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Abstract
In this paper, our aim is mathematical analysis and numerical simulation of a
prey-predator model to describe the effect of predation between prey and predator
with nonlinear functional response. First, we develop results concerning the
boundedness, the existence and uniqueness of the solution. Furthermore, the
Lyapunov principle and the Routh–Hurwitz criterion are applied to study respectively
the local and global stability results. We also establish the Hopf-bifurcation to show
the existence of a branch of nontrivial periodic solutions. Finally, numerical
simulations have been accomplished to validate our analytical findings.
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1 Introduction
The study of the dynamics relationship of the prey-predator system has long been and will
continue to be one of the dominant subjects in both ecology and mathematical ecology due
to its universal existence and importance. In recent decades, mathematics has had a huge
impact as a tool for modeling and understanding biological phenomena. Mathematical
modeling of the population dynamics of a prey-predator system is an important objective
of mathematical models in biology, which has attracted the attention of many researchers
[1–4]. Many authors, such as Holling 1959 [5], Getz 1984, and Arditi and Ginzburg 1989
[6, 7], studied the prey-predator system with various functional responses. These differ-
ent types of functional responses present a key element for understanding the dynamics
of these populations. The main questions concerning population dynamics concern the
effects of interaction in the regulation of natural populations, the reduction of their size,
the reduction of their natural fluctuations, or the destabilization of the equilibria in oscil-
lations of the states of the population [8–13]. The predator-prey relationship is important
to maintain the balance between different animal species. Without predators, some prey
species would force other species to disappear due to competition. Without prey, there
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would be no predators. The main feature of predation is therefore a direct impact of the
predator on the prey population.

It is in this line of thought that we are interested here in the study of the dynamics of
prey-predator populations with an alternative food resource for predators, meaning that
the predator population can survive if there is no prey. Our objective is to understand what
is the impact of predation on the dynamics of prey and predator species, in order to avoid
any extinction of the two species.

Several authors have studied the prey-predator model with logistics growth in both
species. Haque in [14] proposed a prey-predator model with logistic growth in both
species and a linear functional response. The author assumed that the predator has lo-
gistic growth rate since it has sufficient resources for alternative foods; and it is argued
that alternative food sources may have an important role in promoting the persistence of
predator-prey systems. Guin in [15] studied a prey-predator model with logistic growth
in both species and using ratio-dependent functional for predators.

Motivated by the above works, we consider the following predator-prey model [14]:

⎧
⎨

⎩

dN
dt = r1(1 – N

K1
)N – bNP, N(0) = N0 > 0,

dP
dt = r2(1 – P

K2
)P + ebNP, P(0) = P0 > 0,

(1.1)

where
• N(t) and P(t) stand for the prey and predator density, respectively, at time t.
• r1, K1, b, e are positive constants that stand for prey intrinsic growth rate, the prey

carrying capacity of the environment, predation rate per unit of time, and conversion
rate, respectively.

• The term bNP models prey consumption due to predation.
• r2, K2 represent respectively the predator intrinsic growth rate and the predator

carrying capacity of the environment.
Some similar models have appeared in the recent literature [14, 15]. We remark that the
main new distinctive feature is the inclusion of Holling function response of type II. Thus,
by incorporating Holling function response of type II, we describe the predation strategy.
Indeed, many researchers suggested that Holling type II response is the characteristic of
predators. It determines the stability and bifurcation dynamics of the model. Usually, the
feeding rate of predator is saturated, so it is more realistic to consider prey dependence
functional response. Our model differs from the one of [14], since in the latter the term of
predation is linear. In fact, we consider Holling function response of type II defined by

φ(x) =
Bα0x

1 + Bα1x
,

where
• α0 and α1 represent respectively the search and capture time of the prey,
• B is the predation rate per unit of time.

Indeed, physiological absorption capabilities of prey are limited, and even if a large number
of prey is available, a predator will not be able to absorb prey numbers beyond this limit, it
is more realistic to design a response function with a saturation effect with the density of
prey. Thus, Holling function response of type II is more appropriate. In order to sustain the
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coexistence of ecosystem species, it is very important to control some key demographic
parameters.

The paper is organized as follows. In Sect. 2, we present the general mathematical model
of the prey-predator system. Section 3 provides the mathematical analysis of the model
established in Section 2. We perform some numerical simulations to support our main
results in Section 4. A final discussion concludes the paper.

2 Mathematical model formulation
In this section, we proceed to the construction of the prey-predator model by taking into
account the fact that the predator has an alternative source of food. Our main goal is to
modify system (1.1) in order to describe the effect of predation on the prey. Our task here
is to analyze the impact of predation on a predator-prey community [16–19].

The following hypotheses hold for our models:
H1: prey populations follow a logistic growth in the absence of the predator;
H2: functional response of the predator is Holling type II;
H3: the predator has an alternative source of food.
The system modeling the evolution over time of prey and predators is given by

⎧
⎨

⎩

dN
dt = ψ(N) – φ(N)P,
dP
dt = g0(P) + g1(N , P),

(2.1)

where
• ψ , φ, g0, and g1 are positive functions and C∞;
• ψ(N), g0(P) is a growth function of prey and predator population, respectively;
• φ(N) is the amount of prey consumed by a predator per time unit;
• g1(N , P) represents the rate of conversion of the prey into the predator.
The model presented here is general, and it is necessary to make choices, particularly

for the functions g0(P), g1(N , P), φ(N), and ψ(N). Then we make the following choices:
• ψ(N) = r1(1 – N

K1
)N represents the dynamics of the prey population governed by the

logistic equation when there is no predator;
• g0(P) = r2(1 – P

K2
)P represents the logistic growth of the predator population when

there is no prey;
• φ(N) = δ1N

1+δ2N represents the functional response of the predator which is Holling type
II;

• g1(N , P) = ωNP
1+δ2N represents the quantity of prey consumed by predators.

Consequently, we obtain the following nonlinear differential system defined by

⎧
⎨

⎩

dN
dt = r1(1 – N

K1
)N – δ1NP

1+δ2N , N(0) = N0 > 0,
dP
dt = r2(1 – P

K2
)P + eδ1NP

1+δ2N , P(0) = P0 > 0,
(2.2)

where
• r1, r2 > 0 are respectively the prey and predator growth rates;
• K1, K2 > 0 represent respectively the carrying capacity of the prey and the predator;
• δ1 and δ2 represent respectively predator search and satiety rates;
• e = ω

δ1
represents the conversion rate of prey biomass into predatory biomass, with

0 < e < 1;
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Figure 1 Interaction diagram for the prey-predator model

• δ1NP
1+δ2N represents the quantity of prey taken by predators per unit of time;

• ωNP
1+δ2N represents the amount of prey consumed by predators per unit of time;

• (δ1–ω)NP
1+δ2N is a residual term and represents the quantity of prey taken by predators and

which did not contribute to the growth of predators.
Thus, we obtain the following interaction diagram: Fig. 1.
Using the above assumptions and according to Figure 1, at any time t > 0, the dynamics

of the system can be represented by the following set of differential equations:

⎧
⎨

⎩

G1(N , P) = dN
dt = r1(1 – N

K1
)N – δ1NP

1+δ2N , N(0) = N0 > 0,

G2(N , P) = dP
dt = r2(1 – P

K2
)P + ωNP

1+δ2N , P(0) = P0 > 0.
(2.3)

3 Mathematical analysis
This section deals with mathematical analysis including the stability and the bifurcation
analysis of system (2.3) [2, 8, 15, 20–22].

Then we rewrite model (2.3) in the following form:

Ẋ(t) = G
(
X(t)

)
,

where X(t) = (N(t), P(t))T and G is defined on R
2 by

G(X) =

(
G1(N , P)
G2(N , P)

)

=

(
r1(1 – N

K1
)N – δ1NP

1+δ2N
r2(1 – P

K2
)P + ωNP

1+δ2N

)

.

The preliminary results concern the existence, positiveness, and boundedness of solutions
of system (2.3).

3.1 Existence, positiveness, and boundedness of solutions
From the biological point of view, it is important to show the existence, positivity, and
boundedness of the solution of system (2.3) [9, 19, 23, 24].

Proposition 1 System (2.3) admits a unique global solution (N(t), P(t)) defined on the in-
terval [0, Tmax[. Moreover, the set

A :=
{

(N , P) ∈ R
2
+/0 ≤ N ≤ K1, 0 ≤ P ≤ Kp

}
with Kp = K2

(

1 +
ω

r2δ2

)
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is positively invariant and absorbing for system (2.3).

Proof Indeed,
• the theorem of Cauchy–Lipschitz [11] assures the existence and uniqueness of local

solution of system (2.3) on [0, Tmax[ given the regularity of the functions involved in
the model.

• Now, let us show that the set A = {(N , P) ∈R
2
+/0 ≤ N ≤ K1, 0 ≤ P ≤ Kp} is positively

invariant and absorbing for system (2.3).
Let us show that

A0 =
{

(N , P) ∈R
2
+/0 ≤ N ≤ K1

}
and B =

{
(N , P) ∈R

2
+/0 ≤ P ≤ Kp

}

are positively invariant and absorbing for system (2.3).
Let us prove that

A1 =
{

(N , P) ∈R
2/N ≥ 0

}
(3.1)

is positively invariant. Indeed, let f1 be the function defined on R
2 by f1(N , P) = –N .

We have

∇f1(N , P) =

(
–1
0

)

�= 0R2 and 〈∇f1|G〉 = 0 × r2

(

1 –
P

K2

)

P = 0.

Thus, 〈∇f1|G〉 ≤ 0 on {(N , P) ∈R
2/N = 0}, where 〈|〉 is the usual scalar product.

Therefore, A1 is positively invariant.
Proceeding in the same way, with f2(N , P) = –P, we show that

A2 =
{

(N , P) ∈R
2/P ≥ 0

}
(3.2)

is positively invariant.
Let us show that

A3 =
{

(N , P) ∈R
2/N ≤ K1

}
. (3.3)

Indeed, let f3 be defined on R
2 by f3(N , P) = N – K1. We have

∇f3(N , P) =

(
1
0

)

�= 0R2 and 〈∇f1|G〉 = –
δ1K1P

1 + δ2K1
.

Thus, 〈∇f1|G〉 ≤ 0 on {(N , P) ∈R
2/N = K1}. Therefore, A3 is positively invariant.

According to (3.1) and (3.3), A0 is positively invariant.
Now, we aim to show that the set A0 is absorbing. The variable N satisfies the

inequality

dN
dt

≤ r1

(

1 –
N
K1

)

N ,



Savadogo et al. Advances in Difference Equations        (2021) 2021:275 Page 6 of 23

and by the principle of comparison, we deduce that limt→+∞ sup N(t) ≤ K1. Hence, for
ε > 0, there exists T > 0 such that N(t) ≤ supt≥T N(t) ≤ K1 + ε; as ε is arbitrary, we
deduce that A0 is absorbing.

Now, we aim to show that P ≤ Kp. Indeed,

dP
dt

= r2

(

1 –
P

K2

)

P +
ωNP

1 + δ2N
and

eδ1N
1 + δ2N

<
eδ1

δ2
,

thus we have the following differential inequality:

dP
dt

≤
(

r2

(

1 –
P

K2

)

+
eδ1

δ2

)

P, ∀t ≥ t0. (3.4)

According to the comparison principle, we deduce that

lim
t→+∞ sup

(
P(t)

) ≤ K2

(

1 +
ω

r2δ2

)

= Kp. (3.5)

According to (3.2) and (3.5), B is positively invariant and absorbing.
From the above result, the set defined by A = {(N , P) ∈R

2
+/0 ≤ N ≤ K1, 0 ≤ P ≤ Kp}

is positively invariant and absorbing. �

To show the global existence of solutions, we must show that the solutions of the sys-
tem are bounded. In the previous demonstration we have established that N and P are
bounded. Thus, we can conclude that the solutions of system (2.3) exist globally.

For the study of system (2.3), we restrain a set defined by

A =
{

(N , P) ∈R
2
+/0 ≤ N ≤ K1, 0 ≤ P ≤ Kp

}
.

3.2 Stability analysis of the equilibria
In this section, we analyze the local and global stability of different equilibrium.

3.2.1 Trivial equilibrium points of the model
The trivial stationary states of system (2.3) are given in the following proposition [8, 11–
13].

Proposition 2 The equilibrium states are as follows:
(i) E0 = (0, 0), the predators and prey are extinct. This equilibrium is always admissible.

(ii) E1 = (0, K2), the prey is extinct. This equilibrium is always admissible.
(iii) E2 = (K1, 0), the predator is extinct. This equilibrium is always admissible.

Proof Indeed, to get the equilibrium points, we solve the following system:

⎧
⎨

⎩

r1(1 – N
K1

)N – δ1NP
1+δ2N = G1(N , P) = 0,

r2(1 – P
K2

)P + ωNP
1+δ2N = G2(N , P) = 0.

(3.6)

(i) We have G1(0, 0) = G2(0, 0) = 0. Thus, E0 = (0, 0) is the trivial equilibrium point.
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(ii) In the same way, G1(0, K2) = G2(0, K2) = 0. Then E1 = (0, K2) is an equilibrium point
of system (2.3).

(iii) We also have G1(K1, 0) = G2(K1, 0) = 0. Then E2 = (K1, 0) is an equilibrium point of
system (2.3). �

The local stability analysis of a trivial equilibrium point is given by the following propo-
sition.

Proposition 3
(i) E0 and E2 are always unstable.

(ii) E1 is locally asymptotically stable if δ1 > r1
K2

, with extinction for the prey population
and stability for the predator population. If δ1 < r1

K2
, E1 is unstable with stability for

the predator. In addition, if δ1 = r1
K2

, E1 is a stable non-hyperbolic point.

Proof Indeed, let us determine the eigenvalues of the Jacobian matrix associated with each
equilibrium point Ei = 0, 1, 2. The Jacobian matrix of system (2.3) is

DG(X) =

(
r1(1 – 2N

K1
) – δ1P

(1+δ2N)2 – δ1N
1+δ2N

ωP
(1+δ2N)2 r2(1 – 2P

K2
) + ωN

1+δ2N

)

,

where X(t) = (N(t), P(t))T .
(i) For E0 = (0, 0), the associated Jacobian matrix is DG(E0) = ( r1 0

0 r2
). The eigenvalues

are r1 > 0 and r2 > 0. Then E0 is always unstable. In this case, we have instability of
the prey and the predator.

(ii) For E2 = (K1, 0), the Jacobian matrix of system (2.3) evaluated at E2 is

DG(E2) =

(
–r1 – δ1K1

1+δ2K2

0 r2 + ωK1
1+δ2K1

)

.

The eigenvalues are λ1 = –r1 < 0 and λ2 = r2 + ωK1
1+δ2K1

> 0. Then E2 is unstable with
stability for the prey population and instability for the predator population.

(iii) For E1 = (0, K2), the associated Jacobian matrix is

DG(E1) =

(
r1(1 – δ1K2

r1
) 0

ωK2 –r2

)

.

The associated characteristic polynomial is given by

PDG(E1)(λ) =
(

r1

(

1 –
δ1K2

r1

)

– λ

)

(–r2 – λ).

Then the eigenvalues of DG(E1) are λ1 = r1(1 – δ1K2
r1

) and λ2 = –r2 < 0. If δ1 > r1
K2

,
then λ1 < 0, therefore the system is locally asymptotically stable with extinction for
the prey population and stability for the predator population. If δ1 < r1

K2
, then λ1 > 0,

therefore E1 is unstable, so we have stability for the predator population.
If δ1K2

r1
= 1, then the equilibrium E1 is a stable non-hyperbolic point. Indeed, to

study the stability of E1, we will use the center manifold theorem [25].
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The eigenvalues of DG(E1) are λ1 = 0 and λ2 = –r2, and the eigenspace associated
with those eigenvalues is

W 0 =
〈(

r2

ωK2
; 1

)〉

,

W –r2 =
〈
(0; 1)

〉
.

According to the center manifold theorem [25], there exists a center manifold
which is tangent to W 0 at the point E1.

Denote x = N and y = P. The center manifold in this case is given by

W c =
{

y = h(x)/h(0) = K2, h′(0) =
ωK2

r2

}

,

where h(x) = h(0) + h′(0)x + h′′(0)x2 + O(x3) is analytical at the neighborhood of the
origin. Denoting a = 1

K2
and b = 1

K1
, we have

y = h(x)

⇔ ẏ = ẋh′(x)

⇔ r2h(x)
(
1 – ah(x)

)
+

ωxh(x)
1 + xδ2

–
(

r1x(1 – bx) –
δ1xh(x)
1 + xδ2

)

h′(x) = 0.

By plugging the function h by its expression in the previous equation and by
grouping, we get:

r2h(0)
(
1 – ah(0)

)
+

(
r2δ2h(0)

(
1 – ah(0)

)
+ r2h′(0)

(
1 – 2ah(0)

)
+ ωh(0)

+ h′(0)
(
δ1h(0) – r1

))
x +

(
r1h′(0)(b – δ2) +

(
h′)2(δ1 – ar2)

– 2h′′(0)
(
r1 – δ1h(0)

)
+ r2δ2h′(0)

(
1 – 2ah(0)

)

+ r2h′′(0)(1 – 2a)
)
x2 + O

(
x3) = 0. (∗)

Since r1 = δ1K2, then r1 – δ1K2 = 0, by using (∗), we deduce that

h′(0) =
ωh(0)

r2
=

ωK2

r2
,

h′′(0) = h′(0)
r1(b1 – δ2) + h′(0)(δ1 – ar2) – r2δ2

r2
.

The equation reduced to the center manifold is

ẋ = r1x(1 – ax) –
δ1x(h(0) + h′(0)x + h′′(0)x2)

1 + δ2x
= f (x).

A study of the sign of f in the neighborhood of 0 gives the following result:
(i) If x < 0, then f (x) < 0;
(ii) If x > 0, then f (x) < 0. So the equilibrium point E1 = (K , 0) is stable in A. �
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3.2.2 Coexistence equilibria point of the model
To determine the coexistence equilibrium E3 = (N∗, P∗) of system (2.3), we solve the fol-
lowing system:

⎧
⎨

⎩

r1(1 – N
K1

)N – δ1NP
1+δ2N = G1(N , P) = 0,

r2(1 – P
K2

)P + ωNP
1+δ2N = G2(N , P) = 0.

(3.7)

Assume that N∗, P∗ > 0. Dividing G1(N∗, P∗) by N∗, we obtain

P∗ =
r1

δ1

(
1 + δ2N∗)

(

1 –
N∗

K1

)

if N∗ < K1.

By plugging P∗ in G1(N∗, P∗), we get the cubic equation in N∗ as follows:

(
N∗)3 + θ2

(
N∗)2 + θ1N∗ + θ0 = 0, (3.8)

where

θ0 =
K1(δ1K2 – r1)

r1δ
2
2

,

θ1 =
r1r2 + r2δ1δ2K1K2 + ωδ1K1K2 – 2r1r2δ2K1

r1r2δ
2
2

=
1
δ2

(
1
δ2

– 2K1

)

+
δ1K1

r1δ2
Kp,

θ2 =
2r1r2δ2 – r1r2δ

2
2K1

r1r2δ
2
2

=
2
δ2

– K1.

The following result gives the existence of a coexistence equilibrium point [8, 19, 22, 26,
27].

Theorem 1 Set 
′ = (K1 + 1
δ2

)2 – 3δ1K1
r1δ2

Kp, κ0 = r2
1
δ1δ2
2

, and κ1 = δ2
′
1


′
2

.
1 System (2.3) has no feasible coexistence equilibria if either

(i) r1 < δ1K2 and 
′ ≤ 0;
(ii) r1 < δ1K2, r1

δ1K1
(2K1 – 1

δ2
) > Kp, δ2K1 < 2, 
′ > 0, and κ1 > 1;

(iii) r1 < δ1K2, r1
δ1K1

(2K1 – 1
δ2

) > Kp, δ2K1 < 2, 
′ > 0, and κ0 > 1.
2 System (2.3) has a unique feasible coexistence equilibrium E3 if either

(i) r1 > δ1K2 and 
′ ≤ 0;
(ii) r1 > δ1K2, r1

δ1K1
(2K1 – 1

δ2
) > Kp, δ2K1 < 2, 
′ > 0, and κ1 < 1;

(iii) r1 > δ1K2, r1
δ1K1

(2K1 – 1
δ2

) > Kp, δ2K1 > 2, 
′ > 0, κ0 < 1, and κ1 < 1;
(iv) r1 > δ1K2, r1

δ1K1
(2K1 – 1

δ2
) > Kp, δ2K1 > 2, 
′ > 0, κ0 > 1, and κ1 > 1.

3 System (2.3) has two distinct feasible coexistence equilibria if either
(i) r1 < δ1K2, r1

δ1K1
(2K1 – 1

δ2
) > Kp, δ2K1 < 2, 
′ > 0, and κ1 < 1, with E–

3 � E+
3 ;

(ii) r1 < δ1K2, r1
δ1K1

(2K1 – 1
δ2

) > Kp, δ2K1 > 2, 
′ > 0, κ0 > 1, and κ1 < 1, with E–
4 � E+

4 .
4 System (2.3) has three distinct feasible coexistence equilibria if

r1 > δ1K2,
r1

δ1K1

(

2K1 –
1
δ2

)

> Kp, δ2K1 > 2, 
′ > 0,

κ0 > 1, and κ1 < 1.
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Proof Indeed, consider the following cubic equation:

L(X) = X3 + θ2X2 + θ1X + θ0 = 0. (3.9)

We have

L(0) = θ0

and

L(K1) =
δ1K1K2(ωK1 + r2(1 + K1))

r1r2δ
2
2

> 0,

L(X1) =
r2
1 – δ1δ2
2

r1r2δ1δ
3
2

and

L(X2) =
δ2


′
1 – 
′

2

r1r2δ1δ
3
2

,

where


1 = 22r1δ1δ2 + 27r1K1δ1δ2K1K2 + 27δ2
1δ2K1K2

+ 9δ1δ
3
2K2

1 K2 + 2r1δ1δ2(1 + δ2K1)2
√


′,


2 = 5r1r2δ
3
2K3

1 + 87r1r2K1 + 18r1r2δ2K1 + 6K1K2(r2δ2 + ω)
(
3 + δ1

√

′),


′
1 = 2r1r2δ1K1 + 9δ1r2δ

2
2K2

1 K2 + 12r1r2δ1δ2K1 + 6δ1K1K2(ω + r2δ2)
√


′,


′
2 = 2r1r2δ1δ2(1 + δ2K1)

√

′ + 2r1r2δ1δ

3
2K1 + 18r1r2δ1δ

2
2K2

1 + 18δ1δ2K1K2(ω + r2δ2)

with 
′ defined from

L′(X) = 3X2 + 2θ2X + θ1 = 0 (3.10)

as


′ = θ2
2 – 3θ1

=
(

K1 +
1
δ2

)2

–
3δ1K1K2

r1δ2

(

1 +
ω

r2δ2

)

=
(

K1 +
1
δ2

)2

–
3δ1K1

r1δ2
Kp.

There are two cases:
1 If r1δ2

3δ1K1
(K1 + 1

δ2
)2 ≤ Kp, then 
′ ≤ 0. Thus, L is increasing on ]0, K1[.

(a) According to r1 < δ1K2, we have θ0 > 0 with L(0) × L(K1) > 0. Hence, L(X) > 0
∀N ∈ ]0, K1[. Thus, equation (3.9) has no real roots on ]0, K1[ and there are no
feasible coexistence equilibria for system (2.3).
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(b) If r1 > δ1K2, we have θ0 < 0 with L(0) × L(K1) < 0. Thus, equation (3.9) has a
unique positive root. Then system (2.3) has a unique feasible coexistence
equilibrium.

2 If r1δ2
3δ1K1

(K1 + 1
δ2

)2 > Kp, then 
′ > 0. Therefore, equation (3.10) has two roots

X1 =
–θ2 –

√
θ2

2 – 3θ1

3
and X2 =

–θ2 +
√

θ2
2 – 3θ1

3
,

where
⎧
⎨

⎩

X1 + X2 = – 2θ2
3 ,

X1X2 = θ1
3 .

(a) If δ2K1 < 2 and r1
δ1K1

(2K1 – 1
δ2

) > Kp, then we have respectively θ2 > 0 and θ1 < 0.
Thus, we obtain also X1 < 0 < X2.

Using the fact that 
′ < (K1 + 1
δ2

)2, we have

X2 – K1 =
–θ2 +

√

′

3
– K1

≤ –
1
3

(

K1 +
1
δ2

)

. (3.11)

So X2 < K1. Hence L is decreasing on ]0, X2[ and increasing on [X2, K1[.
• If r1 < δ1K2 and κ1 > 1, then we have respectively θ0 > 0 and L(X2) > 0, then

L(X) = 0 has no root. Therefore, system (2.3) has no coexistence equilibria.
• If r1 > δ1K2 and κ1 < 1, then we get respectively θ0 < 0 and L(X2) ≤< 0. Thus,

equation (3.9) has one positive root with β2 = L(X2) is a minimum.
Therefore, system (2.3) has a unique coexistence equilibrium.

• If r1 < δ1K2 and κ1 < 1, then we have respectively θ0 > 0 and L(X2) < 0 with
L(K1) > 0 > L(X2). Thus, equation L(X) = 0 has two distinct real positive
roots, one is N–

1 in ]0, X2[, and the other N+
1 in ]X2, K1[. Each root

corresponds to a distinct feasible coexistence equilibrium. Therefore,
system (2.3) has two coexistence equilibria E–

3 (N–
1 , P∗) and E+

3 (N+
1 , P∗) with

N–
1 < N+

1 .
(b) If δ2K1 > 2 and r1

δ1K1
(2K1 – 1

δ2
) > Kp, then we have respectively θ2 < 0 and θ1 < 0.

Thus, we obtain X1 < 0 < X2 with X2 < K1. By a similar argument as previously,
we obtain the same result.

(c) If δ2K1 > 2 and r1
δ1K1

(2K1 – 1
δ2

) < Kp, then we get respectively θ2 < 0 and θ1 > 0.
Thus, we obtain 0 < X1 < X2 < K1. Consequently, L is increasing on ]0, X1] and
[X2, K1[ and decreasing on ]X1, X2[.

• According to r1 < δ1K2, we have θ0 > 0. If κ0 > 1 and κ1 > 1, then we have
respectively L(X1) > 0 and L(X2) > 0. So equation (3.9) has no real positive
roots, and there are no feasible coexistence equilibria.

• According to r1 < δ1K2, and if κ0 > 1 and κ1 < 1, then we have respectively
L(X1) > 0 and L(X2) < 0. Thus, L(X) = 0 has two distinct real positive roots,
one is N–

2 in ]X1, X2[, and the other N+
2 in ]X2, K1[. Therefore, system (2.3)

has two coexistence equilibria E–
4 (N–

2 , P∗) and E+
4 (N+

2 , P∗) with N–
2 < N+

2 .
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• According to r1 > δ1K2, and if κ0 < 1 and κ1 < 1, we have respectively
L(X1) < 0 and L(X2) < 0. Consequently, L(X) = 0 has one root.

• According to r1 > δ1K2, and if κ0 > 1 and κ1 < 1, we have respectively
L(X1) > 0 and L(X2) < 0. Thus, L(X) = 0 has three roots. Therefore, system
(2.3) has three coexistence equilibria.

• According to r1 > δ1K2, and if κ0 < 1 and κ1 > 1, we have respectively
L(X1) < 0 and L(X2) > 0. Thus, L(X) = 0 has one root. �

The local stability analysis of coexistence equilibrium is given by the following theorem
[8, 11, 12].

Theorem 2 If condition (2) of Theorem 1 is satisfied, and moreover the following condition
holds:

2r1(1 + δ2N∗)(K1 – N∗)
δ1K1K2

> 1, (3.12)

then the coexistence equilibrium E3 = (N∗, P∗) is locally asymptotically stable.

Proof Indeed, the Jacobian matrix of system (2.3) evaluated at the point E3 is given by

DG(E3) =

(
A11 A12

A21 A22

)

,

where

A11 =
r1(K1 – 2N∗)(1 + δ2N∗) – r1(K1 – N∗)

K1(1 + δ2N∗)
,

A12 =
–δ1N∗

(1 + δ2N∗)
,

A21 =
ωr1(K1 – N∗)

δ1K1(1 + δ2N∗)
,

A22 =
r2(1 + δ2N∗)(δ1K1K2 – 2r1(1 + δ2N∗)(K1 – N∗)) + ωN∗δ1K1K2

δ1K1K2(1 + δ2N∗)
.

The characteristic polynomial is therefore P(λ) = λ2 – B1λ + B2 = 0,with

B1 = tr
(
DG(E3)

)
=

δ1[M3K2(r1(M2 – N∗) + r2K1) – r1r2K2] – 2r1r2M2M4

AM3
,

B2 = det
(
DG(E3)

)

=
r1r2δ1K2(δ1K1K2M3 – 2r1M4) × (δ2N∗(N∗ – K1) – N∗)

AK1M2
3

+
ωr1N∗M2

K1M2
3

,

where

M1 = K1 + (δ2K1 – 2)N∗, M2 = K1 – N∗, M3 = 1 + δ2N∗,

M4 = –δ2
2
(
N∗)3 + δ2(δ2K1 – 2)

(
N∗)2 + (2δ2K1 – 1)N∗ + K1 =

(
1 + δ2N∗)2(K1 – N∗),

and A = δ1K1K2.
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By a simple calculation, we get B1 = A11 + A22 and B2 = A11A22 – A12A21. According to
(3.12), we get B1 < 0 and B2 > 0. By applying the Routh–Hurwitz criterion, E3 is locally
asymptotically stable. �

The following theorem gives the global stability [8, 9, 13, 19, 22, 28, 29].

Theorem 3 If condition (2) of Theorem 1 is satisfied, then the coexistence equilibrium E3 =
(N∗, P∗) is globally asymptotically stable in the following subset of R2

+:

B =
{

(N , P) ∈R
2
+/N ≥ N∗, P ≥ P∗, N ≥ 1

δ2

(
K1

r1(1 + δ2N∗)
– 1

)}

.

Proof Indeed, we construct a Lyapunov candidate function defined by

V (N , P) = h1(N) + h2(P),

with h1(N) = a1
∫ N

N∗
ζ–N∗

ζ
dζ , h2(P) = a2

∫ P
P∗

ζ–P∗
ε

dε, and (a1, a2) ∈ R
∗2
+ to be determined. It

is easy to see that V (N∗, P∗) = 0, and for all (N , P) �= (N∗, P∗), V (N , P) > 0. So V is well
defined.

The time derivative of V (N , P) along the solutions of system (2.3) is

V̇ (N , P) = a1
(
N – N∗)

[

r1

(

1 –
N
K1

)

–
δ1P

1 + δ2N

]

+ a2
(
P – P∗)

[

r2

(

1 –
P

K2

)

+
ωN

1 + δ2N

]

.

After simplification, we can write

V̇ (N , P) =
–a2r2

K2

(
P – P∗)2 + (a2ω – δ1a1 – a1δ1δ2N∗)

(N – N∗)(P – P∗)
(1 + δ2N)(1 + δ2N∗)

+
(
N – N∗)2

[

–
a1r1

K1
+

a1δ1δ2P∗

(1 + δ2N∗)(1 + δ2N)

]

. (3.13)

Taking a1 = 1 and a2 = δ1M3
ω

, finally we obtain

V̇ (N , P) =
(
N – N∗)2

[

–
r1

K1
+

δ1δ2P∗

(1 + δ2N∗)(1 + δ2N)

]

–
r2δ1(1 + δ2N∗)

K2ω

(
P – P∗)2

for all (N , P) �= (N∗, P∗). The coefficients (N – N∗)2 and (P – P∗)2 are positive. By using the
fact that N ≥ 1

δ2
( K1

r1(1+δ2N∗) – 1), we have V̇ (N , P) < 0.
In addition V̇ (N , P) = 0 if and only if (N , P) = (N∗, P∗). By using LaSalle’s invariance prin-

ciple, E3 = (N∗, P∗) is globally asymptotically stable on B. �

The following proposition gives the necessary and sufficient conditions of stability in
case there is more than one equilibrium point [13, 19, 22, 27, 30].

Let us define the quadratic function

π (N) = –2r1δ2N2 + 2r1(δ2K1 – 1)N + K1(2r1 – δ1K2). (3.14)
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For N∗ ∈ ]0, K1[,

π
(
N∗) > 0 ⇔ 2r1(1 + δ2N∗)(K1 – N∗)

δ1K1K2
> 1. (3.15)

Theorem 4
(i) According to condition 3, (i) of Theorem 1, and if δ2K1 < 1 and r1 > δ1K2

2 , then the
coexistence equilibrium E–

3 (N–
1 , P∗) is locally asymptotically stable and E+

3 (N+
1 , P∗) is

unstable.
(ii) According to condition 3, (ii) of Theorem 1, if δ1 < 5r1

δ2
(δ2K1 – 1) and r1 > δ1K2

2 , then
the coexistence equilibrium E–

4 (N–
2 , P∗) is locally asymptotically stable and

E+
4 (N+

2 , P∗) is unstable.

Proof Indeed,
(i) Consider the function π (N) defined by (3.14), we have

π ′(N) = –4r1δ2N + 2r1(δ2K1 – 1), ∀N ∈ ]0, K1[. (3.16)

Also, we have π (0) = K1(2r1 – δ1K2) > 0 if r1 > δ1K2
2 , π (K1) = –δ1K1K2. According to

δ2K1 < 1, we obtain π ′(N) < 0 ∀N ∈ ]0, K1[. Consequently, there exists δ such that
π (δ) = 0 with 0 < N–

1 < δ < N+
1 < K1. Thus, π (N–

1 ) > 0 and π (N+
1 ) < 0.

By using π (N–
1 ) > 0, we obtain

2r1(1 + δ2N–
1 )(K1 – N–

1 )
δ1K1K2

> 1. (3.17)

Thus, inequality (3.17) verifies the condition of stability given by (3.15). As result,
tr(E–

3 ) < 0 and det(E–
3 ) > 0. Consequently, E–

3 (N–
1 , P∗) is locally asymptotically stable.

By using π (N+
1 ) < 0, we obtain

2r1(1 + δ2N+
1 )(K1 – N+

1 )
δ1K1K2

< 1. (3.18)

Thus, inequality (3.18) does not check the condition of stability given by (3.15).
Consequently, E+

3 (N+
1 , P∗) is unstable.

(ii) By using equation (3.16), there exists N0 ∈ ]0, K1[ such that π ′(N0) = 0 with
N0 = δ2K1–1

2δ2
. Thus, π is increasing on ]0, N0[ and decreasing on ]N0, K1[. By simple

computation, we get π (N0) = 5r1K1 – ( r1δ2K1
2 + 5r1

2δ2
+ δ1K1K2). By using δ2K1 > 2, we

get δ1 < 5r1
δ2

(δ2K1 – 1). According to r1 > δ1K2
2 and δ1 < 5r1

δ2
(δ2K1 – 1), we get

respectively π (0) > 0 and π (N0) > 0. Consequently, there exists δ0 such that
π (δ0) = 0 with 0 < N–

2 < δ0 < N+
2 < K1. Thus, π (N–

2 ) > 0 and π (N+
2 ) < 0.

Consequently, E–
4 (N–

2 , P∗) is locally asymptotically stable and E+
4 (N+

2 , P∗) is unstable.
�

3.3 Bifurcation analysis
In this subsection, we define the conditions of Hopf-bifurcations and the critical values of
Hopf bifurcations. Here, δ1 is taken as a bifurcation parameter [10, 15, 31].
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Theorem 5 If condition (2), (ii) of Theorem 1 is satisfied and if the following conditions are
satisfied:

δ1 <
2r1r2M4

M3K2(r1(M2 – N∗) + r2K1) – r1r2K2
, (3.19)

B2
1(δ1) ≥ 4B2(δ1), (3.20)

then a Hopf-bifurcation occurs at the value δ1 = δ1c, where

δ1c =
2r1r2M4

M3K2(r1(M2 – N∗) + r2K1) – r1r2K2
. (3.21)

Proof Indeed, assuming that N – N∗ � ext , P – P∗ � ext , we get the following characteristic
equation corresponding to the Jacobian matrix DG(E3) evaluated at E3 = (N∗, P∗):

x2 – B1(δ1)x + B2(δ1) = 0, (3.22)

where

B1(δ1) = tr
(
DG(E3)

)
=

δ1[M3K2(r1(M2 – N∗) + r2K1) – r1r2K2] – 2r1r2M2M4

AM3
,

B2(δ1) = det
(
DG(E3)

)

=
r1r2δ1K2(δ1K1K2M3 – 2r1M4) × (δ2N∗(K1 – N∗) – N∗)

AK1M2
3

+
ωr1N∗M2

K1M2
3

.

If conditions (3.20) and (3.21) are respectively satisfied, we have respectively B1(δ1) = 0
and B2(δ1) > 0, then the eigenvalues will be purely complex at δ1 = δ1c with

x =
B1(δ1) +

√
B2

1(δ1) – 4B2(δ1)
2

or x =
B1(δ1) –

√
B2

1(δ1) – 4B2(δ1)
2

.

Replacing x = x1 + ix2 into (3.22), we have (x2
1 – x2

2) – B1(δ1)x1 + B2(δ1) + i(2x1x2 – B1(δ1)x2) =
0, and separating real and complex parts, we obtain

⎧
⎪⎨

⎪⎩

x2
1 – x2

2 – B1(δ1)x1 + B2(δ1) = 0, (4.a)

2x1x2 – B1(δ1)x2 = 0. (4.b)

Now, we verify the transversality condition.
Considering Re(x) = 0 and differentiating (4.b) with respect δ1, we get

(
dx1

dδ1

)

δ1=δ1c

=
r1r2K1K2M3(K2(1 – δ1c) + 2M2M4)

2(δ1cK1K2M3)2 �= 0.

As result, system (2.3) admits a Hopf-bifurcation at δ1 = δ1c corresponding to E3. �

Remark 1 Since B1(δ1c) = 0 and ( dB1
dδ1

)δ1=δ1c = 2( dx1
dδ1

)δ1=δ1c �= 0, B1(δ1) > 0, if condition (3.12)
is satisfied and according to the Routh–Hurwitz criterion, E3 is locally asymptotically sta-
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Table 1 Parameter values used for the numerical simulation

Parameters Values References

r1 0.1 estimated
r2 1.8 estimated
K1 10 estimated
K2 1800 estimated
δ1 0.01 estimated
δ2 0.01 [33]
ω 0.015 [33]

Table 2 Parameter values used for the numerical simulation

Parameters Values References

r1 1.8 estimated
r2 0.01 estimated
K1 200 estimated
K2 30 estimated
δ1 0.01 [33]
δ2 0.029 estimated
ω 0.0015 estimated

ble. In addition, for δ1 = δ1c, a Hopf-bifurcation occurs. For δ1 > δ1c, E3 approaches a peri-
odic solution.

4 Numerical experiments and biological explanations
In this section, we present a sequence of numerical simulations in order to support our
mathematical results and to analyze the effect of predation on the dynamics of the two
species. We use MATLAB technical computer software [8, 12, 32]. The values of the pa-
rameters are given in Tables 1 and 2.

4.1 Global behavior of system (2.3)
Here, we are interested in the predation effect on the dynamics of the two species in order
to follow its impact over time. Figure 2 shows the behavior of system (2.3) around E1 and
the parameter values used are given in Table 1. We observe the stability of the predator
population and the extinction of the prey population for the predation parameter δ1 =
0.01 > 5.510–5. This result supports (ii) of Proposition 3. This result confirms that the
predator population can survive even if the prey dies out.

Now, we examine the behavior of system (2.3) around the coexistence equilibrium. We
take N > 96, and the parameter values used are given in Table 2. We observe that sys-
tem (2.3) converges globally towards the coexisting equilibrium E3 = (70,354.1) (see Fig-
ure 3(a)–(b)–(c)). The existence of center (Figure 3(d)) confirms the existence and the
global asymptotic stability of the coexisting equilibrium. It means that the prey popula-
tion exists despite the predation. Thus, we talk about the phenomenon of subsistence.
That illustrates the result of our Theorem 3.

If we increase the value of δ1 = 0.033 and keep the other parameters fixed in Table 2,
from Figure 4, we observe that the equilibrium E3 loses its stability. This result confirms
Theorem 2. In next subsection Figure 5 shows the Hopf-bifurcation of system (2.3) around
E3 at δ1 = δ1c.

We continue our numerical simulations when the system admits two coexistence equi-
libria in order to look the behavior of the system around E–

3 and E3
+. By increasing the
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Figure 2 Evolution of system (2.3) around E1 = (0, 1800)

Figure 3 Global asymptotic stability of the coexisting equilibrium of system (2.3) around E3 = (70, 354.51)



Savadogo et al. Advances in Difference Equations        (2021) 2021:275 Page 18 of 23

Figure 4 Local asymptotic stability of the coexisting equilibrium of system (2.3) corresponding to δ1 = 0.033

Figure 5 Dynamics of the trajectories showing the existence of limit cycle arising from the Hopf-bifurcation
of system (2.3) around E3 = (N∗ ,P∗) with δ1 = δ1c = 0.0636
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Figure 6 Global asymptotic stability of the coexisting equilibrium of system (2.3) around E–3 = (75,400)

value δ1 to δ1 = 0.023, we observe that system (2.3) converges globally towards the coex-
isting equilibrium E–

3 = (75, 400) (see Figure 6(a)–(b)–(c)). By increasing the parameter
of predation δ1 to δ1 = 0.044, we observe the loss of stability of the coexistence equilib-
rium E–

3 (see Figure 7). This is in accordance with the mathematical results established in
Theorem 4.

At the same time, we observe the instability of the coexistence equilibrium E+
3 showing

the existence of a limit cycle illustrated by Figures 8 and 9.

4.2 Analysis of Hopf-bifurcation diagram
We continue our numerical analysis in this subsection to observe the dynamics behavior
of the system by considering the predation parameter. Now, if we consider the critical
value δ1c = 0.0636, Figure 5((c)–(d)) shows that the coexisting equilibrium E3 = (N∗, P∗)
is unstable, and we have a limit cycle arising from the Hopf-bifurcation. Theorem 5 then
holds.

Remark 2 The biological interpretation of the Hopf-bifurcation is that the prey coexists
with the predator, exhibiting oscillatory equilibrium behavior [10, 11]. Indeed, we observe
that if the predation threshold δ1 > δ1c, we have periodic fluctuation of the prey and preda-
tor species: Figures 5(c) and 5(d) show the existence of a limit cycle resulting from the
Hopf-bifurcation. This highlights an extinction of the population of prey (at risk) if pre-
dation exceeds a certain threshold.

5 Conclusion
The effect of predation in the dynamics of the prey-predator model plays an essential role
in the equilibrium of the ecosystem, because it allows natural mechanisms of regulation of
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Figure 7 Local asymptotic stability of the coexisting equilibrium E–3 of system (2.3) corresponding to
δ1 = 0.044

Figure 8 Limit cycle behavior of the solution of system ( 2.3) at the coexisting equilibrium E+3 corresponding
to δ1 = 0.065

species. It is for this reason that in this paper we proposed and analyzed a nonlinear math-
ematical model to describe the dynamics of the populations of prey and predators, taking
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Figure 9 Limit cycle behavior of the solution of system ( 2.3) at the coexisting equilibrium E+3 corresponding
to δ1 = 0.067

into account the effect of predation. The formulation of the model derived from an ODE
system by considering Holling function response of type II to represent the interaction
between the prey and the predator. The mathematical results allowed us first to establish
the positivity of the solutions indicating the existence of the population, as well as the bor-
nitude to explain the natural control of the growth due to the restriction of the resources.
In addition, we established the conditions of existence of the coexistence equilibria. Under
certain conditions of the predation rate, we were able to establish the local stability of the
coexistence equilibrium. In order to show the long-term coexistence of prey and predator
species, we established the global stability of the coexistence equilibrium via an appropri-
ate Lyapunov function under certain conditions of the model parameters. Moreover, we
have described the conditions of existence of the Hopf-bifurcation in order to analyze to
what extent the trajectories will be influenced by changes in the predation rate.

Our numerical results gave interesting findings on the effect of predation on the dynam-
ics of the prey-predator model and also allowed to validate our results established in the
mathematical study. We have shown the dynamic behavior of our model under different
values of the predation rate. Indeed, considering Fig. 2, under certain values of the preda-
tion rate, we note an extinction of the prey species and persistence of predators towards
the carrying capacity. Staying in this same logic of variation of the predation rate and by
considering the parameters fixed in Table 2, we obtain the global stability of coexistence
equilibrium indicated by Figure 2(d); this also attests the results of Theorem 3. By increas-
ing the value of δ1, we lost the stability indicated in Figure 4(d); this phenomenon confirms
our mathematical results established in Theorem 2. If we exceed the critical threshold of
predation δ1c found in Theorem 5, then we observe a periodic variation in the numbers
of prey and predators indicated by Figures 5(a), (b), (c) and the existence of a limit cycle
arising from the Hopf-bifurcation. In the light of these observations, we are led to con-
clude that the predation rate is a key parameter which governs our model and is useful for
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understanding the dynamics of species of prey and predators in the natural environment,
and plays a regulator role of species.

Despite the important findings on this dynamic, in order to deepen our study, we plan
to extend this work, taking into account the presence of infectious diseases in both species
in order to look at the impact of this disease on the dynamics of the two species.
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