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Predictive models –as with machine learning– can underpin causal inference, to estimate the effects of an intervention at the
population or individual level. This opens the door to a plethora of models, useful to match the increasing complexity of health
data, but also the Pandora box of model selection: which of these models yield the most valid causal estimates? Classic
machine-learning cross-validation procedures are not directly applicable. Indeed, an appropriate selection procedure for causal
inference should equally weight both outcome errors for each individual, treated or not treated, whereas one outcome may be
seldom observed for a sub-population. We study how more elaborate risks benefit causal model selection. We show
theoretically that simple risks are brittle to weak overlap between treated and non-treated individuals as well as to
heterogeneous errors between populations. Rather a more elaborate metric, the R − risk appears as a proxy of the oracle error
on causal estimates, observable at the cost of an overlap re-weighting. As the R − risk is defined not only from model
predictions but also by using the conditional mean outcome and the treatment probability, using it for model selection requires
adapting cross validation. Extensive experiments show that the resulting procedure gives the best causal model selection.
Keywords:Model Selection; Heterogeneous Treatment Effect; G-formula; Observational Study; Machine Learning



2

1 INTRODUCTION

1.1 Valid causal inference from complex data requires causal model selection
There is growing interest in answering causal questions from observational data. While Randomized Control Trials (RCTs)
remain the gold standard in medicine to estimate treatment effect2, observational studies bring value to assess real-world effec-
tiveness and safety9, as they use the data from routine practice, or for drug repositioning24,31 garnering first evidence without
ethical concerns of systematic interventions66. The increasing amount of data collected routinely enables the use of increas-
ingly flexible models that capture best heterogeneity and bridge to machine learning practices45. In particular the complexity of
modern real-life health data, –Electronic Health Records, claims, or medical devices– calls for complex models.
For causal inference from observational data, epidemiology has historically focused on methods that model treatment assign-

ment33,56, based on the propensity score4. However, propensity-score methods are fragile to variance in probability estimates
or lack of overlap between treated and non treated21,65. Recent empirical results50,53 show a benefit of other types of methods,
based on outcome modeling –also referred as G-computation or G-formula6, Q-model in epidemiology29 or conditional mean
regression50. These outcome-modelingmethods can easily go beyond Average Treatment Estimation (ATE), egwith Conditional
Average Treatment Estimation (CATE), enabling to capture effect heterogeneity crucial for personalized medicine, to interpret
the causal estimation on sub-populations, and policy optimization62.
These methods capture the outcome as a function of the baseline covariates and the treatment with various models: Bayesian

Additive Regression Trees25, Targeted Maximum Likelihood Estimation27,41, causal boosting46, causal multivariate adaptive
regression splines (MARS)46, random forests4952, Meta-learners54, R-learners39, Doubly robust estimation43... The wide variety
of methods leaves the applied researcher with the difficult choice of selecting between different estimators based on the data
at hand. Usual practices to select models in predictive settings rely on cross-validation on the error on the outcome60,71. In the
case of causal inference, care must be taken that this error is not driven by inhomogeneities in treatment allocation. Indeed,
while causal inference require modeling the links between an outcome and a treatment, the causal quantities are defined on a
distribution distinct from the observed one: it includes counterfactual observations.
Given complex, potentially noisy, data, which model is to be most trusted to yield valid causal estimates? Because there is no

single learner that performs best on all data sets, there is a pressing need for clear guidelines to select between causal models
in health, economics and social science. Here we show that the best approach for model selection is to adapt cross-validation
to estimate the so-called R− risk which modulates observed prediction error to compensate for systematic differences between
treated and non-treated individuals. The R − risk relies on the two nuisance models, themselves estimated from data and thus
imperfect; yet these imperfections do not undermine the benefit of the R − risk.

1.2 Prior work: model selection for outcome modeling (g-computation)
The natural risk for CATE model selection is a error measure between the true –unobserved– CATE (oracle) and the CATE
estimate obtained with a candidate model of the outcome. But this risk is not “feasible”: it cannot be computed solely from
observed data and requires oracle knowledge.
Simulation studies of causal model selection
In simulations, the oracle CATE is known. Schuler et al. 201847 thus use eight simulation setups46 to compare four causal risks,
concluding that for CATE estimation the best model-selection risk is theR-risk39 –def. 7, below. Their empirical results are clear
for randomized treatment allocation but less convincing for observational settings where both simple Mean Squared Error –
MSE, �-risk(f ) def. 5– and reweighted MSE –�-riskIPW def. 6– appear to perform better thanR-risk on half of the simulations.
Another work51 studied empirically both MSE and reweighted MSE risks on the semi-synthetic ACIC 2016 datasets53, but did
not include the R-risk and looked only at the agreement of the best selected model with the true CATE risk –�-risk(f ) def. 4–,
not on the full ranking of methods compared to the true CATE. Here we study experimentally a wider variety of data generative
process for the observational setup.We also study the influence of overlap, an important parameter of the data generation process
which makes a given causal metric appropriate65.
Theoretical studies of causal model selection
Rolling and Yang 201432 propose a model selection procedure that asymptotically selects the best estimators among smooth
models of the outcomes. However, practical cases often escape these theoretical requirement: it is delicate to assert whether
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there are enough samples for asymptotic settings to hold –especially with high dimensionality– and candidate prediction models
may not be smooth, as with popular tree-based methods.
Other work shows that unbiased estimates of the oracle CATE function �(x) can be plugged into the oracle �-risk for model

selection. These CATE plugin estimators can be built with a simple IPW estimate37, with a doubly robust estimator61 or by
debiasing a CATE estimator with influence functions51 –in the like of Targeted Machine Learning27,41. However, theory holds
for well-specified plugin CATE estimators and asymptotic regimes.
Statistical guarantees on causal estimation procedures
Much work in causal inference has focused on building procedures that guarantee asymptotically consistent estimators. Targeted
Machine Learning Estimation (TMLE)27,41 and Double Machine Learning43 both provide estimators for Average Treatment
Effect combining flexible treatment and outcome models. Here also, theories requires asymptotic regimes and at least assumes
models to be well-specified.
By contrast, Johansson et al. 202167 studies causal estimation without assuming that estimators are well specified. They derive

an upper bound on the oracle error to the CATE (�-risk) that involves the error on the outcome and the similarity of the distri-
butions between the features of treated and control patients. However, they focus on using this upper bound for estimation, and
do not give insights on model selection. In addition, for hyperparameter selection, they rely on a plugin estimate of the �-risk
built with counterfactual nearest neighbors, which has been shown ineffective47.
Objectives and structure of the paper
In this paper, we study model selection procedures (causal risks) in finite samples settings and without well-specification
assumption. In these –practical– settings an important question is whethermore complex risks, asymptotically consistent but with
more quantities to estimate, suffer from more variance than their simpler though non-consistent counterparts, leading to worse
model selection. In this respect, we compare semi-oracle settings, that use oracle knowledge of nuisance, to plugin estimates.
We first introduce the potential outcome framework and its notations, illustrating causal estimation with a toy example in

Section 2. Then, we pose the causal model selection problem in Section 3, defining the studied causal risks. Section 4 gives our
theoretical result. In section 5 we run a thorough empirical study, with many different settings covered. Finally, we comment
our findings in Section 6.

2 A CAUSAL-INFERENCE FRAMEWORK

2.1 The Neyman-Rubin Potential Outcomes framework
Settings
Following the Neyman-Rubin Potential Outcomes framework34, we observe an outcome Y ∈ ℝ (eg. mortality risk or hospital-
ization length), function of a binary treatmentA ∈  = {0, 1} (eg. a medical act, a drug administration), and baseline covariates
X ∈  ⊂ ℝd . We observe the factual distribution, O = (Y (A), X, A) ∼  = ℙ(y, x, a). However, we want to model the exis-
tence of potential observations (unobserved ie. counterfactual) that correspond to a different treatment. Thus we want quantities
on the counterfactual distribution O∗ = (Y (1), Y (0), X, A) ∼ ∗ = ℙ(y(1), y(0), x, a).
At the population level, a popular quantity of interest –estimand– is the Average Treatment Effect (ATE), � =

EY (1),Y (0)∼∗[Y (1) − Y (0)]. To model heterogeneity, the Conditional Average Treatment Effect (CATE), �(x) =
EY (1),Y (0)∼⋆[Y (1) − Y (0)|X = x], is also interesting.
Nuisances definitions
We define three important conditional expectancies required to estimate ATE and CATE but generally unknown. They are called
nuisances in the causal inference literature, mostly in applied econometrics43.
Definition 1 (Response surfaces). The conditional expectancy of the outcome given the covariates and the treatment,
�a(x) = EY∼[Y |X = x,A = a]. It models the relation between the outcome and the patient characteristics in the observed
distribution.
Definition 2 (Conditional mean outcome). The conditional expectancy of the outcome given X, m(x) = EY∼[Y |X = x]. It
marginalizes over the intervention, focusing on the link between the outcome and the covariates.
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Definition 3 (Propensity score). The conditional probability to be treated4: e(x) = ℙ[A = 1|X = x]. It models the intervention
allocation.
Causal assumptions
Some assumptions are necessary to assure identifiability of the causal estimands in observational settings16. We assume the
usual strong ignorability assumptions, composed of 1) unconfoundedness {Y (0), Y (1)} ⟂⟂ A|X, 2) strong overlap ie. every
patient has a strictly positive probability to receive each treatment, 3) consistency, and 4) generalization (detailed in Appendix
B). In this work, we insist on the fundamental overlap assumption65, which is testable with data.
Estimation with outcome models
Should we know the two expected outcomes for a given X, we could compute the difference between them, which gives the
causal effect of the treatment. These two expected outcomes can be computed from the observed data: the consistency 3 and
ignorability 1 assumptions imply the equality of two different expectations:

EY (a)∼⋆[Y (a)|X = x] = EY∼[Y |X = x,A = a] = �(a)(x) (1)
On the left, the expectation is taken on the counterfactual unobserved distribution. On the right, the expectation is taken on the
factual observed distribution conditionally on the treatment. This equality is referred as the g-formula identification5. For the
rest of the paper, the expectations will always be taken on the factual observed distribution , and we will omit to explicitly
specify the distribution. This identification leads to outcome based estimators (ie. g-computation estimators29), targeting the
ATE � with outcome modeling:

� = EY∼⋆[Y (1) − Y (0)|X = x] = EY∼[Y |A = 1] − EY∼[Y |A = 0] (2)
Given a sample of data and the oracle response functions �0, �1, the finite sum estimator of the ATE is written:

�̂ = 1
n

( n
∑

i=1
�1(xi) − �0(xi)

)

(3)
This estimator is an oracle finite sum estimator by opposition to the population expression of �, E[�1(xi) − �0(xi)], which
involves an expectation taken on the full distribution , which is observable but requires infinite data. For each estimator l
taking an expectation over , we use the symbol l̂ to note its finite sum version.
Similarly to the ATE, for the CATE, at the individual level:

�(x) = �1(x) − �0(x) (4)

2.2 Illustration: Toy example of causal model selection
Given various estimators of �0(x) and �1(x), we are interested in selecting those that minimize the estimation error on treatment
effect. We illustrate that machine-learning model evaluation procedures such as Out-Of-Sample Mean Squared Error are not
suited for this purpose. Figure 1 gives a toy example, with Y ∈ [0, 1], the probability of death, a binary treatment A ∈ {0, 1}
and a single covariate X ∈ ℝ which summarizes the patient health status (eg. the Charlson co-morbidity index7). We simulate
a credible situation for which the treatment is beneficial (decreases the mortality probability) for patient with high Charlson
scores (bad health states). On the contrary, the treatment has little effect for patients in good condition (small Charlson scores).
Some models of the response surfaces have high predictive performances of the outcome (measured as regression R2 score)

but perform poorly for causal inference tasks such as Average Treatment Effect (error on the true effect �) or Heterogeneous
Treatment Effect inference (error on �(x)). Figure 1a shows a random forest with these counter-intuitive properties. On the
contrary, Figure 1b shows a linear model with smaller R2 score but better causal inference.
Intuitively, the linear model misspecified –the outcome functions are not linear–, leading to poor R2; but it interpolates better

to regions with poor overlap –high Charlson score– and thus gives better CATE estimates. Conversely, the random forest puts
weaker assumptions on the data, thus has higher R2 score but is biased by the treated population in the poor overlap region,
leading to bad CATE scores.
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FIGURE 1 Toy example: (a) a random-
forest estimator with high performance for
standard prediction (high R̂2) but that yields
poor ATE estimation (large error between
true effect � and estimated �̂f̂ ), (b) a lin-
ear estimator with smaller prediction per-
formance leading to better ATE and CATE
estimation.
Selecting the estimator with the smallest
�-risk would lead to the smallest error on �;
however the �-risk is not feasible: computing
it requires access to unknown quantities.
While the random forest fits the data better
than the linear model, it gives worse causal
inference because its error is very inhomoge-
neous between the treated and untreated. The
R̂2 score does not capture this inhomogene-
ity.

(a) Random forest model yielding bad inference
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(b) Linear model yielding good inference
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This toy example illustrates that the classic minimumMean Square Error criterion is not suited to choosing a model among a
family of candidate estimators for causal inference. Yet, model selection is a crucial aspect of causal inference. Indeed, estimates
may vary markedly when using different models. For instance, figure 2 shows the large variations obtained across six different
outcome estimators on the ACIC 2016 semi-synthetic datasets53. Flexible models such as boosting trees with a big learning rate
(0.1) are doing well in most settings –in line with previous work53– except for setups with poor overlap, on the right of the plot.
The same models with a small learning rate (0.01) yield the poorest performances. These two failure cases suggest that a simple
rule of thumb such as preferring more flexible models does not work in general; an actual model-selection procedure is needed.

FIGURE 2 Average Treatment Effect estima-
tions of six different outcome models used in g-
estimators on the simulated data from the 76 simu-
lations from ACIC 201653. The models are boosted
trees, ridge regression without interaction and ridge
regression without interaction with the treatment.
For each model, two choices of learning rate used
during training are shown. The different configu-
rations are plotted along with the overlap violation
–measured with normalized Total Varation, def 15.
Appendix A gives hyperparameter details.
We get non-consistent results with non overlapping
error bars: choosing the best model among a family
of candidate estimators is important.
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3 CAUSAL MODEL SELECTION: PROBLEM SETTING

3.1 Causal model selection
We formalize the problem of model selection for causal estimation. Thanks to the g-formula identification (Equation 1), a given
outcome model f ∶  × →  –learned from data or built from domain knowledge– induces feasible estimates of CATE and
ATE:

�̂f (x) = f (x, 1) − f (x, 0) and �̂f (O) =
1
n

n
∑

i=1
�̂f (xi) (5)

Let  = {f ∶  ×  → } be a family of such estimators. Our goal is to select the best candidate in this family for the
observed dataset O using a metric of interest l:

f ∗
l = argmin

f∈
l(f,O) (6)

We detail below possible metrics l, risks useful for causal model selection, and how to compute them.

3.2 Model-selection risks, oracle and feasible
The �-risk: an oracle error risk
Ideally, we would like to target the CATE, which naturally leads to the following evaluation risk:
Definition 4 (�-risk(f )). also called PEHE25,40:

�-risk(f ) = EX∼p(X)[(�(X) − �̂f (X))2]

its finite-sum version over the observed data:
�̂-risk(f ) = ∑

x∈O

(

�(x) − �̂f (x)
)2

However these risks are not feasible because the oracles �(x) are not accessible, with the observed data (Y ,X,A) ∼ .
Feasible error risks
We explore feasible risks, based on the prediction error of the outcome model and observable quantities. Two of the following
risks use the nuisances e –propensity score, def 3– and m –conditional mean outcome, def 2. We give the definitions as semi-
oracles, function of the true unknown nuisances, but later instantiate them with estimated nuisances, noted (ě, m̌). Semi-oracles
risks are superscripted with the ⋆ symbol.
Definition 5 (Factual �-risk(f )). 42 This is the usual Mean Squared Error on the target y. It is what is typically meant by
“generalization error” in supervised learning and estimated with cross-validation:

�-risk(f ) = E(Y ,X,A)∼
[

(Y − f (X;A))2
]

Definition 6 (�-risk⋆IPW (w, f )). 13 Let the inverse propensity weighting function w(x, a) = a
e(x)

+ 1−a
1−e(x)

, we define the semi-
oracle Inverse Propensity Weighting risk,

�-risk⋆IPW (f ) = E(Y ,X,A)∼

[

( A
e(X)

+ 1 − A
1 − e(X)

)

(Y − f (X;A))2
]

Definition 7 (R-risk⋆(f )). 39,47 The R-risk uses the two nuisance m and e:
R-risk⋆(f ) = E(Y ,X,A)∼

[(

(Y − m (X)) − (A − e (X)) �f (X)
)2]

It has been introduced in causal-inference estimators motivated by its good approximation rate of �, even with slow error rates
on the nuisances (ě, m̌)39.
These risks are summarized in Table 1.
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TABLE 1 Review of causal risks
Risk Equation Reference
mse(�(X), �f (X)) = �-risk(f ) EX∼p(X)[(�(X) − �̂f (X))2] Eq. 425
mse(Y , f (X)) = �-risk(f ) E(Y ,X,A)∼

[

(Y − f (X;A))2
] Def. 547

�-risk∗IPW E(Y ,X,A)∼

[(

A
e(X)

+ 1−A
1−e(X)

)

(Y − f (X;A))2
]

Def. 613
R-risk∗ 1 E(Y ,X,A)∼

[(

(Y − m (X)) − (A − e (X)) �f (X)
)2] Def. 739

1 Called �-riskR in Schuler et al. 201847.

3.3 Estimation and model selection procedure
Causal model selection (as in eg Equation 6) may involve estimating a variety of quantities from the observed data: the outcome
model f , its induced risk as introduce in the previous section, and possibly nuisances required by the risk. Given a dataset with
N samples, we split out a train and a test sets ( ,) of sizes (N

2
, N
2

). We fit each candidate estimator f ∈  on  . We also fit
the nuisance models (ě, m̌) on the train set  , setting hyperparameters by a nested cross-validation before fitting the nuisance
estimators with these parameters on the full train set. Causal quantities are then computed by applying the fitted candidates
estimators f ∈  on the test set  . Finally, we compute the model-selection metrics for each candidate model on the test set.
This procedure is described in Algorithm 1 and illustrated in Figure 3.
As extreme inverse propensity weights induce high variance, clipping can be usefull to ensure numerical stability18,35.
Using the train set  both to fit the candidate estimator and the nuisance estimates is a form of double dipping which

leads to correlation in the final estimates39. However, comparing with a procedure where the nuisances are learned on a sepa-
rated validation set, did not reveal important changes to the final results (see appendix E.2). We thus kept this simple two-sets
procedure.

Algorithm 1 Evaluation of selection procedures for one simulation
Given a train and a test sets ( ,) ∼ , a family of candidate estimators {f ∈ }, a set of causal metrics l ∈ :

1. Prefit: Learn estimators for unknown nuisance quantities (ě, m̌) on the training set 
2. Fit: ∀f ∈  learn f̂ (⋅, a) on 
3. Model selection: ∀x ∈  predict (f̂ (x, 1), f̂ (x, 0)) and evaluate each candidate estimator with each causal metric

(f̂ ,). For each causal metric l ∈  and each candidate estimator f ∈  , store the metric value: l(f,) – possibly
function of ě and m̌

FIGURE 3 Estimation procedure for causal model selection.
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4 THEORY: LINKS BETWEEN FEASIBLE AND ORACLE RISKS

We recall that the �-riskIPW can upper bound the oracle �-risk. We show that the R-risk appears as a reweighted version of the
oracle �-risk. Both results make explicit the role of overlap for the performances of causal risks.
These bounds depend on a specific form of residual that we now define: for each potential outcome, a ∈ {0; 1}, the variance

conditionally on x is42:
�2y (x; a)

def
= ∫

y

(

y − �a(x)
)2 p(y ∣ x = x;A = a) dy

Integrating over the population, we get the Bayes squared error: �2B(a) = ∫ �
2
y (x; a)p(x)dx and its propensity weighted version:

�̃2B(a) = ∫ �
2
y (x; a) p(x; a) dx. In case of a purely deterministic link between the covariates, the treatment, and the outcome,

these residual terms are null.

4.1 Upper bound of �-risk with �-riskIPW
Proposition 1 (Upper bound with �-riskIPW ). 67 Given an outcome model f , let a weighting function w(x; a) = a

e(x)
+ 1−a

1−e(x)as the Inverse Propensity Weight. Then, under overlap (assumption 2), we have:
�-risk(f ) ≤ 2�-riskIPW (w, f ) − 2

(

�2B(1) + �
2
B(0)

)

This result has already been derived in previous work67. It links �-riskIPW to the squared residuals of each population thanks
to a reweighted mean-variance decomposition. For completeness, we provide the proof in Appendix C.1.
The upper-bound comes from the triangular inequality applied to the residuals of both populations. Interestingly, the two

quantities are equal when the absolute residuals on treated and untreated populations are equal on thewhole covariate space, ie for
all x ∈  , |�1(x)−f (x, 1)| = |�0(x)−f (x, 0)|. The main source of difference between the oracle �-risk and the reweighted mean
squared error, �-riskIPW , comes from heterogeneous residuals between populations. These quantities are difficult to characterize
as they are linked both to the estimator and to the data distribution. This bound indicates that minimizing the �-riskIPW helps
to minimize the �-risk, which leads to interesting optimization procedures67. However, there is no guarantee that this bound is
tight, which makes it less useful for model selection.
Assuming strict overlap (probability of all individuals being treated or not bounded away from 0 and 1 by �, appendix B), the

above bound simplifies into a looser one involving the usual mean squared error: �-risk(f ) ≤ 2
�
�-risk(f ) − 2

(

�2B(1) + �
2
B(0)

).
For weak overlap (propensity scores not bounded far from 0 or 1), this bound is very loose (as shown in Figure 1) and is not
appropriate to discriminate between models with close performances.

4.2 Reformulation of the R-risk as reweighted �-risk
We now derive a novel rewriting of the R-risk, making explicit its link with the oracle �-risk.
Proposition 2 (R-risk as reweighted �-risk). Given an outcome model f , its R-risk appears as weighted version of its �-risk
(Proof in Appendix C.2):

R-risk∗(f ) = ∫
x

e(x)
(

1 − e(x)
)(

�(x) − �f (x)
)2p(x)dx + �̃2B(1) + �̃2B(0) (7)

The R-risk targets the oracle at the cost of an overlap re-weighting and the addition of the reweighted Bayes residuals, which
are independent of f . In good overlap regions the weights e(x)(1 − e(x)

) are close to 1
4
, hence the R-risk is close to the

desired gold-standard �-risk. On the contrary, for units with extreme overlap violation, these weights goes down to zero with
the propensity score.
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4.3 Interesting special cases
Randomization special case
If the treatment is randomized as in RCTs, p(A = 1 ∣ X = x) = p(A = 1) = pA, thus �-riskIPW takes a simpler form:

�-riskIPW = E(Y ,X,A)∼

[

( A
pA

+ 1 − A
1 − pA

)

(Y − f (X;A))2
]

However, even if we have randomization, we still can have large differences between �-risk and �-riskIPW coming from
heterogeneous errors between populations as noted in Section 4.1 and shown experimentally in simulations47.
Concerning theR-risk, replacing e(x) by its randomized value pA in Proposition 2 yields the oracle �-risk up to multiplicative

and additive constants:
R-risk = pA (1 − pA) �-risk + (1 − pA) �2B(0) + pA�

2
B(1) (8)

Therefore, optimizing estimators for CATE with R-risk∗ in the randomized setting is optimal if we target the �-risk. This
explains the strong performances ofR-risk in randomized setups47 and is a strong argument in favor of this risk for heterogeneity
estimation in RCTs.
Oracle Bayes predictor
Consider the case where we have access to the oracle Bayes predictor for the outcome ie. f (x, a) = �(x, a), then all risks are
equivalent up to the residual variance:

�-risk(�) = EX∼p(X)[(�(X) − ��(X))2] = 0 (9)

�-risk(�) = E(Y ,X,A)∼p(Y ;X;A)[
(

Y − �A(X)
)2] = ∫

 ,

"(x, a)2p(a ∣ x) p(x) dx da ≤ �2B(0) + �
2
B(1) (10)

�-riskIPW (�) = �2B(0) + �
2
B(1) follows from Lemma 1 (11)

R-risk(�) = �̃2B(0) + �̃
2
B(1) ≤ �2B(0) + �

2
B(1) follows directly from Proposition 2 (12)

Thus, differences between causal risks only matter in finite sample regimes. Universally consistent learners converge to the
Bayes risk in asymptotic regimes, making all model selection risks equivalent. However, in practice choices must be made in
non-asymptotic regimes.

5 EMPIRICAL STUDY

We evaluate the following causal metrics, oracle and feasible versions of finite-sample evaluation risks presented in Table 1:
 =

{

�̂-risk∗IPW , R̂-risk
∗
, �̂-risk, �̂-riskIPW , R̂-risk

}

(13)
We compare them on a large sample of different simulated data generation processes to select best performing estimator

among a family of candidate estimators. We also evaluate them on three semi-simulated datasets: ACIC 201653, ACIC 201848
and Twins38. 1

5.1 Extensive simulation settings
Data Generation Process
We use simulated data, on which the ground-truth causal effect is known. Going further than prior empirical studies of causal
model selection47,51, we usemultiple generative processes, to reach conclusions wider than a given one (as discussed in Appendix
E10).

1Scripts for the simulations and the selection procedure are available at https://github.com/soda-inria/caussim. Results of the main experience described in this section
are also provided to avoid re-running the full experience.

https://github.com/soda-inria/caussim
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We generate random functions for the response functions using random bases. Basis extension methods are common in bio-
statistics where spline are often used for functional regression26,55. By allowing the function to vary at specific knots, they give
flexible –non-linear– models of the studied mechanisms. Taking inspiration from splines, we use random approximation of
Radial Basis Function (RBF) kernels19 to generate the response surfaces. RBF use the same process as polynomial splines but
replace polynomial by Gaussian kernels. Unlike polynomials, Gaussian kernels have exponentially decreasing influences in the
input space. This allows to avoid unrealistic divergences of the population response surfaces at the ends of the feature space.
The number of basis functions –ie. knots–, controls the complexity of the ground-truth response surfaces and treatment. We

first use this process to draw the non-treated response surface �0 and the causal-effect �. We then draw the observations from a
mixture two Gaussians, for the treated and non treated. We vary the separation between the two Gaussians to control the amount
of overlap between treated and control populations, as it an important parameter for causal inference (related to � which appears
in section 4.1). Finally, we generate the observed outcomes adding some Gaussian noise. We generated such datasets 1000 times,
with uniformly random overlap parameters � ∈ [0, 2.5]. Appendix E.1 gives more details on the data generation.

Simulation: D = 2, = 1, seed=187

One-dimensional cuts of the response surfaces

(a)

Simulation: D = 2, = 0.7, seed=8
Treatment
 status

Control
Treated

One-dimensional cuts of the response surfaces

(b)

FIGURE 4 Two examples of the simulation setup in the input space with two knots –ie.basis functions: with low 4a and high
4b overlap setups. The top row gives views of the observations in feature space, while the lower row displays the two response
surfaces on a 1D cut along the black lines drawn on the above panel.

Family of candidate estimators
We build a candidate estimator in two steps. First, we use a RBF expansion similar as the one used for the data-generation
generation process. Concretely, we choose two random knots and apply a transformation of the raw data features with the same
Gaussian kernel used for the data-generation mechanism. This step is referred as the featurization. Then, we fit a linear regression
on this transformed features. We consider two ways of combining these steps for outcome mode; using common nomenclature54,
we refer to these regression structures as different meta-learners which differ on how they model, jointly or not, the treated and
the non treated:

• SLearner: A single learner for both population, taking the treatment as a supplementary covariate.
• SftLearner: A single set of basis functions is sampled at random for both populations, leading to a given feature space

used to model both the treat and the non treated, then two separate different regressors are fitted on this representation.
• TLearner: Two completely different learners for each population, hence separate featurization and separate regressors.
We are not includingmore elaboratedmeta-learners such as R-learner39 or X-learner54. Our goal is not to have the best possible

learner but to have a variety of sub-optimal learners in order to compare the different causal metrics. For the same reason, we
did not include more powerful outcome models such as random forests or boosting trees.
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For the regression step, we fit a Ridge regression on the transformed features with 6 different choices of the regularization
parameter � ∈ [10−3, 10−2, 10−1, 1, 101, 102], coupled with a TLearner or a SftLearner. We sample 10 different random basis
for the learning procedure and the featurization yielding a family  of 120 candidate estimators.

5.2 Semi-simulated datasets
Datasets
We also use semi-simulated datasets, where a known synthetic causal effect is added to real –non synthetic– covariate. We use
datasets used in previous work to evaluate causal inference:

• ACIC 201653: The dataset is based on the Collaborative Perinatal Project3, a RCT conducted on a cohort of pregnant
women to identify causes of infants’ developmental disorders. The initial intervention was a child’s birth weight (A =
1 if weight < 2.5kg), and outcome was the child’s IQ after a given follow-up period. The study containedN = 4 802 data
points withD = 55 features (5 binary, 27 count data, and 23 continuous). They simulated 77 different setups with varying
parameters for treatment and response generation models, treatment assignment probabilities, overlap, and interactions
between treatment and covariates 2. We used 10 different seeds for every setup, totalizing 770 dataset instances.

• ACIC 201848: The raw covariates data comes from the LinkedBirths and Infant DeathsDatabase (LBIDD)10 withD = 177
covariates. Treatment and outcome models has been simulated with complex models in order to reflect different scenarii
of inference. They do not provide the true propensity scores, so we evaluate only the feasible metrics which does not
require this nuisance parameter. We used all datasets of sizeN = 5 000, totalizing 432 dataset instances 3.

• Twins38: It is an augmentation of the real data on twin births and mortality rates in the USA from 1989-199114. There
are N = 11 984 samples (pairs of twins), and D = 50 covariates, The outcome is the mortality and the treatment is the
weight of the heavier twin at birth. This is a "true" counterfactual dataset –as remarked in64– in the sense that we have
both potential outcomes with each twin. They simulate the treatment with a sigmoid model based on GESTAT10 (number
of gestation weeks before birth) and x the 45 other covariates:

ti ∣ xi, zi ∼ Bern
(

�
(

w⊤
o x +wℎ(z∕10 − 0.1)

)) with wo ∼  (0, 0.1 ⋅ I), wℎ ∼  (5, 0.1) (14)
We built upon this equation, adding a non-constant slope in the treatment sigmoid, allowing us to control the amount of
overlap between treated and control populations. 4 We sampled uniformly 1 000 different overlap parameters between 0
and 2.5, totalizing 1 000 dataset instances. Unlike the previous datasets, only the overlap varies for these instances. The
response surfaces are fixed by the original twin outcomes.

Family of candidate estimators
For these three datasets, the family of candidate estimators are gradient boosting trees for both the response surfaces and the
treatment 5 with S-learner, learning rate in {0.01, 0.1, 1}, and maximum number of leaf nodes in {25, 27, 30, 32, 35, 40} resulting
in a family of size 18.
Nuisance estimators
Drawing inspiration from the TMLE literature that uses combination of flexible machine learning methods41, we use as models
for the nuisances ě (respectively m̌) a form of meta-learner: a stacked estimator of ridge and boosting classifiers (respectively
regressions). We select hyper-parameters with randomized search on a validation set  and keep them fix for model selec-
tion (detailed of the hyper parameters in Appendix E.2). As extreme inverse propensity weights induce high variance, we use
clipping18,35 to bound min(ě, 1 − ě) away from 0 with a fixed � = 10−10, ensuring strict overlap for numerical stability.

5.3 Measuring overlap between treated and non treated
Overlap between treated and control population is crucial for causal inference, it appears in the positivity assumption 2 required
for causal identification and when relating the different risks (subsection 4.1).

2Original R code available at https://github.com/vdorie/aciccomp/tree/master/2016 to generate 77 simulations settings.
3Using only the scaling part of the data, obtained from the https://github.com/IBM-HRL-MLHLS/IBM-Causal-Inference-Benchmarking-Framework
4We obtained the dataset from https://github.com/AMLab-Amsterdam/CEVAE/tree/master/datasets/TWINS
5Scikit-learn regressor, HistGradientBoostingRegressor, and classifier, HistGradientBoostingClassifier.

https://github.com/vdorie/aciccomp/tree/master/2016
https://github.com/IBM-HRL-MLHLS/IBM-Causal-Inference-Benchmarking-Framework
https://github.com/AMLab-Amsterdam/CEVAE/tree/master/datasets/TWINS
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
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Overlap, or “positivity”, is typically assessed by qualitative methods using population histograms (as in Figure 1) or side-by-
side box plots, or quantitative approaches such as Standardized Mean Difference23,33. While these methods are useful to decide
if positivity holds they do not summarize a dataset’s overlap in a single measure. Rather, divergence between distributions
ℙ(X|A = 0) and ℙ(X|A = 1) give a relevant quantity to characterize the behavior of causal risk65,67.
For simulated and some semi-simulated data, we have access to the probability of treatment for each data point, which sample

both densities in the same data point. Thus, we can directly use distribution discrepancy measures and rely on the Normalized
Total Variation (NTV) distance to measure the overlap between the treated and control propensities 6. This is the empirical
measure of the total variation distance22 between the distributions, TV (ℙ(X|A = 1),ℙ(X|A = 0)). As we have both distribution
sampled on the same points, we can rewrite it a sole function of the propensity score, a low dimensional score more tractable
than the full distribution ℙ(X|A):

N̂T V (e, 1 − e) = 1
2N

N
∑

i=1

|

|

|

e(xi)
pA

−
1 − e(xi)
1 − pA

|

|

|

(15)
Appendix D gives a detailed theoretical motivation of the NTV distance and empirical arguments showing that it recovers the

desired notion of overlap.
Measuring overlap without the oracle propensity scores:
For ACIC 2018, or for non-simulated data, the true propensity scores are not known. To measure overlap, we rely on flexible
estimations of the Normalized Total Variation, using gradient boosting trees to approximate the propensity score. Empirical
arguments for this plug-in approach is given in Figure D1.

5.4 Empirical results
We investigate how well the various causal metrics rank the different candidate models. Figure 5 shows the Kendall rank cor-
relation coefficient1 between the ranking of methods given the oracle �-risk and every causal metric under evaluation. We plot
this percentage of agreement as a function of decreasing overlap (by increasing Normalized Total Variation).
R-risk dominates factual �-risk and its reweighted version
Among all causal metrics, classical mean squared error (ie. factual �-risk) is suboptimal. Reweighting it with propensity score
(�-riskIPW ) does not bring much improvements. Including a model of the outcome in the R-risk leads to better performances
in every cases. Further results provided in Appendix E.3 with alternative measures of performance confirm these findings.
Low population overlap hinders causal model selection
The performances of every metric drop with growing lack of overlap. It is particularly visible for Caussim, ACIC 2018 and
Twins. Model selection for causal inference becomes more and more difficult with increasingly different treated and control
populations.
Estimating the nuisances does not hinder model selection
Oracle versions of every risks recover more often the best estimator. However, flexible nuisances estimations (gradient boosting
trees) lead to feasible metrics with close performances to the oracles ones. This suggests that the chosen estimators are doing
well in recovering the true nuisances.

6Computing overlap when working only on samples of the observed distribution, outside of simulation, requires a more sophisticated estimator of discrepancy between
distributions, as two data points never have the same exact set of features. MaximumMean Discrepancy30 is typically used in the context of causal inference42,67. However
it needs a kernel, typically Gaussian, to extrapolate across neighboring observations. We prefer avoiding the need to specify such a kernel, as it must be adapted to the data
which is tricky with categorical or non-Gaussian features, a common situation for medical data.
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a. Caussim b. ACIC 2016
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FIGURE 5 Agreement with �-risk ranking of methods function of overlap violation. The lines represent medians, estimated
with a lowess. The transparent bands denote the 5% and 95% confidence intervals.

6 DISCUSSION AND CONCLUSION

Predictive models are increasingly used to reason about causal effects. Our results highlight that they should be selected, vali-
dated, and tuned using different procedures and error measures than those classically used to assess prediction (estimating the
so-called � − risk). Rather, selecting the best outcome model according to the R − risk (eq. 7) leads to more valid causal esti-
mates. Estimating this risk requires a markedly more complex procedure than standard cross-validation used e.g. in machine
learning: it involves fitting nuisance models necessary for model evaluation, though our empirical results show that these can be
learned on the same set of data as the outcome model evaluated. A poor estimation of the nuisance models may compromise the
benefits of the more complex R − risk (as shown in in Appendix E9). However controlling and selecting these latter models is
easier because they are associated to errors on observed distributions and our empirical results show that when selecting these
models in a flexible family of models the R − risk dominates simpler risks for model selection. Our results show that going
from an oracle R− risk –where the nuisances are known– to a feasible R− risk –where the nuisances are estimated– decreases
only very slightly the model-selection performance of the R − risk. This may be explained by theoretical results that suggest
that estimation errors on both nuisances partly compensate out in the R − risk39,43,44,59,69. The usage of the R-risk can also be
understood as a �-risk reweighted by the propensity score (prop 2).
For strong overlap, the � − risk appears theoretically motivated (subsection 4.1), however empirical results show that even in

this regime the R − risk brings a sizeable benefit, in agreement with Schuler et al. 201847.
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Extension to binary outcome
While we focused on continuous outcomes, inmedicine, the target outcome is often a categorical variable such asmortality status
or diagnosis. In this case, it may be interesting to focus on other estimands than the Average Treatment Effect E[Y (1)]−E[Y (0)],
for instance the relative risk ℙ(Y (1)=1)

ℙ(Y (0)=1)
or the odd ratio, ℙ(Y (1)=1)∕[1−ℙ(Y (1)=1)]

ℙ(Y (0)=1)∕[1−ℙ(Y (0)=1]
are often used36; in particular the odds ratio can

carry across different disease sampling rates20. Using as an estimand the log of these values is suitable to additive models (for
reasoning or noise assumptions). In the log domain, the relative risk or the odds ratio are written as a difference, as the ATE:
logℙ(Y (1) = 1) − logℙ(Y (0 = 1) or log(ℙ(Y (1) = 1)∕[1 − ℙ(Y (1) = 1)]) − logℙ(Y (0 = 1)∕[1 − ℙ(Y (0) = 1)]. Hence, the
framework studied here (subsection 2.1) can directly apply. It is particularly easy for the log odds ratio, as it is the output of a
logistic regression or any model with a cross-entropy loss.
Going further
The R − risk needs good estimation of nuisance models. The propensity score e calls for a control on the estimation of the
individual posterior probability. We have used the Brier score to select these models, as it is minimized by the true individual
probability. Regarding model-selection for propensity score, an easy mistake is to use expected calibration errors popular in
machine learning11,12,15,68 as these select not for the individual posterior probability but for an aggregate error rate70. An open
question is whether a better metric than the brier score can be designed that controls for e (1−e), the quantity used in theR−risk,
rather than e.
The quality of model selection varies substantially from one data-generating mechanism to another. The overlap appears as

an important parameter: when the treated and untreated, causal model selection is very hard. However, remaining variance in
the empirical results suggests that other parameters of the data generation processes come into play. Intuitively, the complexity
of the response surfaces and the treatment heterogeneity interact with overlap violations: when extrapolations to weak-overlap
regions is hard, causal model selection is hard.
Nevertheless, from a practical perspective, our study establishes that the R-risk is the best option to select predictive models

for causal inference, without requiring assumptions on the data-generatingmechanism, the amount of data at hand, or the specific
estimators used to build predictive models.
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APPENDIX

A VARIABILITY OF ATE ESTIMATION ON ACIC 2016

Figure 2 shows ATE estimations for six different models used in g-computation estimators on the 76 configurations of the ACIC
2016 dataset. Outcome models are fitted on half of the data and inference is done on the other half –ie. train/test with a split
ratio of 0.5. For each configuration, and each model, this train test split was repeated ten times, yielding non parametric variance
estimates63.
Outcome models are implemented with scikit-learn28 and the following hyper-parameters:

Outcome Model Hyper-parameters grid
Boosted Trees (Histogram-based Gradient Boosting) Learning rate: [0.01, 0.1]
Ridge regression without treatment interaction Ridge regularization: [0.001, 0.1, ]
Ridge regression with treatment interaction Ridge regularization: [0.001, 0.1, ]

TABLE A1 Hyper-parameters grid used for ACIC 2016 ATE variability

B CAUSAL ASSUMPTIONS

We assume the following four assumptions, referred as strong ignorability and necessary to assure identifiability of the causal
estimands with observational data16:
Assumption 1 (Unconfoundedness).

{Y (0), Y (1)} ⟂⟂ A|X
This condition –also called ignorability– is equivalent to the conditional independence on e(X)4: {Y (0), Y (1)} ⟂⟂ A|e(X).
Assumption 2 (Overlap, also known as Positivity)).

� < e(x) < 1 − � ∀x ∈  and some � > 0

The treatment is not perfectly predictable. Or with different words, every patient has a chance to be treated and not to be treated.
For a given set of covariates, we need examples of both to recover the ATE.
As noted by65, the choice of covariates X can be viewed as a trade-off between these two central assumptions. A bigger

covariates set generally reinforces the ignorability assumption. In the contrary, overlap can be weakened by large  because of
the potential inclusion of instruments: variables only linked to the treatment which could lead to arbitrarily small propensity
scores.
Assumption 3 (Consistency). The observed outcome is the potential outcome of the assigned treatment:

Y = AY (1) + (1 − A) Y (0)

Here, we assume that the intervention A has been well defined. This assumption focuses on the design of the experiment. It
clearly states the link between the observed outcome and the potential outcomes through the intervention57.
Assumption 4 (Generalization). The training data on which we build the estimator and the test data on which we make the
estimation are drawn from the same distribution ∗, also known as the “no covariate shift” assumption58.

C PROOFS: LINKS BETWEEN FEASIBLE AND ORACLE RISKS

https://scikit-learn.org/stable/
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C.1 Upper bound of �-risk with �-riskIPW
For the bound with the �-riskIPW , we will decompose the CATE risk on each factual population risks:
Definition 8 (Population Factual �-risk). 42

�-riska(f ) = ∫
×

(y − f (x;A = a))2p(y; x = x ∣ A = a) dydx

Applying Bayes rule, we can decompose the �-risk on each intervention:
�-risk(f ) = pA �-risk1(f ) +

(

1 − pA
)

�-risk0(f )with pA = ℙ(A = 1)

These definitions allows to state a intermediary result on each population:
Lemma 1 (Mean-variance decomposition). We need a reweighted version of the classical mean-variance decomposition.
For an outcome model f ∶ x×A→  . Let the inverse propensity weighting functionw(a; x) = ae(x)−1+(1−a)(1−e(x))−1.

∫


(�1(x) − f (x; 1))2p(x)dx = pA�-riskIPW ,1(w, f ) − �2Bayes(1)

And

∫


(�0(x) − f (x; 0))2p(x)dx = (1 − pA)�-riskIPW ,0(w, f ) − �2Bayes(0)

Proof.

pA�-riskIPW ,1(w, f ) = ∫
×

1
e(x)

(y − f (x; 1))2p(y ∣ x;A = 1)p(x;A = 1)dydx

= ∫
×

(y − f (x; 1))2p(y ∣ x;A = 1)
p(x;A = 1)
p(x;A = 1)

p(x)dydx

= ∫
×

[

(y − �1(x))2 +
(

�1(x) − f (x; 1)
)2 + 2

(

y − �1(x)
) (

�1(x) − f (x, 1)
) ]

p(y ∣ x;A = 1)p(x)dydx

= ∫


[

∫


(y − �1(x))2p(y ∣ x;A = 1)dy
]

p(x)dx + ∫
×

(

�1(x) − f (x; 1)
)2 p(x)p(y ∣ x;A = 1)dxdy

+ 2∫


[

∫


(

y − �1(x)
)

p(y ∣ x;A = 1)dy
] (

�1(x) − f (x, 1)
)

p(x)dx

= ∫


�2y (x, 1)p(x)dx + ∫


(

�1(x) − f (x; 1)
)2 p(x)dx + 0

Proposition 1 (Upper bound with mu-IPW). Let f be a given outcome model, let the weighting function w be the Inverse
Propensity Weight w(x; a) = a

e(x)
+ 1−a

1−e(x)
. Then, under overlap (assumption 2),

�-risk(f ) ≤ 2�-riskIPW (w, f ) − 2 (�2Bayes(1) + �
2
Bayes(0))

Proof.

�-risk(f ) = ∫


(�1(x) − �0(x) − (f (x; 1) − f (x; 0))2p(x)dx

By the triangle inequality (u + v)2 ≤ 2(u2 + v2):
�-risk(f ) ≤ 2∫



[ (

�1(x) − f (x; 1)
)2 +

(

�0(x) − f (x; 0)
)2 ]p(x)dx
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Applying Lemma 1,
�-risk(f ) ≤ 2

[

pA�-riskIPW ,1(w, f ) + (1 − pA)�-riskIPW ,0(w, f )(w, f )
]

− 2(�2Bayes(0) + �
2
Bayes(1))

= 2�-riskIPW (w, f ) − 2(�2Bayes(0) + �
2
Bayes(1))

C.2 Reformulation of the R-risk as reweighted �-risk
Proposition 2 (R-risk as reweighted �-risk). Proof. We consider the R decomposition:8,

y(a) = m(x) +
(

a − e(x)
)

�(x) + "(x; a)

Where E["(X;A)|X,A] = 0We can use it as plug in the R-risk formula:

R-risk(f ) = ∫
××

[(y − m(x)) −
(

a − e(x)
)

�f (x)]2p(y; x; a)dydxda

= ∫
××

[(

a − e(x)
)

�(x) + "(x; a) −
(

a − e(x)
)

�f (x)
]2 p(y; x; a)dydxda

= ∫
×

(

a − e(x)
)2(�(x) − �f (x)

)2p(x; a)dxda

+ 2 ∫
××

(

a − e(x)
)(

�(x) − �f (x)
)

∫


"(x; a)p(y ∣ x; a)dyp(x; a)dxda

+ ∫
×

∫


"2(x; a)p(y ∣ x; a)dyp(x; a)dxda

The first term can be decomposed on control and treated populations to force e(x) to appear:

∫


(

�(x) − �f (x)
)2
[

e(x)2p(x; 0) +
(

1 − e(x)
)2p(x; 1)

]

dx

= ∫


(

�(x) − �f (x)
)2
[

e(x)2
(

1 − e(x)
)

p(x) +
(

1 − e(x)
)2e(x)p(x)

]

dx

= ∫


(�(x) − �f (x))2(1 − e(x))e(x)[1 − e(x) + e(x)]p(x)dx

= ∫


(�(x) − �f (x))2(1 − e(x))e(x)p(x)dx.

The second term is null since, E["(x, a)|X,A] = 0.
The third term corresponds to the modulated residuals 4 : �̃2B(0) + �̃2B(1)

D MEASURING OVERLAP

Motivation of NTV
We can rewrite NTV as the Total Variation distance between the two population distributions. For a population O =
(Y (A), X, A) ∼ :
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NTV (O) = 1
2N

N
∑

i=1

|

|

|

e(xi)
pA

−
1 − e(xi)
1 − pA

|

|

|

= 1
2N

N
∑

i=1

|

|

|

P (A = 1|X = xi)
pA

−
P (A = 0|X = xi)

1 − pA
|

|

|

Thus NTV approximates the following quantity in expectation over the data distribution :

NTV () = ∫


|

|

|

p(A = 1|X = x)
pA

−
p(A = 0|X = x)

1 − pA
|

|

|

p(x)dx

= ∫


|

|

|

p(A = 1, X = x)
pA

−
p(A = 0, X = x)

1 − pA
|

|

|

dx

= ∫


|

|

|

p(X = x|A = 1) − p(X = x|A = 0)||
|

dx

For countable sets, this expression corresponds to the Total Variation distance between treated and control populations
covariate distributions : TV (p0(x), p1(x)).
Empirical arguments
We show empirically that NTV is an appropriate measure of overlap by :

• Comparing the NTV distance with the MMD for Caussim which is gaussian distributed (cf. Figure D3),
• Verifying that setups with penalized overlap from ACIC 2016 have a higher total variation distance than unpenalized

setups (cf. Figure D2).
• Verifying that the Inverse Propensity Weights extrema (the inverse of the � overlap constant appearing in the overlap

Assumption 2) augments with NTV for Caussim, ACIC 2016 and Twins (cf. Figure D4). Even if the same value of the
maximum IPW could lead to different values of NTV, we expect both measures to be correlated : the higher the extrem
propensity weights, the higher the NTV.

Estimating NTV in practice
Finally, we verify that approximating the NTV distance with a learned plug-in estimates of e(x) is reasonnable. We used either
a logistic regression or a gradient boosting classifier to learn the propensity models for the three datasets where we have access
to the ground truth propensity scores: Caussim, Twins and ACIC 2016. We respectively sampled 1000, 1000 and 770 instances
of these datasets with different seeds and overlap settings. We first run a hyperparameter search with cross-validation on the
train set, then select the best estimator. We refit on the train set this estimator with or without calibration by cross validation and
finally estimate the normalized TV with the obtained model. This training procedure reflects the one described in Algorithm 1
where nuisance models are fitted only on the train set.
The hyper parameters are : learning rate∈ [1e−3, 1e−2, 1e−1, 1], minimum samples leaf∈ [2, 10, 50, 100, 200] for boosting

and L2 regularization ∈ [1e − 3, 1e − 2, 1e − 1, 1] for logistic regression.
Results in Figure D1 comparing bias to the true normalized Total Variation of each dataset instances versus growing true

NTV indicate that calibration of the propensity model is crucial to recover a good approximation of the NTV.

E EXPERIMENTS

E.1 Details on the data generation process
We use Gaussian-distributed covariates and random basis expansion based on Radial Basis Function kernels. A random basis
of RBF kernel enables modeling non-linear and complex relationships between covariates in a similar way to the well known
spline expansion. The estimators of the response function are learned with a linear model on another random basis (which can
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a. Uncalibrated classifiers
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b. Calibrated classifiers
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FIGURE D1 a) Without calibration, estimation of NTV is not trivial even for boosting models. b) Calibrated classifiers are able
to recover the true Normalized Total Variation for all datasets where it is available.

be seen as a stochastic approximation of the full data kernel19). We carefully control the amount of overlap between treated and
control populations, a crucial assumption for causal inference.

• The raw features for both populations are drawn from a mixture of Gaussians: ℙ(X) = pAℙ(X|A = 1)+(1−pA)ℙ(X|A =
0) where ℙ(x|A = a) is a rotated Gaussian:

ℙ(x|A = a) = W ⋅
(

[

(1 − 2a)�
0

]

;
[

�0 0
0 �1

]

)

(E1)
with � a parameter controlling overlap (bigger yields poorer overlap),W a random rotation matrix and �20 = 2; �21 = 5.
This generation process allows to analytically compute the oracle propensity scores e(x), to simply control for overlap
with the parameter �, the distance between the two Gaussian main axes and to visualize response surfaces.
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FIGURE D2 NTV recovers well the overlap settings described in the ACIC paper53
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• A basis expansion of the raw features increases the problem dimension. Using Radial Basis Function (RBF) Nystroem
transformation 7, we expand the raw features into a transformed space. The basis expansion samples randomly a small
number of representers in the raw data. Then, it computes an approximation of the full N-dimensional kernel with these
basis components, yielding the transformed features z(x).
We generate the basis following the original data distribution, [b1..bD

]

∼ ℙ(x), with D=2 in our simulations. Then,
we compute an approximation of the full kernel of the data generation process RBF (x, ⋅) witℎ x ∼ ℙ(x) with these
representers: z(x) = [RBF (x, bd)]d=1..D ⋅ZT ∈ ℝD with RBF being the Gaussian kernel K(x, y) = exp(−||x − y||2)
and Z the normalization constant of the kernel basis, computed as the root inverse of the basis kernelZ = [K(bi, bj)]

−1∕2
i,j∈1..D

• Functions �0, � are distinct linear functions of the transformed features:
�0(x) =

[

z(x); 1
]

⋅ �T�
�(x) =

[

z(x); 1
]

⋅ �T�

• Adding a Gaussian noise, " ∼  (0, �(x; a)), we construct the potential outcomes: y(a) = �0(x) + a �(x) + "(x, a)

We generated 1000 instances of this dataset with uniformly random overlap parameters � ∈ [0, 2.5].

E.2 Model selection procedures
Nuisances estimation
The nuisances are estimated with a stacked regressor inspired by the Super Learner framework,17). The hyper-parameters are
optimized with a random search with following search grid detailed in Table E2. All implementations come from scikit-learn28.

7We use the Sklearn implementation,28

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html
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FIGURED3Good correlation between overlap measured as normalized Total Variation andMaximumMean Discrepancy (200
sampled Caussim datasets)
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Model Estimator Hyper-parameters grid
Outcome, m StackedRegressor ridge regularization: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

(HistGradientBoostingRegressor, ridge) HistGradientBoostingRegressor learning rate: [0.01, 0.1, 1]
HistGradientBoostingRegressor max leaf nodes: [10, 20, 30, 50]

Treatment, e StackedClassifier LogisticRegression C: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
(HistgradientBoostingClassifier, LogisticRegression) HistGradientBoostingClassifier learning rate: [0.01, 0.1, 1]

HistGradientBoostingClassifier max leaf nodes: [10, 20, 30, 50]

TABLE E2 Hyper-parameters grid used for nuisance models

Similarity of results between the three-sets and the chosen two-sets procedure
Figure E5 shows that very few difference appears between a two-sets procedure – nuisances fitted on the same train set as the
candidates–, and a three-sets procedure –nuisances fitted on a separated validation set of the same size as the train set.

E.3 Additional Results
Results measured with the semi-oracle R-risk Kendall’s as reference
We inspected if the observed variability between dataset instances is due to inter-experiments variability or to intra-experiment
variability. Is the R-risk systematically better than mu-risk to select the best model among the family of candidates ? Figure E6
shows the differences between every metrics and the semi-oracle R-risk Kendall’s. The difference � is consistently greater than
zero for the four datasets. It is significant at 5% for all overlap setups only for Caussim and Twins. This confirms than R-risk is
better in every experimental setups.
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a. Caussim b. ACIC 2016
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c. ACIC 2018 d. TWINS
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FIGURE D4Maximal value of Inverse Propensity Weights increases exponentially with the overlap as measure by Normalized
Total Variation.

Results measured as ranking aggreement with the oracle tau-risk
Figure E7 shows the percentage of experiments for which each metric selects the same best model as the oracle �-risk. We plot
this percentage of agreement as a function of decreasing overlap (by increasing normalized Total Variation).
Results measured as distance to the oracle tau-risk
Figure E8 reports the results between metrics as the normalized distance between the estimator selected by the oracle �-risk and
the estimator selected by each causal metric.
We recover the ordering of the oracle R̂-riskIS2∗ is the best performing selection metric, especially for poor overlap settings.

Then, R̂-risk∗ is more efficient than both oracle and feasible versions of �̂-riskIPW which are themselves an order of magnitude
better than the classical �̂-risk. Importantly, this gap is small in strong overlap settings and grows rapidly with the lack of overlap.
ACIC 2016, effect of misspecified nuisance models
Figure E9 shows the effect of misspecification for the nuisance models. On Caussim, we compare non-linear nuisance estimators
(stacked boosting and linear estimators) to linear (misspecified) estimators of the nuisance (ě, m̌).
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a. Caussim, two set procedure b. Caussim, three set procedure
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FIGURE E5 Simulation, 900 instances (3 seeds, 3 treatment ratios, 100 overlap parameters). Results are similar between the
two-set procedure a. and the three set procedure b..

Misspecified linear estimators for the nuisances have a big impact on feasible metrics for the R̂-risk or R̂-riskIS2. This suggests
that (e, m) quantities should be estimated with care if using complex causal metrics for causal estimator selection.
Selecting different seeds and parameters is crucial to draw conclucions
One strength of our study is the various number of different simulated and semi-simulated datasets. We are convinced that the
usual practice of using only a small number of generation processes does not allow to draw statistically significant conclusions.
Figure E10 illustrate the dependence of the results on the generation process for caussim simulations. This is the same kind

of plots and experiments as in Figure 5, but with only three different seeds for data generation and three different treatment ratio
instead of 1000 different seeds. The result curves are relatively stable from one setup to another for R−risk, but vary strongly
for �-risk and �-riskIPW .
Simulations: naive reweighting of the R-risk
Applying a naive reweighting, w(x, a) = 1

e(x)
(

1−e(x)
) to the R-risk to recover the �-risk in the first part of 2 makes the residuals

explode in case of noise as shown in Figure E11.
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a. Caussim b. ACIC 2016
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c. ACIC 2018 d. TWINS
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FIGURE E6 Agreement with �-risk ranking of methods : The reference is the semi-oracle R-risk Kendall’s coefficient. Dotted
lines are oracle metrics 50% lowess quantiles and plain lines are feasible metrics 50% lowess quantiles. The 5% and 95% confi-
dence intervals are indicated by the transparent bands.
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a. Caussim b. ACIC 2016
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FIGURE E7 Agreement with �-risk decreases with overlap violation.
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a. Caussim b. ACIC 2016
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FIGURE E8 Metric performances by normalized tau-risk distance to the best method selected with �-risk. All nuisances are
learned with the same estimator stacking gradient boosting and ridge regression. Doted and plain lines corresponds to 60%
lowess quantile estimates.
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a. Nuisances learned with boosting trees b. Nuisances learned with linear models
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FIGUREE9 a.Candidate estimators selected with oracles are recovering the best normalized �-risk. Consistent with the theory,
the best causal metric is the R-risk∗. However, if the nuisances are not well specified as in b., simple IPW reweighting of Mean
Squared Error achieves reasonable results across all overlap settings and feasible R-risks fail. Lines are lowess estimates of the
0.5 quantiles for each causal selection metric across all 1000 experimental setups.

FIGURE E10 Kendall correlation coefficients for each causal metric. Each (color, shape) pair indicates a different (treatment
ratio, seed) of the generation process.
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FIGURE E11 Caussim simulations (500 repetitions): R-riskIPW ∗
naive

(in green) is exploding
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