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Consciousness in higher animals, by virtue of its 100 millisecond time constant, is a nec-

essarily greatly simplified and stripped-down version of more complex multiple tunable
workspace cognition/regulation dyads like wound healing, immune function, gene expres-

sion, institutional function and the like. These more complex dynamic entities emerged

through evolutionary exaptation of the inevitable information crosstalk between coresi-
dent cognitive modules. In consequence of the debrided nature of consciousness, it should

not be difficult to construct a fast, single workspace ‘conscious machine’ that mimics the

human tunable neuronal global workspace system. Tied to a ‘backbrain’ AI that has
learned hyperrapid stereotypic pattern responses to some particular set of likely chal-

lenges, the result is an elementary ‘emotional’ conscious machine. A clever designer,
however, may want to use available high-speed electronics to mimic the more capable

multiple-workspace/workforce systems inherently less susceptible to inattentional blind-

ness and related failings of overfocus and thrashing. Contrary to current social construc-
tions, however, the ultimate utility of such machines remains obscure. Here, we explore

these matters in formal detail, restricting argument to the asymptotic limit theorems of

information and control theories.

Keywords: consciousness; control theory; crosstalk; groupoid; information theory; phase

transition; symmetry-breaking

Horses for courses.

— British aphorism.

Sure, hogs are smart, but I still like bacon and eggs.

— American aphorism.

1. Introduction

The engineering discipline of ‘machine consciousness’, in a large sense, remains

mired in longstanding – and essentially theological – debates about the ‘nature’ of

human consciousness, socially constructed as a deep and intractable scientific and

philosophical problem (e.g., Chella et al. 2019). Indeed, rapid empirical progress in

the study of consciousness over the late 19th and early 20th centuries was short

circuited for many decades by ideological imperatives, until the intellectual logjam
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was recently broken by Bernard Baars and collaborators (Baars 1988, 2005; Barrs

and Franklin 2003; Baars and Gage 2010) leading to the contemporary flowering of

debate, to employ something of a euphemism.

Engineering applications seem tantalizing because, over their 500myr course,

conscious organisms, as sculpted by evolutionary process, appear – at first glance –

to dominate the biological hierarchy, although most conscious species have, in fact,

gone extinct over the history of the planet. Conscious machines, it is nonetheless

posited, will be of both intellectual and practical interest.

This, of course, remains to be seen.

We begin by focusing on what Adams (2003) has called ‘the informational turn in

philosophy’ – explicit application of communication theory formalism and concepts

to “purposive behavior, learning, pattern recognition, and... the naturalization of

mind and meaning”. We will, at a later stage, retread similar ground more explicitly

from the ‘tunable global workspace’ perspective of Baars.

One of the first comprehensive attempts at an ‘informational turn’ was that of

Dretske (1981, 1988, 1994), whose work Adams describes as follows:

It is not uncommon to think that information is a commodity

generated by things with minds. Let’s say that a naturalized ac-

count puts matters the other way around, viz. it says that minds

are things that come into being by purely natural causal means of

exploiting the information in their environments. This is the ap-

proach of Dretske as he tried consciously to unite the cognitive

sciences around the well-understood mathematical theory of com-

munication...

Dretske himself (1994) writes:

Communication theory can be interpreted as telling one some-

thing important about the conditions that are needed for the

transmission of information as ordinarily understood, about what

it takes for the transmission of semantic information. This has

tempted people... to exploit [information theory] in semantic and

cognitive studies, and thus in the philosophy of mind.

...Unless there is a statistically reliable channel of communica-

tion between [a source and a receiver]... no signal can carry se-

mantic information... [thus] the channel over which the [semantic]

signal arrives [must satisfy] the appropriate statistical constraints

of communication theory.

The asymptotic limit theorems of information theory provide, then, necessary

conditions for understanding all cognitive process, including consciousness. These

are the Coding, Source Coding, and Rate Distortion Theorems (Khinchin 1957;

Cover and Thomas 2006).
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Embodiment – an essential matter for robotics – from this perspective, is then

instantiated by another – recently-uncovered – asymptotic limit theorem, the Data

Rate Theorem, that links control and information theories (e.g., Nair et al. 2007).

• The Coding Theorem posits that, for information transmission along a noisy

channel, there is a ‘channel capacity’ such that, if a properly coded message is sent

at a rate less than or equal to that value, a sufficiently long signal will be received

with an arbitrarily small error (Cover and Thomas 2006).

• The Source Coding Theorem (Khinchin 1957) states that messages sent by an

information source – having an inherent grammar and syntax – can be broken into

two sets. The first, having a large size, but with vanishingly small probability, is not

consonant with the grammar and syntax. The second, much smaller, is consonant,

and has – in sum – probability approaching certainty. If the source is stationary,

so that probabilities do not change in time, and ergodic, so that cross-sectional

measures converge on time series measures, then a ‘Source Uncertainty’ can be

assigned that follows a Shannon Entropy form. We will be interested in nonergodic

stationary systems for which source uncertainties vary with messages.

Although nonergodic information sources can be approximated as a kind of ‘sum’

of ergodic ones, for our purposes this is like the Ptolemaic treatment of planetary

motion. We are seeking Keplerian laws.

• The Rate Distortion Theorem, a kind of inverse of the Coding Theorem, states

that, under noisy circumstance, for some scalar measure of distortion D between

what is sent and what is received, there is a minimum channel capacity R(D) such

that, if the capacity is greater or equal to minimum, the distortion will be less than

or equal to D.

• The Data Rate Theorem links control and information theories. It states that,

for an inherently unstable control system, if control information is sent at a rate

greater than the rate at which the system itself generates ‘topological information’,

then control will not fail. Think of driving a vehicle at some specific speed on a

twisting, pot-holed roadway. The driver must provide control signals – steering,

braking, etc. – at a rate greater than the road twists, turns, and bottoms out the

vehicle. See Nair et al. (2007) for the standard derivation.

Under a ‘simple’ assumption that information is a form of free energy (Feynman

2000; Wallace 2022 Sec. 1.4), subject to an Onsager-like nonequilibrium thermo-

dynamics formalism (de Groot and Mazur 1984), the Data Rate Theorem can be

derived from the Rate Distortion Theorem, as outlined in the Mathematical Ap-

pendix.

The key element in the ‘dynamic’ argument follows Atlan and Cohen’s (1998)

treatment of the immune system as a cognitive agent, and not simply a ‘reflex’.

Cognition implies choice, and choice reduces uncertainty, implying existence of an

information source ‘dual’ to the cognitive process under study. The argument is

direct and unambiguous, if not entirely elementary.
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Indeed, suppose we have n possible choices, equally probable. Then, for a sta-

tionary ergodic system, the Shannon uncertainty is

H =

n∑
i=1

− 1

n
log(1/n) = log(n) (1.1)

If a single element is subsequently chosen, then n = 1 and the (classic) Shannon

uncertainty declines from log(n) to log(1) = 0.

Cognitive systems must constantly make choices under dynamic ‘selection pres-

sures’.

How is all this to be formalized?

2. Toward a model

The first step is to recognize that cognitive systems – biological or mechanical –

are embedded in an environment that includes themselves. There will be (at least)

three resource streams necessary for successful function. The first is the rate at

which elements of the system can communicate with each other, instantiated by

some channel capacity C. The second is the rate at which ‘sensory information’ is

available from the embedding circumstance, say according to a channel capacity H.

Finally, there is the rate at which ‘material/materiel’ resources can be provided, a

rate M. For an organism, this might be measured by the rate at which metabolic

free energy is provided. Machine/institutional systems will have a different measure.

In general, these three rates will ‘crosscorrelate’ in a sense, so that one is actually

confronting a 3 by 3 (or greater) matrix Z. An n × n matrix will have will have n

scalar invariants determined by the polynomial relation

p(γ) = det[Z− γI] = (−1)nγn + (−1)n−1r1γ
n−1 + ...− rn−1γ + rn (2.1)

I is the n×n identity matrix, det the determinant, and γ a real-valued parameter.

The first invariant is the matrix trace, and the last the determinant.

The most direct index might be Z = C × H ×M, but the real world is not

likely to be so simple. In any event, we now postulate a scalar index Z representing

information and material resource rates. Wallace (2021) outlines generalization to

more than one such index.

We must move beyond the ergodic restriction on information sources (Cover and

Thomas 2006). Only when cross-sectional and longitudinal means are the same can

information source uncertainty be expressed as a conventional Shannon ‘entropy’

(Khinchin 1957). We specify that source uncertainties do converge for sufficiently

long paths, not that they fit a particular functional form, i.e., that of ‘Shannon en-

tropy’. It is the values themselves of those uncertainties that will be of concern, not

their particular functional expressions in terms of probabilities. Thus we study what

might be called Adiabatically Piecewise Stationary (APS) systems, in the sense of
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the famous Born-Oppenheimer approximation from molecular physics that assumes

nuclear motions are so slow in comparison with electron dynamics that they can

be effectively separated, at least on appropriately chosen trajectory ‘pieces’ that

may characterize the various phase transitions available to such systems. Extend-

ing theory to nonstationary dynamics remains to be done. In sum, between phase

transitions, we assume the system changes slowly, and that the asymptotic limit

theorems of information and control theories are sufficiently accurate.

We carry out this approximation via a fairly standard Morse Function method-

ology (Pettini 2007).

Our system of interest is made up of a set of cognitive submodules that engage

in crosstalk among themselves. At every scale and level of organization all such

submodules are constrained by both their own internals and by the developmental

paths and by the persistent regularities of the embedding environment, including

the actions of adversaries and the regularities of ‘grammar’ and ‘syntax’ imposed

by embedding selection pressures.

There are, in addition structured uncertainties imposed by the large devia-

tions possible within that environment, again including the behaviors of adver-

saries/partners who may be constrained by quite different developmental trajecto-

ries and ‘punctuated equilibrium’ evolutionary transitions.

The Morse Function construction assumes a number of interacting components:

• As Atlan and Cohen (1998) argue, cognition requires choice that reduces uncer-

tainty. Such reduction in uncertainty directly implies the existence of an information

source ‘dual’ to that cognition at each scale and level of organization. The argument

is unambiguous and sufficient.

• Cognitive processes – under the Data Rate Theorem – are highly regulated, in

the same sense that the human ‘stream of consciousness’ flows between cultural and

social ‘riverbanks’. That is, a cognitive information source Xi is generally paired

with a regulatory information source Xi.

• Environments (in a large sense) impose temporal event sequences of very high

probability: night follows day, hot seasons follow cold, wet season follows dry, and

so on. Thus environments impose their own ‘meaningful statements’ onto entities

and interactions embedded within them via an information source V .

• ‘Large deviations’, following Champagnat et al. (2006) and Dembo and

Zeitouni (1998), also involve sets of high probability developmental pathways, often

governed by ‘entropy’-like laws that imply the existence of yet one more information

source LD.

• Consequently, full system dynamics are characterized by a joint and path

dependent nonergodic information source uncertainty

H({Xi, X
i}, V, LD) ≤

∑
i

H(Xi, X
i) +H(V ) +H(LD) (2.2)

by the information theory chain rule (Cover and Thomas 2006).
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The joint information source H is fully-characterized by the information sources

Xi, X
i, V and LD. The chain rule, however, with the identification of information

as a form of free energy (Feynman 2000), ensures that preventing crosstalk between

information sources, as the electrical engineers will attest, is far more difficult than

embracing it as an essential underlying mechanism, subject to evolutionary exap-

tation for a great variety of uses. This is a fundamental point.

Individual dynamic paths can be assigned a value of that joint source uncer-

tainty, denoted by H(x) for a path x.

This ‘fundamental representation’ is now defined by individual dynamic path

values of source uncertainty and not represented as an ‘entropy’ function defined

for all high-probability paths by an underlying probability distribution (Khinchin

1957). Each path has a possibly unique H-value, but the functional form of that

value is not known in terms of some probability distribution.

In summary, the set {Xi, X
i} includes the internal interactive cognitive dual

information sources of the system of interest and their associated regulators, V is

taken as the information source of the embedding environment that may include

the actions and intents of adversaries/symbionts, as well as ‘weather’. LD is the

information source of the associated large deviations possible to the system, possibly

including ‘punctuated equilibrium’ evolutionary transitions.

Again, the full matrix of essential resources and their interactions has been pro-

jected onto a scalar rate index Z, according to the argument following Eq.(1). This

may not always be possible, leading to the multidimensional complexities described

in Wallace (2021a).

The underlying equivalence classes of developmental-behavioral-dynamic sys-

tem paths used to define groupoid symmetries can now be defined fully in terms of

the magnitude of individual path source uncertainties of individual dynamic paths

H(xj) such that xj = {x0j , x1j , ... xnj , ...} at times m = 0, 1, 2, ... n → ∞ alone.

Again, see Khinchin (1957) for details of the nonergodic limit argument. The es-

sential point is that individual paths of sufficient length have associated source

uncertainty scalar values that are not calculated as standard Shannon ‘entropies’

across some probability distribution.

It is possible to envision the equivalence classes of behavioral/developmental

paths as defined by the ‘game’ an organism is playing: growing from inception, for-

aging for food or habitat, evading predation, wound healing, mating/reproducing,

and similarly for fully mechanical systems. Paths within each ‘game’ are taken

as equivalent. As Weinstein (1996) shows in detail, this division of developmen-

tal/behavioral paths defines a groupoid. From a human perspective, sets of behav-

ioral paths associated with baseball, football, soccer, rugby, tennis, and so on, are

easily discernible and placed in appropriate equivalence classes.

Recall, as well, the conundrum of the ergodic decomposition of nonergodic in-

formation sources. It is formally possible to express a nonergodic source as the

composition of a sufficient number of ergodic sources, much as it is possible to

reduce planetary orbits to a Fourier sum of circular epicycles, obscuring the basic
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dynamics. Hoyrup (2013) discusses the problem further, finding that ergodic decom-

positions are not necessarily computable. Here, we finesse the matter by focusing

only on the values of the source uncertainties associated with dynamic paths.

3. Dynamics of cognitive systems

Since we assume the system to be nonergodic, each possible grammatical/syntactical

high probability ‘statement’ xj = {x1j , x2j , ...} emitted by the dual information

source will have it’s own value of source uncertainty, say Hj .

Since, as Feynman (2000) insists, information is a form of free energy, we can

write a Boltzmann pseudoprobability for based on enumeration of high probabil-

ity developmental pathways xj , j = 1, 2, ... available to the system – each with

uncertainty H(xj) ≡ Hj so that

Pj =
exp[−Hj/g(Z)]∑
k exp[−Hk/g(Z)]

(3.1)

Again, Hj is the source uncertainty of the high probability path j, not assumed

represented as a ‘Shannon entropy’ since do not restrict dynamics to ergodic sources.

g(Z) is a temperature analog scalar – possibly a scalar matrix function g(Z) – that

must be calculated from first principles.

This step directly imposes a version of the usual ‘free energy’ in statistical physics

as constructed from a partition function (Landau and Lifshitz 2007), using Feyn-

man’s (2000) central insight that ‘information’ is a form of free energy.

This argument is a generalization of the fundamental assumption behind the

Shannon-McMillan Theorem of information theory (Khinchin 1957): in the limit

of ‘infinite length’, it is possible to divide the full set of individual dynamic paths

into two distinct equivalence classes. The first is a small set of high probability

paths consonant with a characteristic ‘grammar’ and ‘syntax’ making sense within

the venue of the system of interest and its environment. The second set is a much

larger one of paths having vanishingly low probability that are not consonant with

grammar and syntax, a set of measure zero. Characterization of such ‘grammar’ and

‘syntax’ will almost never be trivial, as was the case of the Genetic Code (Marshall

2014).

Matters become rapidly more complicated.

The temperature-analog characterizing the system, g(Z) in Eq.(3.1), can be

calculated via a first-order Onsager nonequilibrium thermodynamic approximation

built from the partition function, i.e., the denominator of Eq.(3.1) (de Groot and

Mazur 1984).

We next define an ‘iterated free energy’ Morse Function F (Pettini 2007) as
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exp[−F/g(Z)] ≡
∑
k

exp[−Hk/g(Z)] ≡ h(g(Z))

F (Z) = − log[h(g(Z))]g(Z)

g(Z) = − F (Z)

RootOf
(

eX − h
(
−F (Z)

X

)) (3.2)

where X is a dummy variate and the sum is over all possible high probability devel-

opmental paths of the system, again, those consistent with an underlying grammar

and syntax. Recall that system paths not consonant with grammar and syntax con-

stitute a set of measure zero that has very many more members than the set of high

probability paths.

The differentiation of dynamic paths into high and low probability equivalence

classes of behaviors represents a first groupoid ‘symmetry breaking’, in the sense

of Weinstein (1996). Recall that equivalence classes lead canonically to groupoids,

which are a generalization of ‘ordinary’ groups in which there may not be products

defined between any two elements, and thus there may be very many unit elements.

Wallace (2022a) elevates this fact to a ‘big bang’ analog for the emergence of life.

Recall that Feynman (2000) – following Bennett – makes the direct argument

that information itself is to be viewed as a form of free energy, using Bennett’s

clever ideal machine that turns a message directly into work. By contrast, we are

concerned here with an iterated, rather than a direct, construction.

F , now a free energy, then becomes subject to symmetry-breaking transitions as

g(Z) varies (Pettini 2007). These symmetry changes, however, are not as associated

with physical phase transitions as represented by standard group algebras. Such

symmetry changes represent transitions from playing one ‘game’ to playing another.

For example, a cognitive system may engage in foraging behaviors that trigger a

predatory attack by another system. Then the game changes from ‘foraging’ to

‘escape’.

Thus ‘cognitive phase changes’ involve shifts between equivalence classes of high

probability developmental/behavioral pathways that are represented as groupoids.

Again, this is a generalization of the group concept such that a product is not

necessarily defined for every possible element pair, although multiple products with

multiple identity elements are defined (Brown 1992; Cayron 2006; Weinstein 1996).

Dynamics emerge via a first-order Onsager approximation akin to that of

nonequilibrium thermodynamics (de Groot and Mazur 1984) in the gradient of an

entropy measure constructed from the ‘iterated free energy’ F of Eq.(3.2). Recall

from the Onsager approximation that ∂Z/∂t ≈ ∂S/∂Z. The full development is
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S(Z) ≡ −F (Z) + ZdF (Z)/dZ

∂Z/∂t ≈ dS/dZ = f(Z)

f(Z) = Zd2F/dZ2

g(Z) =

−C1Z −
(∫ f(Z)

Z dZ
)
Z + C2 +

∫
f(Z) dZ

RootOf

(
eQ − h

(
−C1Z+(

∫ f(Z)
Z dZ)Z−C2−(

∫
f(Z)dZ)

Q

)) (3.3)

where the last relation follows from an expansion of the third part of Eq.(3.3) using

the second expression of Eq.(3.2).

Several central matters emerge:

• Since ‘RootOf’ may have complex number solutions, the temperature ana-

log g(Z) enters the realm of the ‘Fisher Zeros’ characterizing phase transition in

physical systems (e.g., Dolan et al. 2001; Fisher 1965; Ruelle 1964 Sec. 5). Such

phase transitions lie at the base of the punctuated accession to consciousness in the

Baars, and related, Global Workspace Models. Indeed, the ‘RootOf’ construction

in Eqs.(3.2) and (3.3) actually generalizes the Lambert W-function (e.g., Yi et al.

2010; Mezo and Keady 2015).

• Information sources are not microreversible, that is, palindromes are highly

improbable, e.g., ‘ eht ’ has far lower probability than ‘ the ’ in English, so that there

are no ‘Onsager Reciprocal Relations’ in higher dimensional systems. The necessity

of groupoid symmetries appears to be driven by this directed homotopy.

• Further, there will always be a delay in the rate of provision of Z, so

that, in Eq.(3.3), for example, f(Z) = β − αZ(t) – an exponential model hav-

ing Z(t) = (β/α)(1 − exp[−αt]) – where Z → β/α at a rate determined by α.

Other dynamics are possible, such as the ‘Arrhenius’, Z(t) = β exp[−α/t], with

f(Z) = (Z/α)(log(Z/β))2. However Z is constructed from the components C,Q
and M, so here, it is the scalar resource rate Z itself that counts.

Suppose, in the first expression of Eq.(3.3), it is possible to approximate the

sum across the high probability paths with an integral across some probability

distribution ρ(x) over the range x = 0 → ∞. Then, by the change-of-variables

theorem,

exp[−F/g(Z)] ≈
∫ ∞
0

ρ[H/g(Z)]dH =

∫ ∞/g

0/g

ρ(u)g(Z)du = g(Z) (3.4)

since
∫∞
0
ρ(u)du = 1.

g(Z) must be real-valued and positive. Then
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F (Z) = − log[g(Z)]g(Z)

g(Z) = −F (Z)/W [n,−F (Z)] (3.5)

where W is the ‘simple’ Lambert W-function that satisfies W [n, x] exp[W [n, x]] = x.

It is real-valued only for n = 0, −1 and only over limited ranges of x in each case.

In theory, specification of any two of the functions f, g, h permits calculation

of the third. h, however, is determined – fixed – by the internal structure of the

larger system. Similarly, ‘boundary conditions’ C1, C2 are externally-imposed, fur-

ther sculpting dynamic properties of the ‘temperature’ g(Z), and f determines the

rate at which the composite essential resource Z can be delivered. Both information

and other free energy/material resources are rate-limited.

A rate-of-cognition can be calculated according to the usual chemical kinetics

formalism (e.g., Laidler 1987):

L =

∑
Hj>H0

exp[−Hj/g(Z)]∑
k exp[−Hk/g(Z)]

L =

∫∞
H0
ρ[H/g(Z)]dH∫∞

0
ρ[H/g(Z)]dH

=

1

g(Z)

∫ ∞
H0

ρ[H/g(Z)]dH (3.6)

where H0 is the ‘activation level’ of the cognitive process.

The punctuated phase transitions implied by the RootOf constructs in Eqs.(3.2)

and (3.3) carry directly over into cognition rate calculations.

We provide a ‘simple’ example.

Suppose we have a two-state 2N-level system about a ‘detection level’ so that

H± = H0 ± δ for some small δ > 0. Thus the first expressions of Eq.(3.2) and

Eq.(3.6) become

exp[−F/g(Z)] = N [exp[−(H0 + δ)/g(Z)] + exp[−(H0 − δ)/g(Z)]]

= N exp[−H0/g(Z)]2 cosh[δ/g(Z)]

L =
1

1 + exp[2δ/g(Z)]
(3.7)

Solving the first expression in Eq.(3.7) for F [g(Z)] and then using the second

and third expressions of Eq.(3.3) for an ‘exponential’ model dZ/dt = f(Z) = β −
αZ produces a complicated equation that, when approximated to third order in δ

becomes
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−Z (ln(2) + ln(N))

(
d2

dZ2
g(Z)

)
+

Z

(
d2

dZ2 g(Z)

2g(Z)
2 −

(
d
dZ g(Z)

)2
g(Z)

3

)
δ2 ≈ β − αZ (3.8)

This can be explicitly solved for g(Z), and hence for L(Z). The solutions to this

approximation have two boundary conditions which we call C1 and C2.

Figure 1a shows a ‘Yerkes-Dodson’ cognition rate graph fixing N = 1, α =

1, δ = 1/10. Remember that, for an ‘exponential’ model, Z → β/α. β then varies

as the ‘arousal’, where we have taken C1 = −1 and C2 = −1/4.

The first part of figure 1a is the classic inverted-U signal transduction character-

istic of Yerkes-Dodson studies, where increasing ‘arousal’ at first raises attentional

focus, and then degrades it. The second part of 1a, a step function, characterizes

onset of ‘panic’ once a threshold in arousal is exceeded.

We can, via a stochastic version of the second part of Eq.(3.3), examine the

effect of increasing ‘noise’ on this system, beyond ‘arousal’. In particular, we fix β

at the maximum of the inverted-U, here β = 3, and use the Ito Chain Rule to study

cognition rate dynamics based on the stochastic differential equation

dZt = f(Zt)dt+ σZtdBt

= (β − αZt)dt+ σZtdBt (3.9)

where the second term represents classic ‘volatility’ under Brownian noise.

We then use the Chain Rule to calculate the nonequilibrium steady state average

for the cognition rate, < dLt >= 0, giving, in figure 1b, the ‘solution set’ {σ, Z}
under the conditions of figure 1a. For the general base relation, application of the

Ito Chain Rule to Z2 finds the condition for stability in variance is σ2/2 < α. Here,

with α = 1, a bifurcation phase transition becomes manifest well before the critical

value σ =
√

2.

The Mathematical Appendix extends the model to ‘embodiment,’ a central mat-

ter in robotics, by incorporating cognition and control under the single aegis of the

Rate Distortion Theorem, modulo the Feynman/Bennett identification of informa-

tion as a form of free energy.

4. What this model is and is not

Although Tononi’s ‘Integrated Information’ approach to consciousness invokes the

term ‘information’ as a kind of shibboleth (e.g., Tononi et al. 2016; Tegmark 2016),

nowhere does an asymptotic limit theorem corresponding to the construct appear.

In contrast to that work, what we do here is very much situated within the four

basic asymptotic limit theorems of information and control theories. Indeed, the-
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Fig. 1. a. A ‘Yerkes-Dodson’ cognition rate graph based on Eqs.(3.7) and (3.8). Here, N = 1, α =

1, δ = 1/10. Recall that Z → β/α. β then varies as the ‘arousal’. The boundary conditions are

C1 = −1, C2 = −1/4. The first part of the figure is the classic inverted-U signal transduction
characteristic of Yerkes-Dodson studies. The second is a step function to ‘panic’ once an arousal

threshold is exceeded. b. The solution set {σ, Z} for the nonequilibrium steady state relation
< dLt >= 0 based on figure 1a, taking β = 3. A bifurction phase transition is evident well before

the variance instability point σ =
√

2.

oretical progress in consciousness studies may depend on recognition of additional

asymptotic limit theorems.

Similarly, although we invoke both information-as-free-energy, and an iterated

free energy Morse Function based on that invocation, what we do is not at all like

Friston’s ‘Free Energy Principle’ (Bogacz 2017), seen as literally driving the world.

There is no comprehensive ‘principle’ here, any more than there is in Onsager’s ap-

proach to nonequilibrium thermodynamics: first order models can fail badly. More

specifically, the formalisms above are not written in stone, are not a ‘General Rel-

ativity of Consciousness’. They are an attempt to derive statistical tools for the

analysis of experimental and observational data on cognitive processes and their

dynamics, up to and including consciousness. Think of analogs to t-tests and re-

gression equations, but crafted by the theorems of information and control theories.

Nonetheless, what stands out here in particular are the punctuations inherent to

the RootOf constructs of Eqs.(3.2) and (3.3), to be characterized as exact analogs to

Fisher Zero phase transitions in physical systems, but involving symmetry-breaking

in groupoids, rather than groups. Punctuation is one of the most fundamental obser-

vations in the study of consciousness, via the in-and-out of the attention ‘spotlight’.

We can, however, also explore punctuation from a different, but parallel, perspec-

tive, reconsidering matters from the front of the elephant, as it were, using a network

model.
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5. Punctuation redux

Suppose a set of cognitive modules within a particular system in an embedding

environment becomes linked to solve a series of problems. A canonical example

might be riding a trail bicycle over a particularly rough course at high speed, then

to be followed by wound healing. The ‘no free lunch’ arguments of Wolpert and

MacReady (1997) become significant. The essential point (English 1996) is that if

an optimizer has been tuned to the most effective possible structure for a particular

kind of problem or problem set, it will necessarily be worst for some other problem

set, which must then have a different function optimizer for optimality. As Wallace

(2012) puts it,

Another way of stating this conundrum is to say that a com-

puted solution is simply the product of the information processing

of a problem, and, by a very famous argument, information can

never be gained simply by processing. Thus a problem X is trans-

mitted as a message by an information processing channel, Y , a

computing device, and recoded as an answer. By [a direct] ‘tuning

theorem’ argument [parallel to the Coding Theorem of information

theory], there will be a channel coding of Y which, when properly

tuned, is itself most efficiently ‘transmitted’, in a sense, by the prob-

lem – the ‘message’ X. In general, then, the most efficient coding

of the transmission channel, that is, the best algorithm turning a

problem into a solution, will necessarily be highly problem-specific.

Thus there can be no best algorithm for all sets of problems, al-

though there will likely be an optimal algorithm for any given set.

Something analogous has long been known, but from a distinctly different view-

point (Chiang and Boyd 2004): Shannon (1959) found a curious and provocative

duality between the properties of an information source with a distortion measure

and those of a channel. This duality is enhanced if we consider channels in which

there is a cost associated with the different letters. Solving this problem corresponds,

in a sense, to finding a source that is right for the channel and the desired cost. In a

somewhat dual way, evaluating the rate distortion function for a source corresponds

to finding a channel that is just right for the source and allowed distortion level.

We will use a related Rate Distortion perspective in the Mathematical Appendix

to study the necessary ‘embodiment’ of cognition and control in robotic systems.

From these considerations, it becomes clear that different challenges facing an

environmentally-embedded cognitive system must be met by different arrangements

of cooperating lower level cognitive modules. It is possible to make an abstract pic-

ture of this based only on the network of linkages between the information sources

dual to the physiological and learned unconscious cognitive modules (UCM) that

may become entrained into address of those challenges. The network of lower level

cognitive modules is reexpressed in terms of the information sources dual to them.
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Given two distinct problem classes (e.g., bicycle riding vs. wound healing), there

must be two markedly different wirings of the information sources dual to the avail-

able UCM.

The possible expansion of a closely-linked set of information sources dual to

the UCM into a global broadcast depends, for this model, on the underlying net-

work topology of the dual information sources and on the strength of the couplings

between the individual components of that network.

The simplest model of such phenomena is instantiated by phase transitions in a

random network.

The appearance of the Lambert W-function in the arguments above – for the

simple case h(g(Z)) = g(Z) – is of interest. The fraction of nodes within the ‘giant

component’ of a random network of N nodes – here, taken as interacting information

sources dual to unconscious cognitive processes – can be described in terms of the

probability of contact between nodes, p, as (Newman 2010)

W (0,−Np exp[−Np]) +Np

Np
(5.1)

giving the results of figure 2.

Note, in particular, the threshold for highly punctuated onset of a single giant

component in the random network case. This sort of dynamic is a central matter

for the high-speed neural processes that are the foundation of consciousness, seen

here as a necessarily stripped-down example of more general multiple tunable spot-

light physiological phenomena that can do much more, but only if they operate at

far slower rates: gene expression, immune function, tumor suppression, and so on

(Wallace 2022).

An important feature here is the topological tunability of the threshold dynamics

implied by the two limiting cases, the star-of-stars-of-stars vs. the random network.

Lambert W-functions thus appear to suggest existence of an underlying formal

network structure. For our purposes here – neural structures and their machine

analogs – we can envision the underlying abstract network to be a set of information

sources dual to unconscious cognitive phenomena within the brain. These become

linked by ‘Np’ crosstalk, in the context of a tunable topology that shifts somewhere

between the two limits of the figure.

Figure 6 of Dehaene and Changeux (2011) shows something similar.

Previous sections have abducted results from nonequilibrium thermodynamics

to consciousness theory, applicable to nonergodic, as well as ergodic, models of cog-

nition. Here, we abduct the Kadanoff renormalization treatment of physical phase

transitions (Wallace 2012), applying it to a reduced version of the iterated ‘free

energy’ Morse Function of Eq.(3.2).

Although a more general argument can be made, representing embodied con-

sciousness in itself, for simplicity, we project down on to the internal subsystem

dominated by C, the internal system bandwidth, envisioning a number of internal
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Fig. 2. Proportion of N interacting information sources dual to unconscious cognitive processes
that are entrained into a ‘giant component’ global broadcast as a function of the probability

of contact p for random and stars-of-stars-of-stars topologies. Tuning topologies determines the

threshold for ‘ignition’ to a single, large-scale, global broadcast.

cognitive submodules as connected into a topologically identifiable network having

a variable average number of fixed-strength crosstalk linkages between components.

The mutual information measure of crosstalk can continuously change, and it be-

comes then possible to conduct a parameterized renormalization in a now-standard

manner (e.g., Wilson 1971; Wallace 2022, Sec. 6.6).

The internal modular network linked by information exchange has a topology

depending on the magnitude of interaction. Define an interaction parameter, a real

number ω > 0, and examine structures characterized in terms of linkages set to

zero if crosstalk is less than ω, and renormalized to 1 if greater than or equal to

ω. Each ω defines, in turn, a network ‘giant component’ (Spenser 2010), linked by

information exchange greater than or equal to it.

Now invert the argument: a given topology of interacting submodules making

up a giant component will, in turn, define some critical value ωC such that network

elements interacting by information exchange at a rate less than that value will be

excluded from that component, will be locked out and not ‘consciously’ perceived.

ω is a tunable, syntactically dependent, detection limit depending on the instan-

taneous topology of the giant component of linked cognitive submodules defining,

by that linkage, a ‘global broadcast’.

For ‘slow’ systems (Wallace 2012) – immune response, gene expression, institu-

tional process – as opposed to the 100 ms time constant of higher animal conscious-

ness, there can be many such ‘global workspace’ spotlights acting simultaneously.
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Such multiple global broadcasts, indexed by the set Ω = {ω1, ω2, ...}, lessen the like-

lihood of inattentional blindness to critical signals, both internal and external. The

immune system, for example, engages simultaneously in pathogen and malignancy

attack, neuroimmuno dialog, and routine tissue maintenance (Cohen 2000).

6. A red flag

The previous sections have not, in fact, presented ‘a’ theory of consciousness.

Rather, they have explored a spectrum of models and modeling approaches that

might be adapted as tools for the empirical and observational study of conscious

phenomena involving organisms, machines, and their increasingly ubiquitous com-

posites. This may seem disappointing, but it reflects an important underlying re-

ality: there never can be ‘a’ theory of consciousness. Data are to be found across

a broad range of human studies, most particularly regarding the role of culture in

determining brain hard-wiring for basic perception. We follow closely chapter 13 of

Wallace and Wallace (2016).

Nisbett et al. (2001), consonant with a long line of research (e.g., Markus and

Kitayama 1991; Heine 2001), review an extensive range of empirical studies regard-

ing basic cognitive differences between individuals raised in East Asian and Western

cultural heritages. These are characterized, respectively, as ‘holistic’ and ‘analytic’.

Their argument is roughly as follows:

• Social organization directs attention to some aspects of the perceptual field at

the expense of others.

• What is attended to influences metaphysics.

• Metaphysics guides tacit epistemology, that is, beliefs about the nature of the

world and causality.

• Epistemology dictates the development and application of some cognitive pro-

cesses at the expense of others.

• Social organization can directly affect the plausibility of metaphysical assump-

tions, such as whether causality should be regarded as residing in the field vs. in

the object.

• Social organization and social practice can directly influence the development

and use of cognitive processes such as dialectical vs. logical ones.

• Thus tools of thought embody a culture’s intellectual history, tools have theo-

ries built into them, and users accept these theories, often unknowingly, when they

use these tools.

Masuda and Nisbett (2006), somewhat later, argue that research on perception

and cognition suggests that whereas East Asians view the world holistically, at-

tending to the entire field and relations among objects, Westerners view the world

analytically, focusing on the attributes of salient objects. Compared to Americans,

East Asians were more sensitive to contextual changes than to focal object changes,

These results suggest that there can be cultural variation in what may seem to be
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basic perceptual processes. Nisbett and Miyamoto (2005) argue that fundamental

perceptual processes are influenced by culture.

These findings establish a dynamic relationship between the cultural context and

perceptual processes, implying strongly that perception can no longer be regarded

as consisting of processes that are universal across all people at all times.

Wallace (2007), somewhat in parallel, explores analogous dynamics involving

inattentional blindness and culture.

Broadly, then, within human populations there can be no single model of ‘con-

sciousness’. This suggests, in turn, that those seeking to build conscious machines

should be prepared to explore a very wide dynamic landscape using a very adaptable

toolbox: ‘horses for courses’.

7. Implications for ‘machine consciousness’

Consciousness in higher animals is a necessarily stripped-down version of such com-

plex cognition/regulation dyads as gene expression, protein folding, wound healing,

immune maintenance/pathogen fighting, and similar institutional level phenom-

ena, all of which have the ‘luxury’ of relatively large characteristic response times

(Wallace 2012). These larger processes can assemble a shifting, tunable multiple-

workspace ‘workforce’ to address patterns of challenge or opportunity. Conscious-

ness, under evolutionary selection pressures, has emerged to operate with a 100

ms time constant across ‘wet chemistry’ neurons, modulo their order of magnitude

higher rate of consumption of metabolic free energy than other tissues. While this is

no small thing, such high speed requires single-workspace simplicity, backed-up by

‘hindbrain’ conditioned emotional responses that can be learned (or inherited) to

short-circuit lengthy conscious ruminations. Even very ‘stupid’ animals have really

good emotional tuning.

This constellation of evolutionary circumstance has some implications for ma-

chine design.

First, it should not be particularly difficult to construct a fast, single workspace

‘conscious machine’ that closely mimics the human tunable neuronal global

workspace system. Tie it to an AI that has ‘learned’ hyperrapid pattern responses

to some characteristic set of challenges, and you have an ‘emotional’ conscious ma-

chine.

Second, a particularly clever designer may want to mimic the more capable

multiple-workspace systems of gene expression, protein folding, immune response,

institutional function, and so on. High speed fighter aircraft, built as inherently

unstable to permit rapid maneuver, already use odd numbers of parallel control

systems to ‘vote’ on control dynamics. Such systems are resistant to inattentional

blindness and related failings of overfocus and thrashing.

Multiple-consciousness tunable global workspace machines, particularly when

coupled with high-speed AI ‘emotions’, will likely strongly dominate single-

workspace conscious machines under virtually all circumstances of fog-of-war con-
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frontation. See Wallace (2021) for a somewhat parallel argument focused on AI

alone. But such entities will surely be nothing like having the family cat on your

lap.

Machines are constructed to purpose, built around – and reflecting – the jobs

they are to do: ‘horses for courses’. Sometimes, it is true, machines made for one

purpose can serve another. Although it indeed seems possible to build machines

that parallel much of what we know of higher animal consciousness, their realms

of actual utility are far from clear, discounting the usual dystopian fantasies and

allied social constructions.

8. Mathematical Appendix

A brief reformulation

A centrality of control theory can be reformulated as a rate distortion problem

(Cover and Thomas 2006) involving the sending a ‘control signal’ along the ‘noisy

channel’ of the system being controlled, and then using a scalar distortion measure

to compare the ‘message’ sent with the actual behavior of the system itself. Recall

that, for a particular channel and a particular scalar average distortion measure D,

R(D) is defined the minimum channel capacity needed to keep average distortion

less than or equal to R. R(D) can be show to be convex in D, and this is a central

property. Typically, D → 0 only as R(D)→∞.

We again take R(D) as our basic (here, uniterated) free energy measure, and

define an ‘entropy’ as

S = −R(D) +DdR/dD (8.1)

subject to the ‘Onsager’ relation

dD/dt ∝ dS/dD = Dd2R/dD2 (8.2)

For the ‘worst case’ Gaussian channel, under the square distortion measure

(Cover and Thomas 2006)

R(D) =
1

2
log2(σ2/D), D ≤ σ2

R(D) = 0, D > σ2 (8.3)

Plugging in,

dD/dt =
1

2 log(2)D(t)

D(t) ∝
√
t (8.4)

where the last expression should be recognized as the standard diffusion result.
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We can even obtain a simple version of the Data Rate Theorem from this for-

malism.

In the absence of imposed ‘control’, in a large sense, Eq. (8.4) states that – for

a Gaussian channel – distortion simply grows under ‘ordinary’ diffusion.

This result, almost incidentally, validates the generalized Onsager nonequilib-

rium formalism used above. The method further serves for a heuristic derivation

of the relation between information and control theories, the Data Rate Theorem

(Nair et al. 2007) characterizing the minimum control information H needed to

stabilize an inherently unstable system.

Let us impose sufficient stabilizing ‘control free energy’ at some rate M(H) on

an inherently unstable system diffusing from control according to some monotonic

function of time, depending on the nature of the ‘control channel’. A necessary

condition for stability is

dD/dt = µDd2R/dD2 −M(H) ≤ 0

M(H) ≥ µDd2R/dD2 ≥ 0

H ≥ H0 ≡ max{M−1(µDd2R/dD2)}} (8.5)

Here, max represents the maximum value, noting that, if M is monotonic in-

creasing, so is the inverse function M−1. By the convexity of R(D), d2R/dD2 ≥ 0

(Cover and Thomas 2006).

Embodiment

‘Embodiment’ – the melding of control with information across an intelligent system

– emerges quite directly, in terms of Eqs.(3.4)-(3.6), since R : 0 → ∞. That is,

we again impose an appropriate probability density function ρ(ω, x) defined on

x : 0→∞, where ω is a parameter set, and write

exp[−F/g(Z)] =

∫ ∞
0

ρ(ω, R/g(Z))dR = g(Z)

F (Z) = − log[g(Z)]g(Z)

g(Z) =
−F (Z)

W [n,−F (Z)]

L =
1

g(Z)

∫ ∞
R0

ρ(ω, R/g(Z))dR (8.6)

W (n, x) is the Lambert W-function of order n and R0 is a minimum detection

threshold.

The standard physics approach takes ρ(ω,R) = exp[−R], leading to the cog-

nition rate L = exp[−R0/g(Z)]. In contrast, as a somewhat perverse example, we

instead take the more versatile chi distribution as the base, having distribution

function
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ρ(k,X) =
Xk−1e−

X2

2

2
k
2−1Γ

(
k
2

) (8.7)

with mode
√
k − 1 for k ≥ 1. We first set k = 5, as in figure 2a, with the mode at

X = 2.

The last expression in Eq.(8.6) gives

L =
Γ
(

k
2 ,

R2
0

2g2

)
Γ
(
k
2

)
= −

√
2

(
erf
(√

2
g

)√
π g3
√

2−
√
π g3
√

2− 4 e
− 2

g2 g2 − 16 e
− 2

g2

3

)
2
√
π g3

(8.8)

for k = 5, R0 = 2.

Taking dZ/dt = f(Z) = β − αZ in Eq.(3.3), so that Z(t)→ β/α, gives

F (Z) = ln(Z)Zβ − Zβ − Z2α

2
+ C1Z + C2 (8.9)

where C1 and C2 are characteristic boundary conditions.

Again, we take R0 in Eq.(8.6) at the mode of figure 3a, i.e., X = 2. Then,

setting α = 1, C1 = −1, C2 = 1, and using the Lambert W-function of order zero

gives the cognition rate in figure 3b as a function of increasing β. Recall that the

zero-order Lambert W-function W (0, x) is real-valued only for x ≥ − exp[−1]. In

consequence, the cognition rate displays a characteristic inverted-U signal transduc-

tion pattern analogous to the classic Yerkes-Dodson effect that describes cognition

under increasing levels of ‘arousal’.

Further, imposing a stochastic differential equation on Z as

dZt = (β − αZt)dt+ σZtdBt (8.10)

where dBt is Brownian noise, permits calculation of dLt using the Ito Chain Rule.

Figure 3c fixes β = 3, the peak of figure 3b, and presents the solution set {Z, σ} to

the averaging relation < dLt >= 0, again, using the Ito Chain Rule. The resulting

equations challenge the computer algebra program. Sufficient ‘noise’ σ drives the

system to failure.
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Fig. 3. a. Chi distribution of order k = 5, having a mode at X = 2. b. Cognition rate L(β)

for the distribution of a, setting R0 = 2, the distribution mode, assuming an exponential model
dZ/dt = β − αZ, with α = 1C1 = −1, C2 = 1 in the definition of F . c. Solution set {Z, σ} for

the relation < dLt >= 0 under the Ito Chain Rule, setting the system at β = 3 in figure 3b.
Sufficiently large σ drives the system to failure.

Figure 4a shows the chi distribution function ρ(1/2, x), bunched-up to the left,

roughly like the ‘standard’ physics model with ρ(ω,R/g) = exp[−R/g]. Figure 4b

shows the analogous inverted-U signal transduction result, setting R0 = 1 so that

L =

√
2 Γ
(
3
4

)
Γ
(

1
4 ,

1
2g2

)
2π

(8.11)

Figure 4c displays the stochastic analysis for Eq.(8.11), i.e., < dLt >= 0, again

taking β = 3. Here, however, the solution set shows onset of a bifurcation phase

transition at sufficient imposed noise σ, much like figure 1b.

It is not difficult, using the first part of Eq.(8.8), to extend figures 2 and 3 across

three dimensions, exploring a similar development allowing k to vary for a particular

fixed R0. In particular, the bifurcation in figure 3c disappears for sufficiently large

k, representing another groupoid equivalence class phase transition.

One inference from these results is that regression model analogs based on the

asymptotic limit theorems of information and control theories that describe cogni-

tion/consciousness will be as difficult to create, validate, and use as more ‘ordinary’
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statistical tools based on the Central Limit and other asymptotic limit theorems of

probability theory.

Fig. 4. a. Chi distribution of order k = 1/2, with ‘mode’ at zero. b. Signal transduction cognition

rate calculation for dZ/dt = f(Z) = β−αZ, with α,C1, C2 as in figure 3. The detection threshold

is R0 = 1. c. Solution set {Z, σ} for < dLt >= 0. In contrast with figure 3c, sufficiently large σ
triggers a bifurcation phase transition.
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