
HAL Id: hal-03946821
https://hal.science/hal-03946821

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A Methodology to Scale Containerized HPC
Infrastructures in the Cloud

Nicolas Grenèche, Tarek Menouer, Christophe Cérin, Olivier Richard

To cite this version:
Nicolas Grenèche, Tarek Menouer, Christophe Cérin, Olivier Richard. A Methodology to Scale Con-
tainerized HPC Infrastructures in the Cloud. Europar 2022, Aug 2022, Glasgow, United Kingdom.
pp.203-217, �10.1007/978-3-031-12597-3_13�. �hal-03946821�

https://hal.science/hal-03946821
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A methodology to scale containerized HPC
infrastructures in the Cloud

Nicolas Grenèche1, Tarek Menouer2, Christophe Cérin1,3 and Olivier Richard3

1 University of Paris 13, LIPN - UMR CNRS 7030, 93430 Villetaneuse, France
{nicolas.greneche,christophe.cerin}@univ-paris13.fr

2 Umanis Research & Innovation, 92300 Levallois-Perret, France
tmenouer@umanis.com

3 University of Grenoble Alpes, 38400 Saint-Martin-d’Hères, France
olivier.richard@imag.fr

Abstract. This paper introduces a generic method to scale HPC clus-
ters on top of the Kubernetes cloud orchestrator. Users define their tar-
geted infrastructure with the usual Kubernetes syntax for recipes, and
our approach automatically translates the description to a full-fledged
containerized HPC cluster. Moreover, resource extensions or shrinks are
handled, allowing a dynamic resize of the containerized HPC cluster
without disturbing its running. The Kubernetes orchestrator acts as
a provisioner. We applied the generic method to three orthogonal ar-
chitectural designs Open Source HPC schedulers: SLURM, OAR, and
OpenPBS. Through a series of experiments, the paper demonstrates the
potential of our approach regarding the scalability issues of HPC clus-
ters and the simultaneous deployment of several job schedulers in the
same physical infrastructure. It should be noticed that our plan does not
require any modification either in the containers orchestrator or in the
HPC schedulers. Our proposal is a step forward to reconciling the two
ecosystems of HPC and cloud. It also calls for new research directions
and concrete implementations for the dynamic consolidation of servers or
sober placement policies at the orchestrator level. The works contribute
a new approach to running HPC clusters in a cloud environment and
test the technique on robustness by adding and removing nodes on the
fly.

Keywords: Resource management in HPC Clusters and Clouds · Con-
tainers · Scalability · Orchestration · Aggregation and federation of HPC
Clusters in the Cloud

1 Introduction

Traditionally, HPC clusters have been all about numerical simulation. Scientists
and engineers would model complex systems in software on large-scale paral-
lel clusters to predict real-world outcomes. Financial risk management, compu-
tational chemistry, omics (genomics, proteomics, metabolomics, metagenomics,
and transcriptomics), seismic modeling, and simulating car crashes in software



2 Nicolas Grenèche, Tarek Menouer, Christophe Cérin and Olivier Richard

are good examples of numerical simulations. An HPC cluster gathers hardware
nodes managed by a single software called the batch scheduler. This scheduler
runs scientific workloads on the hardware according to scientists’ resource defini-
tion constraints. This point results in a very specialized infrastructure designed
for massively parallelized applications.

Over the past decade, however, what we consider to be an HPC cluster
has broadened considerably. Today, clusters are supposed to involve collecting
or filtering streaming data, using distributed analytics to discover patterns in
data, or training machine learning models. Usages include, nowadays, interactive
workloads and even, for the data science community, “long-running” distributed
services such as TensorFlow, Spark, or Jupyter notebooks. As HPC applications
have become more diverse, scheduling and managing workloads have evolved.
The diversity in applications pushed people to wonder if Cloud systems would
be a better computer systems and even if the Cloud would encompass all the
categories of scientific issues in a unified way. Our paper is a step in this last di-
rection. It addresses the following challenge: is it possible to execute various HPC
job schedulers on the same infrastructure, controlled by a Cloud orchestrator?

The Cloud orchestrator may play a similar role to the HPC batch scheduler.
However, the aim is slightly different. They both place active processes on hard-
ware resources, but these processes have a different natures. An HPC cluster is
designed to run non-interactive scientific workloads with a beginning and an end.
A Cloud orchestrator lets users define a targeted containerized infrastructure and
endeavors to satisfy their needs, including restarting failed components. In fact,
in system administration, orchestration is the management of computer systems
and software, as with the batch scheduler, and the automated configuration and
coordination of the computer system.

In a nutshell, we containerized several batch schedulers (OAR [4], SLURM,
and OpenPBS in our experiments). These schedulers are hosted on Cloud in-
frastructure (Kubernetes in our experiments). We attempt to solve the problem
of scaling, i.e., dynamically add or remove containerized HPC nodes (we will
reference them as workers), without altering neither the Cloud orchestrator nor
the HPC scheduler. This work results in a generic method to coordinate Cloud
orchestrator and HPC scheduler.

We face many scientific challenges in integrating the new features described
above, making the task challenging. First, the targeted Cloud orchestrator for our
experiments, Kubernetes, has limited support for the HPC types of workloads4.
Second, we must check that HPC workloads can run in containers and become
Kubernetes friendly. Third, end-users (i.e., people that submit a job to the HPC
scheduler) must not be aware that their computations run on a cloudified HPC
cluster.

The organization of the paper is as follows. Section 2 introduces some related
works on HPC cloudification. Section 3 introduce mainlines of our methodology
to position our contribution among these works. Section 4 introduces exhaustive

4 https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-
completion/



A methodology to scale containerized HPC infrastructures in the Cloud 3

experiences that allow the validation of our proposed approach. At last, we
introduce future works in section 5.

2 Related works

In this paper, we propose advanced integration into the Cloud of popular batch
schedulers and discuss the suitability of the methodology for the resonance be-
tween HPC and Cloud systems. First, we added a degree of difficulty with the
ability, for our proposal, to deploy and remove on the fly multiple batch sched-
ulers. More importantly, we developed a layer between the batch scheduler and
the Cloud orchestrator that dynamically adds or removes computational nodes,
thanks to dedicated mechanisms at the Cloud orchestrator level. Second, we also
imposed another constraint for the integration: to modify the orchestrator and
batch scheduler sides as little as possible. We mean to count first on the existing
mechanisms and not be intrusive in the current architectures. Notice that our
work is not related to scheduling jobs or pods but to a generic interposition
mechanism to glue HPC and Cloud middlewares.

The IBM Spectrum LSF Suites portfolio [6] redefines cluster virtualization
and workload management by integrating mission-critical HPC environments.
IBM Spectrum LSF Suites supports organizations using container technologies,
including Docker, Shifter, and Singularity. This feature streamlines an applica-
tion’s building, testing, and shipping, enabling an application stack to be de-
ployed on-premises consistently and in the Cloud. IBM Spectrum LSF is not
devoted to the containerization of HPC job schedulers.

Kubernetes, commonly stylized as K8s [7] is an open-source container orches-
tration system for automating software deployment, scaling, and management.
Kubernetes aimed to solve an entirely different problem than the traditional
problems solved by HPC clusters – delivering scalable, always-on, reliable web
services in Google’s Cloud. Kubernetes applications are assumed to be container-
ized and adhere to a cloud-native design approach. Pods which are groups of one
or more CRI-O5 or OCI6 compliant containers, are the primary constituents of
applications that are deployed on a cluster to provide specific functionality for an
application. Kubernetes provides features supporting continuous integration/de-
livery (CI/CD) pipelines and modern DevOps techniques. Health checks give
mechanisms to send readiness and liveness probes to ensure continued service
availability. Another differentiating feature is that Kubernetes is more than just
a resource manager; it is a complete management and runtime environment. Ku-
bernetes includes services that applications rely on, including DNS management,
virtual networking, persistent volumes, secret keys management, etc.

In [9], the authors address the problem of running HPC workloads efficiently
on Kubernetes clusters. They compare the Kubernetes’ default scheduler with
KubeFlux, a Kubernetes plugin scheduler built on the Flux graph-based sched-
uler, on a 34- node Red Hat OpenShift cluster on IBM Cloud. They also detail

5 https://cri-o.io/
6 https://opencontainers.org/



4 Nicolas Grenèche, Tarek Menouer, Christophe Cérin and Olivier Richard

how scheduling can affect the performance of GROMACS, a well-known HPC
application, and they demonstrate that KubeFlux can improve its performance
through better pod scheduling. In contrast with our work, authors work at the
level of one application (GROMACS), whereas we are working on containerizing
job-schedulers.

In [2], authors studied the potential use of Kubernetes on HPC infrastructure
for use by the scientific community. They directly compared both its features
and performance against Docker Swarm and bare-metal execution of HPC appli-
cations. They detailed some configurations required for Kubernetes to operate
with containerized MPI applications, explicitly accounting for operations such as
(1) underlying device access, (2) inter-container communication across different
hosts, and (3) configuration limitations. They discovered some rules that showed
that Kubernetes presents overheads for several HPC applications over TCP/IP
protocol.

In [12] authors argued that HPC container runtimes (Charliecloud, Shifter,
Singularity) have minimal or no performance impact. To prove this claim, they
ran industry-standard benchmarks (SysBench, STREAM, HPCG). They found
no meaningful performance differences between the used environments, except
modest variation in memory usage. They invite the HPC community to con-
tainerize their applications without concern about performance degradation.

In [16], authors describe a plugin named Torque-Operator. The proposed
plugin serves as a bridge between the HPC workload manager Torque and the
container orchestrator Kubernetes. The authors also propose a testbed architec-
ture composed of an HPC cluster and a big data cluster. The Torque-Operator
enables the scheduling of containerized jobs from the big data cluster to the
HPC cluster.

In [13], the authors show the usefulness of containers in the context of HPC
applications. They introduce the experience of PRACE (Partnership for Ad-
vanced Computer in Europe) in supporting Singularity containers on HPC clus-
ters and provide notes about possible approaches for deploying MPI applications
in using different use cases. Performance comparisons between bare metal and
container executions are also provided, showing a negligible overhead in the con-
tainer execution in an HPC context.

In [15] authors’ main concern is to define a model for parallel MPI application
DevOps and deployment using containers to enhance development effort and pro-
vide container portability from laptop to clouds or supercomputers. First, they
extended the use of Singularity containers to a Cray XC-series supercomputer
and, second, they conducted experiments with Docker on Amazon’s Elastic Com-
pute Cloud (EC2). Finally, they showed that Singularity containers operated at
native performance when dynamically linking Cray’s MPI libraries on a Cray su-
percomputer testbed. They also concluded that Amazon EC2 environment may
be helpful for initial DevOps and testing while scaling HPC applications better
suited for supercomputing resources like a Cray.

In [3] authors discuss several challenges in utilizing containers for HPC ap-
plications and the current approaches used in many HPC container runtimes.



A methodology to scale containerized HPC infrastructures in the Cloud 5

These approaches have been proven to enable the high-performance execution
of containers at scale with the appropriate runtimes.

In [14], authors introduce a technique called personal cluster, which reserves
a partition of batch resources on the user’s demand in a best-effort manner.
One individual cluster provides a private cluster dedicated to the user during a
user-specified period by installing a user-level resource manager on the resource
partition. According to the results obtained in this study, the proposed tech-
nique enables cost-effective resource utilization and efficient task management.
It provides the user a uniform interface to heterogeneous resources regardless of
local resource management software.

In [1], the authors highlight issues that arise when deploying network ad-
dress translation through containers. In this paper, the authors concentrate on
Docker as the container technology of choice and present a thorough analysis of
their networking model, focusing on the default bridge network driver used to
implement network address translation functionality.

In[10], the authors propose to test container portability on three different
state-of-the-art HPC architectures (Intel Skylake, IBM Power9, and Arm-v8)
and compare three critical container implementations. From the outcomes of all
this, the authors hope to provide system administrators, facility managers, HPC
experts, and field scientists with valuable research for guidelines and use-case
examples.

3 Methodology

This section describes our methodology from a macro point of view. In the next
section, we will go further in implementation details that refer to the micro point
of view. The current branch outlines the method not specifically related to the
three evaluated HPC schedulers. Our explanation is divided into two parts. First,
we enumerate all information users must feed to categorize their Pods. Then, we
describe all underlying services that we must develop to configure or reconfigure
the containerized HPC infrastructure to match the resources requested by users
from Kubernetes. The term ”user” relates to the person who defines and instan-
tiates the containerized HPC cluster. The term ”developer” is used to determine
the person who develops services used for coupling the Cloud orchestrator and
the job scheduler.

3.1 Required information at a user level

This section is all about users. They describe the Pods composing the targeted
containerized HPC clusters, and these Pods can have two roles depending on the
hosted service. There are two primary services: schedulers and workers. Sched-
ulers decide where to place the jobs on the infrastructure regarding their resource
constraints. The worker is a service on HPC nodes that executes the job. In our
method, users must supply essential information in the Pod definition. The list-
ing 1.1 is a shortened example of a set of definitions for Workers. Users write



6 Nicolas Grenèche, Tarek Menouer, Christophe Cérin and Olivier Richard

these listings. Let’s go on with the comment on this listing to understand the
main requirements.

On line 2, we can see that Workers Pods are defined as a StatefulSet. A
StatefulSet is a set of identical Pods that manages stateful applications and
guarantees the ordering and uniqueness of these Pods. A StatefulSet contains
Pods based on identical container specifications. Statefulset also maintains a
sticky identity for each Pod. The keyword replicas (line 9) gives the number of
instanced Pods. On line 7, the label role informs on the type of Pod (Scheduler
or Worker). Here, we have a worker Pod. In HPC clusters, homogeneous nodes
are frequently gathered in partitions or queues (the denomination may differ
from one HPC scheduler to another one). In line 13, we label this set of Pods
with partition set to COMPUTE (a partition is a set of nodes). Line 17 to 21
gives the resource constraint required by the Worker Pod to the Kubernetes
orchestrator. Here, we request 2 CPUs. In a nutshell, this example instantiates
two Pods with two CPUs each in the COMPUTE partition.

1 apiVersion: apps/v1

2 kind: StatefulSet

3 metadata:

4 name: hpc -node

5 namespace: hpc -nico

6 labels:

7 role: worker

8 spec:

9 replicas: 2

10 template:

11 metadata:

12 labels:

13 partition: COMPUTE

14 containers:

15 - name: <my_worker_name >

16 image: <my_hpc_sceduler_image >

17 resources:

18 limits:

19 cpu: "2"

20 requests:

21 cpu: "2"

Listing 1.1. Example of a user-defined Worker

3.2 Configuration services

This section explains services supplied by developers. At a glance, there are two
sets of services: initialization and resource polling. These two sets run sequen-
tially, one after the other. When the initialization phase is over, the resource
polling starts and lasts until the whole containerized HPC cluster revocation.

The initialization service is an initContainer that runs before any Worker
or Scheduler Pod. An initContainer is a container that runs before any reg-
ular container of the Pod. Standard containers start when the initContainer



A methodology to scale containerized HPC infrastructures in the Cloud 7

ends successfully, i.e., the containerized process exits with return code zero.
In our method, the initContainer aims at bootstrapping configuration for
both Worker and Scheduler Pods. From the scheduler’s point of view, this boot-
strapping can be mapped to a configuration of a scheduling algorithm, various
spool directories, PID file location, etc. From the worker’s point of view, the
initContainer locates the Pod hosting the scheduler.

The resource polling aims to watch the StatefulSets set by users and trans-
late them to the containerized HPC cluster, specifically the Scheduler Pod. The
resources polling service is a program that connects to the Kubernetes API to
get worker Pods’ properties. In our previous example described in listing 1.1, the
resource polling service will add two nodes with two CPUs each in the COMPUTE
partition of the scheduler. This program may also restart the Scheduler Pod if it
is needed. The resources polling program is embedded in a sidecar container of
the Scheduler Pod. A sidecar container is a regular container that interacts with
the Pod’s main container(s). Most of the time, the interaction is a configura-
tion update, which is the case here. The sidecar container updates the scheduler
configuration. For instance, if the user patches his containerized HPC cluster
StatefulSets to add a worker, the sidecar container automatically updates the
scheduler configuration with this newcomer. This hint enables dynamic scaling
of the containerized HPC cluster.

These two services, namely initialization and resource polling, are located in
containers and deployed aside from the containerized HPC cluster. Consequently,
neither HPC schedulers nor Kubernetes the orchestrator need to be modified.
The only requirement for our method is adding RBAC policies to enable read
access to the Pods’ attributes from the Kubernetes API. The containerized HPC
cluster can be instanced in a dedicated namespace to mitigate information leaks
that may result from such a security policy. Figure 1 sums up all these interac-
tions.

4 Experimentations

4.1 Outline

This section applies our methodology to the three major open-source HPC job
schedulers: SLURM, OAR, and OpenPBS. We experience several scenarios to
check the consequences of scaling (up or down) workers’ containers. We use
Kubernetes / CRIO v1.22, SLURM v21.08.5, OAR v2.9, OpenPBS v20.0.1 and
OpenMPI v4.1.2. The section aims at highlighting the most relevant points of
the approach, making the three implementations similar.

4.2 Micro description of the methodology

In this section, we go further in detail on our method implementation. We first
discuss the specificities of each HPC job scheduler that impact our methodology.
Then, we supply the scaling results of the three containerized HPC clusters.



8 Nicolas Grenèche, Tarek Menouer, Christophe Cérin and Olivier Richard

Pods definition 
in statefulSet 

initContainer

Sidecar
Container

Scheduler
Container

initContainer

Worker
Container

(2) Sets 
initial 

Configuration

(2) Sets
Scheduler 
location

(1) Gets Scheduler location

(3) Gets Worker
Pods specification

Phase 2 container

Phase 1 containers

Update 
resources 

configuration 

(1) Gets initial
configuration

Fig. 1. Methodology: the macro level

SLURM job scheduler is built upon two services: Slurmctld and Slurmd. Slurm-
ctld is the scheduler, and Slurmd is the worker. All HPC nodes are described
in a plain text file owned by the scheduler. We configure SLURM in the con-
figless mode: the workers connect to the scheduler to retrieve the configuration.
This configuration requires the Munge service to authenticate communications
between workers and the scheduler. As a result, scheduler Pod has four contain-
ers: an initContainer, Slurmctld, Munge, and a sidecar container that gen-
erates or updates the configuration file. The worker Pod has three Pods: an
initContainer, Slurmd, and Munge.

Our contributions are based on introducing initContainer for Slurmd and
Slurmctld and the Slurmctld’s sidecar container. Slurmctld’s initContainer

generates a minimal configuration that enables Slurmctld to start. Slurmd’s
initContainer locates the Slurmctld service to retrieve configuration.

We have an initContainer for both Slurmctld and Slurmd Pods. Slurm-
ctld’s sidecar container is responsible for configuration updates when nodes are
added or suppressed from containerized HPC cluster. SLURM does not sup-
port a comprehensive dynamic creation/suppression of his nodes in his current
state. However, a relatively safe method is to restart Slurmctld. Then, in con-
figless mode, all attached Slurmd daemons will reread their configuration. This
method has limitations, and we will discuss them below.

Consequently, when a modification is detected in the containerized HPC clus-
ter’s topology, the sidecar container modifies the configuration file and sends a



A methodology to scale containerized HPC infrastructures in the Cloud 9

SIGTERM signal to the Slurmctld process. We use 7 to supervise the Slurmctld
process. Thus, when Slurmctld exits due to the SIGTERM reception, Daemon-
tools’ manage process restarts it gracefully without crashing the container.

OpenPBS job scheduler hosts several services. The process pbs_sched is the
scheduler itself, pbs_comm handles the High Availability, and pbs_server.bin

communicates with worker nodes to execute users’ jobs. This process also inter-
acts with a Postgres database to store resource descriptions (such as workers’
specifications) and job information. We have pbs_mom on the worker node, which
receives jobs from the PBS server to execute them on the node. The scheduler
Pod has three containers: an initContainer that creates the configuration file
for the PBS server, a container that hosts all the processes composing the PBS
server, and the sidecar container that registers or unregister worker from the
PBS server’s database.

The containerization of OpenPBS follows the same scheme as SLURM. The
initContainer is likely to be the SLURM’s. It creates the configuration file for
PBS server Pod and worker Pod. The sidecar container triggers the commands
to add or delete resources in the PBS server database at each containerized HPC
cluster’s topology modification. OpenPBS and SLURM are very close regarding
our methodology because they work on the same pattern of server/agent, and
these two components are more or less coupled. We now consider a third HPC
scheduler called OAR that relies on SSH for interactions between schedulers and
workers.

OAR job scheduler is composed of several processes. A central one executes an
automaton that reacts to all events from jobs’ and nodes’ states and initiates ap-
propriate action by launching corresponding processes like scheduling round, job
launching, and nodes’ checking. All states related to jobs, nodes, and scheduling
decisions are stored in a Postgres database. OAR is well suited for container-
ization because workers and schedulers are loosely coupled, making it easier to
deal with synchronization. An initContainer in the scheduler Pod initiates a
configuration for the Almighty service that drives OAR cluster resources. An
initContainer is deployed aside from worker Pods to get the scheduler Pod
location. Then, a sidecar container is executed aside from the scheduler server
container inside the scheduler Pod to add or remove workers according to re-
sources defined on the StatefulSets.

4.3 Experimental results

We investigate in this section some challenges of doing HPC in the Cloud. The
main criterion for addressing them is the robustness of the approach because the
behavior of the Cloud system and the applications running under the supervision
of the HPC job schedulers is correct when dynamically adding or removing
nodes attached to the HPC schedulers. We do not provide a performance metric

7 https://cr.yp.to/daemontools.html



10 Nicolas Grenèche, Tarek Menouer, Christophe Cérin and Olivier Richard

such as the overhead of the containerization but a measurable quality metric.
The proposed approach can scale the containerized clusters dynamically without
interfering with already running or scheduled user jobs.

Thus, we explored several scenarios to evaluate how each HPC scheduler
behaves when resources (nodes) are added or removed. We qualify the impact
on pending and running jobs. For each scenario, we submitted MPI and non-MPI
jobs. The MPI job is a Pi computation with a Monte Carlo method. The non-
MPI job is a multi-threaded infinite computation. The nature of jobs does not
matter, meaning that jobs with MPI communication and without communication
are both running correctly. We want to keep nodes busy and generate MPI
communications while adding or removing workers’ containers on the fly. In
Table 1, we have four scenarios that are declined for each of the three evaluated
job schedulers. There are two states of jobs regarding the queue of requests in
an HPC scheduler: pending (the job is waiting for resources) and running (the
job is running somewhere on the HPC cluster nodes). We consider the impact
of growth and shrinking workers’ containers for each state. In Table 1, a None
value means that we do not encounter any problem, also suggesting that the
execution was correct.

All the scenarios that we now detail realize a functional validation of our im-
plementation according to our methodology for containerization. This artifact is
concerned with Section 4 (Experimentations) of our Paper ”A methodology to
scale containerized HPC infrastructures in the Cloud”. The artifact consists of
a set of virtual machines from where you can deploy a comprehensive Kuber-
netes cluster from an Ansible receipt. Then, on this Kubernetes cluster, you can
deploy three major HPC schedulers (OpenPBS, OAR, and SLURM) as a set of
pods. Sample codes are supplied for each HPC scheduler to check the impact
of dynamic growth or shrink of the containerized HPC scheduler on pending
and running jobs. This artifact is provided as a single .pdf file containing all
URLs required to set up, automatically, the experimental material that runs on
the virtual machines. URLs points to an OVA file containing VMs and GitHub
repositories that host the Kubernetes Ansible receipt and Dockerfiles, and Ku-
bernetes manifests for each HPC scheduler.

4.4 Impact on pending jobs

(1) Workers addition The first scenario characterizes the state of pending
jobs while worker nodes are added. We launch jobs (MPI and non-MPI) on the
containerized HPC cluster to consume resources. Then, when it becomes fully
occupied, we submit a non-MPI job (i.e., that does not require communications
between workers). This job gets the pending state, waiting for resources. We
expanded the containerized HPC cluster with additional workers. The pending
non-MPI job is scheduled and ends with no errors on each evaluated HPC sched-
uler. To complete the first scenario, we submit again a bunch of mixed MPI and
non-MPI jobs to consume all resources; then, we submit an MPI job. This job
is pending.



A methodology to scale containerized HPC infrastructures in the Cloud 11

Furthermore, we expanded the containerized HPC cluster with additional
workers. The MPI job is scheduled and fails with SLURM. The reason is that
the MPI job is run with srun. The srun command instantiates the MPI commu-
nication infrastructure. The first MPI job scheduled on newcomer workers fails.
Then, the second will work. When new nodes are added on a SLURM cluster, a
reboot of slurmctld and each slurmd service is required. Dynamic nodes addition
will be fully supported in the 23.02 version of SLURM 8.

(2) Workers removal The second scenario characterizes the state of pending
jobs while worker nodes are removed. We target free workers (i.e., that does not
run any job). We run several jobs to keep the containerized HPC cluster busy.
The idea is to have some free workers but not enough to satisfy the requirements
of pending jobs. We remove these free workers from the containerized HPC
cluster, and the pending jobs are not impacted.

4.5 Impact on running jobs

(3) Workers addition We launch both MPI and non-MPI jobs. While they
are running, we add workers. Jobs keep running and end without any errors for
each containerized job scheduler. Workers’ addition has no impact on running
jobs.

(4) Workers removal We launch both MPI and non-MPI jobs, but we keep
some workers free. While jobs are running, we remove free workers. Jobs run
and end without any error for each containerized job scheduler, and workers’
removal has no impact on running jobs.

Scenarios SLURM OpenPBS OAR

(1) Impact on pending jobs when re-
sources are added

Fail None None

(2) Impact on pending jobs when re-
sources are removed

None None None

(3) Impact on running jobs when re-
sources are added

None None None

(4) Impact on running jobs when re-
sources are removed

None None None

Table 1. Results of experimentation

8 https://slurm.schedmd.com/SLUG21/Roadmap.pdf



12 Nicolas Grenèche, Tarek Menouer, Christophe Cérin and Olivier Richard

4.6 Short-term upcoming perspectives

In our experimentation, we containerized three major HPC schedulers. We eval-
uated the impact of containerized workers’ growth or shrink for each of them. As
all scenarios went well (except for the lack of an upcoming feature in SLURM),
we demonstrated the potential of building a scalable, fully containerized HPC
cluster in Cloud infrastructure. Consequently, a middle-term perspective for our
work is to add a controller in Kubernetes that gets the state of containerized
HPC cluster’s queue. The sidecar containers will act as proxies between this
Controller and the HPC scheduler. In our current implementation, the sidecar
container adds or manually removes resources without considering the queue’s
state. In [11], authors introduce fine-grain applicative metrics to autoscale pods
in a Kubernetes cluster.

Similarly, a possible enhancement is making our Controller use the queue
state as an applicative metric to extend or shrink the containerized HPC cluster
automatically. In Figure 2 we exhibit our targeted architecture at mid-term
and according to the previous discussion. The primary enhancement regarding
Figure 1 is the third and fourth steps: Gets queue state and Informs Controller.
These steps will supply metrics to the Controller, allowing him to decide if he
must add or remove worker pods.

Controller

Worker Pods pool

initContainer

Sidecar
Container 

Proxy

Scheduler
Container

initContainer

Worker
Container

(2) Sets 
initial 

Configuration

(2) Sets
Scheduler 
location

Phase 2 container

Phase 1 containers

(3) Gets queue 
state 

(6) Updates 
configuration 

(1) Gets location 
of Scheduler

(1) Gets initial 
Configuration

(4) Informs 
Controller

(5) Add or remove Pods

Fig. 2. Evolution of the architecture



A methodology to scale containerized HPC infrastructures in the Cloud 13

5 Conclusion and long-term perspectives

This paper experimented with a method to build scalable containerized HPC
clusters in the Cloud. We containerized three central HPC schedulers: SLURM,
OpenPBS, and OAR. They all can be jailed in containers, and our experimen-
tation demonstrates that scaling jobs do not impact running or pending jobs
(except for SLURM, but this point will be handled in the upcoming release).
The next step is to develop a Kubernetes controller to handle the dynamic scal-
ing of the containerized HPC cluster. This specific contribution is part of broader
work on mixing HPC and Cloud computing, and studying converged infrastruc-
ture. As an example, in [8], we developed a scheduling strategy that gathers
containers belonging to the same namespace on the same node. In doing this, we
concentrate our effort on scheduling issues for the server consolidation problem.
Consolidation is also a tremendous problem in HPC.

Converged computing is a paradigm that aims to offer HPC performance,
efficiency, and sophisticated scheduling, with cloud benefits. While orchestration
frameworks like Kubernetes offer several advantages such as resiliency, elasticity,
portability, and manageability, they are not performance-oriented to the same
degree as HPC. Our vision of converged computing is first to put into the Cloud
the HPC ecosystems and not the applications supervised by the cloud orches-
trator. As pointed out above, through the example of scheduling containers in
the same namespace, we separate the concerns related to containers manage-
ment and scheduling and those related to the ecosystems containerization. In
short, the granularity of the containerization is not the same; hence different
approaches and different issues.

The implementation of a controller will also serve, in the future, to reinforce
the strength and weaknesses of our approach. Moreover, it would be interest-
ing to investigate the monetary costs of running multiple additional containers
(e.g., the HPC scheduler or the sidecar container) alongside the compute node
containers required for executing user applications. At last, when the controller
is implemented, we will be ready to study if they are specific limits to the scal-
ability of the proposed approach concerning scheduling options as opposed to
having an HPC scheduler that handles a physical cluster. Some preliminary re-
sults show that we do not have scalability issues, but they must be comforted.

Acknowledgements and Data Availability Statement. The testbed used
during the current study is available in the Figshare repository: https://doi.
org/10.6084/m9.figshare.19952813 [5].

References

[1] A. Amirante and S. P. Romano. “Container NATs and Session-Oriented
Standards : Friends or Foe ?” In: IEEE Internet Computing 23.6 (2019),
pp. 28–37.



14 Nicolas Grenèche, Tarek Menouer, Christophe Cérin and Olivier Richard

[2] A. M. Beltre et al. “Enabling HPC Workloads on Cloud Infrastructure Us-
ing Kubernetes Container Orchestration Mechanisms”. In: 2019 IEEE/ACM
International Workshop on Containers and New Orchestration Paradigms
for Isolated Environments in HPC (CANOPIE-HPC). 2019, pp. 11–20.

[3] R. S. Canon and A. Younge. “A Case for Portability and Reproducibility of
HPC Containers”. In: 2019 IEEE/ACM International Workshop on Con-
tainers and New Orchestration Paradigms for Isolated Environments in
HPC (CANOPIE-HPC). Los Alamitos, CA, USA: IEEE Computer Soci-
ety, Nov. 2019, pp. 49–54. doi: 10.1109/CANOPIE-HPC49598.2019.00012.
url: https://doi.ieeecomputersociety.org/10.1109/CANOPIE-
HPC49598.2019.00012.

[4] Nicolas Capit et al. “A batch scheduler with high level components”. In:
Cluster computing and Grid 2005 (CCGrid05). Cardiff, United Kingdom:
IEEE, 2005. url: https://hal.archives-ouvertes.fr/hal-00005106.

[5] Nicolas Greneche et al. Artifact and instructions to generate experimental
results for Euro-Par 2022 conference proceedings: A methodology to scale
containerized HPC infrastructures in the Cloud. June 2022. url: https:
//doi.org/10.6084/m9.figshare.19952813.

[6] IBM Spectrum LSF – see https://www.ibm.com/downloads/cas/VEO91OVO.
Spectrum LSF.

[7] Kubernetes – see https://kubernetes.io/. k8s.
[8] Tarek Menouer et al. “Towards an Optimized Containerization of HPC

Job Schedulers Based on Namespaces”. In: IFIP International Conference
on Network and Parallel Computing. Springer. 2021, pp. 144–156.

[9] C. Misale et al. “It’s a Scheduling Affair: GROMACS in the Cloud with the
KubeFlux Scheduler”. In: 2021 3rd International Workshop on Contain-
ers and New Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC). Los Alamitos, CA, USA: IEEE Computer Society, Nov.
2021, pp. 10–16. doi: 10 . 1109 / CANOPIEHPC54579 . 2021 . 00006. url:
https://doi.ieeecomputersociety.org/10.1109/CANOPIEHPC54579.

2021.00006.
[10] O. Rudyy et al. “Containers in HPC: A Scalability and Portability Study in

Production Biological Simulations”. In: 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). Los Alamitos, CA, USA:
IEEE Computer Society, May 2019, pp. 567–577. doi: 10.1109/IPDPS.
2019.00066. url: https://doi.ieeecomputersociety.org/10.1109/
IPDPS.2019.00066.

[11] Salman Taherizadeh and Vlado Stankovski. “Dynamic Multi-level Auto-
scaling Rules for Containerized Applications”. In: The Computer Journal
62.2 (May 2018), pp. 174–197. issn: 0010-4620. doi: 10.1093/comjnl/
bxy043. eprint: https://academic.oup.com/comjnl/article- pdf/
62/2/174/27736749/bxy043.pdf. url: https://doi.org/10.1093/
comjnl/bxy043.

[12] A. Torrez, T. Randles, and R. Priedhorsky. “HPC Container Runtimes
have Minimal or No Performance Impact”. In: 2019 IEEE/ACM Interna-



A methodology to scale containerized HPC infrastructures in the Cloud 15

tional Workshop on Containers and New Orchestration Paradigms for Iso-
lated Environments in HPC (CANOPIE-HPC). Los Alamitos, CA, USA:
IEEE Computer Society, Nov. 2019, pp. 37–42. doi: 10.1109/CANOPIE-
HPC49598.2019.00010. url: https://doi.ieeecomputersociety.org/
10.1109/CANOPIE-HPC49598.2019.00010.

[13] V. Sande Veiga et al. “Evaluation and Benchmarking of Singularity MPI
containers on EU Research e-Infrastructure”. In: 2019 IEEE/ACM In-
ternational Workshop on Containers and New Orchestration Paradigms
for Isolated Environments in HPC (CANOPIE-HPC). Los Alamitos, CA,
USA: IEEE Computer Society, Nov. 2019, pp. 1–10. doi: 10.1109/CANOPIE-
HPC49598.2019.00006. url: https://doi.ieeecomputersociety.org/
10.1109/CANOPIE-HPC49598.2019.00006.

[14] Yang-Suk Kee et al. “Enabling personal clusters on demand for batch
resources using commodity software”. In: 2008 IEEE International Sym-
posium on Parallel and Distributed Processing. 2008, pp. 1–7.

[15] A. J. Younge et al. “A Tale of Two Systems: Using Containers to De-
ploy HPC Applications on Supercomputers and Clouds”. In: 2017 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). Los Alamitos, CA, USA: IEEE Computer Society, Dec. 2017,
pp. 74–81. doi: 10 . 1109 / CloudCom . 2017 . 40. url: https : / / doi .

ieeecomputersociety.org/10.1109/CloudCom.2017.40.
[16] Naweiluo Zhou et al. “Container orchestration on HPC systems”. In: 2020

IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE.
2020, pp. 34–36.


