
HAL Id: hal-03946680
https://hal.science/hal-03946680v1

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IndeGx: A Model and a Framework for Indexing RDF
Knowledge Graphs with SPARQL-based Test Suits

Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gandon, Franck Michel

To cite this version:
Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gandon, Franck Michel. IndeGx: A Model
and a Framework for Indexing RDF Knowledge Graphs with SPARQL-based Test Suits. Journal of
Web Semantics, 2023, �10.1016/j.websem.2023.100775�. �hal-03946680�

https://hal.science/hal-03946680v1
https://hal.archives-ouvertes.fr

IndeGx: A Model and a Framework for Indexing RDF Knowledge Graphs with
SPARQL-based Test Suits

Pierre Maillota,∗, Olivier Corbya, Catherine Farona, Fabien Gandona, Franck Michela

aUniversity Cote d’Azur, Inria, CNRS, I3S, Nice, France

Abstract

In recent years, a large number of RDF datasets have been built and published on the Web in fields as diverse as
linguistics or life sciences, as well as general datasets such as DBpedia or Wikidata. The joint exploitation of these
datasets requires specific knowledge about their content, access points, and commonalities. However, not all datasets
contain a self-description, and not all access points can handle the complex queries used to generate such a description.

In this article, we provide a standard-based approach to generate the description of a dataset. The generated de-
scriptions as well as the process of their computation are expressed using standard vocabularies and languages. We
implemented our approach into a framework, called IndeGx, where each indexing feature and its computation is collab-
oratively and declaratively defined in a GitHub repository. We have experimented IndeGx on a set of 339 RDF datasets
with endpoints listed in public catalogs, over 8 months. The results show that we can collect, as much as possible,
important characteristics of the datasets depending on their availability and capacities. The resulting index captures
the commonalities, variety and disparity in the offered content and services and it provides an important support to any
application designed to query RDF datasets.

Keywords: semantic index, metadata extraction, dataset description, endpoint description, knowledge graph

1. Introduction: the Need for Dataset Descrip-
tions

Since the initial proposal of standard practices for pub-
lishing linked data on the Web, the number of datasets
published according to these principles has increased ev-
ery year. These datasets are growing in number, size, and
heterogeneity, covering fields ranging from biology to bib-
liography, geography, government statistics, and more.

Any application that combines several of these datasets
relies for its development on some knowledge of their con-
tents and the links existing between them, whether through
shared vocabularies or common topics. Furthermore, the
rise of the FAIR principles [27] in recent years increases
the need for detailed metadata. However, it is usually dif-
ficult to have such a clear and up-to-date description of a
dataset. Yet these descriptions are necessary to enable the
selection of relevant datasets and their joint interrogation
in many use cases.

In practice, and as a result, the use of a dataset ac-
cessible on the semantic web via a SPARQL access point
currently requires prior exploration of its content by the

∗Corresponding author
Email addresses: pierre.maillot@inria.fr (Pierre Maillot),

olivier.corby@inria.fr (Olivier Corby),
catherine.faron@inria.fr (Catherine Faron),
fabien.gandon@inria.fr (Fabien Gandon),
franck.michel@inria.fr (Franck Michel)

application designers. This manual exploration makes it
possible to decide on the relevance and to detect certain
compromises to be made in its use to avoid overloading its
endpoint or reaching its limits. This exploration is tedious
and requires a good knowledge of semantic web technolo-
gies.

In most cases, the data providers would be responsible
for describing their datasets. But this also requires specific
efforts, costs, and skills that some providers, who are not
necessarily experts in semantic web technologies, do not
have or cannot afford. In particular, these descriptions
rely on a deep understanding and joint use of specialized
vocabularies and there is no standard model or tool for
generating and updating these descriptions.

Depending on use cases and applications, the needs in
terms of dataset descriptions may be different. Catalogs,
such as the data portals based on the CKAN or OpenData-
Soft technologies, present human-readable entries for each
dataset. The content of those entries is based on meta-
data such as the provenance and the general themes of a
dataset. Exploration approaches, such as the dataset dash-
board [18] and LOUPE [20], present statistics about the
content of a dataset to users. Some federation approaches,
such as HiBiSCus [24], also rely on statistics on the con-
tent of a dataset. They generally are more extensive than
the ones used in exploration approaches. Monitoring ap-
proaches, such as SPARQLES [25] and Yummy Data [30],
present measurements of different features of datasets and

Preprint submitted to Elsevier January 19, 2023

https://ckan.org/
https://www.opendatasoft.com/
https://www.opendatasoft.com/

endpoints and their evolution through time.
Considering the current situation of linked open data,

the main research question we address in this paper is:
is it possible to use only open technologies and standards
to effectively generate a useful index of datasets exposed
through a public SPARQL endpoint? In the next sections,
we will break down this broad question into several in-
cremental sub-questions : (i) what should be the model
and vocabularies to represent the metadata of an open in-
dex? (ii) how can we formalize the metadata generation
process itself in a declarative yet operational way? (iii)
what is the quality and coverage of the metadata we ob-
tain in practice? and (vi) does it effectively support other
applications?

Our answer to these questions is IndeGx, a declarative
and extensible framework to generate remote dataset de-
scriptions. We only target the datasets accessible through
a SPARQL endpoint and in the rest of this paper, we call
a Knowledge Base (KB) the pair of an RDF dataset and
its SPARQL endpoint. Other approaches have proposed
methods to generate dataset descriptions by interacting
with the SPARQL endpoint of a KB. The novelty of In-
deGx is the set of declarative rules in RDF it is based on
to generate metadata in RDF. The interactions between
our framework and a KB rely only on standard SPARQL
queries. The usage of declarative rules and existing stan-
dards makes IndeGx both usable with the greatest number
of KBs and easily extensible by the modification and the
addition of new rules on a GitHub repository. Part of the
rules used by IndeGx cover the metadata features found
in other approaches. We also proposed original rules to
generate new kinds of metadata, such as the statistics on
the usage of namespaces in the KB.

We experimented IndeGx on 339 endpoints over 8 months
to test its capacity to index KBs through time and to eval-
uate our result over an extensive period of time and panel
of KBs.

This paper is organized as follows. In Section 2 we
first present and discuss the related works. In Section 3,
we present our proposed model for the description of an
RDF dataset. In Section 4 we present the IndeGx meta-
data generation framework and the formal representation
of its processes. In Section 5 we present the performance
of IndeGx during our experimentation on a large set of
KBs available on the web. Finally, conclusions and future
works are presented in Section 6.

2. Related Works and Positioning

IndeGx is a general framework to generate a KB’s
description containing data for use in multiple cases, in-
cluding federated querying, monitoring, catalog building.
Other approaches consider the description of a KB for
some of these usages. The survey on dataset profiling by
Ben Ellefi et al. [2] presents a typology of possible de-

scriptions for a KB according to which our IndeGx frame-
work generates a machine-readable semantic index of KBs,
where each KB description contains extracted information
about the domain, links, licensing, and provenance of the
KB and computed statistical metadata. Additionally, In-
deGx gives the detailed provenance of the content it gener-
ates, which is not a feature found in the above-mentioned
survey. In this section we provide a brief overview of ap-
proaches that are related to IndeGx.

2.1. Vocabularies and standards for KB metadata

In the state of the art, there is not just one single vo-
cabulary used to describe a KB but several standard vo-
cabularies that co-exist to describe either the KB content,
its endpoint, or other features. The VoID vocabulary [8] is
the most well-established vocabulary to describe datasets.
It is described in a W3C interest group note standardizing
the description of the content of a KB and its relations
with others. It is used by many semantic web applications
like the LOD Laundromat [1] and SPORTAL [15], and sev-
eral other approaches surveyed by Ben Ellefi et al. [2]. The
SPARQL-SD vocabulary [28] is a W3C recommendation to
describe SPARQL endpoints together with their dataset’s
default and named graphs. The DCAT vocabulary [29] is a
W3C recommendation to describe datasets, data services
and data catalogs. These three vocabularies are comple-
mentary and are commonly used together. Moreover, they
rely on other more general metadata vocabularies such as
Dublin Core Terms and FOAF to complete their descrip-
tions.

There are different ways to automatically retrieve the
descriptions created with the VoID and SPARQL-SD vo-
cabularies, such as the “well-known uris” mechanism and
the SPARQL protocol. Collective efforts to make avail-
able the descriptions of KBs via a SPARQL endpoint ex-
ist, e.g. Wikidata [26], but are only on a voluntary ba-
sis. The Google Dataset Search service relies on an index
of Web data sources automatically created: it crawls the
web searching for schema.org metadata in web pages to
identify web pages describing a dataset. While it does not
require index maintainers to volunteer, it still requires the
web pages to be properly annotated.

2.2. KB catalog

SPORTAL [15] proposes a catalog of KBs providing a
description of the content of each KB. It can be exploited
to select a KB to send queries to. The different statisti-
cal measures about the content of the KB are extracted
with SPARQL queries to create a VoID description. Some
metadata like authorship or vocabulary are not considered,
nor SPARQL-SD descriptions as it was a recent technology
at the time. The experimentation conducted to construct
SPORTAL showed that the capacity of each SPARQL end-
point to answer queries limits the construction of the cat-
alog. In the IndeGx framework, We reuse the queries used
in SPORTAL to extract statistical measures of the content

2

https://www.dublincore.org
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/void/#well-known
https://www.w3.org/TR/sparql11-service-description/#accessing
https://datasetsearch.research.google.com

of each KB. When compared to SPORTAL, IndeGx pro-
vides more information, such as the endpoint description
or the authorship. More importantly, it overcomes some
of the limitations of SPORTAL through a series of queries
with different levels of complexity and accuracy to get the
same information, and it unloads parts of the computation
of the result of the queries by the targeted KB through the
use of a federation server configured to allow queries whose
evaluation is particularly long, and for which most public
endpoints would simply time out.

LODLaundromat [1] adopts a centralized approach as
it crawls the semantic web for datasets, cleans them by
removing non-standard resources and triples and by en-
forcing community guidelines, then hosts the clean version
and offers VoID metadata about the new version through
a SPARQL endpoint.

SpEnD [31] relies on a “search keyword” discovery pro-
cess to discover SPARQL endpoints with relevant key-
words. It then evaluates their performances and features,
including their SPARQL coverage, similarly to SPARQLES
(see Section 2.3).

2.3. KB monitoring

Our proposal can also be compared to monitoring frame-
works that offer access to the metadata extracted from
each base, like SPARQLES [25] or Yummy Data [30]. SPAR-
QLES sends SPARQL queries and HTTP requests to as-
sess the availability, performance, SPARQL compatibility,
and discoverability of a set of 557 endpoints taken from
datahub.io. IndeGx reuses the SPARQLES’ SPARQL queries
to assess the availability and SPARQL coverage of an end-
point. As it relies on a SPARQL-based test suite, it cannot
assess features whose computation do not or not only rely
on SPARQL queries: it is the case for the discoverability
assessed by looking for server names and .well-known file,
and the performance assessed by comparing the results of
a batch of queries with or without cache.

Yummy Data is a catalog of KBs for biomedical sci-
ence that uses different measures, among which those of
SPARQLES, to rank the KBs in its catalog according to
a score defined by the authors. This “Umaka score” of a
KB is based on six aspects: availability, freshness, opera-
tion, usefulness, validity, and performance. IndeGx reuses
Yummy Data’s tests for freshness, usefulness, and validity.
It cannot implement some Yummy Data’s indicators that
do not rely on SPARQL queries, but on low-level opera-
tions, e.g. the “operation score” relying on simple HTTP
queries.

Luzzu [9] is a framework enabling experts to define
quality metrics about KBs and to evaluate them automat-
ically. Like IndeGx, Luzzu is extensible and is based on
existing vocabularies to define the measures and their re-
sults. When compared to Luzzu, IndeGx can provide qual-
ity indicators similar to the ones in Luzzu if they can be
expressed using SPARQL queries.

2.4. KB exploration

Dataset Dashboard [18] is a tool1 for the exploration
of over 200 KBs. It gathers the statistics about classes
and properties that can be expressed using VoID. It also
displays a graphical representation of a summary of the
schema of a KB. Metadata on a KB is also used to sup-
port users during KB exploration and query writing. Ap-
proaches such as SPARKLIS [11] and LOUPE [20] present
dataset statistics for the exploration of a KB. They are
similar to the ones used in SPORTAL and in IndeGx. LO-
DAtlas [22] is a website2 aiming to keep available the meta-
data from the catalog datahub.io in its previous version,
as it was in July 2018, and to offer further visualisation of
the content of the dump files of KBs.

2.5. Query federation

The statistics obtained by IndeGx are used in an exper-
imental federated query engine3 implemented with Corese [7].
It first queries the SPARQL endpoint containing the meta-
data generated by IndeGx to carry source selection, it
rewrites the user query accordingly, and returns the re-
sults.

HiBiSCus [24] also uses an RDF index for query fed-
eration. The metadata stored in the index represents the
so-called “capabilities” of each KB, i.e. the description of
the predicates occurring in the KB and the authority of the
URIs that appear as subjects and objects of the predicates.
The process to generate the index is not described. It is
used in a pruning algorithm to compute the minimal set of
KBs that must be queried to get the results of a federated
query. Harth et al. [13] propose to use a Q-Tree [16] for
the source selection for federated queries. A Q-Tree is an
index data structure adapted for multidimensional sparse
data. Catania et al. [4] go further by enriching Q-Trees
with quality and context metadata. Those summaries are
optimized for query federation, but unlike IndeGx they do
not give other information such as provenance or human-
readable information.

2.6. Comparison of related approaches

In this section we compare the closest approaches in the
state of the art to our own. We defined a series of various
features and we evaluated the approaches based on the
articles describing them. Table 1, presents a synthesis of
our analysis.

2.6.1. Target users and accessibility of data

Approaches targeting human users present information
about the content of their KBs through a web site. All the
exploration approaches provide a website used as UI. Ap-
proaches targeting software agents generally provide access

1Available at https://onto.fel.cvut.cz/dataset-dashboard

(Last access: 28/06/2022)
2Available at http://purl.org/lodatlas (Last access:

28/06/2022)
3Available at http://corese.inria.fr/federate/sparql.

3

https://datahub.io/
https://onto.fel.cvut.cz/dataset-dashboard
http://purl.org/lodatlas
http://corese.inria.fr/federate/sparql

In
d

e
x
in

g
M

o
n

it
o
ri

n
g

E
x
p

lo
ra

ti
o
n

F
e
d

e
ra

ti
o
n

S
P

O
R

-
T

A
L

[1
5]

L
O

D
L

au
n

-
d

ro
m

at
[1

]

S
p

E
n

D
[3

1
]

S
P

A
R

-
Q

L
E

S
[2

5
]

Y
u

m
m

y
D

a
ta

[3
0
]

D
a
ta

se
t

D
a
sh

-
b

o
a
rd

[1
8
]

S
P

A
R

K
-

L
is

[1
1
]

L
O

U
P

E
[2

0
]

H
iB

iS
-

C
u

s
[2

4
]

C
a
ta

n
ia

et
a
l.

[4
]

In
d

eG
x

D
o
m

a
in

G
en

er
al

G
en

er
al

G
en

er
a
l

G
en

er
a
l

B
io

m
ed

ic
a
l

G
en

er
al

G
en

er
a
l

G
en

er
a
l

G
en

er
a
l

G
en

er
a
l

G
en

er
a
l

T
a
rg

e
t

u
se

r:
-

S
of

tw
ar

e
ag

en
t

3
3

3
3

3
3

-
H

u
m

an
ag

en
t

3
3

3
3

3
3

3

A
c
c
e
ss

ib
il

it
y

o
f

d
a
ta

:
-

R
D

F
d

u
m

p
3

-
W

eb
si

te
3

3
3

3
3

3
3

3
3

-
S

P
A

R
Q

L
en

d
p

oi
n
t

3
3

3

U
se

s
o
n

ly
st

a
n

d
a
rd

S
W

te
ch

n
o

:
3

3
3

3
3

T
ra

c
e
a
b

il
it

y
o
f

p
ro

-
c
e
ss

:
3

3
3

3
3

Q
u

a
li

ty
in

d
ic

a
to

rs
:

3
3

3
3

3
*

3
3

K
B

c
o
n
te

n
t

re
p

re
-

se
n
ta

ti
o
n

:
-

C
la

ss
/p

ro
p

er
ti

es
p

op
.

3
3

3
3

3
3

3
3

3
-

D
at

a
su

m
m

ar
y

3
3

N
b

o
f

K
B

in
d

e
x
e
d

:
55

7
6
5
8

3
0
7

6
7

2
0
4

N
/
A

3
5

N
/
A

N
/
A

3
3
9

L
in

k
e
d

D
a
ta

3
3

U
p

d
a
te

fr
e
q
u

e
n

c
y

B
i-

w
ee

k
ly

N
/A

N
/
A

H
o
u

rl
y
*

D
a
il

y
N

/
A

N
/
A

N
/
A

N
/
A

N
/
A

B
i-

w
ee

k
ly

A
c
ti

v
e
:

3
3

3
3

3
3

L
a
st

u
p

d
a
te

:
2
0
2
2
-

1
0
-0

3
2
0
2
2
-1

0
-

0
3

2
0
2
2
-

1
0
-0

3
2
0
2
2
-1

0
-

0
3

2
0
1
6
-

0
7
-0

1
2
0
2
2
-

1
0
-0

3

Table 1: Comparison of the features of related approaches. Checked cells indicate the presence of a feature in the approach. Asterisks indicate
the presence of a feature close to the one described. N/A indicates that the feature is not applicable for this approach.

4

https://lodlaundromat.org/
http://wis.etu.edu.tr/spend/
https://sparqles.ai.wu.ac.at/
https://yummydata.org/
https://onto.fel.cvut.cz/dataset-dashboard/
http://www.irisa.fr/LIS/ferre/sparklis
http://loupe.linkeddata.es/loupe/index.jsp
http://prod-dekalog.inria.fr/

to their metadata through a SPARQL endpoint or RDF
dumps. HiBiSCus extends an existing federation engine
and offers no RDF dump, website, or SPARQL endpoint.
A few approaches target both human or software agents.
IndeGx gives access to the metadata it generates during
its periodic indexing through a SPARQL endpoint. Ad-
ditionally, the KartoGraphi [19] website4 exploits IndeGx
to offer various visualizations of the generated metadata,
including evolution of this metadata through time.

2.6.2. Only standard semantic web technologies

Approaches that rely only on standard semantic web
technologies are technologies that use SPARQL queries to
interact with KBs and that store their results in RDF.
This makes them easily integrable into existing seman-
tic web ecosystems. This is the case of all the explo-
ration tools listed in Table 1 (SPARQKLIS, LOUPE and
Dataset-Dashboard), that use SPARQL queries to gener-
ate the content displayed on their website. It is also the
case of SPORTAL and IndeGx. HiBiSCus uses SPARQL
ASK queries to identify relevant sources during query fed-
eration but does not precise the method used to retrieve
the content of its index. SPARQLES and Yummy Data
both make extensive use of SPARQL queries in their mon-
itoring but they also use other technologies to extract data
from endpoints.

2.6.3. Traceability

For the tools evaluated in Table 1 traceability means
the possibility to retrace the data generation process. Like
SPORTAL and Yummy Data, IndeGx records reports for
each query sent to an endpoint as part of the metadata
of the index they generate. SPARQLES records a report
of the SPARQL features supported by endpoints, associ-
ated to the query used to evaluate the feature. LOUPE
describes the queries used to generate statistics on its web-
site.

2.6.4. Quality indicators

The notion of quality of a KB is relative to its intended
usage. The approaches listed in Table 1 test KBs according
to quality indicators adapted to their usages. For example,
the availability of a KB is a general indicator used in all
indexing and monitoring systems. Monitoring approaches
like Yummy Data or SPARQLES are specialized in eval-
uating KBs. Yummy Data computes a quality score for
a KB combining several features, among which the aver-
age response time of an endpoint, the usage of classes and
properties in the graphs of the KB, and the formatting
of the URIs. SPARQLES computes the response time of
SPARQL endpoints in different situations and the list of
the SPARQL features that they support through time. In-
deGx implements the tests used in SPARQLES and some
of the features used by Yummy data, among which the

4Available at http://prod-dekalog.inria.fr.

presence of provenance data or the format of URIs as “cool
URIs”. Like Yummy Data it also computes the list of the
namespaces of the properties and classes appearing in a
KB to represent the vocabularies used by a KB. This may
give an indication about the theme of a KB and help the
user write her first queries if she does not know the KB’s
model. SPORTAL and HiBiSCus [24] adopt a similar but
more limited approach. They only extract the authority
of the resources of a KB, i.e. the domain of the URL. Hi-
BiSCus shows that using the authority of URIs is effective
to determine the necessary sources for a federated query.

2.6.5. KB content representation

Almost all approaches for the indexing, monitoring and
exploration of KBs compute a representation of the pop-
ulation of each class and property of a KB. In most cases,
including IndeGx, this knowledge is represented using the
VoID vocabulary. For instance, SPORTAL uses this rep-
resentation of the content of a KB as input to its source
selection algorithm.

Federation approaches use other representations in their
algorithms. For instance, HiBiSCus uses a summary of the
authorities used in the domains and ranges of the proper-
ties in a KB. IndeGx generates statistics on the usage of
the namespaces of entities in a KB, in a manner similar
to the property and class partitions defined in the VoID
vocabulary.

2.6.6. Update frequency

A lot of KBs are regularly updated and evolve with
their domain of knowledge. To keep with this evolution,
indexing and monitoring systems must regularly update
their content. Of course this is not an issue for the explo-
ration systems since they all query KBs when exploring
them. IndeGx, like SPORTAL, updates its content on a
bi-weekly basis to avoid surcharging the endpoints it in-
dexes with its complex queries.

2.6.7. Activity

The approaches listed in Table 1 are considered as ac-
tive if their source code or website is accessible. As it can
be seen in the table, half of them are not active any more.

2.6.8. Synthesis

Our review of the approaches related to IndeGx shows
that there is a growing interest for the extraction of meta-
data from KBs for various usages. We designed IndeGx as
a transparent and extensible declarative tool to extract
metadata based on SPARQL queries, among which all
the metadata extracted by SPORTAL, SPARQLES, and
LOUPE. It also provides original metadata, among which
several statistics on the usage of the namespaces in re-
source URIs and literal datatypes, the extraction of the
timezone of the server and a few SPARQL features not
covered by SPARQLES.

By the reproduction, the combination and the exten-
sion of previous initiatives, the capacity of IndeGx to smoothly

5

http://prod-dekalog.inria.fr/sparql
http://loupe.linkeddata.es/loupe/methods.html
http://loupe.linkeddata.es/loupe/methods.html
http://prod-dekalog.inria.fr
https://www.w3.org/TR/cooluris/
https://www.w3.org/TR/cooluris/

integrate new features makes it suitable for different uses:
indexing, monitoring, and exploration. This ability to in-
tegrate new features and the transparency of its genera-
tion process are key features that distinguish IndeGx from
other related approaches.

3. Dataset Metadata Model

As we highlighted it in Section 2, KB metadata are
used for different purposes: presentation of a human-
readable description in a catalog, for instance to foster
adoption and trust, query federation, or query rewriting.
Our method proposes to generate metadata of a KB to
support different usages for both humans and machines,
by collecting, computing and publishing this metadata as
a KB itself, following the Linked Data principles. We dis-
tinguish between four types of metadata:

Definition 3.1 (Asserted metadata). We define as-
serted metadata as the assertions about a KB or its
content, typically made by their authors or by other hu-
man agents.

Example asserted metadata are the authors, the license,
or a human-readable description of the KB. Usually, they
cannot be automatically generated from the KB. Those
metadata are necessary to describe a KB in a catalog as
they constitute the core of its catalog entry. They can also
be useful for result ranking in query federation systems
that annotate results with their sources, such as Corese [5]
and BioFed [14], to apply trust-based policies [23] or to
privilege the freshness of a source.

Definition 3.2 (Computable descriptive metadata).
We define computable descriptive metadata as the
assertions computable from the content of a KB and
describing this content.

Example computable descriptive metadata are the number
of triples or the list of named graphs in a KB, the numbers
of classes, of properties, and their distributions. This type
of metadata can easily be extracted from any KB with an
active endpoint. Many applications rely on it for query
federation [15, 24], KB exploration [11, 18, 20], or KB
monitoring [25, 30, 31].

Definition 3.3 (Computable quality metadata).
We define computable quality metadata as the meta-
data that measures or provides indications on the quality
of a KB.

Computable quality metadata originate from the best
practices in the semantic web community. Example of such
metadata are the presence of license and provenance infor-
mation, or the readability of a KB for humans, evaluated
by the proportion of resources with a human-readable label
in the KB. Catalogs like Yummy Data can use computable
quality metadata to rank KBs. Monitoring application can

be interested in the evolution of quality indicators over
time. For instance SPARQLES provides the evolution of
the availability of each endpoint it monitors.

Definition 3.4 (Generation traces). We define gen-
eration traces as the description of the interactions with
a KB in order to retrieve or generate the three other types
of metadata on this KB.

Generation traces contain the response to each SPARQL
query sent to the endpoint of a KB with the date and time
of its start and end of execution, as well as the error mes-
sage returned by the execution, if any. For example, when
an availability test fails, its trace will generally indicate
that it failed due to a “timeout” error. Generation traces
ensure the traceability of the values generated by IndeGx
and are a potential source of technical metadata about the
endpoint of a KB.

The rationale behind the categorisation we propose for
the KB metadata is to distinguish (1) between asserted
and computable KB metadata, and (2) between meta-
data describing the KB content and metadata providing
insights into the quality of a KB and its content. Ad-
ditionally, generation traces are (meta)metadata on the
generation of the metadata of the three other types.

By definition, asserted metadata, computable descrip-
tive metadata, and computable quality metadata cover all
the metadata that can be expressed using standard vo-
cabularies for KG descriptions (see Section 2.1) and re-
trieved or computed using SPARQL queries, thus includ-
ing most of the metadata on which the state of the art
approaches are based on (see Sections 2.2 to 2.5), notably,
SPORTAL [15] and HiBiscUs [24] for query federation,
LOUPE [20] and [22] for KB exploration, SPARQLES [25]
and Yummy Data [30] for KB monitoring.

In the rest of this section, we detail each category of
metadata. Our process to retrieve or generate them is
described in Section 4. To simplify the examples in the rest
of the article, we will use the prefixes defined in Listing 1.

Listing 1: Namespace declarations used in our listings.

bnb: http ://bnb.data.bl.uk/

dbo: http :// dbpedia.org/ontology/

dbp: http :// dbpedia.org/

dbps: http :// dbpedia.org/schema/

dbpr: http :// dbpedia.org/resource/

dbv: http :// dbpedia.org/void/

dcat: http ://www.w3.org/ns/dcat#

dct: http :// purl.org/dc/terms/

dqv: http ://www.w3.org/ns/dqv#

earl: http ://www.w3.org/ns/earl#

ex: http ://e.g/

formats: http ://www.w3.org/ns/formats/

kgi: http ://ns.inria.fr/kg/index#

mf: http ://www.w3.org /2001/ sw/DataAccess/

tests/test -manifest#

owl: http ://www.w3.org /2002/07/ owl#

prov: http ://www.w3.org/ns/prov#

rdf: http ://www.w3.org /1999/02/22 -rdf -syntax -ns#

rdfs: http ://www.w3.org /2000/01/rdf -schema#

sd: http ://www.w3.org/ns/sparql -

service -description#

6

void: http :// rdfs.org/ns/void#

xsd: http ://www.w3.org /2001/ XMLSchema#

3.1. Asserted Metadata

In general, metadata about a KB can be obtained ei-
ther from the KB itself or from an existing catalog. Only
the metadata embedded in the KB is guaranteed to be
machine-readable and written by the author of the KB. It
is also the one most likely to be updated whenever changes
are made to the KB. Still, embedding a KB description
within the KB itself is not a widespread practice. As of
the writing of this article, only 14% of the 564 endpoints
monitored by SPARQLES include a VoID description [25].

We defined the asserted metadata as the metadata that
we usually cannot derive from the content of the KB or by
interacting with it. It can be declared in the KB itself or
in an external source. It generally contains a description
of the dataset including its provenance, authors, date of
creation, license, etc. This kind of description is often
used to create a human-readable entry in a catalog and to
support keywords search for datasets.

There are many ways to structure this description and
many vocabularies can be used. We propose to centralize
and format this description using well-known vocabular-
ies. We expect that a detailed description of a KB uses
VoID and DCAT. Other vocabularies such as Dublin Core,
Schema.org5, or PROV-O can be used to complement the
description of a KB. Listing 2 gives a minimalistic dataset
description. Parts of the dataset description of DBpedia
and the British National Bibliography KBs are shown in
Listings 6, 7, 8 and 10.

Listing 2: Minimal dataset description.

ex:dataset a void:Dataset , dcat:Dataset ;

rdfs:label "Example dataset"@en ;

void:sparqlEndpoint ex:sparql .

3.2. Computable Descriptive Metadata

A KB description may contain elements that are de-
rived from its content. Those elements differ in their na-
ture from the asserted metadata as they are the part of
the KB description anyone can compute. This category of
metadata is more likely to change with the updates of the
content of the KB. In the following we propose a catego-
rization of computable descriptive metadata, that should
be represented using the VoID and SPARQL-SD vocabu-
laries.

3.2.1. Endpoint description

The documentation on the features of an endpoint
guides the interactions with a KB. In practice, the
SPARQL-SD vocabulary states that a SPARQL service
description must contain a resource that is the subject
of a property sd:endpoint, with the endpoint URL as

5https://schema.org/

the object of the property. Following this recommenda-
tion, we can infer that this resource identifies the SPARQL
service, of type sd:Service, associated to the endpoint.
Listing 3 gives an example of DBpedia’s service description
refering to DBpedia’s dataset dbv:Dataset and DBpedia’s
SPARQL endpoint dbp:sparql.

Listing 3: Minimal endpoint description.

dbp:endpoint a sd:Service , dcat:DataService ;

sd:endpoint dbp:sparql ;

dcat:servesDataset dbv:Dataset .

Version 1.1 of SPARQL introduced several useful and
powerful features for advanced querying, and SPARQL en-
gine implementations have progressively supported such
important features. Yet, SPARQLES shows that among
the 500 endpoints it surveys, while 99% are compliant with
some SPARQL 1.1 features, only 27% are compliant with
all of them. Other practical aspects of SPARQL query-
ing such as the query results format used by the endpoint
also vary from one engine to the other. These are obsta-
cles to the creation of generic Semantic Web applications,
and a description of the SPARQL engine features should
appear in the KB description to inform users about their
specificity. As an example, as of July 2022, the descrip-
tion of DBpedia’s endpoint contains the triples in List-
ing 4. They describe the supported versions of SPARQL,
the supported input and output formats, as well as the
non-standard property bif:contains that is characteris-
tic of Openlink Virtuoso implementations for optimized
full text search.

Listing 4: Excerpt from the description of DBpedia’s endpoint on its
supported query languages and query result formats.

dbp:endpoint

sd:supportedLanguage

sd:SPARQL11Update , sd:SPARQL11Query ,

sd:SPARQL10Query ;

sd:resultFormat

formats:N-triples , formats:RDF_XML ,

formats:RDFa , formats:N3 , formats:Turtle;

sd:inputFormat

formats:N3, formats:RDFa ,

formats:RDF_XML , formats:N-triples ;

sd:propertyFeature bif:contains .

Beyond the default graph of a dataset, SPARQL al-
lows querying specific named graphs identifying subsets
of data. RDF named graphs have many potential us-
ages: reification, provenance, subdivision of content, ac-
cess control, etc. As they change the way we should in-
teract with the KB, the list of the named graphs of a KB
and their usage policy should appear in the description of
a KB endpoint. Listing 5 provides the example descrip-
tion of the SPARQL engine features of DBpedia’s end-
point: sd:RequiresDataset indicates that the endpoint
requires the usage of a FROM clause to specify a graph;
sd:UnionDefaultGraph indicates that querying the de-
fault graph returns the same results as querying the union
(the merge) of all the named graphs (thus allowing the
user to query any graph without specifying it in their

7

https://schema.org/
https://dbpedia.org/sparql
https://virtuoso.openlinksw.com/

query); sd:BasicFederatedQuery indicates that DBpe-
dia’s endpoint supports the SERVICE keyword for basic
query federation (but in practice it rejects queries with a
SERVICE clause); sd:EmptyGraphs indicates that graphs
can be empty and are not automatically removed.

Listing 5: Excerpt from the description of DBpedia’s endpoint on its
SPARQL engine features.

dbp:endpoint sd:feature sd:RequiresDataset ,

sd:UnionDefaultGraph ,

sd:BasicFederatedQuery ,

sd:EmptyGraphs ;

3.2.2. Dataset statistics

An overview of the content of a KB typically includes
the list or hierarchy of its classes, properties, and their
statistics. Also the count of triples, classes, and instances
is a common measure of the size of a KB. For instance,
these are description elements provided by SPARKLIS [11]
or LOUPE [20]. Listing 6 is an excerpt from the descrip-
tion of DBpedia’s dataset including such statistics6:

Listing 6: Excerpt from the description of DBpedia’s dataset on basic
statistics.

dbv:Dataset rdf:type void:Dataset ;

void:triples 1099079630 ;

void:classes 483628 ;

void:properties 54422 ;

void:entities 39830270 .

The list of classes and properties instantiated at least once
are interesting complementary information since different
KBs pertaining to similar domains can have different cov-
erage of the same ontology. This information is hardly
readable by humans for large ontologies, e.g. more than
483,628 classes in DBpedia but it can easily be processed
by machines. As an example, SPORTAL uses such dataset
statistics expressed with the VoID and VoIDext vocabu-
laries to optimize query federation. Listing 7 provides an
excerpt from the description of DBpedia’s dataset on class
statistics that we computed.

Listing 7: Excerpt from the description of DBpedia’s dataset on class
statistics.

dbv:Dataset

void:classPartition

[void:entities 88646 ;

void:class dbo:Agent] ,

[void:entities 64036 ;

void:class dbo:Person] ,

[void:entities 62944 ;

void:class dbo:Place] .

3.2.3. Interlinking

The existence of interconnections between KBs is the
key to the Web of Linked Data. KBs are either inter-
connected by their common vocabularies, by common re-
sources, or by explicit equivalence relations between re-
sources. In addition to the dataset statistics, the list of

6Extracted the 29th of October 2021

vocabularies used has been shown by both [21] and [24] to
be a powerful tool to optimize source selection for feder-
ated queries.

Mapping relations between different resources are com-
monly expressed in the content of a KB, e.g. using the
owl:sameAs property. The VoID vocabulary provides a
dedicated structure, called linkset, to describe a set of
owl:sameAs relations. Listing 8 shows one such linkset
asserted by DBpedia.

Listing 8: Excerpt from the description of DBpedia’s dataset on its
owl:sameAs linkset.

dbv:sameAsLinks a void:Linkset ;

void:inDataset dbv:Dataset ;

void:linkPredicate owl:sameAs ;

void:triples 49127465 .

3.2.4. SPARQL Compatibility

The computation of the above described features rely
on SPARQL 1.1. Nevertheless, depending on the size of
the base and the SPARQL coverage of the SPARQL en-
gine, the generation of the dataset statistics may be refused
by the endpoint. SPARQL engines generally implement
only a subset of SPARQL 1.1 features and the possibility
of using SPARQL 1.1 to query a KB is important both
for the support of our operations and as a piece of in-
formation to be mentioned in the endpoint description.
SPARQL-SD enables to describe specific SPARQL fea-
tures. It also specifies the resources sd:SPARQL10Query,
sd:SPARQL11Update and sd:SPARQL11Query to describe
the SPARQL coverage of the endpoint. An example de-
scription is shown in Listing 4.

3.2.5. Default and Named Graphs

As shown in Listing 5 describing DBpedia’s features,
some endpoints expect from SPARQL queries that the
graph that must be queried be indicated. It is thus neces-
sary to first retrieve the list of the available graphs in a KB.
Moreover, when used as a subdivision of content, named
graphs can be seen as “separate” KBs. SPARQL-SD al-
lows the description of the different graphs present as part
of the description of the KB’s endpoint. As an example,
Listing 9 represents the list of named graphs in DBpedia,
and their names in the DBpedia URI namespace.

Listing 9: Excerpt from the description of DBpedia’s endpoint listing
DBpedia’s named graphs.

dbp:endpoint sd:namedGraph

[a sd:NamedGraph ;

sd:name dbp:sparql -sd]

[a sd:NamedGraph ;

sd:name dbp:]

[a sd:NamedGraph ;

sd:name dbpr:classes#]

[a sd:NamedGraph ;

sd:name dbps:property_rules#]

[a sd:NamedGraph ;

sd:name dbv:]

8

http://purl.org/query/voidext

Figure 1: Schema of the part of the description of the dataset of DBpedia as presented in Listings 4, 5, 6, 7, 8 and 9

3.3. Computable Quality Metadata

Computable quality metadata, like computable de-
scriptive metadata, are computed on the content of the
KB. They provide metadata quality indicators for both the
endpoint and the dataset of the KB. Quality is generally
defined as the fitness to use, a broad expression that may
cover very different indicators. Below we present the set
of quality indicators that we consider and represent using
the Data Quality Vocabulary. We consider basic quality
features such as the availability of a KB’s endpoint and the
respect of well-known semantic web best practices. We do
not aim at providing a comprehensive quality assessment
test suite; we rather provide a framework equipped with
basic indicators, that users may extend with any additional
quality indicators matching their specific requirements.

3.3.1. Availability

As SPARQLES and others have shown over the years,
the availability of SPARQL endpoints is variable through
time. The availability of the endpoint of a KB is a mea-
sure of its quality and reliability. It can be estimated by
logging the successful and failed access attempts made at
regular intervals by the index updating system. This mea-
sure also gives an indication of the likeliness of obtaining
complete results in a federated context. In practice, an
access attempt can rely on a simple SPARQL query “ASK
{?s ?p ?o.}”.

3.3.2. Compliance with best practices

The semantic web community has defined several best
practices for the creation and the distribution of KBs. We
propose to check the adherence to some of them. The

first one is that entities should be labeled. As some KBs,
such as Wikidata [26], use URIs that bear no human-
readable semantics – e.g. “Cat” is wd:Q146 – the label-
ing of resources is even more necessary to ensure that
the data is exploitable by humans. Studies of the qual-
ity of semantic web data and of labels in particular, such
as [10, 17], have shown that too often this practice is not
followed. Besides, several different properties can be used
for labeling, e.g. foaf:name for persons, dct:title for
books, skos:prefLabel for SKOS concepts, rdfs:label
or schema:name for everything else.

Another best practice is to include provenance infor-
mation in the the asserted metadata on a KB, like the
data source it is derived from. These provenance meta-
data are the keystone for trusting the KB and share it in
accordance with its license. Different standard vocabular-
ies such as the Dublin Core, Schema.org and PROV-O can
be used to describe provenance information. As an exam-
ple, Listing 10 presents provenance metadata on DBpedia
using the Dublin Core.

Listing 10: Provenance metadata collected from DBpedia.

dbv:Dataset

dct:created "2007"^^ xsd:date ;

dct:contributor "Soren Auer",

"Sebastian Hellmann", "Chris Bizer",

"Christopher Sahnwaldt", "Jens Lehmann",

"Robert Isele", "Claus Stadler" ;

dct:creator "Soren Auer", "Jens Lehmann",

"Christian Bizer" ;

dct:license

<https :// creativecommons.org/licenses/

by-sa/3.0/ > ,

<http :// www.gnu.org/licenses/fdl.html >;

dct:publisher "DBpedia Association" ;

dct:source <https :// www.wikipedia.org/> .

9

https://www.w3.org/TR/vocab-dqv/

Our method consists in looking for expected assertions
made with well-known vocabularies in the asserted meta-
data of a KB (authorship, licence and date of release),
and representing an indication of whether or not this in-
formation is available as a quality measurement using the
Data Quality Vocabulary. Listing 11 presents a quality
measurement of DBpedia asserted metadata.

Listing 11: Excerpt from the description of the British National
Bibliography’s dataset on the existence of provenance metadata.

:dbpedia -metadata dqv:hasQualityMeasurement [

a dqv:QualityMeasurement ;

rdfs:label "Provenance information is

present in the metadata"@en ;

dqv:computedOn dbp:sparql ;

dqv:isMeasurementOf kgi:provenanceTest ;

dqv:value "true "^^xsd:boolean

] .

There are other well-known possible quality indicators
like the consistency of the KB’s ontology, or its update
frequency, that we do not detail here.

3.4. Generation Traces

In the best case, asserted metadata on a KB include
the provenance of the KB’s content but very rarely provide
the provenance of the metadata itself. We propose to keep
track and describe in RDF each step of the generation of
a KB description. This allows for the description of the
reason for missing values in the metadata, e.g because of a
timeout during query evaluation, and it gives a history of
the availability of the KB endpoint. We use PROV-O and
the Evaluation and report vocabulary (EARL) to describe
this process of metadata production. The trace is linked
to the KB by property earl:subject, to the generation
assets declaring the SPARQL queries needed for the gener-
ation of the targeted metadata with property earl:test,
and to the result of the test with property earl:result.
As an example, Listing 12 presents the description of the
report of a failed test of the availability of DBpedia.

Listing 12: Excerpt from the description of DBpedia on the result of
a reachability test on it.

[

a earl:Assertion , prov:Activity ;

earl:subject kgi:DBpediaMetadata ;

earl:test kgi:availabilityTest ;

earl:result [

earl:info "Availability test" ;

earl:outcome earl:failed ;

prov:generatedAtTime "11 -05 -2021 T17 :58:43"

] .

These execution traces can also be used to compute
some quality metadata on the KB. As an example, the
traces of different SPARQL queries can be used to deter-
mine the coverage of SPARQL 1.1 by the KB endpoint.

3.5. Structure of the KB Index

Figure 2 depicts the metadata provided by our index
for each registered KB. It consists of:

Figure 2: Schema of metadata distribution in our approach.

• the KB metadata extracted or computed by IndeGx,
comprising:

– the extracted asserted metadata,

– the computed descriptive metadata

– the computed quality metadata,

– the generation traces.

If some computable descriptive or quality metadata
is present in the KB as asserted metadata, in IndeGx
these assertions are updated with the results of the
computations.

• the KB of generation assets describing all the steps
for building the index. It is shared by every KB’s
metadata. They are presented in Section 4.

4. Formalization of Metadata Generation

In this section, we formalize the computation of the
metadata of KBs from a catalog of KBs by IndeGx. We
call the resources representing the dataset, endpoint, the
metadata of a KB the subjects of IndeGx. Each entry of In-
deGx annotating a subject is called a subject profile. Sub-
ject profiles are composed of the asserted and computed
metadata of a KB’s metadata. We present the formaliza-
tion of the assets used by IndeGx to generate metadata
in section 4.1 and the structure of the subject profiles in
section 4.2.

4.1. Generation assets: tests and actions

From the computable metadata we identified previ-
ously, we detail the ones effectively computed in our ap-
proach using the generation assets. We formalize the gen-
eration assets as a series of tests and actions applied to
each KB, according to a test process.

We call tests the queries that we send to characterize
the dataset and the endpoint of a KB. Example tests are
checking the availability of an endpoint, or checking if a
given function is supported by the endpoint (e.g. supports

10

https://www.w3.org/TR/EARL10-Schema/

the keyword VALUES to bind a variable to a set of values) or
confirming advertised statistics about the base (e.g. the
number of triples). We also use a test to check if the
dataset of a KB contains the data needed to extract its
description and if the endpoint supports the features of
the SPARQL language necessary for IndeGx to generate
elements of the KB’s description.

We call actions the queries used to generate the de-
scription of a KB. Actions can include the extraction of
existing data from the dataset of a KB, the creation of
new data according to the result of a test, or the update
of an existing description. Example actions are the extrac-
tion of the license asserted in the dataset of a KB, or the
computation of the number of instances for each class in
the dataset.

One test can trigger several actions and the actions
triggered by a test can depend on the result of that test.
For instance, if an endpoint supports a specific SPARQL
feature (e.g. the SERVICE clause), several actions based
on that feature may be triggered (e.g. attempts to query
known endpoints).

In the following sections we explain how tests are de-
signed to characterize a KB and how actions are then trig-
gered to generate metadata in the index using in both cases
SPARQL queries. We then specify the ontology and data
structures to formalize the resulting index.

4.1.1. Tests: characterizing a KB using SPARQL queries

In the process for building IndeGx, tests are the pre-
liminary interactions with the KBs. The role of a test is
to check the functionalities of the endpoint of a KB and
the content of its dataset before extracting and computing
metadata for this KB in IndeGx.

A test description contains the SPARQL query it is
based on. The query is either of the form ASK or SELECT.
If a test consists of an ASK query, it is considered successful
if the query returns true. If a test consists of a SELECT

query, it is successful if the endpoint executes the query
properly, returns a result – possibly empty – and returns
no error. The values retrieved from the KB do not matter
for the test itself, it is the actions triggered by the test
that will retrieve the values to generate the appropriate
metadata. As an example, the very first test launched
in our implementation checks the reachability of the KB’s
endpoint. It consists of a simple SELECT query:
SELECT * { ?s ?p ?o } LIMIT 1

If the KB’s endpoint accepts this query, regardless of its
results, the action it triggers will initialize the endpoint
and dataset description.

A wide range of tests are used to check the quality of
computable metadata by comparing the values extracted
from the dataset of a KB with the ones computed on the
dataset. If needed, tests trigger actions to refine the meta-
data included in IndeGx. As an example, if statistics on
the classes and properties in the dataset are present in
the collected metadata, we verify that these values are
consistent with the content of the KB, and we correct

them in IndeGx if necessary. For instance Listing 6 shows
that the current metadata present in DBpedia indicates
1,099,079,630 triples, while the result of the query used to
count the number of triples is 859,801,816.

Another type of tests enables to determine the
SPARQL 1.1 coverage of the KB endpoint. To this aim,
SPARQL queries making increasing use of SPARQL 1.1
feature are sent in sequence to the endpoint. As an
example, IndeGx tests the support of the VALUES keyword
in a SELECT SPARQL query using the query:
SELECT ?o { <http://nonsensical.com/1> ?p ?o }
VALUES ?o { <http://example.org/thing> }
If an endpoint accepts such a query, regardless of its
results, the support of this SPARQL 1.1 feature is con-
firmed and added to the endpoint’s description by actions
triggered by the test. If the server returns an error,
the test is considered to be failed and the feature not
supported. For instance the DBpedia dataset states that
its SPARQL endpoint accepts basic federated queries (see
Listing 5). Yet, in practice, it refuses queries containing
the SERVICE keyword. Our approach confronts the
features indicated in the original metadata against the
actual coverage of the SPARQL endpoint.

Occasionally, some tests fail because their execution
reaches the limits of the endpoint (e.g. time quota or max-
imum number of results) or due to the technical specificity
of the test and the capabilities of the KB. Our approach
makes it possible to define a chain of tests such that a test
is launched only if the previous test succeeded or failed.
This way, if a test sends a query too complex for the end-
point, alternative methods or less precise tests can be per-
formed. As an example, a common mistake in endpoint
descriptions is to use a local address, e.g. starting with
http://localhost, instead of the actual endpoint URL.
At the time of writing this article, DBpedia is in this sit-
uation. For this reason, if our approach does not find an
endpoint description linked to the endpoint URL, it tests
the presence of an endpoint description linked to a local
address as a fall-back position. Conversely, if a KB is able
to return the results to a test, we then try more complex
tests. For instance, if IndeGx can retrieve the list of classes
in a dataset, then, it tries to retrieve the list of properties
used with class instances as subject or object. If this test
is also successful, IndeGx will then compute for each pair
of a class and a property the number of triples where an
instance of the class occurs as the subject or object of the
property.

4.1.2. Actions: generating a description using SPARQL
queries

Actions are responsible for the generation of the as-
serted metadata, computed descriptive metadata and com-
puted quality metadata. Tests can be seen as preliminaries
to actions. Indeed, a test will often try a limited version
of the actions on the KB, to check if these actions have a
chance to succeed and generate a specific kind of informa-
tion. Thus, actions are generally associated to more com-

11

plex queries than the tests. The test results in the building
process traces determine which action must be applied to
build the index. There are three types of actions: extrac-
tion actions, generation, and modification. An extraction
action adds new metadata by copying the metadata that
the KB provides about itself to the description resources
in the metadata. A generation action can create metadata
not present in the KB, like statistics on the dataset classes
and properties, as part of the computed descriptive meta-
data. A modification action is used to correct the values
present in the metadata in the case where the computed
descriptive metadata generates values for some KB char-
acteristics already present in the asserted metadata.

An example modification action updates the list of
vocabularies used in a KB to reflect the reality of its
dataset. For instance, at the time of writing this arti-
cle, the metadata contained in the WASABI [3] KB on
music-related topics indicates 12 vocabularies used in the
dataset, whereas the extraction of the namespaces actually
used returns only 10 values: the Audio Features Ontology
and Wikidata vocabulary are mentioned in the asserted
KB description although there are not actually used in
the dataset.

The behavior of the tests and actions submitted to
a KB can be modified based on the metadata. For in-
stance, if an endpoint description indicates that the end-
point has sd:RequiresDataset as a feature, then any
SPARQL query should use FROM or FROM NAMED clauses.
In this case, if the endpoint description does not indicate
the feature sd:UnionDefaultGraph, then the list of named
graphs must be added in FROM clauses to any query sub-
mitted to the KB.

4.2. IndeGx model

The IndeGx ontology has for namespace http://ns.

inria.fr/kg/index# and its preferred prefix is kgi:. It
extends the W3C Manifest, the Evaluation and Report
Language (EARL), VoID and PROV-O vocabularies to
describe tests, actions, and traces. In the following we
describe the most important concepts and Table 2 gives a
short summary of the ontology.

4.2.1. KB description generated by the IndeGx framework

Each KB description in IndeGx describes three core
resources: the dataset subject, the endpoint subject and
the metadata subject. It combines the content of their
respective profiles. The dataset and endpoint subject pro-
files gather the extracted asserted metadata and the com-
puted (descriptive and quality) metadata, while the meta-
data subject profile gathers computed quality metadata
and generation traces. In IndeGx’s current implementa-
tion, for the special case of a KB that does not enable
IndeGx to actually compute the computable metadata, if
some asserted metadata is available, then it is included
in the profile in the place of the missing computed meta-
data. Property dcat:dataset links the dataset subject to

the root of the index. The dataset and endpoint subjects
are linked together with properties from VoID and DCAT
vocabularies. The metadata subject is linked to the two
other subjects using property kgi:curated.

Figure 3 presents the description of DBpedia in In-
deGx. The entry point of the index is kgi:catalogRoot,
instance of dcat:Catalog. The resources of type
dbv:Dataset and dbv:sparql-sd are extracted from DB-
pedia (see Listings 4, 5, 7 and 8).

As an additional example, a simple profile, ex:meta,
linked to an endpoint subject ex:endpoint and a dataset
subject ex:dataset, would be represented as follows:

Listing 13: Example of a simple metadata description resource.

ex:meta a prov:Entity ;

kgi:curated ex:endpoint , ex:dataset ;

prov:wasAttributedTo ex:sparql ;

prov:generatedAtTime "2021 -07 -15"^^ xsd:date .

The generation traces are linked to the metadata sub-
ject with property kgi:trace. Each trace is written as
an EARL report. Most queries used in tests are sent as
they are to the endpoint of a KB. Some queries are tem-
plates where placeholders such as the endpoint URL must
be replaced. The rewritten query is logged by linking it
to the result of the report with property kgi:sentQuery.
As an example, after a successful test of the presence of
asserted metadata in a KB, with a default graph made of
three named graphs, the following report is generated:

Listing 14: Example of EARL report.

ex:datasetDescResExtract

a earl:Assertion , prov:Activity ;

dct:title "Extraction of the

description resource from the example

endpoint ." ;

earl:subject ex:endpoint ;

earl:test kgi:datasetDescResourceExtract ;

kgi:sentQuery """

SELECT DISTINCT ?res

FROM :graph1

FROM :graph2

FROM :graph3

WHERE { { ?res a dcat:Dataset }

UNION

{ ?res a void:Dataset } }""" ;

earl:result [

earl:outcome earl:passed ;

prov:generatedAtTime "2021 -07 -15"^^ xsd:date ;

earl:info "The server returned an

answer for this query"@en

] .

4.2.2. Test and action description

Tests and actions form the generation assets used by
IndeGx to generate metadata by interacting with a KB.
Each test is associated with at least one action. Genera-
tion assets are declared and organized following the struc-
ture of a test suite using the Manifest vocabulary, that
has been extended in the IndeGx ontology (see Table 2).
Class earl:TestCase is specialized by two new classes:

12

http://ns.inria.fr/kg/index#
http://ns.inria.fr/kg/index#
https://www.w3.org/2001/sw/DataAccess/tests/test-manifest
https://www.w3.org/TR/EARL10-Schema/
https://www.w3.org/TR/EARL10-Schema/

Resource Description
kgi:catalogRoot Default resource used as the root of the index.
kgi:federation Used as object of kgi:endpoint to indicate that a query must be sent to a federation server.

Class Description
kgi:TestQuery Main class for the tests.
kgi:TestTrue A placeholder class used for tests that always succeed, to apply their actions, generally for the

maintenance of IndeGx.

Property Description Domain Range

KB description

kgi:endpoint
Indicates the endpoint to send a query to if it is not
the currently described KB.

mf:ManifestEntry rdfs:Resource

kgi:original
Links the metadata description resource to the origi-
nal description resources from the described KB.

prov:Entity prov:Entity

kgi:curated
Links the metadata description resource to the de-
scription resources generated by the framework.

prov:Entity prov:Entity

Trace description

kgi:trace
Links the metadata description resource to the traces
generated by the operations of the framework.

prov:Entity earl:Assertion

kgi:sentQuery

Links the result of a test to the query sent if it has
been parameterized from its original template during
operations.

earl:TestResult xsd:string

Test description

kgi:onSuccess
Links a test to the list of actions to be performed if it
succeeds.

mf:ManifestEntry rdf:List

kgi:onFailure
Links a test to the list of actions to be performed if it
failed.

mf:ManifestEntry rdf:List

Table 2: Short summary of the IndeGx ontology.

Figure 3: Model of the description of DBpedia in IndeGx

kgi:TestQuery is the class of the tests whose success de-
pends on the successful execution of a SPARQL query re-
gardless of its result, e.g. availability tests; this is the
case for most of the tests in IndeGx. kgi:TestTrue is
the class of the tests whose actions are applied automati-
cally for the maintenance of the index, e.g. the update of
the date of last modification of the index, or the addition
of a set of example queries for IndeGx users. Since the
Manifest vocabulary does not contain any property to dis-
tinguish the output of an action, we introduced properties
kgi:onSuccess and kgi:onFailure to declare the list of
actions to apply when a test succeeds or fails.

A generation asset consists of both an RDF graph de-

scribing its test and the RDF description of the actions
that must be performed depending on the result of the
test in a manifest file. Listing 15 presents the description
of an example test used to compute the list of vocabular-
ies occurring in the KB. The associated SPARQL query
retrieves the namespaces of the properties and classes.

Listing 15: Example test for the extraction of vocabularies from
vocabularyList.ttl.

<vocabularyList.ttl >

a kgi:TestQuery ;

dct:title "Extraction of the namespaces

of properties and classes ."@en ;

kgi:query """ SELECT DISTINCT ?ns WHERE {

{

SELECT DISTINCT ?elem {

13

{ ?s ?elem ?o . }

UNION { ?s a ?elem . }

}

}

BIND(REPLACE(str(?elem),

"(#|/)[^#/]*$", "$1")
AS ?ns) .

}""" .

Listing 16 presents an example manifest containing the de-
scription of an action that must be triggered in the case
where the test described in Listing 15 is successful: CON-
STRUCT queries are sent to the KB to create new triples
from the KB’s content and SPARQL UPDATE queries are
applied to the current content of the index.

Listing 16: Example action for the extraction of list of vocabularies,
written in manifest.ttl

<manifest.ttl > a mf:Manifest ;

mf:entries (<vocabularyList.ttl >) .

<vocabularyList.ttl > a mf:ManifestEntry ;

kgi:onSuccess (

[mf:action """ CONSTRUCT {

kgi:exampleMetadataDescription

void:vocabulary ?ns .

}

WHERE {

{

SELECT DISTINCT ?elem {

{ ?s ?elem ?o . }

UNION { ?s a ?elem . }

}

}

BIND(IRI(REPLACE(str(?elem),

"(#|/)[^#/]*$", "$1"))
AS ?ns) .

}"""

)

IndeGx’s test suite contains 85 generation assets.
There are on average 3.3 actions per successful test and
0.24 actions per failing test.

4.2.3. Off-loading computational load

Some of the generation assets provided in IndeGx rely
on an additional, private SPARQL endpoint (in our case
an instance of Corese [7]) that we configured to allow any
kind of federated query without quotas in terms of num-
ber of results or execution time. The usage of an exter-
nal resource is meant to off-load the CPU- and memory-
intensive computations of some generation assets from the
KB to the additional endpoint under our control. Using
this endpoint also opens up the possibility to use SPARQL
extensions such as the LDScript [6] language implemented
in Corese.

We have developed an implementation of the approach
described in this section, that is publicly available on a
Github repository under the GNU General Public License.

5. Experimentation and Evaluation

In this section, we summarize several months of exper-
imentation and evaluation. To present the results we have

separated the computable descriptive metadata generation
assets into three categories, depending on the origin of the
definition of the generation assets used to produce them.
The first category corresponds to the list of generation
assets that we have defined for IndeGx, such as the ex-
traction of the list of vocabularies used in a source. The
second and third categories essentially correspond to, re-
spectively, generation assets adapted from SPARQLES
and the ones adapted from SPORTAL. We augmented the
last two categories with a few new generation assets but
they remain in the same spirit as the others in their cate-
gories.

5.1. Experimental Setup

All the experiments were done using a virtual server
with 16Go RAM memory and 4 cores Intel(R) Xeon(R) @
2.60GHz. The framework was launched periodically over
a period of 8 months between November the 18th, 2021
and July the 16th, 2022. Over that period, each endpoint
and its dataset was subject to at least 72 tests and at
most 98 tests. We started our framework with a set of 197
endpoints extracted from the active endpoints listed by
SPARQLES, and the lists of endpoints given by Linked-
Wiki, YummyData, and WikiData. During the experi-
mentation campaigns, we added the endpoints listed on
the LOD Cloud website and the list of the chapters of
DBpedia. After 6 months, we removed from our lists the
endpoints that never answered our queries or whose URL
in their source catalog did not point to an active SPARQL
endpoint. Starting with 470 KBs extracted from different
sources, at the end of our 8 months of experimentation,
we counted 339 endpoints available during at least one
of our indexations (meaning that 28% never answered),
among which 80 were available during all our indexations.
To evaluate the coverage of our catalog we performed ad-
vanced Google queries leveraging the allinurl operator
to find SPARQL endpoints7 and discovered only 5 addi-
tional endpoints. The complete catalog of endpoints is
available in our GitHub repository.

5.2. Execution Times

In our current implementation, we sequentially evalu-
ate each endpoint of the catalog. Doing so, we obtain the
run-time of the evaluation of each endpoint that can then
be queried from the generation traces. Over the period
of our experiment, IndeGx performed 2947 indexations of
datasets. On average each endpoint was indexed 4 times
over a period of 8 months. It takes around 13 minutes
on average to index a KB with a standard deviation of 7
minutes. Occasionally, we observed that the indexation of
all the KB of a catalog took more than 5 days to complete.
Therefore, to avoid the launch of an indexation on a cat-
alog while another indexation of the same catalog is still
running we empirically chose to update the index every
two weeks.

7https://www.google.com/search?q=allinurl%3Asparql

14

https://github.com/Wimmics/dekalog
https://github.com/Wimmics/dekalog/tree/master/rules/extraction/computed
https://github.com/Wimmics/dekalog/tree/master/rules/extraction/computed
https://github.com/Wimmics/dekalog/tree/master/rules/sparqles
https://github.com/Wimmics/dekalog/tree/master/rules/sportal
https://github.com/Wimmics/dekalog/blob/master/catalogs/web_semantics_catalog.ttl
https://www.google.com/search?q=allinurl%3Asparql

Figure 4: Average runtime of the tests in each category.

Figure 4 shows the distribution of the runtimes against
each category of test. It shows that at least 75% of the
tests are performed in less than a minute. The stan-
dard deviation of the execution shows the differences be-
tween the categories. The 4 computed categories have the
longest execution time due to the computational complex-
ity of their queries. The asserted metadata and computed
quality metadata categories have similar runtimes, as they
mainly check the presence of elements in the KB. On aver-
age, the five tests with the longest average execution time
are:

1. The count of the number of properties;
2. The count of the number of classes;
3. The check for the presence of provenance informa-

tion;
4. The count of the number of instances of each class;
5. The extraction of the list of vocabularies.

The time taken by the first, second and fourth tests of
this list is due to the usage of counting in the query, which
is computationally costly. IndeGx checks the presence of
provenance information (third test) using a query that con-
tains 10 UNION operations in order to check several well-
known combinations of properties for provenance. The ex-
traction of the list of vocabularies (fifth test), as IndeGx
does it, uses a REGEX to get the beginning of the URIs
of every class or property used in a dataset. The cost of
this operation explains the position of this test in the list.
Some SPARQL engines, such as Virtuoso, use a runtime
evaluation system to filter the incoming queries that are
too complex. In practice, these five tests with the longest
average execution time are not considered as too complex
by these engines, despite their observed response times.

5.3. Metadata Obtained

During the experiment period, IndeGx has generated a
total of 3084 descriptions of KB. On average, the descrip-
tion of a KB contains 13,193 triples. Half of the KBs, in

the interquartile range of all the descriptions, contain be-
tween 2733 and 23,693 triples. In this section, we describe
what IndeGx was able to retrieve in terms of provenance
information, classes and properties statistics, information
about the SPARQL norm coverage and quality feature
evaluations.

5.3.1. Provenance metadata

IndeGx looks for provenance information that are
stored in datasets. As IndeGx is limited to the metadata
accessible using standard SPARQL queries, it cannot re-
trieve other sources such as the .well-known/void files.
However, an attempt to retrieve the .well-known/void

files of the KBs we index showed that only 10 KBs of-
fer such metadata. The test used to look for provenance
information searches for an instance of void:Dataset or
dcat:Dataset linked by any appropriate property from a
well-established vocabulary, i.e. DCTerms and PROV-O,
to any authorship, time-related, licensing or sourcing in-
formation. Among the 339 KBs, 33 contained some kind
of provenance information. Of those 33, all contained in-
formation about the source of their data, 26 KBs con-
tained information about their creators, contributors, or
publishers, 18 KBs contained information about the time
they were created or released, 16 KB contained informa-
tion about their licenses.

The proportion of KB with provenance metadata suit-
able for a KB catalog is very small. Moreover, this lack of
information hinders the traceability of data when datasets
are reused in external projects. It is possible that our lim-
itations in technology and our choice of vocabulary in the
queries made us miss properly described datasets. Yet,
from our experience and after numerous manual explo-
rations of KBs, we think that the proportion of KBs anno-
tated with provenance information that IndeGx has identi-
fied is representative of the state of the publicly accessible
KBs.

5.3.2. Classes and properties statistics

SPORTAL and other approaches have demonstrated
the feasibility of a federated query answering method
based on the statistics about the classes and properties
that can be expressed using the VoID vocabulary. IndeGx
uses its system of chained generation assets to incremen-
tally extract as many statistics from each KB as possible.
Among the possible statistics, the description of the us-
age of properties is of particular interest to determine the
possible joins between KBs. Among the 339 KBs, the
computed descriptive metadata of 207 KBs contains the
number of distinct objects and subjects for each property,
and the computed descriptive metadata of 184 KBs con-
tains the list of properties appearing around the instances
of each class. Those two statistics alone are the base of fed-
eration and exploration approaches. Yet, the computation
of those statistics is hindered by technical elements, such
as the processing power of the endpoint and, sometimes,
hidden parameters of an endpoint that limit the number

15

https://github.com/Wimmics/dekalog/blob/master/rules/check/provenance.ttl

of results retrievable by sub-queries. As an example, by
default, an instance of Virtuoso limits the number of re-
sults of a query to 10,000, even when an explicit higher
limit is specified in the query.

5.3.3. SPARQL features coverage

IndeGx uses the queries used by SPARQLES, with 2
additions, to test 43 SPARQL features. Each query is
written not to retrieve results but to test if it receives an
error due to the presence of the tested feature. On average,
the endpoints support 85% of the tested features. The five
least supported features are, in descending order:

1. The usage of the SERVICE keyword for query federa-
tion,

2. The usage of the VALUES keyword,

3. The usage of a sub-query with the GRAPH keyword,

4. The usage of the FROM keyword,

5. The usage of the filter NOT IN in an ASK query.

Note that most of the features from SPARQL 1.0 are sup-
ported by all endpoints, and most of the features that are
not supported are specific to SPARQL 1.1. This can im-
pact all potential use-cases of a KB.

5.3.4. Quality features

IndeGx uses different quality features to evaluate a KB.
Each quality feature corresponds to a readability criteria
for the content of the dataset or a usability criteria of the
KB in different use cases. The measurement are presented
either as a Boolean, a sort of flag indicating the presence
of a feature in the KB, or as a percentage indicating the
proportion of the KBs with the feature. There is no judg-
ment associated with a value of 0 or 1, as a feature can be
more or less desirable depending on its usage.

Readable labels. The presence of a label in natural lan-
guage to describe the entities of a dataset is an important
part of the readability of a KB. This feature is highlighted
in the survey by Zaveri et al [32]. IndeGx measures the
proportion of resources with a label in a dataset. This mea-
sure is done in one query, using two sub-queries to count
the number of resources in the dataset and the number of
labels linked to those resources. Due to this complex struc-
ture, the query is not answered by all endpoints. Among
the 339 endpoints, 99 have answered IndeGx’ test. Of
those, 35 have a measure above 0. If there are any labels
in a dataset, on average 53% (±38%) of the resources are
labeled. This shows that the labelling of every resource is
not a widespread practice, which indicates poor readability
of the publicly available KBs in general.

Short URIs. In IndeGx, short URIs are URIs without pa-
rameters, with less than 80 characters. The shortness of
URIs is linked to the readability of the dataset for hu-
mans. This is related to the concept of “Cool URIs”. In-
deGx measures the proportion of URIs in a dataset that
are considered as short URIs in one query that assesses all

URIs in the dataset. As the query applies different filters
on every URI before counting them, it is not answered by
all endpoints. Among the 339 endpoints, only 58 answered
IndeGx’s test. Of those, 89% (±21%) are short URIs.

Blank node usage. Blank nodes are used differently in a
KB, depending on its intended usage. In KBs contain-
ing schemata, blank nodes are used for the definition of
class restrictions and other data structures, as well as in
KBs containing SHACL shapes. Conversely, in some KBs
containing resource descriptions, blank nodes may have
been used where URIs would have been preferable to fa-
cilitate their processing. As a result, the presence of blank
nodes in a KB is an important indicator which interpreta-
tion depends on the usage scenario of the KB. Among the
339 endpoints, 102 endpoints answered IndeGx’s genera-
tion assets evaluating the proportion of resources that are
blank nodes in a dataset. The distribution of the measure
in this group shows that, on average, 84% (±22%) of the
entities in a KB are URIs, and in 75% of the KBs at least
69% of the entities are URIs.

Language tags. The usage of language tags on literal val-
ues improves the readability of a KB and allows the cre-
ation of multilingual applications exploiting them. IndeGx
measures the proportion of literals with a language tag.
As part of the computed descriptive metadata, it also ex-
tracts the list of the language tags used in the literals of a
dataset. Among the 69 KBs using language tags, the five
most used language tags are, in descending order, “en”
in 64 KBs, “fr” in 24 KBs, “de” in 19 KBs, “es” in 14
KBs, and “it” in 11 KBs. Note that, due to technical con-
straints, we do not count the regional variations of some
tags, such as en-US or en-UK in this count. Apart from
3 KBs that contain more than 100 language tags, most of
the KBs use between 1 and 3 language tags. The mea-
sure of the proportion of literals with a language tag in a
dataset shows that in the 73 KBs that answered this test,
on average 25% (±36%) of the literals have a language
tag. Those statistics show that multilingual applications
should not expect to find translations for string literals in
most publicly available KBs.

Presence of the KB’s URI pattern. The VoID vo-
cabulary offers two properties, void:uriSpace and
void:uriRegexPattern, to state how the URIs of a KB are
constructed. This information can be used in different
use-cases, in catalogs entries and in query federation for
source selection. A link detection algorithm may also
use it to identify the resources coming from another
source that are in a KB, and the resources coming from
a KB that appear elsewhere. IndeGx evaluates the
presence of one of the two given properties in a dataset
description. This simple test has been answered by all the
339 endpoints. Only 48 KBs contain the triples describing
the URIs of their resources using VoID.

16

https://raw.githubusercontent.com/Wimmics/dekalog/master/rules/sparqles/SPARQL11/SPARQLES_SELSERVICE.ttl
https://raw.githubusercontent.com/Wimmics/dekalog/master/rules/sparqles/SPARQL11/SPARQLES_SELSERVICE.ttl
https://raw.githubusercontent.com/Wimmics/dekalog/master/rules/sparqles/SPARQL11/SPARQLES_SELVALUES.ttl
https://raw.githubusercontent.com/Wimmics/dekalog/master/rules/sparqles/SPARQL11/SPARQLES_SELSUBQGRAPH.ttl
https://raw.githubusercontent.com/Wimmics/dekalog/master/rules/sparqles/SPARQL10/SPARQLES_SELFROM.ttl
https://raw.githubusercontent.com/Wimmics/dekalog/master/rules/sparqles/SPARQL11/SPARQLES_ASKFILNOTIN.ttl
https://www.w3.org/TR/cooluris/
http://rdfs.org/ns/void#uriSpace
http://rdfs.org/ns/void#uriRegexPattern

Vocabulary list. The list of vocabularies used in a KB is
useful for catalogs and federated query solving approaches.
IndeGx computes this list for each KB. Among the 339
endpoints, only 3 of them answered that their KB contains
such a list of used vocabularies as metadata. In contrast,
IndeGx managed to compute this list of vocabularies for
225 KBs as part of the computed descriptive metadata.
Yet, IndeGx computes it by extracting the domain and
path of each class or property’s URI. While this guaran-
tees to get all the vocabulary namespaces, all the URIs
obtained by IndeGx are not guaranteed to be vocabular-
ies.

5.4. Errors Obtained During the Building Process

Figure 5: Total number of failing tests in each category, for each type
of error during the experiment.

Figure 5 shows the number of tests in each category
that failed because of an error during the experimentation
period. We have classified the different error traces ac-
cording to 8 categories corresponding to the message kept
by IndeGx in the trace of each test. From the figure we can
see that the most common source of failure for the different
tests is the unavailability of the endpoints at the moment
of querying them. These fluctuations of availability are
also a quality feature that is part of the description of a
KB. This shows that any application based on a catalog of
KB should take into account the probable unavailability
of part of their catalog.

5.5. Generation Assets Usage

In this section, we distinguish between explicit com-
putable descriptive metadata and non-explicit computable

descriptive metadata. The explicit computable descrip-
tive metadata are computed using straightforward queries
whose results are either stored in the dataset or given
by the SPARQL engine without consulting the dataset.
They include the extraction of the sameAs relations, the
list of graphs, and the timezone of the SPARQL endpoint.
The non-explicit computable descriptive metadata needs
a transformation of the entities from the dataset to be
computed. This is generally done using a regular expres-
sion or another filter applied to a large number of enti-
ties. They include the computation of the list of vocabu-
laries, languages, datatypes, hostnames, and the detection
of linksets toward other KBs.

The SPORTAL generation assets generate data struc-
tures describing statistics about the content of the dataset.
We distinguish between simple and complex generation as-
sets. Simple generation assets each only generates one
triple, describing the number of a specific type of entities
in the dataset of a KB, e.g., the number of classes and
properties. Complex generation assets use more complex
queries and generate more complex data structures, mostly
statistics about classes, like the number of instances per
class or the list of properties used in the description of the
instances of each class.

During the experimentation, more than 3.4 million
triples were generated. Table 3 presents statistics on all
the runs of our experiments combined. It provides the
number of generation assets and the proportion of gen-
erated triples for each category of generation assets. In
Figure 6 the black bars show for each category of gener-
ation assets the average proportion of KBs that passed
at least one test of that category. The doted line shows
the maximum proportion of KBs that passed at least one
test of a category in all runs combined. A remarkable fact
shown by Table 3 and Figure 6 combined is that 88% of the
triples were generated by the complex SPORTAL genera-
tion assets applied to about 20% of the KBs. To generate
metadata, a generation assets needs from the KB both the
support of the SPARQL features it uses and the content
and the capacity to compute the results of the queries. The
generation assets of the SPARQLES category are the sim-
plest as they only check the support of SPARQL features
by an endpoint.

5.6. Supporting Human and Machine Interactions with In-
deGx

IndeGx proposes a declarative indexing framework
which results are accessible to machines as linked data and
through a SPARQL endpoint. To make this output acces-
sible to humans too, we provided, on top of this index ser-
vice, a visualization Web application called KartoGraphI8.
It generates an overview of important characteristics and
a number of the results presented in this paper can also
be visualized and browsed on KartoGraphI [19].

8http://prod-dekalog.inria.fr

17

http://prod-dekalog.inria.fr

Generation assets categories
Asserted
metadata

Computable metadata Computable
quality

metadata
Computable

descriptive metadata
SPARQLES SPORTAL

Color used in
figures

Sub-category Explicit Non-
explicit

Simple Complex

Number of
available tests

5 3 5 45 14 14 13

% of the total
size of all the
descriptions

1,22% 5,64% 2,94% 1,54% 0,12% 88,0% 0,53%

Table 3: Statistics about the generation assets grouped by categories.

Figure 6: Histogram of the proportion of KBs that passed at least a test of a generation assets in each category, during all runs.

To demonstrate the use of the index in other appli-
cations we also provided a demonstrator of a federated
query engine exploiting the index. In this prototype, the
VoID class and property partitions generated by IndeGx
are used by the source selection algorithm of the Corese
federated query engine’s endpoint to automatically select
and distribute the processing of a SPARQL query over
several relevant sources.

Finally, to assist and encourage KB providers to in-
clude good quality metadata in their KBs, we have created
an online service called Metadatamatic, that simplifies the
creation of metadata for a dataset through a dynamic form
and scripts that reuse the actions defined for IndeGx to ex-
tract statistics on the dataset.

6. Conclusion

In this paper, we have presented IndeGx, an approach
for the sustainable remote generation of a standard-based
description of a KB. Our approach has been implemented
in a framework in which every operation of the generation
of a description is specified using standard technologies. It
can include any description feature of a dataset that can
be generated using one or more SPARQL queries. Our
implementation of IndeGx relies on a GitHub repository
where each indexing feature is collaboratively and declar-
atively defined. Anyone can add new features to the index
by contributing the corresponding actions to the reposi-
tory. IndeGx is also designed to incrementally assess the
endpoints’ capabilities in increasing order of complexity,
and as much as possible to work around their limits.

18

https://files.inria.fr/corese/doc/federateindex.html
https://files.inria.fr/corese/doc/federateindex.html
https://corese.inria.fr/srv/template
https://wimmics.github.io/voidmatic/

IndeGx needed on average 16 minutes to process an
available KB, with a standard deviation of 12 minutes.
Our experimentation showed that IndeGx can generate
metadata from any available KB, the quantity of metadata
generated from a KB depends on its dataset’s content and
its endpoint’s capacities. Great disparities were observed
in the content and the capacities of the KBs available on
the semantic web. This indicates that applications trying
to exploit many KBs must be prepared to handle large dif-
ferences between their sources. In other words, the results
of IndeGx show that any linked data consuming applica-
tion must be conceived as an extremophile agent and that
the provided index can help in this regard.

We also showed that IndeGx can support the search
for useful KBs and promote the integration of human-
readable descriptions in KBs and the upgrade of SPARQL
endpoints toward better SPARQL compliance. We demon-
strated how visualization portals for humans as well as
distribution plans for federated query solving could effec-
tively be built on top of such an index. More generally,
IndeGx provides metadata supporting the findability, un-
derstanding, and reuse of KBs, thus improving the overall
FAIRness of the semantic web.

This first experiment is also opening a lot of perspec-
tives and future works. The current list of KBs used in
IndeGx comes from snapshots of catalogs. In the future,
we hope to apply a method to automatically discover new
KBs, using services such as Google dataset search or using
traversal crawling [12] and add them to our index. We
will also consider methods to reuse the previous versions
of the index as alternate metadata sources to describe a
KB. This would also make it possible to survey the evolu-
tion of datasets and avoid the loss of data in case of the
temporary unavailability of a KB.

We observed that some standard SPARQL queries
meant to compute somehow straightforward results cannot
be computed by some endpoints, e.g. count the number
of triples for each property. Hence, it appears that more
subtle strategies will have to be considered in such cases.
To extend the capacities of IndeGx, we are investigating
the use of SPARQL extensions such as the LDScript lan-
guage [6], and the use of URI parameters to parameterize
SPARQL services according to their capabilities [5]. We
are also considering using RDF-Star to augment the traces
and the provenance information in the metadata generated
by IndeGx.

Acknowledgment

This work is supported by the ANR DeKaloG (Decen-
tralized Knowledge Graphs) project, ANR-19-CE23-0014,
and by the ANR D2KAB (Data to Knowledge in Agricul-
ture and Biodiversity) project, ANR-18-CE23-0017, both
projects from CE23 - Intelligence artificielle. The work
is also supported by the 3IA Côte d’Azur ANR-19-P3IA-
0002.

Declaration of Competing Interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

References

[1] Wouter Beek, Laurens Rietveld, Hamid R Bazoobandi, Jan
Wielemaker, and Stefan Schlobach. 2014. LOD laundromat:
a uniform way of publishing other people’s dirty data. In Inter-
national semantic web conference. Springer, 213–228.

[2] Mohamed Ben Ellefi, Zohra Bellahsene, John G Breslin, Elena
Demidova, Stefan Dietze, Julian Szymański, and Konstantin
Todorov. 2018. RDF dataset profiling–a survey of features,
methods, vocabularies and applications. Semantic Web 9, 5
(2018), 677–705.

[3] Michel Buffa, Elena Cabrio, Michael Fell, Fabien Gandon, Alain
Giboin, Romain Hennequin, Franck Michel, Johan Pauwels,
Guillaume Pellerin, Maroua Tikat, and Marco Winckler. 2021.
The WASABI Dataset: Cultural, Lyrics and Audio Analy-
sis Metadata About 2 Million Popular Commercially Released
Songs. In The Semantic Web. ESWC 2021. Lecture Notes in
Computer Science, vol 12731. 515–531. https://doi.org/10.

1007/978-3-030-77385-4_31

[4] Barbara Catania, Giovanna Guerrini, and Beyza Yaman. 2019.
Exploiting context and quality for linked data source selection.
In Proceedings of the 34th ACM/SIGAPP Symposium on Ap-
plied Computing. 2251–2258.

[5] Olivier Corby, Catherine Faron, Fabien Gandon, Damien
Graux, and Franck Michel. 2021. Beyond Classical SERVICE
Clause in Federated SPARQL Queries: Leveraging the Full Po-
tential of URI Parameters. In International Conference on Web
Information Systems and Technologies. Online, Portugal.

[6] Olivier Corby, Catherine Faron-Zucker, and Fabien Gandon.
2017. LDScript: a linked data script language. In International
Semantic Web Conference. Springer, 208–224.

[7] Olivier Corby and Catherine Faron Faron-Zucker. 2010. The
KGRAM Abstract Machine for Knowledge Graph Querying.
In Proceedings of the International Conference on Web Intel-
ligence and Intelligent Agent Technology (WI-IAT) (Toronto,
Canada). IEEE, 338–341.

[8] Richard Cyganiak, Jun Zhao, Michael Hausenblas, and Keith
Alexander. 2011. Describing Linked Datasets with the VoID
Vocabulary. W3C Note. W3C. https://www.w3.org/TR/void/

[9] Jeremy Debattista, Sören Auer, and Christoph Lange. 2016.
Luzzu—a methodology and framework for linked data quality
assessment. Journal of Data and Information Quality (JDIQ)
8, 1 (2016), 1–32.

[10] Basil Ell, Denny Vrandečić, and Elena Simperl. 2011. Labels in
the Web of Data. In The Semantic Web – ISWC 2011 (Lecture
Notes in Computer Science). Springer, Berlin, Heidelberg, 162–
176. https://doi.org/10.1007/978-3-642-25073-6_11

[11] Sébastien Ferré. 2017. Sparklis: An expressive query builder
for SPARQL endpoints with guidance in natural language. Se-
mantic Web 8, 3 (Jan. 2017), 405–418. https://doi.org/10.

3233/SW-150208

[12] Raphaël Gazzotti and Fabien Gandon. 2021. When owl:sameAs
is the Same: Experimenting Online Resolution of Identity
with SPARQL queries to Linked Open Data Sources. In WE-
BIST 2021 - 17th International Conference on Web Infor-
mation Systems and Technologies. Virtual, France. https:

//hal.archives-ouvertes.fr/hal-03301330

[13] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres,
Kai-Uwe Sattler, and Jürgen Umbrich. 2010. Data summaries
for on-demand queries over linked data. 411–420. https://

doi.org/10.1145/1772690.1772733

[14] Ali Hasnain, Qaiser Mehmood, Syeda Sana e Zainab, Muham-
mad Saleem, Claude Warren, Durre Zehra, Stefan Decker, and
Dietrich Rebholz-Schuhmann. 2017. Biofed: federated query

19

https://w3c.github.io/rdf-star/cg-spec
https://doi.org/10.1007/978-3-030-77385-4_31
https://doi.org/10.1007/978-3-030-77385-4_31
https://www.w3.org/TR/void/
https://doi.org/10.1007/978-3-642-25073-6_11
https://doi.org/10.3233/SW-150208
https://doi.org/10.3233/SW-150208
https://hal.archives-ouvertes.fr/hal-03301330
https://hal.archives-ouvertes.fr/hal-03301330
https://doi.org/10.1145/1772690.1772733
https://doi.org/10.1145/1772690.1772733

processing over life sciences linked open data. Journal of
biomedical semantics 8, 1 (2017), 1–19.

[15] Ali Hasnain, Qaiser Mehmood, Syeda Sana e Zainab, and
Aidan Hogan. 2016. SPORTAL: Profiling the Content of Pub-
lic SPARQL Endpoints. International Journal on Semantic
Web and Information Systems (IJSWIS) (July 2016), 134–163.
https://doi.org/10.4018/IJSWIS.2016070105

[16] Katja Hose, Daniel Klan, and Kai-Uwe Sattler. 2006. Dis-
tributed data summaries for approximate query processing in
PDMS. In 2006 10th International Database Engineering and
Applications Symposium (IDEAS’06). IEEE, 37–44.

[17] Lucie-Aimée Kaffee and Elena Simperl. 2018. The Human Face
of the Web of Data: A Cross-sectional Study of Labels. Procedia
Computer Science 137 (Jan. 2018), 66–77. https://doi.org/

10.1016/j.procs.2018.09.007

[18] Petr Kremen, Lama Saeeda, Miroslav Blasko, and Michal Med.
2018. Dataset Dashboard - a SPARQL Endpoint Explorer.
In Proc. of VOILA@ISWC 2018, Monterey (CEUR Workshop
Proceedings, Vol. 2187). CEUR-WS.org, 70–77.

[19] Pierre Maillot, Olivier Corby, Catherine Faron, Fabien Gan-
don, and Franck Michel. 2022. KartoGraphI: Drawing a Map of
Linked Data. In Extended Semantic Web Conference. Springer.

[20] Nandana Mihindukulasooriya, Maria Poveda-Villalón, Raúl
Garćıa-Castro, and Asunci??n Gómez-Pérez. 2015. Loupe - An
online tool for inspecting datasets in the linked data cloud. In
CEUR Workshop Proceedings, Vol. 1486.

[21] Pascal Molli, Hala Skaf-Molli, and Arnaud Grall. 2020. SemCat:
Source Selection Services for Linked Data. Research Report.
université de Nantes. https://hal.archives-ouvertes.fr/

hal-02931367

[22] Emmanuel Pietriga, Hande Gözükan, Caroline Appert, Marie
Destandau, Šejla Čebirić, François Goasdoué, and Ioana
Manolescu. 2018. Browsing linked data catalogs with LODAtlas.
In International Semantic Web Conference. Springer, 137–153.

[23] Sam Rahimzadeh Holagh and Keyvan Mohebbi. 2019. A glimpse
of Semantic Web trust. SN Applied Sciences 1, 12 (2019), 1–10.

[24] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. 2014.
HiBISCuS: Hypergraph-Based Source Selection for SPARQL
Endpoint Federation, Vol. 8465. https://doi.org/10.1007/

978-3-319-07443-6_13

[25] Pierre-Yves Vandenbussche, Jürgen Umbrich, Luca Mat-
teis, Aidan Hogan, and Carlos Buil-Aranda. 2017. SPAR-
QLES: Monitoring public SPARQL endpoints. Semantic Web
8, 6 (Aug. 2017), 1049–1065. https://doi.org/10.3233/

SW-170254

[26] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free
Collaborative Knowledgebase. Commun. ACM 57, 10 (2014).
https://doi.org/10.1145/2629489

[27] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbers-
berg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas
Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos,
Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3,
1 (2016), 1–9.

[28] Gregory Williams. 2013. SPARQL 1.1 Ser-
vice Description. W3C Recommendation. W3C.
https://www.w3.org/TR/2013/REC-sparql11-service-
description-20130321/.

[29] Peter Winstanley, David Browning, Riccardo Albertoni, Ale-
jandra Gonzalez Beltran, Simon Cox, and Andrea Perego. 2020.
Data Catalog Vocabulary (DCAT) - Version 2. W3C Recom-
mendation. W3C. https://www.w3.org/TR/2020/REC-vocab-
dcat-2-20200204/.

[30] Yasunori Yamamoto, Atsuko Yamaguchi, and Andrea Splendi-
ani. 2018. YummyData: providing high-quality open life science
data. Database: The Journal of Biological Databases & Cura-
tion 2018 (2018).

[31] Semih Yumusak, Erdogan Dogdu, Halife Kodaz, Andreas Kami-
laris, and Pierre-Yves Vandenbussche. 2017. SpEnD: Linked
data SPARQL endpoints discovery using search engines. IEICE
TRANSACTIONS on Information and Systems 100, 4 (2017),

758–767.
[32] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo

Pietrobon, Jens Lehmann, and Sören Auer. 2016. Quality as-
sessment for Linked Data: A Survey. Semantic Web 7, 1 (Jan.
2016), 63–93. https://doi.org/10.3233/SW-150175

20

https://doi.org/10.4018/IJSWIS.2016070105
https://doi.org/10.1016/j.procs.2018.09.007
https://doi.org/10.1016/j.procs.2018.09.007
https://hal.archives-ouvertes.fr/hal-02931367
https://hal.archives-ouvertes.fr/hal-02931367
https://doi.org/10.1007/978-3-319-07443-6_13
https://doi.org/10.1007/978-3-319-07443-6_13
https://doi.org/10.3233/SW-170254
https://doi.org/10.3233/SW-170254
https://doi.org/10.1145/2629489
https://doi.org/10.3233/SW-150175

	Introduction: the Need for Dataset Descriptions
	Related Works and Positioning
	Vocabularies and standards for KB metadata
	KB catalog
	KB monitoring
	KB exploration
	Query federation
	Comparison of related approaches
	Target users and accessibility of data
	Only standard semantic web technologies
	Traceability
	Quality indicators
	KB content representation
	Update frequency
	Activity
	Synthesis

	Dataset Metadata Model
	Asserted Metadata
	Computable Descriptive Metadata
	Endpoint description
	Dataset statistics
	Interlinking
	SPARQL Compatibility
	Default and Named Graphs

	Computable Quality Metadata
	Availability
	Compliance with best practices

	Generation Traces
	Structure of the KB Index

	Formalization of Metadata Generation
	Generation assets: tests and actions
	Tests: characterizing a KB using SPARQL queries
	Actions: generating a description using SPARQL queries

	 model
	KB description generated by the framework
	Test and action description
	Off-loading computational load

	Experimentation and Evaluation
	Experimental Setup
	Execution Times
	Metadata Obtained
	Provenance metadata
	Classes and properties statistics
	SPARQL features coverage
	Quality features

	Errors Obtained During the Building Process
	Generation Assets Usage
	Supporting Human and Machine Interactions with

	Conclusion

