figure 7 showsthat for high values of the ratio, R – risk is outperformed by the
µ-riskIPW and the τ-riskIPW . However, on average, the R – risk isstill the better risk.

Discussion and conclusion

Nuisance models: more gain than pain. Predictive models are increas-ingly used to reason about treatment effects, for instance in preci-sion medicine to drive individualized decision. Our results highlightthat they should be selected, validated, and tuned using differentprocedures and error measures than those classically used to assessprediction. Rather, selecting the best outcome model according tothe R-risk (eq. Definition 5) leads to more valid causal estimateson average. Estimating the R-risk requires a more complex proce-dure than standard cross-validation used e.g.in machine learning:it involves fitting nuisance models necessary for model evaluation.Our results show that these can be learned on the same set of dataas the outcome models evaluated. The nuisance models must bewell estimated (Figure 6). Our results show that using for nuisancemodels a flexible stacking-based family of estimator suffices forgood model selection. To select propensity score models, we usedthe Brier score, minimized by the true individual probability. Aneasy mistake is to use calibration errors popular in machine learn-ing [73, 74, 75, 76] as these select not for the individual posterior
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probability but for an aggregate error rate [77].
More R-risk to select models driving decisions. Increasingly complexprediction models integrating richer medical data have flourishedbecause their predictions can be easily demonstrated and validatedon left-out data. But using them to underpin a decision on whetherto treat or not requires more careful validation, using a metric ac-counting for the putative intervention, the R-risk. On average, the
R-risk brings a sizeable benefit to select the most adequate model,even when model development is based on treated and untreatedpopulation with little differences, as in RCTs. Our conclusions arethat without prior knowledge, the R-risk is a good default. How-ever, there is much remaining variation, and the R-risk will not beoptimal for every situation. We have identified one such specificsituation: when the causal effect is large compared to the variationof the baseline effect, the µ-riskIPW performs slightly better.To facilitate better model selection, we provide Python code4.This model-selection procedure puts no constraints on the modelsused to build predictive models: it opens the door to evaluatinga wide range of models, from gradient boosting to convolutionalneural network, or language models.

Availability of source code and requirements
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• Project name: Caussim• Project home page: https://github.com/soda-inria/caussim• Operating system(s): Platform independent• Programming language: Python• License: BSD 3-Clause License
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A Additional files

A.1 Variability of ATE estimation on ACIC 2016

Figure 8 shows ATE estimations for six different models used in g-computation estimators on the 76 configurations of the ACIC 2016dataset. Outcome models are fitted on half of the data and inference is done on the other half –ie. train/test with a split ratio of 0.5. For eachconfiguration, and each model, this train test split was repeated ten times, yielding non parametric variance estimates [78]. Figure 8 showslarge variations obtained across different outcome estimators on semi-synthetic datasets [45]. Flexible models such as random forests aredoing well in most settings except when treated and untreated populations differ noticeably, in which case a linear model (ridge) is to bepreferred. However random forests with different hyper-parameters (max depth= 2) yield poor estimates. A simple rule of thumb such aspreferring flexible models does not work in general; model selection is needed.
Outcome models are implemented with scikit-learn [79] and the following hyper-parameters:

Outcome Model Hyper-parameters grid
Random Forests Max depth: [2, 10]Ridge regression without treatment interaction Ridge regularization: [0.1]Ridge regression with treatment interaction Ridge regularization: [0.1]

Table 2. Hyper-parameters grid used for ACIC 2016 ATE variability

A.2 Prior work : model selection for outcome modeling (g-computation)

A natural way to select a predictive model for causal inference would be an error measure between a causal quantity such as the CATE andmodels’ estimate. But such error is not a “feasible” risk: it cannot be computed solely from observed data and requires oracle knowledge.
Simulation studies of causal model selection. Using eight simulations setups from [38], where the oracle CATE is known, [50] comparefour causal risks, concluding that for CATE estimation the best model-selection risk is the so-called R-risk [42] –def. 5, below. Theirempirical results are clear for randomized treatment allocation but less convincing for observational settings where both simple MSE–µ-risk(f) def. 1– and reweighted MSE –µ-riskIPW def. 2– appear to perform better than R-risk on half of the simulations. Another work[51] studied empirically both MSE and reweighted MSE risks on the semi-synthetic ACIC 2016 datasets [45], but did not include the R-risk.We complete these prior empirical work by studying a wider variety of data generative processes and varying the influence of overlap, an
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Figure 8. Different outcome models lead to different estimation errors on the Average Treatment Effects, on 77 classic simulations with known true causal effect [45]. The
different models are ridge regression and random forests with different hyper-parameters (details A.1). The different configurations are plotted as a function of increasing
difference between treated and untreated population –see subsection . There is no systematic best performer; data-driven model selection is important.

https://scikit-learn.org/stable/
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important parameter of the data generation process which makes a given causal metric appropriate [80]. We also study how to best adaptcross-validation procedures to causal metrics which themselves come with models to estimate.
Theoretical studies of causal model selection. Several theoretical works have proposed causal model selection procedures that are consistent:select the best model in a family given asymptotically large data. These work rely on introducing a CATE estimator in the testing procedure:matching [81], an IPW estimate [72], a doubly robust estimator [82], or debiasing the error with influence functions [51]. However, fortheoretical guarantees to hold, the test-set correction needs to converge to the oracle: it needs to be flexible enough –well-posed– andasymptotic data. From a practical perspective, meeting such requirements implies having a good CATE estimate, thus having solved theoriginal problem of causal model selection.
Statistical guarantees on causal estimation procedures. Much work in causal inference has focused on procedures that guarantee asymptoticallyconsistent estimators, such as Targeted Machine Learning Estimation (TMLE) [36, 37] or Double Machine Learning [43]. Here also, theoriesrequire asymptotic regimes and models to be well-specified.

By contrast, without assuming that estimators are well specified, there exists an upper bound on the oracle error to the CATE (τ-risk)that involves the error on the outcome and the similarity of the distributions of treated and control patients [83]. However, they use thisupper bound for model optimization, and do not give insights on model selection. In addition, for hyperparameter selection, they rely on aplugin estimate of the τ-risk built with counterfactual nearest neighbors, which has been shown ineffective [50]. An interesting directionis taken in [84] where the authors derive convergence rates for orthogonal losses such as the R-loss, or the DR-Loss without assumingwell-specification of the model for target parameter.

A.3 Causal assumptions

We assume the following four assumptions, referred as strong ignorability and necessary to assure identifiability of the causal estimandswith observational data [56]:
Assumption 1 (Consistency) The observed outcome is the potential outcome of the assigned treatment:

Y = A Y(1) + (1 – A) Y(0)
Here, we assume that the intervention A has been well defined. This assumption focuses on the design of the experiment. It clearly states the link
between the observed outcome and the potential outcomes through the intervention [24].

Assumption 2 (Unconfoundedness)

{Y(0), Y(1)} ⊥⊥ A|X

This condition –also called ignorability– is equivalent to the conditional independence on e(X) [28]: {Y(0), Y(1)} ⊥⊥ A|e(X).

Assumption 3 (Overlap, also known as Positivity))

η < e(x) < 1 – η ∀x ∈ X and some η > 0
The treatment is not perfectly predictable. Or with different words, every patient has a chance to be treated and not to be treated. For a given set of
covariates, we need examples of both to recover the ATE.

As noted by [80], the choice of covariates X can be viewed as a trade-off between these two central assumptions. A bigger covariates setgenerally reinforces the ignorability assumption. In the contrary, overlap can be weakened by large X because of the potential inclusion ofinstruments: variables only linked to the treatment which could lead to arbitrarily small propensity scores.
Assumption 4 (Generalization) The training data on which we build the estimator and the test data on which we make the estimation are drawn
from the same distribution D∗, also known as the “no covariate shift” assumption [85].

A.4 Definitions of feasible risks

Definition 1 (Factual µ-risk) [60] This is the usual Mean Squared Error on the target y. It is what is typically meant by “generalization error” in
supervised learning:

µ-risk(f) = E
[(Y – f(X; A))2]

Definition 2 (µ-risk⋆
IPW ) [58] Let the inverse propensity weighting function w(x, a) = a

e(x) + 1–a1–e(x) , we define the semi-oracle Inverse Propensity
Weighting risk,

µ-risk⋆IPW (f) = E
[( A

e(X) + 1 – A1 – e(X)
)(Y – f(X; A))2]
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Definition 3 (τ-risk⋆
IPW ) [39] The CATE τ(x) can be estimated with a regression against inverse propensity weighted outcomes [71, 72, 39], the

τ-riskIPW .

τ-risk⋆IPW (f) = E
[(

Y A – e(X)
e(X)(1 – e(X)) – τf (X))2]

Definition 4 (U-risk⋆) [41, 42] Based on the Robinson decomposition –eq. 8, the U-learner uses the A – e(X) term in the denominator. The
derived risk is:

U-risk⋆(f) = E
[(Y – m (X)

A – e (X) – τf (X))2]

Note that extreme propensity weights in the denominator term might inflate errors in the numerator due to imperfect estimation of the mean
outcome m.

Definition 5 (R-risk⋆) [42, 50] The R-risk also uses two nuisance m and e:

R-risk⋆(f) = E
[( (Y – m (X)) – (A – e (X))τf (X) )2]

It is also based on the Robinson decomposition –eq. 8.
A.5 Proofs: Links between feasible and oracle risks

Reformulation of theR-risk as reweightedτ-risk
Proposition 1 (R-risk as reweighted τ-risk) Proof 1 We consider the R-decomposition: [57],

y(a) = m(x) + (
a – e(x))τ(x) + ε(x; a) (12)

Where E[ε(X; A)|X, A] = 0 We can use it as plug in the R-risk formula:

R-risk(f) = ∫
Y×X×A

[(y – m(x)) – (
a – e(x))τf (x)]2p(y; x; a)dydxda

= ∫
Y×X×A

[(
a – e(x))τ(x) + ε(x; a) – (

a – e(x))τf (x)]2
p(y; x; a)dydxda

= ∫
X×A

(
a – e(x))2(

τ(x) – τf (x))2p(x; a)dxda

+ 2 ∫
Y×X×A

(
a – e(x))(τ(x) – τf (x)) ∫

Y
ε(x; a)p(y | x; a)dyp(x; a)dxda

+ ∫
X×A

∫
Y
ε2(x; a)p(y | x; a)dyp(x; a)dxda

The first term can be decomposed on control and treated populations to force e(x) to appear:∫
X

(
τ(x) – τf (x))2 [

e(x)2p(x; 0) + (1 – e(x))2p(x; 1)] dx

= ∫
X

(
τ(x) – τf (x))2 [

e(x)2(1 – e(x))p(x) + (1 – e(x))2e(x)p(x)] dx

= ∫
X

(τ(x) – τf (x))2(1 – e(x))e(x)[1 – e(x) + e(x)]p(x)dx

= ∫
X

(τ(x) – τf (x))2(1 – e(x))e(x)p(x)dx.
The second term is null since, E[ε(x, a)|X, A] = 0.
The third term corresponds to the modulated residuals : σ̃2

B(0) + σ̃2
B(1)

Interesting special cases
Randomization special case. If the treatment is randomized as in RCTs, p(A = 1 | X = x) = p(A = 1) = pA, thus µ-riskIPW takes a simplerform:

µ-riskIPW = E(Y,X,A)∼D
[( A

pA
+ 1 – A1 – pA

)(Y – f(X; A))2]

However, we still can have large differences between τ-risk and µ-riskIPW coming from heterogeneous errors between populations asshown experimentally in [50] and our results below.Concerning the R-risk, replacing e(x) by its randomized value pA in Proposition 1 yields the oracle τ-risk up to multiplicative andadditive constants:
R-risk = pA (1 – pA)τ-risk + (1 – pA)σ2

B(0) + pAσ
2
B(1)
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Thus, selecting estimators with R-risk∗ in randomized setting controls the τ-risk. This explains the strong performances of R-risk inrandomized setups [50] and is a strong argument to use it to estimate heterogeneity in RCTs.
Oracle Bayes predictor. If we have access to the oracle Bayes predictor for the outcome ie. f(x, a) = µ(x, a), then all risks are equivalent up tothe residual variance:

τ-risk(µ) = EX∼p(X)[(τ(X) – τµ(X))2] = 0 (13)

µ-risk(µ) = E(Y,X,A)∼p(Y ;X;A)[(Y – µA(X))2] (14)
= ∫

X ,A ε(x, a)2p(a | x) p(x) dx da ≤ σ2
B(0) + σ2

B(1)

µ-riskIPW (µ) = σ2
B(0) + σ2

B(1) from Lemma ?? (15)

R-risk(µ) = σ̃2
B(0) + σ̃2

B(1) ≤ σ2
B(0) + σ2

B(1)
from Proposition 1 (16)

Thus, differences between causal risks only matter in finite sample regimes. Universally consistent learners converge to the Bayes riskin asymptotic regimes, making all model selection risks equivalent. In practice however, choices must be made in non-asymptotic regimes.

A.6 Measuring overlap

Motivation of the Normalized Total Variation. Overlap is often assessed by comparing visually population distributions as in Figure 1 orcomputing standardized difference on each feature [86, 29]. While these methods are useful to decide if positivity holds, they do not yield asingle measure. Rather, we compute the divergence between the population covariate distributions P(X|A = 0) and P(X|A = 1) [80, 83].Computing overlap when working only on samples of the observed distribution, outside of simulation, requires a sophisticated estimatorof discrepancy between distributions, as two data points never have the same exact set of features. Maximum Mean Discrepancy [87] istypically used in the context of causal inference [60, 83]. However it needs a kernel, typically Gaussian, to extrapolate across neighboringobservations. We prefer avoiding the need to specify such a kernel, as it must be adapted to the data which is tricky with categorical ornon-Gaussian features, a common situation for medical data.
For simulated and some semi-simulated data, we have access to the probability of treatment for each data point, which sample bothdensities in the same data point. Thus, we can directly use distribution discrepancy measures and rely on the Normalized Total Variation(NTV) distance to measure the overlap between the treated and control propensities. This is the empirical measure of the total variationdistance [88] between the distributions, TV(P(X|A = 1),P(X|A = 0)). As we have both distribution sampled on the same points, we canrewrite it a sole function of the propensity score, a low dimensional score more tractable than the full distribution P(X|A):

N̂TV(e, 1 – e) = 12N

N∑
i=1

∣∣ e(xi)
pA

– 1 – e(xi)1 – pA

∣∣ (17)

Formally, we can rewrite NTV as the Total Variation distance between the two population distributions. For a population O = (Y(A), X, A) ∼

D:

NTV(O) = 12N

N∑
i=1

∣∣ e(xi)
pA

– 1 – e(xi)1 – pA

∣∣
= 12N

N∑
i=1

∣∣P(A = 1|X = xi)
pA

– P(A = 0|X = xi)1 – pA

∣∣
Thus NTV approximates the following quantity in expectation over the data distribution D:

NTV(D) = ∫
X

∣∣p(A = 1|X = x)
pA

– p(A = 0|X = x)1 – pA

∣∣p(x)dx

= ∫
X

∣∣p(A = 1, X = x)
pA

– p(A = 0, X = x)1 – pA

∣∣dx

= ∫
X

∣∣p(X = x|A = 1) – p(X = x|A = 0)∣∣dx

For countable sets, this expression corresponds to the Total Variation distance between treated and control populations covariatedistributions : TV(p0(x), p1(x)).
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Measuring overlap without the oracle propensity scores:. For ACIC 2018, or for non-simulated data, the true propensity scores are not known.To measure overlap, we rely on flexible estimations of the Normalized Total Variation, using gradient boosting trees to approximate thepropensity score. Empirical arguments for this plug-in approach is given in Figure 9.
Empirical arguments. We show empirically that NTV is an appropriate measure of overlap by :
• Comparing the NTV distance with the MMD for Caussim which is gaussian distributed in Figure 11,• Verifying that setups with penalized overlap from ACIC 2016 have a higher total variation distance than unpenalized setups in Figure 10.• Verifying that the Inverse Propensity Weights extrema (the inverse of the ν overlap constant appearing in the overlap Assumption 3)positevely correlates with NTV for Caussim, ACIC 2016 and Twins in Figure 12. Even if the same value of the maximum IPW could lead todifferent values of NTV, we expect both measures to be correlated : the higher the extrem propensity weights, the higher the NTV.

Estimating NTV in practice. Finally, we verify that approximating the NTV distance with a learned plug-in estimates of e(x) is reasonnable.We used either a logistic regression or a gradient boosting classifier to learn the propensity models for the three datasets where we haveaccess to the ground truth propensity scores: Caussim, Twins and ACIC 2016. We respectively sampled 1000, 1000 and 770 instances ofthese datasets with different seeds and overlap settings. We first run a hyperparameter search with cross-validation on the train set, thenselect the best estimator. We refit on the train set this estimator with or without calibration by cross validation and finally estimate thenormalized TV with the obtained model. This training procedure reflects the one described in Algorithm 1 where nuisance models are fittedonly on the train set.The hyper parameters are : learning rate ∈ [1e – 3, 1e – 2, 1e – 1, 1], minimum samples leaf ∈ [2, 10, 50, 100, 200] for boosting and L2regularization ∈ [1e – 3, 1e – 2, 1e – 1, 1] for logistic regression.Results in Figure 9 comparing bias to the true normalized Total Variation of each dataset instances versus growing true NTV indicatethat calibration of the propensity model is crucial to recover a good approximation of the NTV.
A.7 Experiments

Details on the data generation processWe use Gaussian-distributed covariates and random basis expansion based on Radial Basis Function kernels. A random basis of RBFkernel enables modeling non-linear and complex relationships between covariates in a similar way to the well known spline expansion.The estimators of the response function are learned with a linear model on another random basis (which can be seen as a stochasticapproximation of the full data kernel [63]). We carefully control the amount of overlap between treated and control populations, a crucialassumption for causal inference. Algorithm 2 describes the generation process for one simulation. Figure 13 illustrates 2D examples of thesimulation.
• The raw features for both populations are drawn from a mixture of Gaussians: P(X) = pAP(X|A = 1) + (1 – pA)P(X|A = 0) where P(x|A = a)is a rotated Gaussian:

P(x|A = a) = W · N
([(1 – 2a)θ0

]
;
[
σ0 00 σ1

]) (18)
with θ a parameter controlling overlap (bigger yields poorer overlap), W a random rotation matrix and σ20 = 2;σ21 = 5.This generation process allows to analytically compute the oracle propensity scores e(x), to simply control for overlap with the parameter
θ, the distance between the two Gaussian main axes and to visualize response surfaces.• A basis expansion of the raw features increases the problem dimension. Using Radial Basis Function (RBF) Nystroem transformation 5,we expand the raw features into a transformed space. The basis expansion samples randomly a small number of representers in the rawdata. Then, it computes an approximation of the full N-dimensional kernel with these basis components, yielding the transformedfeatures z(x). The number of basis functions –ie. knots–, controls the complexity of the ground-truth response surfaces and treatment.We first use this process to draw the non-treated response surface µ0 and the causal effect τ. We then draw the observations froma mixture two Gaussians, for the treated and non treated. We vary the separation between the two Gaussians to control the overlapbetween treated and non-treated populations, an important parameter for causal inference (related to η in Assumption 3). Finally, wegenerate observed outcomes adding Gaussian noise.More formally, we generate the basis following the original data distribution, [b1..bD

]
∼ P(x), with D=2 in our simulations. Then, we

compute an approximation of the full kernel of the data generation process with these representers: z(x) = [RBFγ(x, bd)]d=1..D · ZT ∈ RD

with RBFγ being the Gaussian kernel K(x, y) = exp(–γ||x – y||2) and Z the normalization constant of the kernel basis, computed as the
root inverse of the basis kernel Z = [K(bi, bj)]–1/2

i,j∈1..D• Functions µ0, τ are distinct linear functions of the transformed features:
µ0(x) = [

z(x); 1] · βT
µ

τ(x) = [
z(x); 1] · βT

τ

Where βµ and βτ are sampled from two normal distributions with mean 0 and unit variances N (0, ID+1).

5 We use the Sklearn implementation, [79]

https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html
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Figure 9. a) Without calibration, estimation of NTV is not trivial even for boosting models. b) Calibrated classifiers are able to recover the true Normalized Total Variation for
all datasets where it is available.
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Figure 10. NTV recovers well the overlap settings described in the ACIC paper [45]
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Figure 12. Maximal value of Inverse Propensity Weights increases exponentially with the overlap as measure by Normalized Total Variation.

• Adding a Gaussian noise, ε ∼ N (0,σ(x; a)), we construct the potential outcomes: y(a) = (1 – ω)µ0(x) + a ωτ(x) + ε(x, a) with ω thetreatment effect relative size with respect to the baseline response.
We generated 1000 instances of this dataset with uniformly random overlap parameters θ ∈ [0, 2.5].
Details on the semi-simulated datasetsACIC 2018 [45]: The initial intervention was a child’s birth weight (A = 1 if weight < 2.5kg), and outcome was the child’s IQ after a follow-up period.The study contained N = 4 802 data points with D = 55 features (5 binary, 27 count data, and 23 continuous). They simulated 77 differentsetups varying parameters for treatment and response models, overlap, and interactions between treatment and covariates 6. We used10 different seeds for each setup, totaling 770 dataset instances.ACIC 2018 [66]: Starting from data from the Linked Births and Infant Deaths Database (LBIDD) [67] with D = 177 covariates, treatment andoutcome models are simulated with complex models to reflect different scenarii. The data do not provide the true propensity scores, sowe evaluate only feasible metrics, which do not require this nuisance parameter. We used all 432 datasets7 of size N = 5 000.Twins [68]: It is an augmentation of real data on twin births and mortality rates [69]. There are N = 11 984 samples (pairs of twins), and D = 50covariates8, The outcome is the mortality and the treatment is the weight of the heavier twin at birth. This is a "true" counterfactualdataset [89] in the sense that we have both potential outcomes with each twin. They simulate the treatment with a sigmoid model basedon GESTAT10 (number of gestation weeks before birth) and x the 45 other covariates:

ti | xi, zi ∼ Bern(
σ
(

w⊤
o x + wh(z/10 – 0.1))) (19)

with wo ∼ N (0, 0.1 · I), wh ∼ N (5, 0.1)

6 Original R code available at https://github.com/vdorie/aciccomp/tree/master/2016 to generate 77 simulations settings.7 Using the scaling part of the data, from github.com/IBM-HRL-MLHLS/IBM-Causal-Inference-Benchmarking-Framework8 We obtained the dataset from https://github.com/AMLab-Amsterdam/CEVAE/tree/master/datasets/TWINS

https://github.com/vdorie/aciccomp/tree/master/2016
https://github.com/IBM-HRL-MLHLS/IBM-Causal-Inference-Benchmarking-Framework
https://github.com/AMLab-Amsterdam/CEVAE/tree/master/datasets/TWINS
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Algorithm 2 Data simulation for the simulated dataset caussim
Let the parameters of a given simulation be:
• N the number of samples.• D the dimension of the basis expansion.• pA the proportion of treated individuals.• θ the overlap parameter.
• P(x|A = a) = W · N

([(1 – 2a)θ0
]

;
[
σ0 00 σ1

]) the rotated gaussian for each population covariate. W is a random rotation matrix and
σ20 = 2;σ21 = 5 are scaling parameters.• e(x) = P(A = 1|X = x) the oracle propensity score, obtained analytically from P(x|A = a).• P(X) = pAP(X|A = 1) + (1 – pA)P(X|A = 0) the mixture of gaussian for the whole population covariates.• b1, .., bD ∼ P(X), the basis sampled from the gaussian mixture.• z(x) = [RBFγ(x, bd)]d=1..D · ZT ∈ RD the Nystroem expansion. RBFγ is the Gaussian kernel K(x, y) = exp(–γ||x – y||2) and Z is the
normalization constant of the kernel basis, computed as the root inverse of the basis kernel Z = [K(bi, bj)]–1/2

i,j∈1..D.
• βµ and βτ, the linear coefficients on top of the basis expansion. They are sampled from two normal distributions with mean 0 and unitvariances N (0, ID+1).• ω the treatment effect relative size with respect to the baseline response.• ε(x, a) ∼ N (0,σy) an exogen gaussian noise with σy the scale of the noise.

Generation process for one sample (x, a, e(x), y(0), y(1), y):
1: x ∼ P(X) ▷ Sample from rotated gaussian mixture
2: z(x) ▷ Compute the Nystroem expansion
3: µ0(x) = [

z(x); 1] · βT
µ ▷ Compute the non-treated response surface, ie. the baseline

4: τ(x) = [
z(x); 1] · βT

τ ▷ Compute the conditional treatment effect (CATE)
5: y(a) = (1 – ω)µ0(x) + a ωτ(x) + ε(x, a) + ε(x, a) ▷ Compute the potential outcomes
6: a ∼ Bernoulli(e(x)) ▷ Compute the treatment status
7: y = a y(1) + (1 – a) y(0) ▷ Compute the observed outcome

Simulation: D = 2, = 0.7, seed=8
Treatment
 status

Control
Treated

One-dimensional cuts of the response surfaces

Figure 13. Example of the simulation setup in the input space with two knots –ie. basis functions. The top panel shows the observations in feature space, while the bottom
panel displays the two response surfaces on a 1D cut along the black lines drawn on the top panel.

We add a non-constant slope in the sigmoid to control the overlap between treated and control populations. We sampled uniformly 1 000different overlap parameters between 0 and 2.5, totaling 1 000 dataset instances. Unlike the previous datasets, only the overlap variesfor these instances. The response surfaces are set by the original outcomes.
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Model selection procedures
Nuisances estimation. The nuisances are estimated with a stacked regressor inspired by the Super Learner framework, [90]). We selecthyper-parameters with randomized search on a validation set V and keep them fix for model selection The searc grid is detailed in Table 3.All implementations come from scikit-learn [79]. As extreme inverse propensity weights induce high variance, we use clipping [91, 92] tobound min(ě, 1 – ě) away from 0 with a fixed η = 10–10, ensuring strict overlap for numerical stability.

Model Estimator Hyper-parameters grid
Outcome, m StackedRegressor ridge regularization: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100](HistGradientBoostingRegressor, ridge) HistGradientBoostingRegressor learning rate: [0.01, 0.1, 1]HistGradientBoostingRegressor max leaf nodes: [10, 20, 30, 50]
Treatment, e StackedClassifier LogisticRegression C: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100](HistgradientBoostingClassifier, LogisticRegression) HistGradientBoostingClassifier learning rate: [0.01, 0.1, 1]HistGradientBoostingClassifier max leaf nodes: [10, 20, 30, 50]

Table 3. Hyper-parameters grid used for nuisance models

Additional Results
Definition of the Kendall’s tau, κ. The Kendall’s tau is a widely used statistics to measure the rank correlation between two set of observations.It measures the number of concordant pairs minus the discordant pairs normalized by the total number of pairs. It takes values in the[–1, 1] range.

κ = (number of concordant pairs ) – (number of discordant pairs)(number of pairs) (20)
Values of relative κ(ℓ,τ–risk) compared to the mean over all metrics Kendall’s as shown in the boxplots of Figure 3.

Figure 14 - Results measured in relative Kendall’s for feasible and semi-oracle risks. Because of extreme propensity scores in the denominatorand bayes error residuals in the numerator, the semi-oracle U-risk has poor performances at bad overlap. Estimating these propensityscores in the is feasible U-risk reduces the variance since clipping is performed.
Figure 15 - Results measured in absolute Kendall’s.

Figure 16 - Results measured as distance to the oracle tau-risk. To see practical gain in term of τ-risk, we plot the results as the normalizeddistance between the estimator selected by the oracle τ-risk and the estimator selected by each causal metric.
Then, R̂-risk∗ is more efficient than all other metrics. The gain are substantial for every datasets.
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 (N= 11 984)
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 (N=5 000)
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Figure 14. The R-risk is the best metric on average: Relative Kendall’s τ agreement with τ-risk. Strong and Weak overlap correspond to the first and last tertiles of the
overlap distribution measured with Normalized Total Variation eq. 17.

https://scikit-learn.org/stable/
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Strong Overlap Weak Overlap
Median IQR Median IQRMetric Dataset

µ̂–risk
Twins (N=11 984) -0.32 0.12 -0.19 0.12ACIC 2016 (N=4 802) -0.03 0.13 0.11 0.19Caussim (N=5 000) -0.40 0.55 -0.16 0.31ACIC 2018 (N=5 000) 0.00 0.30 0.01 0.40

µ̂–riskIPW

Twins (N= 11 984) -0.31 0.13 -0.17 0.12ACIC 2016 (N=4 802) -0.02 0.13 0.11 0.19Caussim (N=5 000) -0.34 0.50 0.09 0.31ACIC 2018 (N=5 000) 0.00 0.30 -0.01 0.43
µ̂–risk∗

IPW

Twins (N= 11 984) -0.32 0.13 -0.17 0.13ACIC 2016 (N=4 802) -0.02 0.13 0.11 0.21Caussim (N=5 000) -0.33 0.54 0.26 0.27
τ̂–riskIPW

Twins (N= 11 984) 0.13 0.12 0.27 0.12ACIC 2016 (N=4 802) -0.07 0.18 0.05 0.31Caussim (N=5 000) -0.19 0.43 -0.14 0.18ACIC 2018 (N=5 000) -0.16 0.40 -0.11 0.66
τ̂–risk∗

IPW

Twins (N= 11 984) 0.12 0.14 0.20 0.16ACIC 2016 (N=4 802) -0.03 0.16 -0.09 0.43Caussim (N=5 000) -0.15 0.46 -0.17 0.19
̂U – risk

Twins (N= 11 984) 0.13 0.12 0.02 0.25ACIC 2016 (N=4 802) 0.04 0.11 0.11 0.26Caussim (N=5 000) 0.04 0.43 -0.04 0.17ACIC 2018 (N=5 000) 0.12 0.26 -0.02 0.50
̂U – risk∗

Twins (N= 11 984) 0.25 0.08 -0.41 0.45ACIC 2016 (N=4 802) 0.08 0.13 -0.59 0.57Caussim (N=5 000) 0.46 0.12 0.02 0.44
̂R – risk

Twins (N= 11 984) 0.15 0.10 0.25 0.18ACIC 2016 (N=4 802) 0.07 0.12 0.22 0.15Caussim (N=5 000) 0.34 0.26 0.13 0.21ACIC 2018 (N=5 000) 0.13 0.27 0.21 0.47
̂R – risk∗

Twins (N= 11 984) 0.25 0.10 0.32 0.15ACIC 2016 (N=4 802) 0.12 0.12 0.25 0.15Caussim (N=5 000) 0.47 0.11 0.16 0.14
Table 4. Values of relative κ(ℓ, τ–risk) compared to the mean over all metrics Kendall’s as shown in the boxplots of Figure 3
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Figure 15. Agreement with τ-risk ranking of methods function of overlap violation. The lines represent medians, estimated with a lowess. The transparent bands denote the
5% and 95% confidence intervals.
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Figure 16. Metric performances by normalized tau-risk distance to the best method selected with τ-risk. All nuisances are learned with the same estimator stacking gradient
boosting and ridge regression. Doted and plain lines corresponds to 60% lowess quantile estimates. This choice of quantile allows to see better the oracle metrics lines for
which outliers with a value of 0 distord the curves.
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Figure 17 - Stacked models for the nuisances is more efficient. For each metrics the benefit of using a stacked model of linear and boostingestimators for nuisances compared to a linear model. The evaluation measure is Kendall’s tau relative to the oracle R-risk⋆ to have a stablereference between exepriments. Thus, we do not include in this analysis the ACIC 2018 dataset since R-risk⋆ is not available due to the lackof the true propensity score.
Figure 18 Low population overlap hinders model selection for all metrics.

Figure 19 - Stacked models for the nuisances is more efficient. For each metrics the benefit of using a stacked model of linear and boostingestimators for nuisances compared to a linear model. The evaluation measure is Kendall’s tau relative to the oracle R-risk⋆ to have a stablereference between exepriments. Thus, we do not include in this analysis the ACIC 2018 dataset since R-risk⋆ is not available due to the lackof the true propensity score.
Figure 20 - Flexible models are performant in recovering nuisances even in linear setups.

Selecting different seeds and parameters is crucial to draw conclusions. One strength of our study is the various number of different simulatedand semi-simulated datasets. We are convinced that the usual practice of using only a small number of generation processes does not allowto draw statistically significant conclusions.Figure 21 illustrate the dependence of the results on the generation process for caussim simulations. We highlighted the differenttrajectories induced by three different seeds for data generation and three different treatment ratio instead of 1000 different seeds. Theresult curves are relatively stable from one setup to another for R–risk, but vary strongly for µ-risk and µ-riskIPW .
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Û risk*

R̂ risk

Strong Overlap

1.5 1.0 0.5 0.0 0.5

Weak Overlap

(c)Twins

1.0 0.5 0.0 0.5

r̂isk

r̂iskIPW

r̂isk*
IPW

r̂iskIPW

r̂isk*
IPW
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Figure 17. Results are similar between the Shared nuisances/candidate set and the Separated nuisances set procedure. The experience has not been run on the full metrics for
Caussim due to computation costs.
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Û risk
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Figure 18. Low population overlap hinders causal model selection for all metrics: Kendall’s τ agreement with τ-risk. Strong, medium and Weak overlap correspond to the
tertiles of the overlap distribution measured with Normalized Total Varation eq. 17.
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Û risk
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Figure 19. Learning the nuisances with stacked models (linear and gradient boosting) is important for successful model selection with R-risk. For Twins dataset, there is no
improvement for stacked models compared to linear models because of the linearity of the propensity model.
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Figure 20. Flexible models are performant in recovering nuisances in the downsampled Twins dataset. The propensity score is linear in this setup, making it particularly
challenging for flexible models compared to linear methods.

Figure 21. Kendall correlation coefficients for each causal metric. Each (color, shape) pair indicates a different (treatment ratio, seed) of the generation process.
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a) CATE estimation error
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Figure 22. a) For CATE, a train/test ratio of 0.9/0.1 appears a good trade-off. b) For ATE, there is a small signal pointing also to 0.9/0.1 (K=10). for ATE. Experiences on 10
replications of all 78 instances of the ACIC 2016 data.

A.8 Data split choices

Use 90%of the data to estimate outcomemodels, 10% to select themThe analyst faces a compromise: given a finite data sample, should she allocate more data to estimate the outcome model, thus improvingthe quality of the outcome model but leaving little data for model selection. Or, she could choose a bigger test set for model selection andeffect estimation. For causal model selection, there is no established practice (as reviewed in A.8).We investigate such tradeoff varying the ratio between train and test data size. For this, we first split out 30% of the data as a holdoutset V on which we use the oracle response functions to derive silver-standard estimates of causal quantities. We then use the standardestimation procedure on the remaining 70% of the data, splitting it into train T and test S of varying sizes. We finally measure the errorbetween this estimate and the silver standard.We consider two different analytic goals: estimating a average treatment effect –a single number used for policy making– and a CATE–a full model of the treatment effect as a function of covariates X. Given that the latter is a much more complex object than the former, theoptimal train/test ratio might vary. To measure errors, we use for the ATE the relative absolute ATE bias between the ATE computed withthe selected outcome model on the test set, and the true ATE as evaluated on the holdout set V. For the CATE, we compare the τ-risk of thebest selected model applied on the holdout set V. We explore this trade-off for the ACIC 2016 dataset and the R-risk.Figure 22 shows that a train/test ratio of 0.9/0.1 (K=10) or 0.8/0.2 (K=5) appears best to estimate CATE and ATE.
Heterogeneity in practices for data splitSplitting the data is common when using machine learning for causal inference, but practices vary widely in terms of the fraction of data toallocate to train models, outcomes and nuisances, and to evaluate them.Before even model selection, data splitting is often required for estimation of the treatment effect, ATE or CATE, for instance to computethe nuisances required to optimize the outcome model (as the R-risk, Definition 5). The most frequent choice is use 80% of the data tofit the models, and 20% to evaluate them. For instance, for CATE estimation, the R-learner has been introduced using K-folds with K= 5 and K = 10: 80% of the data (4 folds) to train the nuisances and the remaining fold to minimize the corresponding R-loss [42]. Yet,it has been implemented with K=5 in causallib [93] or K=3 in econML [94]. Likewise, for ATE estimation, [43] introduce doubly-robustmachine learning, recommending K=5 based on an empirical comparison K=2. However, subsequent works use doubly robust ML withvarying choices of K: [95] use K=3, [96] use K=2. In the econML implementation, K is set to 3 [94]. [97] evaluate various machine-learningapproaches –including R-learners– using K=5 and 10, drawing inspiration from the TMLE literature which sets K=5 in the TMLE package[98].Causal model selection has been much less discussed. The only study that we are aware of, [50], use a different data split: a 2-foldstrain/test procedure, training the nuisances on the first half of the data, and using the second half to estimate the R-risk and select the besttreatment effect model.
A.9 Sensitivity of the results to different ratio of causal effect to baseline response

Going beyond overlap, we study the effect of another important parameter of the data generation process: the ratio of causal effect to thebaseline response.Here, we detail the experimental setup of the results presented in Figure 7.For each dataset of our simulation (caussim), we measure this ratio as the absolute mean difference between the causal effect and the
baseline response, measured empirically on each dataset instance ∆µ = 1

N
∑N

i=1 ∣∣ µ1(xi)–µ0(xi)
µ0(xi)+µ1(xi)– 1

N
∑N

j=1 µ0(xj)+µ1(xj)
∣∣. We vary a dedicated

parameter (ω in Algorithm 2) in the simulation to force this ratio to cover a wide range of values. For 179 dataset instances, it ranges severalorder of magnitudes with the full distribution of values given in Table 5.

count mean std min 1% 10% 25% 50% 75% 90% 99% max
effect_ratio 179 16.95 24.92 0.043 0.054 0.32 1.34 9.12 22.55 39.97 101.12 206.53

Table 5. Distribution of the causal effect ratio ∆µ for the experiment on causal effect ratio, results in Figure 7.

We also studied another measure, focusing on the ratio of the variance of the causal effect to the variance of the mean shared response
(µ0 + µ1) of both population: ^var(µ1(xi)–µ0(xi))

^var(µ1(xi)+µ0(xi)) , covering a range from 0 to 11.08 with the full distribution described in Table 6. Figure 23
shows that for high values of the variance, R – risk is outperformed by the µ-riskIPW and the τ-riskIPW . However, on average, the R – risk
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Figure 23. R-risk is robust to a wide range of effect variance: Kendall’s τ agreement with τ-risk. Strong, medium and Weak Causal effect variance are the tertiles of the ratio
of causal effect variance to the mean outcome variance: Low [0; 0.04[, Medium [0.04; 1.04[, High [1.04; 11.08[.

is still the better risk.
count mean std min 1% 10% 25% 50% 75% 90% 99% max

effect_variance 179 1.013 1.781 1.680e-5 1.734e-5 4.875e-4 6.449e-3 0.789 1.160 1.807 9.641 11.079
Table 6. Statistical summary of the causal effect variance.
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