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Abstract

Objective: We investigate which procedure selects the predictive model most trustworthy to reason
on the effect of an intervention and support decision making.
Methods: We study such a variety of model selection procedures in practical settings: finite sam-
ples settings and without theoretical assumption of well-specified models. Beyond standard cross-
validation or internal validation procedures, we also study elaborate causal risks. These build proxies
of the causal error using “nuisance” re-weighting to compute it on the observed data. We evaluate
whether empirically estimated nuisances, which are necessarily noisy, add noise to model selection.
We compare different metrics for causal model selection in an extensive empirical study based on a
simulation and three healthcare datasets based on real covariates.
Results: Among all metrics, the mean squared error, classically used to evaluate predictive modes, is
worse. Re-weighting it with propensity score does not bring much improvements. The R-risk, which
uses as nuisances a model of mean outcome and propensity scores, leads to the best performances.
Nuisance corrections are best estimated with flexible estimators such as a super learner.
Conclusions: When predictive models are used to reason on the effect of an intervention, they must
be evaluated with different procedures than standard predictive settings; using the R-risk from causal
inference.

Keywords Model Selection, Predictive model, Treatment Effect, G-formula, Machine Learning,
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Introduction

Extending prediction to prescription needs causality

Prediction models have long been used in medicine, as with risk score or prognostic models47,82. While
these have historically been simple models on simple data, this is changing with progress in machine
learning and richer medical data9,61. Health predictions can now integrate medical images36,93,91,73,50,
patient records46,17,77 or clinical notes29,88,79. Complex data is difficult to control and model, but these
models are validated by verifying the accuracy of the prediction on left-out data3,58,86. Crucial to the
clinical adoption of a model predicting a health outcome is that it “can support decisions about patient
care”90. Precision medicine is about guiding decisions: eg will an individual benefit from an intervention
such as surgery20? An estimate of the effect of the treatment can be obtained by contrasting model
predictions with and without the treatment, but statistical validity requires causal inference78,80,10.

Indeed, concluding on the effect of a treatment is a difficult causal-inference task, as it can be easily
compromised by confounding: spurious associations between treatment allocation and baseline health,
e.g. only prescribing a drug to mild cases26,85. Predictive modeling bridges to causal inference theory un-
der the name of outcome models (or G-computation, G-formula63, Q-model78, conditional mean regres-
sion89). Medical statistics and epidemiology have mostly used other causal-inference methods, modeling
treatment assignment with propensity scores66,7,12,23. Outcome modeling brings the benefit of going be-
yond average effects, estimating individualized or conditional average treatment effects (CATE), central
to precision medicine. For this purpose, such methods are also invaluable on randomized trials83,41,28.

Outcome-modeling methods, even when specifically designed for causal inference, are numerous:
Bayesian Additive Regression Trees27, Targeted Maximum Likelihood Estimation40,71, causal boost-
ing59, causal multivariate adaptive regression splines59, random forests87,5, Meta-learners37, R-learners52,
Doubly robust estimation14... The wide variety of methods raises the problem of selecting between dif-
ferent estimators based on the data at hand. Indeed, estimates of treatment effects can vary markedly
across different predictive models19,18 (illustration in Appendix A).

Given complex health data, which predictive model is to be most trusted to yield valid causal esti-
mates needed to motivate individual treatment decisions? As no single machine-learning method per-
forms best across all data sets, there is a pressing need for clear guidelines to select outcome models for
causal inference.

Objectives and structure of the paper We study model selection procedures in practical settings,
without theoretical assumptions often made in statistical literature such as infinite data or well-specified
models (Appendix B). Asymptotic causal-inference theory recommends complex risks, but a practical
question is whether model-selection procedures, that rely on data split, can estimate these risks reliably
enough. Indeed, these risks come with more quantities to estimate, which may bring additional variance,
leading to worse model selection.

We first illustrate the problem of causal model selection and briefly review prior art. Then we an-
chor causal model selection in the potential outcome framework and details the causal risks and model-
selection procedure. We then rewrite the so-called R-risk as a reweighted version of mean squared
difference between the true and estimated individualized treatment effect. Finally, we conduct a thor-
ough empirical study comparing the different metrics on diverse datasets, using a family of simulations
and real health data, going beyond prior work limited to specific simulation settings70,1 (Appendix B).
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b) Linear model, worse average prediction but better causal inference
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Figure 1: Illustration: a) a random-forest predictor with high performance for standard prediction (high R2) but that
yields poor causal estimates (large error between true effect τ and estimated τ̂ ), b) a linear predictor with smaller
prediction performance leading to better causal estimation.

Selecting the predictor with the smallest error to the individual treatment effect E[(τ(x)− τ̂(x))2] –the τ -risk, eq. 9 –
would lead to the best causal estimates; however computing this error is not feasible: it requires access to unknown
quantities: τ(x).

While the random forest fits the data better than the linear model, it gives worse causal inference because its error
is inhomogeneous between treated and untreated. The R2 score does not capture this inhomogeneity.

Illustration: the best predictor may not estimate best causal effects

Using a predictor to reason on causal effects relies on contrasting the prediction of the outcome for a given
individual with and without the treatment. Given various predictors of the outcome, which one should we
use? Standard predictive modeling or machine-learning practice selects the predictor that minimizes the
expected error on the outcome58,86. However, this predictor may not be the best model to reason about
causal effects of an intervention as Figure 1 illustrates. Consider the probability Y of an undesirable
outcome (e.g.death), a binary treatment A ∈ {0, 1}, and a covariate X ∈ R summarizing the patient
health status (e.g.the Charlson index13). We simulate a treatment beneficial (decreases mortality) for
patients with high Charlson scores (bad health status) but with little effect for patients in good condition
(low Charlson scores).

Figure 1a shows a random forest predictor with a counter-intuitive behavior: it predicts well on
average the outcome (as measured by a regression R2 score) but perform poorly to estimate causal
quantities: the average treatment effect τ (as visible via the error |τ − τ̂ |) or the conditional average
treatment effect (the error E[(τ(x) − τ̂(x))2], called CATE). On the contrary, Figure 1b shows a linear
model with smaller R2 score but better causal inference.

The problem is that causal estimation requires controlling an error on both treated and non-treated
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outcome for the same individual: the observed outcome, and the non-observed counterfactual one. The
linear model is misspecified –the outcome functions are not linear–, leading to poor R2; but it interpolates
better to regions where there are few untreated individuals –high Charlson score– and thus gives better
causal estimates. Conversely, the random forest puts weaker assumptions on the data, thus has higher R2

score but is biased by the treated population in the poor-overlap region, leading to bad causal estimates.
This toy example illustrates that the classic minimum Mean Square Error criterion is not suited to

choosing a model among candidate estimators for causal inference.

Methods

Neyman-Rubin Potential Outcomes framework

Settings The Neyman-Rubin Potential Outcomes framework49,31 enables statistical reasoning on causal
treatment effects: Given an outcome Y ∈ R (e.g.mortality risk or hospitalization length), function of a
binary treatment A ∈ A = {0, 1} (e.g. a medical procedure), and baseline covariates X ∈ X ⊂ Rd, we
observe the factual distribution, O = (Y (A), X,A) ∼ D = P(y, x, a). However, we want to model the
existence of potential observations (unobserved ie. counterfactual) that correspond to a different treat-
ment. Thus we want quantities on the counterfactual distribution O∗ = (Y (1), Y (0), X,A) ∼ D∗ =

P(y(1), y(0), x, a).
Popular quantities of interest (estimands) are: at the population level, the Average Treatment Effect

ATE τ
def
= EY (1),Y (0)∼D∗ [Y (1)− Y (0)];

at the individual level, to model heterogeneity, the Conditional Average Treatment Effect

CATE τ(x)
def
= EY (1),Y (0)∼D⋆ [Y (1)− Y (0)|X = x].

Causal assumptions A given data needs to meet a few assumptions to enable identifying causal esti-
mands67. The usual strong ignorability assumptions are (details in C): 1) unconfoundedness {Y (0), Y (1)} ⊥⊥ A|X ,
2) strong overlap ie. every patient has a strictly positive probability to receive each treatment, 3) consis-
tency, and 4) generalization.

Estimating treatment effects with outcome models – g-computation62 Should we know the two
expected outcomes for a given X , we could compute the difference between them, which gives the
causal effect of the treatment. These two expected outcomes can be estimated from observed data: the
consistency 3 and unconfoundedness 1 assumptions imply the following equality:

EY (a)∼D⋆ [Y (a)|X = x] = EY∼D[Y |X = x,A = a] (1)

On the left, the expectation is taken on the counterfactual unobserved distribution. On the right, the
expectation is taken on the factual observed distribution conditionally on the treatment. For the rest of
the paper, the expectations will always be taken on the factual observed distribution D. This identification
leads to outcome based estimators (ie. g-computation estimators78):

τ = EY∼D⋆ [Y (1)− Y (0)|X = x]

= EY∼D[Y |A = 1]− EY∼D[Y |A = 0] (2)
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Table 1: Review of causal risks — The R-risk∗ is called τ -riskR in Schuler et al. [70].

Risk Equation Reference

τ -risk = MSE(τ(X), τf (X)) EX∼p(X)[(τ(X)− τ̂f (X))2] Eq. 927

µ-risk = MSE(Y, f(X)) E(Y,X,A)∼D
[
(Y − f(X;A))2

]
Def. 170

µ-risk∗IPW E(Y,X,A)∼D

[(
A

e(X) +
1−A

1−e(X)

)
(Y − f(X;A))2

]
Def. 238

τ -risk⋆IPW E(Y,X,A)∼D

[(
Y
(

A
e(X) − 1−A

1−e(X)

)
− τ̂f (X)

)2
]

Def. 387

U -risk∗ E(Y,X,A)∼D
[(Y−m(X)

A−e(X) − τ̂f (X)
)2] Def. 452

R-risk∗ E(Y,X,A)∼D
[(

(Y −m (X))− (A− e (X)) τ̂f (X)
)2] Def. 552

This equation builds on two quantities: the conditional expectancy of the outcome given the covariates
and either treatment or no no treatment, called response function:

Response function µa(x)
def
= EY∼D[Y |X = x,A = a]

Given a sample of data and the oracle response functions µ0, µ1, the finite sum version of Equation 2
leads to an estimator of the ATE written:

τ̂ =
1

n

( n∑

i=1

µ1(xi)− µ0(xi)

)
(3)

This estimator is an oracle finite sum estimator by opposition to the population expression of τ , E[µ1(xi)−
µ0(xi)], which involves an expectation taken on the full distribution D, which is observable but requires
infinite data. For each estimator ℓ taking an expectation over D, we use the symbol ℓ̂ to note its finite
sum version.

Similarly to the ATE, at the individual level, the CATE:

τ(x) = µ1(x)− µ0(x) (4)

Robinson decomposition The R-decomposition of the outcome model64 plays an important role: in-
troducing two quantities, the conditional mean outcome and the probability to be treated (known as
propensity score66):

Conditional mean outcome m(x)
def
= EY∼D[Y |X = x] (5)

Propensity score e(x)
def
= P[A = 1|X = x] (6)

the outcome can be written

R-decomposition y(a) = m(x) +
(
a− e(x)

)
τ(x) + ε(x; a)

with E[ε(X;A)|X,A] = 0 (7)

m and e are often called nuisances14; they are unknown.
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Model-selection risks, oracle and feasible

Causal model selection We formalize model selection for causal estimation. Thanks to the g-formula
identification (Equation 1), a given outcome model f : X × A → Y –learned from data or built from
domain knowledge– induces feasible estimates of the ATE and CATE (eqs 3 and 4), τ̂f and τ̂f (x). Let
F = {f : X × A → Y} be a family of such estimators. Our goal is to select the best candidate in this
family for the observed dataset O using a risk ℓ:

f∗
ℓ = argmin

f∈F
ℓ(f,O) (8)

We now detail possible risks ℓ, risks useful for causal model selection, and how to compute them.

The τ -risk: an oracle error risk As we would like to target the CATE, the following evaluation risk
is natural (also called PEHE69,27):

τ -risk(f) def
= EX∼p(X)[(τ(X)− τ̂f (X))2] (9)

Given observed data from p(X), the expectation is computed with a finite sum, as in eq. 3, to give an
estimated value τ̂ -risk(f). However this risk is not feasible as the oracles τ(x) are not accessible with
the observed data (Y,X,A) ∼ D.

Feasible error risks Table 1 lists feasible risks (Detailed in Appendix D), based on the prediction error
of the outcome model and observable quantities. These observable, called nuisances are e –propensity
score, eq 6– and m –conditional mean outcome, eq 5. We give the definitions as semi-oracles, function
of the true unknown nuisances, but later instantiate them with estimated nuisances, noted

(
ě, m̌

)
. Semi-

oracles risks are superscripted with the ⋆ symbol.

Estimation and model selection procedure

Causal model selection (eq 8) may involve estimating various quantities from the observed data: the
outcome model f , its induced risk as introduce in the previous section, and possibly nuisances required
by the risk. Given a dataset with N samples, we split out a train and a test sets (T ,S). We fit each
candidate estimator f ∈ F on T . We also fit the nuisance models (ě, m̌) on the train set T , setting
hyperparameters by a nested cross-validation before fitting the nuisance estimators with these parameters
on the full train set. Causal quantities are then computed by applying the fitted candidates estimators
f ∈ F on the test set S. Finally, we compute the model-selection metrics for each candidate model on
the test set. This procedure is described in Algorithm 1 and Figure 2.

Algorithm 1 Model selection procedure
Given train and test sets (T ,S) ∼ D, a candidate estimators f , a causal metrics ℓ:

1. Prefit: Learn estimators for unknown nuisance quantities (ě, m̌) on the training set T

2. Fit: learn f̂(·, a) on T

3. Model selection: ∀x ∈ S predict
(
f̂(x, 1), f̂(x, 0)

)
and evaluate the estimator storing the metric

value: ℓ(f,S) – possibly function of ě and m̌
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Figure 2: Estimation procedure for causal model selection.

R-risk as reweighted oracle metric

The R-risk can be rewritten as a rebalanced τ -risk.
This rewriting involves reweighted residuals: for each potential outcome, a ∈ {0; 1}, the variance

conditionally on x is72:

σ2
y(x; a)

def
=

∫

y
(y − µa(x))

2 p(y | x = x;A = a) dy

Integrating over the population, we get the Bayes squared error: σ2
B(a) =

∫
X σ2

y(x; a)p(x)dx and its
propensity weighted version: σ̃2

B(a) =
∫
X σ2

y(x; a) p(x; a) dx. In case of a purely deterministic link
between the covariates, the treatment, and the outcome, these residual terms are null.

Proposition 1 (R-risk as reweighted τ -risk) Given an outcome model f , its R-risk appears as weighted
version of its τ -risk (Proof in E.1):

R-risk∗(f) =
∫

x
e(x)

(
1− e(x)

)(
τ(x)− τf (x)

)2
p(x)dx

+ σ̃2
B(1) + σ̃2

B(0) (10)

The R-risk targets the oracle at the cost of an overlap re-weighting and the addition of the reweighted
Bayes residuals, which are independent of f . In good overlap regions the weights e(x)

(
1 − e(x)

)
are

close to 1
4 , hence the R-risk is close to the desired gold-standard τ -risk. For randomized control trials,

this weight is constant making the R-risk particularly suited for exploring heterogeneity (Appendix E.2)

Empirical Study

We evaluate the following causal metrics, oracle and feasible versions, presented in Table 1:
µ̂-risk

∗
IPW , R̂-risk

∗
, Û -risk

∗
, ̂τ -riskIPW

∗
, µ̂-risk, µ̂-riskIPW , R̂-risk, Û -risk, ̂τ -riskIPW . We benchmark

the metrics in a variety of settings: many different simulated data generation processes and three semi-
simulated datasets 1.

Caussim: Extensive simulation settings

Data Generation We use simulated data, on which the ground-truth causal effect is known. Going
beyond prior empirical studies of causal model selection70,1, we use many generative processes, which

1Scripts for the simulations and the selection procedure are available at https://github.com/soda-inria/
caussim.
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is needed to reach general conclusions (Appendix G.4).
We generate the response functions using random bases extension, a common method in biostatis-

tics, e.g.functional regression with splines30,56. By allowing the function to vary at specific knots, we
control the complexity of the non-linear outcome models. We use random approximation of Radial Basis
Function (RBF) kernels60 to generate the outcome and treatment functions. RBF use the same process
as polynomial splines but replace polynomial by Gaussian kernels. Unlike polynomial, Gaussian kernels
have decreasing influences in the input space. This avoids unrealistic divergences of the functions at the
ends of the feature space. We generate 1 000 datasets based on these functions, with random overlap
parameters. Example shown in Figure 12 and details in G.1.

Family of candidate estimators We test model selection across different candidate estimators that
approximate imperfectly the data-generating process. To build such estimators, we first use a RBF ex-
pansion similar to that used for data generation. We choose two random knots and transform the raw data
features with a Gaussian kernel. This step is referred as the featurization. Then, we fit a linear regression
on these transformed features. We consider two ways of combining these steps for outcome model; we
use common nomenclature37,74 to refer to these different meta-learners that differ on how they model,
jointly or not, the treated and the non treated:

• SLearner: A single learner for both population, taking the treatment as a supplementary covariate.

• SftLearner: A single set of basis functions is sampled at random for both populations, leading
to a given feature space used to model both the treated and controls, then two separate different
regressors are fitted on this shared representation.

• TLearner: Two completely different learners for each population, hence separate feature represen-
tations and regressors.

For the regression step, we fit a Ridge regression on the transformed features with 6 different
choices of the regularization parameter λ ∈ [10−3, 10−2, 10−1, 1, 101, 102], coupled with a TLearner
or a SftLearner. We sample 10 different random basis for learning and featurization yielding a family F
of 120 candidate estimators.

Semi-simulated datasets

Datasets We also use three semi-simulated data adding a known synthetic causal effect to real –non
synthetic– healthcare covariate. ACIC 201618 is based on the Collaborative Perinatal Project53, a RCT
studying infants’ developmental disorders containing 4,802 indivduals and 55 features. We used 770
dataset instances: 10 random seeds for each of the 77 simulated settings for the treatment and out-
comes. ACIC 201876 simulated treatment and outcomes for the Linked Births and Infant Deaths Database
(LBIDD)44 with D = 177 covariates. We used all 432 datasets of size N = 5000. Twins43 is an aug-
mentation of real data on twin births and mortality rates2. There are N = 11 984 samples, and D = 50

covariates for which we simulated 1,000 different treatment allocations. Appendix G.2 gives datasets
details.

Family of candidate estimators For these three datasets, the family of candidate estimators are gra-
dient boosting trees for both the response surfaces and the treatment 2 with S-learner, learning rate in

2Scikit-learn regressor, HistGradientBoostingRegressor, and classifier, HistGradientBoostingClassifier.
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{0.01, 0.1, 1}, and maximum number of leaf nodes in {25, 27, 30, 32, 35, 40} resulting in a family of
size 18.

Nuisance estimators Drawing from the TMLE literature that uses combination of flexible machine
learning methods71, we model the nuisances ě (respectivley m̌) with a meta-learner: a stacked estimator
of ridge and boosting classifiers (respectively regressions) (hyperparameter selection in Appendix G.3).

Measuring overlap between treated and non treated

Good overlap between treated and control population is crucial for causal inference (Assumption 2). We
introduce the Normalized Total Variation (NTV), a divergence based on the propensity score summariz-
ing the overlap between both populations (Appendix F).

Results: factors driving good model selection

The R-risk is the best metric Figure 3 shows the agreement between the ideal ranking of outcome
models given the oracle τ -risk and the different feasible causal metrics. We measure this agreement with
relative3 Kendall tau κ (eq. 19)35. Given the importance of overlap in how well metrics approximate the
oracle τ -risk, we separate strong and weak overlap.

Among all metrics, the classical mean squared error (ie. factual µ-risk) is worse and reweighting it
with propensity score (µ-riskIPW ) does not bring much improvements. The R-risk, which includes a

3To remove the variance across datasets (some datasets lead to easier model selection than others), we report values
for one metric relative to the mean of all metrics for a given dataset instance: Relativeκ(ℓ, τ−risk) = κ(ℓ, τ−risk) −
meanℓ

(
κ(ℓ, τ−risk)

)

0.50 0.25 0.00 0.25 0.50

r̂isk

r̂iskIPW

r̂iskIPW

Û risk

R̂ risk

Strong Overlap

0.50 0.25 0.00 0.25 0.50

Weak Overlap

Relative ( , Risk) compared to mean over all metrics Kendall's

Twins 
 (N= 11 984)

ACIC 2016
 (N=4 802)

Caussim
 (N=5 000)

ACIC 2018 
 (N=5 000)

Figure 3: The R-risk is the best metric: Relative Kendall’s τ agreement with τ -risk. Strong and Weak overlap
correspond to the first and last tertiles of the overlap distribution measured with Normalized Total Variation eq. 16.
G.4 presents the same results by adding semi-oracle risks in Figure 13, measured with absolute Kendall’s in Figure
14 and with τ−risk gains in Figure 15. Table 4 gives median and IQR of the relative Kendall.
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model of mean outcome and propensity scores, leads to the best performances. Interestingly, the U -risk,
which uses the same nuisances, deteriorates in weak overlap, probably due to variance inflation when
dividing by extreme propensity scores.

Beyond rankings, the differences in terms of absolute ability to select the best model are large: The
R-risk selects a model with a τ -risk only 1% higher than the best possible candidate for strong overlap
on Caussim, but selecting with the µ-risk or µ-riskIPW –as per machine-learning practice– leads to 10%
excess risk and using τ -riskIPW –as in some causal-inference methods4,25–leads to 100% excess risk
(Figure 15). Across datasets, the R-risk consistently decreases the risk compared to the µ-risk: from
0.1% to 1% on ACIC2016, 1% from to 20% on ACIC2018, and 0.05% from to 1% on Twins.

Model selection is harder for low population overlap Model selection for causal inference becomes
more and more difficult with increasingly different treated and control populations (Figure 4). The
absolute Kendall’s coefficient correlation with τ -risk drops from 0.9 (excellent agreement with oracle
selection) to 0.6 on both Caussim and ACIC 2018 (G.4).

R̂ risk

R̂ risk*

Dataset = Twins 
 (N= 11 984)

Dataset = ACIC 2016
 (N=4 802)

0.0 0.2 0.4 0.6 0.8 1.0
Kendall rank correlation 

    ( , Risk)

R̂ risk

R̂ risk*

Dataset = Caussim
 (N=5 000)

0.0 0.2 0.4 0.6 0.8 1.0
Kendall rank correlation 

    ( , Risk)

Dataset = ACIC 2018 
 (N=5 000)

Weak Overlap Medium Overlap Strong Overlap

Figure 4: Model selection is harder for low population overlap: Kendall’s τ agreement with τ -risk. Strong,
medium and Weak overlap are the tertiles of the overlap measured with NTV eq. 16. G.4 presents results for all
metrics in Figure 17 in absolute Kendall’s and continuous overlap values in Figure 14.

Nuisances can be estimated on the same data as outcome models Using the train set T both to fit
the candidate estimator and the nuisance estimates is a form of double dipping which can lead errors in
nuisances correlated to that of outcome models52. In theory, these correlations can bias model selection
and, strictly speaking, push to split out a third separated data set –a “nuisance set”– to fit the nuisance
models. The drawback is that it depletes the data available for model estimation and selection. However,
Figure 5 shows no substantial difference between a procedure with a separated nuisance set and the
simpler shared nuisance-candidate set procedure.

Empirically, the best split is 90 %/10 %: using 90 % of the data to estimate both the nuisances and
candidates, then computing the risks on the remaining test set for model selection (experiments in Ap-
pendix H).
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Figure 5: Nuisances can be estimated on the same data as outcome models: Results for the R-risk are similar
between the shared nuisances/candidate set and the separated nuisances set procedures. Figure 16 details results
for all metrics.
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Strong Overlap

0.6 0.4 0.2 0.0 0.2

Weak Overlap

Relative Kendall to semi-oracle R̂ risk *

Nuisance models Linear Stacked

Figure 6: Stacked models are good overall estimators of the nuisances: Results are shown only for the R-risk;
Figure 18 details every metrics. For Twins, where the true propensity model is linear, stacked and linear estimations
of the nuisances performs equivalently, even for a downsampled version (N=4,794).

Stacked models are good overall estimators of nuisances Stacked nuisances estimators (boosting
and linear) lead to feasible metrics with close performances to the oracles ones: the corresponding es-
timators recover well-enough the true nuisances. One may wonder if simpler models for the nuisance
could be useful, in particular in data-poor settings or when the true models are linear. Figure 6 compares
causal model selection estimating nuisances with stacked estimators or linear model. It comprises the
Twins data, where the true propensity model is linear, and a downsampled version of this data, to study
a situation favorable to linear models. In these settings, stacked and linear estimations of the nuisances
performs equivalently. Detailed analysis (Figure 19) confirms that using adaptive models –as built by
stacking linear models and gradient-boosted trees– suffices to estimate nuisance.

Discussion and conclusion

Nuisance models: more gain than pain Predictive models are increasingly used to reason about treat-
ment effects, for instance in precision medicine to drive individualized decision. Our results highlight
that they should be selected, validated, and tuned using different procedures and error measures than
those classically used to assess prediction. Rather, selecting the best outcome model according to the
R-risk (eq. Definition 5) leads to more valid causal estimates. Estimating the R-risk requires a more
complex procedure than standard cross-validation used e.g.in machine learning: it involves fitting nui-
sance models necessary for model evaluation. Our results show that these can be learned on the same
set of data as the outcome models evaluated. The nuisance models must be well estimated (Figure 6).
Our results show that using for nuisance models a flexible stacking-based family of estimator suffices for
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good model selection. To select propensity score models, we used the Brier score, minimized by the true
individual probability. An easy mistake is to use calibration errors popular in machine learning57,92,51,45

as these select not for the individual posterior probability but for an aggregate error rate55.

More R-risk to select models driving decisions Increasingly complex prediction models integrating
richer medical data have flourished because their predictions can be easily demonstrated and validated
on left-out data. But using them to underpin a decision on whether to treat or not requires more careful
validation, using a metric accounting for the putative intervention, the R-risk. The R-risk brings a
sizeable benefit to select the most adequate model, even when model development is based on treated
and untreated population with little differences, as in RCTs. To facilitate better model selection, we
provide Python code4. This model-selection procedure puts no constraints on the models used to build
predictive models: it opens the door to evaluating a wide range of models, from gradient boosting to
convolutional neutral, or language models.
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Figure 7: Different outcome models lead to different estimation errors on the Average Treatment Effects,
on 77 classic simulations with known true causal effect18. The different models are ridge regression and random
forests with different hyper-parameters (details A). The different configurations are plotted as a function of increasing
difference between treated and untreated population –see section . There is no systematic best performer; data-
driven model selection is important.

A Variability of ATE estimation on ACIC 2016

Figure 7 shows ATE estimations for six different models used in g-computation estimators on the 76 con-
figurations of the ACIC 2016 dataset. Outcome models are fitted on half of the data and inference is done
on the other half –ie. train/test with a split ratio of 0.5. For each configuration, and each model, this train
test split was repeated ten times, yielding non parametric variance estimates11. Figure 7 shows large vari-
ations obtained across different outcome estimators on semi-synthetic datasets18. Flexible models such
as random forests are doing well in most settings except when treated and untreated populations differ
noticeably, in which case a linear model (ridge) is to be preferred. However random forests with differ-
ent hyper-parameters (max depth= 2) yield poor estimates. A simple rule of thumb such as preferring
flexible models does not work in general; model selection is needed.

Outcome models are implemented with scikit-learn54 and the following hyper-parameters:

Outcome Model Hyper-parameters grid

Random Forests Max depth: [2, 10]
Ridge regression without treatment interaction Ridge regularization: [0.1]
Ridge regression with treatment interaction Ridge regularization: [0.1]

Table 2: Hyper-parameters grid used for ACIC 2016 ATE variability

19

https://scikit-learn.org/stable/


B Prior work : model selection for outcome modeling (g-computation)

A natural way to select a predictive model for causal inference would be an error measure between a
causal quantity such as the CATE and models’ estimate. But such error is not a “feasible” risk: it cannot
be computed solely from observed data and requires oracle knowledge.

Simulation studies of causal model selection Using eight simulations setups from59, where the oracle
CATE is known, Schuler et al. [70] compare four causal risks, concluding that for CATE estimation the
best model-selection risk is the so-called R-risk52 –def. 5, below. Their empirical results are clear for
randomized treatment allocation but less convincing for observational settings where both simple Mean
Squared Error –MSE, µ-risk(f) def. 1– and reweighted MSE –µ-riskIPW def. 2– appear to perform better
than R-risk on half of the simulations. Another work1 studied empirically both MSE and reweighted
MSE risks on the semi-synthetic ACIC 2016 datasets18, but did not include the R-risk. We complete
these prior empirical work by studying a wider variety of data generative processes and varying the
influence of overlap, an important parameter of the data generation process which makes a given causal
metric appropriate16. We also study how to best adapt cross-validation procedures to causal metrics
which themselves come with models to estimate.

Theoretical studies of causal model selection Several theoretical works have proposed causal model
selection procedures that are consistent: select the best model in a family given asymptotically large
data. These work rely on introducing a CATE estimator in the testing procedure: matching65, an IPW
estimate25, a doubly robust estimator68, or debiasing the error with influence functions1. However, for
theoretical guarantees to hold, the test-set correction needs to converge to the oracle: it needs to be flexi-
ble enough –well-posed– and asymptotic data. From a practical perspective, meeting such requirements
implies having a good CATE estimate, thus having solved the original problem of causal model selection.

Statistical guarantees on causal estimation procedures Much work in causal inference has focused
on procedures that guarantee asymptotically consistent estimators, such as Targeted Machine Learning
Estimation (TMLE)40,71 or Double Machine Learning14. Here also, theories require asymptotic regimes
and models to be well-specified.

By contrast, Johansson et al. [34] studies causal estimation without assuming that estimators are well
specified. They derive an upper bound on the oracle error to the CATE (τ -risk) that involves the error
on the outcome and the similarity of the distributions of treated and control patients. However, they use
this upper bound for model optimization, and do not give insights on model selection. In addition, for
hyperparameter selection, they rely on a plugin estimate of the τ -risk built with counterfactual nearest
neighbors, which has been shown ineffective70.

C Causal assumptions

We assume the following four assumptions, referred as strong ignorability and necessary to assure iden-
tifiability of the causal estimands with observational data67:

Assumption 1 (Unconfoundedness)

{Y (0), Y (1)} ⊥⊥ A|X
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This condition –also called ignorability– is equivalent to the conditional independence on e(X)66:
{Y (0), Y (1)} ⊥⊥ A|e(X).

Assumption 2 (Overlap, also known as Positivity))

η < e(x) < 1− η ∀x ∈ X and some η > 0

The treatment is not perfectly predictable. Or with different words, every patient has a chance to be
treated and not to be treated. For a given set of covariates, we need examples of both to recover the ATE.

As noted by16, the choice of covariates X can be viewed as a trade-off between these two central
assumptions. A bigger covariates set generally reinforces the ignorability assumption. In the contrary,
overlap can be weakened by large X because of the potential inclusion of instruments: variables only
linked to the treatment which could lead to arbitrarily small propensity scores.

Assumption 3 (Consistency) The observed outcome is the potential outcome of the assigned treatment:

Y = AY (1) + (1−A)Y (0)

Here, we assume that the intervention A has been well defined. This assumption focuses on the design
of the experiment. It clearly states the link between the observed outcome and the potential outcomes
through the intervention26.

Assumption 4 (Generalization) The training data on which we build the estimator and the test data on
which we make the estimation are drawn from the same distribution D∗, also known as the “no covariate
shift” assumption33.

D Definitions of feasible risks

Definition 1 (Factual µ-risk) 72 This is the usual Mean Squared Error on the target y. It is what is
typically meant by “generalization error” in supervised learning:

µ-risk(f) = E
[
(Y − f(X;A))2

]

Definition 2 (µ-risk⋆
IPW ) 38 Let the inverse propensity weighting function w(x, a) = a

e(x) +
1−a

1−e(x) , we
define the semi-oracle Inverse Propensity Weighting risk,

µ-risk⋆IPW (f) = E
[( A

e(X)
+

1−A

1− e(X)

)
(Y − f(X;A))2

]

Definition 3 (τ -risk⋆
IPW ) 87 The CATE τ(x) can be estimated with a regression against inverse propen-

sity weighted outcomes4,25,87, the τ -riskIPW .

τ -risk⋆IPW (f) = E
[(

Y
A− e(X)

e(X)(1− e(X))
− τf (X)

)2
]
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Definition 4 (U -risk⋆) 37,52 Based on the Robinson decomposition –eq. 7, the U-learner uses the A −
e(X) term in the denominator. The derived risk is:

U -risk⋆(f) = E

[(
Y −m (X)

A− e (X)
− τf (X)

)2
]

Note that extreme propensity weights in the denominator term might inflate errors in the numerator due
to imperfect estimation of the mean outcome m.

Definition 5 (R-risk⋆) 52,70 The R-risk also uses two nuisance m and e:

R-risk⋆(f) = E
[(

(Y −m (X))− (A− e (X)) τf (X)
)2]

It is also based on the Robinson decomposition –eq. 7.

E Proofs: Links between feasible and oracle risks

E.1 Reformulation of the R-risk as reweighted τ -risk

Proposition 1 (R-risk as reweighted τ -risk) Proof 1 We consider the R-decomposition:64,

y(a) = m(x) +
(
a− e(x)

)
τ(x) + ε(x; a) (11)

Where E[ε(X;A)|X,A] = 0 We can use it as plug in the R-risk formula:

R-risk(f) =
∫

Y×X×A
[(y −m(x))−

(
a− e(x)

)
τf (x)]

2p(y;x; a)dydxda

=

∫

Y×X×A

[(
a− e(x)

)
τ(x) + ε(x; a)−

(
a− e(x)

)
τf (x)

]2
p(y;x; a)dydxda

=

∫

X×A

(
a− e(x)

)2(
τ(x)− τf (x)

)2
p(x; a)dxda

+ 2

∫

Y×X×A

(
a− e(x)

)(
τ(x)− τf (x)

) ∫

Y
ε(x; a)p(y | x; a)dyp(x; a)dxda

+

∫

X×A

∫

Y
ε2(x; a)p(y | x; a)dyp(x; a)dxda

The first term can be decomposed on control and treated populations to force e(x) to appear:
∫

X

(
τ(x)− τf (x)

)2 [
e(x)2p(x; 0) +

(
1− e(x)

)2
p(x; 1)

]
dx

=

∫

X

(
τ(x)− τf (x)

)2 [
e(x)2

(
1− e(x)

)
p(x) +

(
1− e(x)

)2
e(x)p(x)

]
dx

=

∫

X
(τ(x)− τf (x))

2(1− e(x))e(x)[1− e(x) + e(x)]p(x)dx

=

∫

X
(τ(x)− τf (x))

2(1− e(x))e(x)p(x)dx.

The second term is null since, E[ε(x, a)|X,A] = 0.
The third term corresponds to the modulated residuals : σ̃2

B(0) + σ̃2
B(1)
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E.2 Interesting special cases

Randomization special case If the treatment is randomized as in RCTs, p(A = 1 | X = x) = p(A =

1) = pA, thus µ-riskIPW takes a simpler form:

µ-riskIPW = E(Y,X,A)∼D

[( A

pA
+

1−A

1− pA

)
(Y − f(X;A))2

]

However, we still can have large differences between τ -risk and µ-riskIPW coming from heterogeneous
errors between populations as shown experimentally in Schuler et al. [70] and our results below.

Concerning the R-risk, replacing e(x) by its randomized value pA in Proposition 1 yields the oracle
τ -risk up to multiplicative and additive constants:

R-risk = pA (1− pA) τ -risk + (1− pA)σ
2
B(0) + pAσ

2
B(1)

Thus, selecting estimators with R-risk∗ in randomized setting controls the τ -risk. This explains the
strong performances of R-risk in randomized setups70 and is a strong argument to use it to estimate
heterogeneity in RCTs.

Oracle Bayes predictor If we have access to the oracle Bayes predictor for the outcome ie. f(x, a) =
µ(x, a), then all risks are equivalent up to the residual variance:

τ -risk(µ) = EX∼p(X)[(τ(X)− τµ(X))2] = 0 (12)

µ-risk(µ) = E(Y,X,A)∼p(Y ;X;A)[
(
Y − µA(X)

)2
] (13)

=

∫

X ,A
ε(x, a)2p(a | x) p(x) dx da ≤ σ2

B(0) + σ2
B(1)

µ-riskIPW (µ) = σ2
B(0) + σ2

B(1) from Lemma ?? (14)

R-risk(µ) = σ̃2
B(0) + σ̃2

B(1) ≤ σ2
B(0) + σ2

B(1)

from Proposition 1 (15)

Thus, differences between causal risks only matter in finite sample regimes. Universally consistent
learners converge to the Bayes risk in asymptotic regimes, making all model selection risks equivalent.
In practice however, choices must be made in non-asymptotic regimes.

F Measuring overlap

Motivation of the Normalized Total Variation Overlap is often assessed by comparing visually pop-
ulation distributions as in Figure 1 or computing standardized difference on each feature6,7. While these
methods are useful to decide if positivity holds, they do not yield a single measure. Rather, we com-
pute the divergence between the population covariate distributions P(X|A = 0) and P(X|A = 1)16,34.
Computing overlap when working only on samples of the observed distribution, outside of simulation,
requires a sophisticated estimator of discrepancy between distributions, as two data points never have
the same exact set of features. Maximum Mean Discrepancy22 is typically used in the context of causal
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inference72,34. However it needs a kernel, typically Gaussian, to extrapolate across neighboring obser-
vations. We prefer avoiding the need to specify such a kernel, as it must be adapted to the data which is
tricky with categorical or non-Gaussian features, a common situation for medical data.

For simulated and some semi-simulated data, we have access to the probability of treatment for each
data point, which sample both densities in the same data point. Thus, we can directly use distribution
discrepancy measures and rely on the Normalized Total Variation (NTV) distance to measure the over-
lap between the treated and control propensities. This is the empirical measure of the total variation
distance81 between the distributions, TV (P(X|A = 1),P(X|A = 0)). As we have both distribution
sampled on the same points, we can rewrite it a sole function of the propensity score, a low dimensional
score more tractable than the full distribution P(X|A):

N̂TV (e, 1− e) =
1

2N

N∑

i=1

∣∣e(xi)
pA

− 1− e(xi)

1− pA

∣∣ (16)

Formally, we can rewrite NTV as the Total Variation distance between the two population distribu-
tions. For a population O = (Y (A), X,A) ∼ D:

NTV (O) =
1

2N

N∑

i=1

∣∣e(xi)
pA

− 1− e(xi)

1− pA

∣∣

=
1

2N

N∑

i=1

∣∣P (A = 1|X = xi)

pA
− P (A = 0|X = xi)

1− pA

∣∣

Thus NTV approximates the following quantity in expectation over the data distribution D:

NTV (D) =

∫

X

∣∣p(A = 1|X = x)

pA
− p(A = 0|X = x)

1− pA

∣∣p(x)dx

=

∫

X

∣∣p(A = 1, X = x)

pA
− p(A = 0, X = x)

1− pA

∣∣dx

=

∫

X

∣∣p(X = x|A = 1)− p(X = x|A = 0)
∣∣dx

For countable sets, this expression corresponds to the Total Variation distance between treated and
control populations covariate distributions : TV (p0(x), p1(x)).

Measuring overlap without the oracle propensity scores: For ACIC 2018, or for non-simulated
data, the true propensity scores are not known. To measure overlap, we rely on flexible estimations
of the Normalized Total Variation, using gradient boosting trees to approximate the propensity score.
Empirical arguments for this plug-in approach is given in Figure 8.

Empirical arguments We show empirically that NTV is an appropriate measure of overlap by :

• Comparing the NTV distance with the MMD for Caussim which is gaussian distributed in Figure
10,

• Verifying that setups with penalized overlap from ACIC 2016 have a higher total variation distance
than unpenalized setups in Figure 9.
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• Verifying that the Inverse Propensity Weights extrema (the inverse of the ν overlap constant ap-
pearing in the overlap Assumption 2) positevely correlates with NTV for Caussim, ACIC 2016 and
Twins in Figure 11. Even if the same value of the maximum IPW could lead to different values
of NTV, we expect both measures to be correlated : the higher the extrem propensity weights, the
higher the NTV.

Estimating NTV in practice Finally, we verify that approximating the NTV distance with a learned
plug-in estimates of e(x) is reasonnable. We used either a logistic regression or a gradient boosting
classifier to learn the propensity models for the three datasets where we have access to the ground truth
propensity scores: Caussim, Twins and ACIC 2016. We respectively sampled 1000, 1000 and 770
instances of these datasets with different seeds and overlap settings. We first run a hyperparameter
search with cross-validation on the train set, then select the best estimator. We refit on the train set this
estimator with or without calibration by cross validation and finally estimate the normalized TV with
the obtained model. This training procedure reflects the one described in Algorithm 1 where nuisance
models are fitted only on the train set.

The hyper parameters are : learning rate ∈ [1e − 3, 1e − 2, 1e − 1, 1], minimum samples leaf ∈
[2, 10, 50, 100, 200] for boosting and L2 regularization ∈ [1e−3, 1e−2, 1e−1, 1] for logistic regression.

Results in Figure 8 comparing bias to the true normalized Total Variation of each dataset instances
versus growing true NTV indicate that calibration of the propensity model is crucial to recover a good
approximation of the NTV.

G Experiments

G.1 Details on the data generation process

We use Gaussian-distributed covariates and random basis expansion based on Radial Basis Function ker-
nels. A random basis of RBF kernel enables modeling non-linear and complex relationships between
covariates in a similar way to the well known spline expansion. The estimators of the response function
are learned with a linear model on another random basis (which can be seen as a stochastic approxima-
tion of the full data kernel60). We carefully control the amount of overlap between treated and control
populations, a crucial assumption for causal inference. Figure 12 illustrates 2D examples of the simula-
tion.

• The raw features for both populations are drawn from a mixture of Gaussians: P(X) = pAP(X|A =

1) + (1− pA)P(X|A = 0) where P(x|A = a) is a rotated Gaussian:

P(x|A = a) = W · N
([

(1− 2a)θ

0

]
;

[
σ0 0

0 σ1

])
(17)

with θ a parameter controlling overlap (bigger yields poorer overlap), W a random rotation matrix
and σ2

0 = 2;σ2
1 = 5.

This generation process allows to analytically compute the oracle propensity scores e(x), to simply
control for overlap with the parameter θ, the distance between the two Gaussian main axes and to
visualize response surfaces.

• A basis expansion of the raw features increases the problem dimension. Using Radial Basis Func-
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Figure 8: a) Without calibration, estimation of NTV is not trivial even for boosting models. b) Calibrated classifiers
are able to recover the true Normalized Total Variation for all datasets where it is available.
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Figure 9: NTV recovers well the overlap settings described in the ACIC paper18
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Figure 10: Good correlation between overlap measured as normalized Total Variation and Maximum Mean Dis-
crepancy (200 sampled Caussim datasets)
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(a) Caussim
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(b) ACIC 2016
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(c) ACIC 2018
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Figure 11: Maximal value of Inverse Propensity Weights increases exponentially with the overlap as measure by
Normalized Total Variation.

tion (RBF) Nystroem transformation 5, we expand the raw features into a transformed space. The
basis expansion samples randomly a small number of representers in the raw data. Then, it com-
putes an approximation of the full N-dimensional kernel with these basis components, yielding the
transformed features z(x). The number of basis functions –ie. knots–, controls the complexity of
the ground-truth response surfaces and treatment. We first use this process to draw the non-treated
response surface µ0 and the causal effect τ . We then draw the observations from a mixture two
Gaussians, for the treated and non treated. We vary the separation between the two Gaussians
to control the overlap between treated and non-treated populations, an important parameter for
causal inference (related to η in Proposition ??). Finally, we generate observed outcomes adding
Gaussian noise.

More formally, we generate the basis following the original data distribution, [b1..bD] ∼ P(x), with
D=2 in our simulations. Then, we compute an approximation of the full kernel of the data gener-
ation process RBF (x, ·) with x ∼ P(x) with these representers: z(x) = [RBFγ(x, bd)]d=1..D ·
ZT ∈ RD with RBFγ being the Gaussian kernel K(x, y) = exp(−γ||x − y||2) and Z the nor-
malization constant of the kernel basis, computed as the root inverse of the basis kernel Z =

5We use the Sklearn implementation,54
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Simulation: D = 2, = 0.7, seed=8
Treatment
 status

Control
Treated

One-dimensional cuts of the response surfaces

Figure 12: Example of the simulation setup in the input space with two knots –ie. basis functions. The top panel
shows the observations in feature space, while the bottom panel displays the two response surfaces on a 1D cut
along the black lines drawn on the top panel.

[K(bi, bj)]
−1/2
i,j∈1..D

• Functions µ0, τ are distinct linear functions of the transformed features:

µ0(x) =
[
z(x); 1

]
· βT

µ

τ(x) =
[
z(x); 1

]
· βT

τ

• Adding a Gaussian noise, ε ∼ N (0, σ(x; a)), we construct the potential outcomes: y(a) =

µ0(x) + a τ(x) + ε(x, a)

We generated 1000 instances of this dataset with uniformly random overlap parameters θ ∈ [0, 2.5].

G.2 Details on the semi-simulated datasets

ACIC 2018 18: The initial intervention was a child’s birth weight (A = 1 if weight < 2.5kg), and out-
come was the child’s IQ after a follow-up period. The study contained N = 4802 data points with
D = 55 features (5 binary, 27 count data, and 23 continuous). They simulated 77 different setups
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varying parameters for treatment and response models, overlap, and interactions between treatment
and covariates 6. We used 10 different seeds for each setup, totaling 770 dataset instances.

ACIC 2018 76: Starting from data from the Linked Births and Infant Deaths Database (LBIDD)44 with
D = 177 covariates, treatment and outcome models are simulated with complex models to reflect
different scenarii. The data do not provide the true propensity scores, so we evaluate only feasible
metrics, which do not require this nuisance parameter. We used all 432 datasets7 of size N =

5000.

Twins 43: It is an augmentation of real data on twin births and mortality rates2. There are N = 11 984

samples (pairs of twins), and D = 50 covariates8, The outcome is the mortality and the treatment
is the weight of the heavier twin at birth. This is a "true" counterfactual dataset15 in the sense
that we have both potential outcomes with each twin. They simulate the treatment with a sigmoid
model based on GESTAT10 (number of gestation weeks before birth) and x the 45 other covariates:

ti | xi, zi ∼ Bern
(
σ
(
w⊤
o x+ wh(z/10− 0.1)

))
(18)

with wo ∼ N (0, 0.1 · I), wh ∼ N (5, 0.1)

We add a non-constant slope in the sigmoid to control the overlap between treated and control
populations. We sampled uniformly 1 000 different overlap parameters between 0 and 2.5, totaling
1 000 dataset instances. Unlike the previous datasets, only the overlap varies for these instances.
The response surfaces are set by the original outcomes.

G.3 Model selection procedures

Nuisances estimation The nuisances are estimated with a stacked regressor inspired by the Super
Learner framework,39). We select hyper-parameters with randomized search on a validation set V and
keep them fix for model selection The searc grid is detailed in Table 3. All implementations come from
scikit-learn54. As extreme inverse propensity weights induce high variance, we use clipping84,32 to bound
min(ě, 1− ě) away from 0 with a fixed η = 10−10, ensuring strict overlap for numerical stability.

Model Estimator Hyper-parameters grid

Outcome, m StackedRegressor ridge regularization: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
(HistGradientBoostingRegressor, ridge) HistGradientBoostingRegressor learning rate: [0.01, 0.1, 1]

HistGradientBoostingRegressor max leaf nodes: [10, 20, 30, 50]

Treatment, e StackedClassifier LogisticRegression C: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
(HistgradientBoostingClassifier, LogisticRegression) HistGradientBoostingClassifier learning rate: [0.01, 0.1, 1]

HistGradientBoostingClassifier max leaf nodes: [10, 20, 30, 50]

Table 3: Hyper-parameters grid used for nuisance models

6Original R code available at https://github.com/vdorie/aciccomp/tree/master/2016 to generate 77
simulations settings.

7Using the scaling part of the data, from github.com/IBM-HRL-MLHLS/IBM-Causal-Inference-Benchmarking-Framework
8We obtained the dataset from https://github.com/AMLab-Amsterdam/CEVAE/tree/master/datasets/TWINS
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G.4 Additional Results

Definition of the Kendall’s tau, κ The Kendall’s tau is a widely used statistics to measure the rank
correlation between two set of observations. It measures the number of concordant pairs minus the
discordant pairs normalized by the total number of pairs. It takes values in the [−1, 1] range.

κ =
(number of concordant pairs )− (number of discordant pairs)

(number of pairs)
(19)

Values of relative κ(ℓ, τ−risk) compared to the mean over all metrics Kendall’s as shown in the
boxplots of Figure 3

Figure 13 - Results measured in relative Kendall’s for feasible and semi-oracle risks Because of
extreme propensity scores in the denominator and bayes error residuals in the numerator, the semi-oracle
U -risk has poor performances at bad overlap. Estimating these propensity scores in the is feasible U -risk
reduces the variance since clipping is performed.

Figure 14 - Results measured in absolute Kendall’s

Figure 15 - Results measured as distance to the oracle tau-risk To see practical gain in term of
τ -risk, we plot the results as the normalized distance between the estimator selected by the oracle τ -risk
and the estimator selected by each causal metric.

Then, R̂-risk
∗

is more efficient than all other metrics. The gain are substantial for every datasets.

Figure 16 - Stacked models for the nuisances is more efficient For each metrics the benefit of using a
stacked model of linear and boosting estimators for nuisances compared to a linear model. The evaluation
measure is Kendall’s tau relative to the oracle R-risk⋆ to have a stable reference between exepriments.
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Figure 13: The R-risk is the best metric: Relative Kendall’s τ agreement with τ -risk. Strong and Weak overlap
correspond to the first and last tertiles of the overlap distribution measured with Normalized Total Variation eq. 16.

31



Strong Overlap Weak Overlap

Median IQR Median IQR
Metric Dataset

µ̂−risk

Twins (N=11 984) -0.32 0.12 -0.19 0.12
ACIC 2016 (N=4 802) -0.03 0.13 0.11 0.19
Caussim (N=5 000) -0.40 0.55 -0.16 0.31
ACIC 2018 (N=5 000) 0.00 0.30 0.01 0.40

µ̂−riskIPW

Twins (N= 11 984) -0.31 0.13 -0.17 0.12
ACIC 2016 (N=4 802) -0.02 0.13 0.11 0.19
Caussim (N=5 000) -0.34 0.50 0.09 0.31
ACIC 2018 (N=5 000) 0.00 0.30 -0.01 0.43

µ̂−risk
∗
IPW

Twins (N= 11 984) -0.32 0.13 -0.17 0.13
ACIC 2016 (N=4 802) -0.02 0.13 0.11 0.21
Caussim (N=5 000) -0.33 0.54 0.26 0.27

τ̂−riskIPW

Twins (N= 11 984) 0.13 0.12 0.27 0.12
ACIC 2016 (N=4 802) -0.07 0.18 0.05 0.31
Caussim (N=5 000) -0.19 0.43 -0.14 0.18
ACIC 2018 (N=5 000) -0.16 0.40 -0.11 0.66

τ̂−risk
∗
IPW

Twins (N= 11 984) 0.12 0.14 0.20 0.16
ACIC 2016 (N=4 802) -0.03 0.16 -0.09 0.43
Caussim (N=5 000) -0.15 0.46 -0.17 0.19

Û− risk

Twins (N= 11 984) 0.13 0.12 0.02 0.25
ACIC 2016 (N=4 802) 0.04 0.11 0.11 0.26
Caussim (N=5 000) 0.04 0.43 -0.04 0.17
ACIC 2018 (N=5 000) 0.12 0.26 -0.02 0.50

Û− risk
∗

Twins (N= 11 984) 0.25 0.08 -0.41 0.45
ACIC 2016 (N=4 802) 0.08 0.13 -0.59 0.57
Caussim (N=5 000) 0.46 0.12 0.02 0.44

R̂− risk

Twins (N= 11 984) 0.15 0.10 0.25 0.18
ACIC 2016 (N=4 802) 0.07 0.12 0.22 0.15
Caussim (N=5 000) 0.34 0.26 0.13 0.21
ACIC 2018 (N=5 000) 0.13 0.27 0.21 0.47

R̂− risk
∗

Twins (N= 11 984) 0.25 0.10 0.32 0.15
ACIC 2016 (N=4 802) 0.12 0.12 0.25 0.15
Caussim (N=5 000) 0.47 0.11 0.16 0.14

Table 4: Values of relative κ(ℓ, τ−risk) compared to the mean over all metrics Kendall’s as shown in the boxplots
of Figure 3
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(b) ACIC 2016
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(d) TWINS
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Figure 14: Agreement with τ -risk ranking of methods function of overlap violation. The lines represent medians,
estimated with a lowess. The transparent bands denote the 5% and 95% confidence intervals.
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(b) ACIC 2016
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(d) TWINS
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Figure 15: Metric performances by normalized tau-risk distance to the best method selected with τ -risk. All nui-
sances are learned with the same estimator stacking gradient boosting and ridge regression. Doted and plain lines
corresponds to 60% lowess quantile estimates. This choice of quantile allows to see better the oracle metrics lines
for which outliers with a value of 0 distord the curves.
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Thus, we do not include in this analysis the ACIC 2018 dataset since R-risk⋆ is not available due to the
lack of the true propensity score.

Figure 17 Low population overlap hinders model selection for all metrics

Figure 18 - Stacked models for the nuisances is more efficient For each metrics the benefit of using a
stacked model of linear and boosting estimators for nuisances compared to a linear model. The evaluation
measure is Kendall’s tau relative to the oracle R-risk⋆ to have a stable reference between exepriments.
Thus, we do not include in this analysis the ACIC 2018 dataset since R-risk⋆ is not available due to the
lack of the true propensity score.

Figure 19 - Flexible models are performant in recovering nuisances even in linear setups

Selecting different seeds and parameters is crucial to draw conclusions One strength of our study
is the various number of different simulated and semi-simulated datasets. We are convinced that the
usual practice of using only a small number of generation processes does not allow to draw statistically
significant conclusions.

Figure 20 illustrate the dependence of the results on the generation process for caussim simulations.
We highlighted the different trajectories induced by three different seeds for data generation and three
different treatment ratio instead of 1000 different seeds. The result curves are relatively stable from one
setup to another for R−risk, but vary strongly for µ-risk and µ-riskIPW .
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(c) Twins
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Figure 16: Results are similar between the Shared nuisances/candidate set and the Separated nuisances set
procedure. The experience has not been run on the full metrics for Caussim due to computation costs.
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Figure 17: Low population overlap hinders causal model selection for all metrics: Kendall’s τ agreement
with τ -risk. Strong, medium and Weak overlap correspond to the tertiles of the overlap distribution measured with
Normalized Total Varation eq. 16.
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(a) Twins

1.5 1.0 0.5 0.0 0.5

r̂isk

r̂iskIPW

r̂isk*
IPW

r̂iskIPW

r̂isk*
IPW
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(b) Twins downsampled
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(c) Caussim
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Figure 18: Learning the nuisances with stacked models (linear and gradient boosting) is important for successful
model selection with R-risk. For Twins dataset, there is no improvement for stacked models compared to linear
models because of the linearity of the propensity model.
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Figure 19: Flexible models are performant in recovering nuisances in the downsampled Twins dataset. The
propensity score is linear in this setup, making it particularly challenging for flexible models compared to linear
methods.
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Figure 20: Kendall correlation coefficients for each causal metric. Each (color, shape) pair indicates a different
(treatment ratio, seed) of the generation process.
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Figure 21: a) For CATE, a train/test ratio of 0.9/0.1 appears a good trade-off. b) For ATE, there is a small signal
pointing also to 0.9/0.1 (K=10). for ATE. Experiences on 10 replications of all 78 instances of the ACIC 2016 data.

H Data split choices

H.1 Use 90% of the data to estimate outcome models, 10% to select them

The analyst faces a compromise: given a finite data sample, should she allocate more data to estimate
the outcome model, thus improving the quality of the outcome model but leaving little data for model
selection. Or, she could choose a bigger test set for model selection and effect estimation. For causal
model selection, there is no established practice (as reviewed in H.2).

We investigate such tradeoff varying the ratio between train and test data size. For this, we first split
out 30% of the data as a holdout set V on which we use the oracle response functions to derive silver-
standard estimates of causal quantities. We then use the standard estimation procedure on the remaining
70% of the data, splitting it into train T and test S of varying sizes. We finally measure the error between
this estimate and the silver standard.

We consider two different analytic goals: estimating a average treatment effect –a single number
used for policy making– and a CATE –a full model of the treatment effect as a function of covariates X .
Given that the latter is a much more complex object than the former, the optimal train/test ratio might
vary. To measure errors, we use for the ATE the relative absolute ATE bias between the ATE computed
with the selected outcome model on the test set, and the true ATE as evaluated on the holdout set V . For
the CATE, we compare the τ -risk of the best selected model applied on the holdout set V . We explore
this trade-off for the ACIC 2016 dataset and the R-risk.

Figure 21 shows that a train/test ratio of 0.9/0.1 (K=10) or 0.8/0.2 (K=5) appears best to estimate
CATE and ATE.
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H.2 Heterogeneity in practices for data split

Splitting the data is common when using machine learning for causal inference, but practices vary widely
in terms of the fraction of data to allocate to train models, outcomes and nuisances, and to evaluate them.

Before even model selection, data splitting is often required for estimation of the treatment effect,
ATE or CATE, for instance to compute the nuisances required to optimize the outcome model (as the
R-risk, Definition 5). The most frequent choice is use 80% of the data to fit the models, and 20% to
evaluate them. For instance, for CATE estimation, the R-learner has been introduced using K-folds
with K = 5 and K = 10: 80% of the data (4 folds) to train the nuisances and the remaining fold to
minimize the corresponding R-loss52. Yet, it has been implemented with K=5 in causallib75 or K=3 in
econML8. Likewise, for ATE estimation, Chernozhukov et al. [14] introduce doubly-robust machine
learning, recommending K=5 based on an empirical comparison K=2. However, subsequent works use
doubly robust ML with varying choices of K: Loiseau et al. [42] use K=3, Gao et al. [21] use K=2. In the
econML implementation, K is set to 38. Naimi et al. [48] evaluate various machine-learning approaches
–including R-learners– using K=5 and 10, drawing inspiration from the TMLE literature which sets K=5
in the TMLE package24.

Causal model selection has been much less discussed. The only study that we are aware of, Schuler
et al. [70], use a different data split: a 2-folds train/test procedure, training the nuisances on the first half
of the data, and using the second half to estimate the R-risk and select the best treatment effect model.
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