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ABSTRACT

Context. The growth of hydrodynamical instabilities is key to triggering a core-collapse supernova explosion during the phase of
stalled accretion shock, immediately after the birth of a proto-neutron star (PNS). Stellar rotation is known to affect the standing
accretion shock instability (SASI) even for small rotation rates, but its effect on the onset of neutrino-driven convection is still poorly
known.
Aims. We assess the effect of stellar rotation on SASI when neutrino heating is taken into account as well as the effect of rotation on
neutrino-driven convection. The interplay of rotation with these two instabilities affects the frequency of the mode m = 2, which can
be detected with gravitational waves at the onset of a supernova explosion.
Methods. We used a linear stability analysis to study the dynamics of the accreting gas in the equatorial plane between the surface of
the PNS and the stationary shock. We explored rotation effects on the relative strength of SASI and convection by considering a large
range of specific angular momenta and neutrino luminosities.
Results. The nature of the dominant non-axisymmetric instability developing in the equatorial post-shock region depends on both
the convection parameter, χ, and the rotation rate. Equatorial convective modes with χ & 5 are hampered by differential rotation. At
smaller χ, however, mixed SASI-convective modes with a large angular scale, m = 1, 2, 3, can take advantage of rotation and become
dominant for relatively low rotation rates, at which centrifugal effects are small. For rotation rates exceeding ∼30% of the Keplerian
rotation at the PNS surface, a new instability regime is characterised by a frequency that, when measured in units of the post-shock
velocity and radius, vsh/rsh, is nearly independent of the convection parameter, χ. A strong prograde m = 2 spiral dominates over a
large parameter range and is favorable to the production of gravitational waves. In this regime, a simple linear relation exists between
the oscillation frequency of the dominant mode and the specific angular momentum of the accreted gas.
Conclusions. Three different regimes of post-shock instabilities can be distinguished depending on the rotation rate. For low rotation
rates (less than 10% of the Keplerian rotation at the PNS surface), differential rotation has a linear destabilising effect on SASI and
a quadratic stabilising or destabilising effect on the purely convective equatorial modes depending on their azimuthal wavenumber.
Intermediate rotation rates (10% to 30% of the Keplerian rotation) lead to the emergence of mixed SASI-convection-rotation modes
that involve large angular scales. Finally, strong rotation erases the influence of the buoyancy and heating rate on the instability. This
independence allows for a reduction in the parameter space, which can be helpful for gravitational wave analysis.
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1. Introduction

The death of massive stars begins with the collapse of their
iron core, which forms a proto-neutron star (PNS) for zero-
age main sequence stellar masses in the range [10, 60] M�
(Woosley et al. 2002; Woosley 2017). The bounce creates a
shock wave that propagates outwards and gradually loses
energy, dissociating iron atoms until it stalls. The devel-
opment of multi-dimensional instabilities during the stalled
shock phase impacts both the revival of the shock (e.g.
Herant et al. 1994; Janka & Mueller 1996; Couch & O’Connor
2014; Takiwaki et al. 2016) and the multi-messenger signa-
ture (e.g. Tamborra et al. 2013; Janka et al. 2016; Kuroda et al.
2016; Müller 2020; Burrows & Vartanyan 2021). The stand-
ing accretion shock instability (SASI; Blondin et al. 2003;
Blondin & Mezzacappa 2006) can generate shock oscillations
and contributes to pushing the shock farther up (Scheck et al.
2008; Marek & Janka 2009; Hanke et al. 2013). The magnitude
of this effect depends on the concurrent growth of the neutrino-

driven convection, which can generate turbulence in the post-
shock region (Abdikamalov et al. 2015; Radice et al. 2016). Dif-
ferent paths to explosions dominated by either neutrino-driven
convection or SASI may occur depending on the precise physical
conditions determined by the progenitor structure (Müller et al.
2012; Murphy et al. 2013; Fernández et al. 2014) and the mag-
nitude of pre-collapse turbulence asymmetries (Couch & Ott
2013; Müller et al. 2017).

The development of neutrino-driven convection and/or
SASI leaves clear signatures in gravitational waves (GWs;
Murphy et al. 2009; Kuroda et al. 2016; Andresen et al. 2017).
The eigenfrequencies deduced from a perturbative analysis
can be recognised in the GW signal (Torres-Forné et al. 2018,
2019a) and can be used to constrain parameters such as the
PNS mass and radius or the shock radius (Torres-Forné et al.
2019b; Sotani & Takiwaki 2020; Sotani et al. 2021). These
asteroseismic properties can also help constrain the equation of
state at nuclear densities (Kuroda et al. 2016, 2022; Sotani et al.
2017).
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The neutrino signal is also a precious messenger, carrying
direct information on the frequency of large-scale shock oscil-
lations induced by SASI, and is currently detectable for galac-
tic supernovae. In addition, the correlated detection of neutrino
modulation and GWs could constrain the instability at work
(Kuroda et al. 2017; Shibagaki et al. 2021).

A detailed understanding of the mechanism of each insta-
bility is necessary when interpreting the results of numerical
simulations and in guiding the exploration of the parameter
space. It is also useful for identifying potential numerical arte-
facts, for example on the competition between SASI and convec-
tion (Fryer & Warren 2004; Hanke et al. 2013; Ott et al. 2013).
SASI results from the interaction of pressure and advected
perturbations of entropy and vorticity between the shock and
the surface of the PNS (Foglizzo et al. 2007; Foglizzo 2009;
Fernández & Thompson 2009; Guilet & Foglizzo 2012). The
convective instability in the post-shock region is driven by neu-
trinos emitted by the cooling PNS: in the region where the
absorption of neutrino energy exceeds the losses by neutrino
emission, the heating by neutrino absorption creates a negative
entropy gradient that is favourable to convection (Herant et al.
1992). The growth of this neutrino-driven convection requires
neutrino heating to be strong enough that the buoyancy timescale
is shorter than one-third of the advection timescale across this
region (Foglizzo et al. 2006). Above a critical heating rate, the
fundamental oscillatory mode of SASI becomes the purely grow-
ing convective instability that dominates the dynamics of the
flow (Yamasaki & Yamada 2007; Fernández et al. 2014).

Most core-collapse simulations and theoretical work neglect
the impact of rotation, which is therefore not well known. Rota-
tion is, however, thought to play an important role in at least a
small fraction of core-collapse supernovae with more extreme
properties, such as super-luminous supernovae (Woosley 2010;
Inserra et al. 2013) or hypernovae and long gamma-ray bursts
(Woosley 1993; Metzger et al. 2011). It is furthermore possible
that rotation plays a less extreme role in a larger fraction of core-
collapse supernovae. Theoretical models of stellar evolution con-
strained by the efficient transport of angular momentum inferred
from asteroseismic observations of red giants (Cantiello et al.
2014) and the observations of pulsar spins (Popov & Turolla
2012) suggest that the majority of supernova explosions orig-
inate from slowly rotating stellar cores, and the rotation fre-
quency, Ω, could be as low as 2 × 10−3 rad s−1 (Ma & Fuller
2019).

Rotation rates of up to 2 rad s−1 are more exceptional but are
commonly considered to explain extreme events such as hyper-
novae, super-luminous supernovae, and gamma-ray bursts. In
this regime, the convective dynamo (e.g. Thompson & Duncan
1993; Raynaud et al. 2020) and the magnetorotational instability
(e.g. Akiyama et al. 2003; Guilet et al. 2022; Reboul-Salze et al.
2022) are expected to efficiently amplify the magnetic field of
the PNS. Raynaud et al. (2020) hypothesise that magnetar-like
magnetic fields can be generated by the strong field branch of
the convective dynamo, which takes place at early times for
specific angular momenta larger than 4 × 1015 cm2 s−1. This
threshold corresponds to an angular frequency of 0.4 rad s−1 at
1000 km in the progenitor. The extraction of rotational energy
with such a strong magnetic field can lead to strong magnetorota-
tional explosions (e.g. Takiwaki et al. 2009; Kuroda et al. 2020;
Bugli et al. 2021). The dynamo timescale being uncertain, the
hydrodynamical approximation is often chosen for simplicity to
model the majority of supernovae.

Beside the generation of magnetic fields, rotation can have
several other effects on the shape of the neutrinosphere and on

the development of instabilities. The centrifugal force dimin-
ishes the action of gravity and results in a larger radius
of the neutrinosphere in the equatorial plane. The equatorial
decrease in neutrino luminosity and neutrino mean energy is not
favourable to the explosion according to axisymmetric simula-
tions (Marek & Janka 2009). The lower equatorial temperature
favours neutrino heating in the polar region and a bipolar explo-
sion (Suwa et al. 2010).

Stellar rotation can be favourable to the development of a
vigorous, prograde, spiral SASI mode (Blondin & Mezzacappa
2007). The destabilising effect of differential rotation exists
even for slow rotation with a negligible centrifugal contribu-
tion, as shown by perturbative analyses (Yamasaki & Foglizzo
2008; Walk et al. 2023) and confirmed by numerical simula-
tions (Kazeroni et al. 2017; Blondin et al. 2017), in which neu-
trino heating was neglected. However, the driving mechanism of
this rotational destabilisation is not understood yet (Walk et al.
2023).

Classical studies of the effect of rotation on convection
considered a rotation axis aligned with gravity. In a viscous
fluid with thermal diffusion, the critical Rayleigh number defin-
ing the onset of thermal convection is increased by rotation
(Chandrasekhar 1961; Rossby 1969; Wedi et al. 2021). The stud-
ies of convection that considered the impact of differential rota-
tion (Feudel & Feudel 2021) did not involve radial advection,
which is crucial in the supernova case. According to the Solberg–
Høiland criterion, the development of axisymmetric convection
can be stabilised by rotation if the specific angular momentum
increases outwards (Endal & Sofia 1978). In axisymmetric sim-
ulations of stellar core-collapse, this effect produces less vig-
orous convective motions in the equatorial plane and results in
later-time explosions that are weaker at the equator than at the
poles (Fryer & Heger 2000). These 2D results seemed to be con-
firmed in 3D for the fastest spinning progenitors (Ω ∼ 4.1 rad s−1

at 1000 km; Fryer & Warren 2004) in a regime where centrifu-
gal effects can be dominant at reducing both the effective gravity
and the neutrino luminosity in the equatorial plane, and thus pro-
ducing a lower buoyancy than in the polar region.

Estimating the effect of modest rotation in the equatorial
region of post-shock convection is less obvious when centrifu-
gal effects are small, since inward accretion produces a uni-
form profile of specific angular momentum. With a rotation rate
of Ω ∼ 1.3 rad s−1 at 1000 km, core-collapse simulations have
shown an earlier onset of neutrino-driven convection that pro-
duced a stronger explosion in the equatorial plane, earlier than
in the non-rotating case (Nakamura et al. 2014).

Even a modest amount of rotational kinetic energy, T ,
compared to the potential energy, |W |, can trigger a spiral
instability known as ‘low-T/|W | instability’ in the interior of
isolated neutron stars (Shibata et al. 2002; Watts et al. 2005;
Passamonti & Andersson 2015). The mechanism of this insta-
bility relies on the extraction of energy and angular momen-
tum from internal regions rotating faster than the spiral pat-
tern towards the external region, which is rotating more slowly
(Cairns 1979; Saijo & Yoshida 2006). A similar instability
has been observed in 3D simulations of stellar core-collapse,
where it enhances the energy transport from the PNS to the
shock and can lead to stronger explosions (Ott et al. 2005;
Cerdá-Durán et al. 2007; Takiwaki et al. 2016, 2021).

The interplay of centrifugal effects, SASI, convection, and
the low-T/|W | instability can be difficult to disentangle in numer-
ical simulations considering the diversity of progenitors and
numerical approximations (Ott et al. 2008). Our current under-
standing relies on a very sparse sampling of this diversity.
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During the collapse of a 27 M� progenitor, the dynamic of the
shock is driven by SASI and the convection for small rotation
rates, and is dominated by the low-T/|W | instability for high
enough rotation rates (Ω = 2 rad s−1; Takiwaki et al. 2021). The
enhancement of SASI by differential rotation can compensate for
the loss of neutrino energy due to the centrifugal force during the
collapse of a 15 M� progenitor (Summa et al. 2018). The GW
analysis of these simulations can help us identify physical pro-
cesses such as the enhancement of SASI for high rotation rates
(Andresen et al. 2019). The 3D simulations of stationary accre-
tion by Iwakami et al. (2014) consider a range of rotation rates,
mass accretion rates, and neutrino luminosities. The structure of
the dominant instability and the observed patterns are classified
into three main categories: spiral, buoyant bubbles, or spiral and
buoyant bubbles. However, the simultaneous variation in both
rotation and neutrino luminosity make it difficult to disentangle
their respective effects.

Previous studies of the impact of rotation on SASI
(Yamasaki & Foglizzo 2008; Blondin et al. 2017) did not con-
sider the effect of heating. Conversely, perturbative studies on
the effect of heating on both SASI and the convective insta-
bility did not consider rotation (Yamasaki & Yamada 2007;
Fernández et al. 2014). To have a better understanding of the
effect of each parameter on the growth of instabilities, we used
a linear analysis, varying the rotation and the heating rate sepa-
rately. Doing this, we were able to disentangle the effect of these
parameters in the linear regime. By focusing on the accretion
region above the surface of the PNS, we did not include the
interaction with the low-T/|W | and the convective instabilities
developing inside the PNS. The aim of this paper is thus to study
the impact of rotation on the onset of neutrino-driven convection
and its interplay with SASI when both the neutrino heating and
the rotation rate are varied. In Sect. 2 we detail the numerical
setup and define the stationary and perturbed flows. We study in
Sect. 3 the effect of rotation on SASI and convection as well as
their interplay. Finally, we focus in Sect. 4 on the features that
might be observable in a GW signal coming from an exploding
supernova.

2. Methods

2.1. Numerical setup

To study the growth of the convective and SASI instabilities,
we numerically solved the system of perturbed equations cor-
responding to an idealised model of stationary accretion of a
perfect gas, in spherical geometry restrained to the equatorial
plane as in Walk et al. (2023), using the coordinates (r, φ). Our
setup is an adaptation of the linear analysis of Fernández et al.
(2014) that includes rotation. The parameters we varied are: the
reference shock radius (rsh0) obtained without neutrino heating;
dissociation and rotation; the rate of nuclear dissociation across
the shock (ε); the neutrino luminosity; and the specific angular
momentum (J) that reaches the surface of the PNS.

2.2. Stationary flow

In spherical geometry, the system of stationary equations
describing the conservation of mass, the entropy profile S (r),
the conservation of angular momentum, and the profile of the
Bernoulli parameter in the equatorial plane is

∂

∂r
(ρvr2) = 0, (1)

∂S
∂r

=
L

Pv
, (2)

∂J
∂r

= 0, (3)

∂

∂r

(
v2

2
+

J
2r2 +

c2

γ − 1
−

GM
r

)
=
L

ρv
, (4)

where G is the universal gravity constant and M is the mass of
the PNS, v the radial velocity and c the sound speed in the gas
with pressure P and density ρ. The self-gravity of the infalling
matter is neglected compared to that of the PNS. Non-adiabatic
heating and cooling processes are described by a local function
L ≡ Lh +Lc, as in Fernández et al. (2014). The cooling function
Lc used in Houck & Chevalier (1992) is a parametric function of
P and ρ:

Lc = −Ac ρ
β−αPα. (5)

We used α = 3/2 and β = 5/2 as in Blondin & Mezzacappa
(2006), Foglizzo et al. (2007), Yamasaki & Foglizzo (2008),
Fernández & Thompson (2009), Fernández et al. (2014),
Guilet & Foglizzo (2012), and Blondin et al. (2017). Using
a dimensional analysis, we express Ac as a function of the
PNS radius, rPNS, the surface gravity, GM/r2

PNS, and the mass
accretion rate, Ṁ:

Ac = Ãc × Ṁ1−β
GM

r2
PNS

1−α+
β
2

r
5β
2 −2−α

PNS , (6)

where Ãc is a dimensionless quantity. The value of Ãc sets the
value of the shock radius rsh without dissociation, rotation, or
heating. Ãc does not vary when these parameters are changed.
The heating function Lh is expressed as

Lh = Ah
ρ

r2 · (7)

The normalisation constant Ah is proportional to the neutrino
luminosities and the neutrino opacities per unit mass. It is var-
ied as a free parameter in our model. The heating and cooling
functions are effective in the post-shock region and are turned
off above the shock, as in Fernández et al. (2014).

In order to study the influence of stellar rotation on the
growth of the instabilities, we vary parametrically the specific
angular momentum J. Its dimensionless measure j is defined
using the Keplerian specific angular momentum at the PNS sur-
face:

j ≡
J

(GMrPNS)1/2 · (8)

We note that j2 measures the ratio of the centrifugal and gravita-
tional forces at the PNS radius:

J2

r3
PNS

r2
PNS

GM
= j2. (9)

In our analysis, we varied j from 0 to 0.5, which corresponds to
a maximum centrifugal force equal to 25% of the gravitational
force at the PNS boundary. The angular momentum at 50% of
the Keplerian rotation can be expressed as

J = 1.5 × 1016 cm2 s−1 j
0.5

(
rPNS

50 km
M

1.4 M�

)1/2

, (10)
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which corresponds to an angular frequency Ω = 1.5 rad s−1 at
a reference radius r = 1000 km in the progenitor. For com-
parison, the strong dynamo branch described in Raynaud et al.
(2020) could be generated for j & 0.13. Our hydrodynamical
study neglecting magnetic fields assumes that dynamo processes
are too slow to interfere.

Angular momentum conservation leads to a uniform specific
angular momentum in the stationary flow (Eq. (3)). The profile
of angular frequency is therefore

Ω(r) =
J
r2 = 150 rad s−1 j

0.5

(
100 km

r

)2

. (11)

In our model, the dissociation parameter ε corresponds to the
fraction of specific kinetic energy of the incoming matter that is
used to photo-dissociate the iron nuclei. ε is expressed in units
of the specific kinetic energy v2

ff0/2 associated with free-fall at
the reference radius rsh0. The Mach number is imposed so that
M1 = 5 above the shock, without heating, rotation, or dissoci-
ation. The Bernoulli parameter is set to zero above the shock,
and the adiabatic index is set to γ = 4/3. The default values
of the shock radius and the dissociation rate are rsh0 = 5 rPNS
and ε = 0. For each figure, the value rsh0 = 5 rPNS is used
and the only exception is the use of rsh0 = 3.2 rPNS for com-
parison in Figs. 1 and 5. This specific value is chosen such that
the shock radius without heating coincides with the case with
( j, ε) = (0, 0.3) and rsh0 = 5 rPNS. The value of rsh specified in
each figure corresponds to the shock radius taking into account
the neutrino heating, dissociation and rotation associated with
the parameters (Ah, ε, j). The shock radius decreases when dis-
sociation increases. As the rotation or the heating rate Ah is
increased, the shock radius increases (blue curve in Fig. 1) and
the corresponding Mach number immediately above the shock
decreases.

Distances are normalised with either the PNS radius rPNS or
the reference shock radius rsh0. Densities are normalised with
the density immediately above the shock ρ10, and velocities
with the free-fall velocity vff0 at rsh0. These units are chosen for
(Ah, ε, j) = (0, 0, 0) and they do not vary when (Ah, ε, j) are
varied. With these units, the heating normalisation constant is
written

Ah = Ãhv
3
ff0 rsh0, (12)

where Ãh is a dimensionless parameter characterising the heating
rate. Another dimensionless measure of the heating rate is the
convection parameter χ defined in Foglizzo et al. (2006) as

χ ≡

∫ rsh

rg

N(r)
dr
|v|
, (13)

where rg is the gain radius above which absorption of neutrino
energy exceeds the losses by neutrino emission, and N(r) is the
local Brunt–Väisälä frequency:

N ≡
(
γ − 1
γ

g∇S
) 1

2

· (14)

In this equation, the gravity term g was not corrected by the
centrifugal force for the sake of simplicity, which is acceptable
because of the low value of the ratio of those two forces in the
parameter domain that we explore. Indeed, Eq. (9) shows that
even for the fastest rotation rate considered ( j = 0.5), the ratio of
those forces reaches only ∼7% in the middle of the post-shock
region.

Fig. 1. Evolution of the shock (blue) and gain (red) radii as a function
of the convection parameter, χ. Unless stated otherwise, the values of
the parameters are rsh0 = 5 rPNS, ε = 0, and j = 0. The case ( j, ε) =
(0, 0) and rsh0 = 3.2 rPNS (dashed lines) is chosen so that the shock
radius without heating coincides with the case with ( j, ε) = (0, 0.3)
and rsh0 = 5 rPNS. As expected, the shock radius increases with χ and
the introduction of rotation increases the shock radius when the cooling
normalisation, Ac, is conserved. Note that for the moderate value of
angular momentum j = 0.1, the stationary flow is almost unaffected by
rotation.

We thus used (rsh0, χ, ε, j) to explore the 4D parameter space
associated with the mass accretion rate, neutrino luminosity, dis-
sociation rate, and rotation.

Figure 1 illustrates the dependence on neutrino heating of the
shock and gain radii for typical rotation and dissociation param-
eters. The gain radius is located near the shock for small values
of χ, approaches twice the PNS radius for χ ∼ 2 and remains
constant for χ � 2 while the radius of the stationary shock is
pushed further out by the strong heating of the matter.

The stronger the dissociation, the lower the energy after the
shock. This leads to lower velocities of sound and matter than in
the case without dissociation. As a result, the integrated intensity
of the cooling function needed to decelerate across the shocked
region is reduced. As Ãc is determined with ε = 0, the size of the
shocked region decreases when the dissociation rate increases,
as observed in Fig. 1.

The centrifugal force increases the shock radius by '15% for
the fast rotation rate j = 0.4. On the other hand, the impact of
rotation is barely visible in this figure for a moderate rotation rate
j = 0.1 because of the quadratic dependence of the centrifugal
force with the rotation frequency as measured by Eq. (9). With
j = 0.1, we obtain a centrifugal effect of only j2 = 1%. However,
we will see in the next section that this modest rotation is large
enough to have significant effects on SASI and the convective
instability.

2.3. Perturbed flow

For the perturbed system, we used the same set of perturbed vari-
ables as in Yamasaki & Foglizzo (2008). The terms δ f , δh, δS ,
and δq are defined as follows:

δ f ≡ vδv +
J
r
δvφ +

2c
γ − 1

δc − δq, (15)

δh ≡
δv

v
+
δρ

ρ
, (16)
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δS ≡
2

γ − 1
δc
c
−
δρ

ρ
, (17)

δq ≡ δ
(∫
L

ρv
dr

)
· (18)

The time and angular dependence of the perturbations are
assumed to follow the form exp (−iωt + imφ). Their radial
dependence is then governed by the same differential equations
as Eqs. (6)–(11) in Yamasaki & Foglizzo (2008) with kz = 0,
despite the different geometry (spherical-equatorial instead of
cylindrical) and the inclusion of neutrino heating in the local
function L:

d
dr
δ f
ω

=
ic2

v
(
1 −M2) {

M2
(
δh −

ω′

c2

δ f
ω

)
(19)

+
[
1 + (γ − 1)M2

] δS
γ
−
δq
c2

}
,

dδh
dr

=
iω

v
(
1 −M2) (

µ2ω
′

c2

δ f
ω
−M2δh − δS +

δq
c2

)
, (20)

dδS
dr

=
iω′

v
δS + δ

(
L

Pv

)
, (21)

dδq
dr

=
iω′

v
δq + δ

(
L

ρv

)
, (22)

where

ω′ ≡ ω −
mJ
r2 , (23)

µ2 ≡ 1 −
m2

r2

c2

ω′2

(
1 −M2

)
. (24)

In these equations ω′ corresponds to the Doppler-shifted value
of ω and is thus a function of radius. We note that this effect of
rotation is linear with respect to Ω, whereas the centrifugal force
is proportional to Ω2 as discussed above. A linear dependence
allows for strong effects of slow rotation, as will be discussed
later.

The boundary conditions at the shock are expressed using
conservation laws across a perturbed shock:

δ fsh

ω
= iv1∆ζ

(
1 −

vsh

v1

)
, (25)

δhsh = −i
ω′

vsh
∆ζ

(
1 −

vsh

v1

)
, (26)

δS sh = i
ω′v1

c2
sh

∆ζ

(
1 −

vsh

v1

)2

−
Lsh − L1

ρshvsh

∆ζ

c2
sh

+

(
1 −

vsh

v1

)
∆ζ

c2
sh

2v1vsh

rsh
+

J2

r3
sh

+
GM
r2

sh

 , (27)

δqsh = −
Lsh − L1

ρshvsh
∆ζ, (28)

where ∆ζ is the shock displacement. The indices ‘1’ and ‘sh’
refer to the values above and below the shock, respectively.
The only difference with the boundary conditions (12−15) in
Yamasaki & Foglizzo (2008), who assumed a cylindrical sym-
metry, is the factor 2 implied by our choice of spherical-
equatorial geometry, in the term 2v1vsh/rsh in Eq. (27).

We used the same lower boundary condition as in
Yamasaki & Foglizzo (2008) at the PNS surface, where the
radial velocity vanishes. We used the Newton-Raphson method

Fig. 2. Evolution of the growth rate (upper panel) and frequency (lower
panel) of the fundamental modes as a function of the convection param-
eter, χ. Two instability domains can be identified: SASI (ωr , 0) for
modest neutrino heating and the convective instability (ωr = 0) for
stronger heating.

to find the eigenvalues of this system when ε,M1, χ, and rsh (or
Ãc) are given. This method determines the perturbation growth
rate ωi and frequency ωr associated with the complex eigenfre-
quency ω ≡ ωr + iωi, for each azimuthal number, m.

In order to identify the effect of the four parameters
(rsh0, ε, χ, j) on the growth of instabilities, we select a mode
and follow its evolution when the parameters are varied. For a
given value of m, studied the evolution of each harmonic with-
out rotation and selected the overtone with the highest growth
rate, which happens to be the fundamental mode as obtained by
Yamasaki & Yamada (2007). We therefore follow the properties
of this fundamental mode when the parameters (rsh0, ε, χ, j) are
varied. When rotation exceeds j ∼ 0.15, we noticed that some
higher harmonics can be slightly more unstable than the funda-
mental mode, but this effect is marginal.

3. Results

3.1. SASI and the convective instability without rotation

Figure 2 shows the effect of the heating parameter χ on the
growth rate and the frequency of the fundamental mode corre-
sponding to several azimuthal numbers m = 1 to 5. Similarly
to Yamasaki & Yamada (2007) and Fernández et al. (2014), for
each value of m, the instability is oscillatory (like SASI) for
modest heating and purely growing (like the convective insta-
bility) for stronger heating. The most unstable perturbations in
the oscillatory regime have a large angular scale corresponding
to a small azimuthal number m = 1, as expected for SASI. For
each mode, the SASI frequency decreases abruptly to zero when
the heating rate is increased. The transition to a mode with zero
frequency corresponds to a steep increase of the growth rate.
The azimuthal scale of the dominant convective modes is smaller
(i.e. larger m, here m = 4) than SASI modes. The χ parameter
corresponding to the transition between SASI and convection is
∼7% smaller than expected from Fernández et al. (2014). This
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Fig. 3. Influence of the dissociation of nuclei across the shock on the
azimuthal number of the most unstable fundamental mode, mnum (tri-
angles), at χ = 4 for three different values of the rotation rate. The
numerical values of the most unstable modes (triangle) are compared
to the analytical predictions of Eq. (29) (dashed lines) as a function of
the dissociation rate. We allow for quarter-integer values of mnum for an
easier comparison with Eq. (29).

difference may be due to their use of an entropy cut-off in the
heating/cooling function, exp − (S/S min)2, where S min is the
entropy at the PNS surface. Except for this small quantitative dif-
ference, the general behaviour is the same as in Fernández et al.
(2014).

To illustrate the influence of the dissociation parameter ε on
the growth of the convective instability, we fixed the value χ = 4
such that the dominant mode is convective for every dissociation
rate. Figure 3 compares the azimuthal number mnum correspond-
ing to the most unstable mode obtained numerically (triangles),
to the expected value estimated analytically by Foglizzo et al.
(2006) (dotted line):

mana =
π

2
rsh + rg

rsh − rg
· (29)

The analytical formula is in approximate agreement with mnum
and reproduces reasonably well its increase with the dissocia-
tion parameter ε. This dependence on ε can therefore be under-
stood using Eq. (29), which is a geometric formula based on the
assumption that convective cells have a circular shape, radially
centred in the gain region. When dissociation is increased, the
shock radius decreases while the gain radius is barely affected
(see Fig. 1). The smaller radial size of the convective zone there-
fore leads to smaller-scale convective cells. Beyond the approxi-
mate agreement, Fig. 3 shows that the analytical formula tends to
underestimate the value of mnum by 15−25%, which can be inter-
preted as follows. Equation (29) neglects the spherical geometry
of the star and the fact that the local value of the Brunt–Väisälä
frequency is highest near the gain radius such that the width of
its radial profile is only a fraction of the gain region size. As a
result, the limiting scale for the convective cells is smaller than
the whole gain region and comparable to the size of the most
buoyant region, as can be seen in Fig. 10. This can explain the
offset between the blue triangles and the blue curve in Fig. 3,
indicating that mana over-estimates the angular size of the domi-
nant convective scale.

We also varied rsh0 between 2 and 4.5 times the PNS radius
by changing the cooling intensity Ãc and adapting the pre-shock
Mach numberM1 such thatM1 = 5 for rsh = 5 rPNS, ε = 0. For
this variable, the agreement between mnum and mana is similar to
the one obtained in Fig. 3 without dissociation.

Fig. 4. Evolution of the growth rate, ωi, in units of vsh/rsh (top), and the
corotation radius in units of rPNS (bottom) as a function of the rotation
rate, measured as in Yamasaki & Foglizzo (2008) with fp, the pulsar
frequency at 10 km. The azimuthal numbers m = 1 (blue) and m = 2
(red) are displayed for χ = 0 (solid line) and χ = 2 (dash dotted line).
To allow for a comparison with Fig. 1 of Yamasaki & Foglizzo (2008),
we considered the same parameter rsh = 5 rPNS with a strong adiabatic
shock.

3.2. Influence of stellar rotation

In this section we characterise the dependence of the growth rate
and the oscillation frequency on the rotation rate for both SASI
and the convective instability. We highlight the existence of
three rotation regimes, reflected by the properties of their eigen-
frequencies and structures. For small rotation rates ( j . 0.1,
Sects. 3.2.1 and 3.2.2), we identify the development of SASI
or the convection, depending on the convection parameter. For
intermediate rotation rates ( j ∈ [0.1, 0.3], Sect. 3.2.3), the dis-
tinction between the two instabilities is no longer possible and
we observe the growth of mixed modes. For high rotation rates
( j & 0.3, Sect. 3.3), the effect of the χ parameter on both the fre-
quency and the growth rate becomes negligible and a rotational
instability arises.

3.2.1. Effect of rotation and heating on SASI

The growth rate of SASI is expected to increase approximately
linearly with the rotation rate, and the angular scale of the
dominant mode is expected to diminish when the rotation rate
increases. The corotation radius, defined as

rcorot ≡

(
mJ
ωr

)1/2

, (30)

is also expected to increase with the rotation rate. These results
were obtained without neutrino heating using a perturbative
analysis and numerical simulations both in cylindrical geometry
(Yamasaki & Foglizzo 2008; Kazeroni et al. 2017) and in spher-
ical geometry (Blondin et al. 2017; Walk et al. 2023).

Our perturbative analysis in spherical-equatorial geometry,
shown in Fig. 4, confirms these results for χ = 0 and measures
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Fig. 5. Influence of rotation on the growth rate of SASI with dissoci-
ation (solid lines) and without dissociation (dashed lines). The bottom
panel presents the rotation rate normalised with a proxy for the advec-
tion timescale from the shock to the PNS calculated for (χ, j) = (0, 0).
Other parameters are χ = 0 and rsh( j = 0) = 3.2 rPNS.

the impact of neutrino heating for χ = 2. The lower plot in Fig. 4
shows the same dependence of the corotation radius on the rota-
tion rate as in Yamasaki & Foglizzo (2008) despite the different
geometry. We note that increasing the rotation rate introduces a
corotation radius rcorot > rPNS associated with the mode m = 2
for a lower rotation rate than the mode m = 1. This hierar-
chy is conserved when neutrino heating is taken into account.
In addition, in Yamasaki & Foglizzo (2008), the frequencies for
which rcorot = rPNS are fp2 ∼ 0.15 kHz and fp1 ∼ 0.25 kHz for
m = 2 and m = 1, respectively. These values are very close
to our spherical-equatorial results, where fp2 ∼ 0.17 kHz and
fp1 ∼ 0.28 kHz.

As in Yamasaki & Foglizzo (2008), the growth rate of the
mode m = 1, dominant without rotation, becomes inferior to the
growth rate of the mode m = 2 for sufficiently fast rotation rates.
We find that this behaviour is robust when neutrino heating is
taken into account, as illustrated in Fig. 4 for χ = 2.

In the absence of dissociation and heating (solid lines in
Fig. 4), the observed transition with the mode m = 2 domi-
nating the instability for j ∈ [0.3, 0.5] is consistent with the
results of Blondin et al. (2017) where the mode m = 2 domi-
nates for j ∼ 0.36 (corresponding to h = 0.115 in their units).
When neutrino heating is taken into account, Fig. 4 shows that
the transition from m = 1 to m = 2 requires a slightly larger
amount of rotation. On the other hand, this transition requires a

Fig. 6. Evolution as a function of χ of the growth rate, ωi (top), and
the frequency, ωr (bottom), of the fundamental mode with an azimuthal
number m = 4 for different values of the rotation rate.

smaller amount of rotation when the shock radius is smaller or
when dissociation is taken into account (Fig. 5). The influence
of dissociation can be explained by its effect on the advection
timescale. For a given shock radius (kept constant in Fig. 5),
the matter velocity decreases with ε because of the larger com-
pression through the shock. As a consequence, the advection
timescale rsh/vsh increases with ε and the frequency of the SASI
modes decreases. A slower rotation is therefore sufficient to be
comparable to the SASI frequency, which can explain the steeper
effect of rotation. This interpretation is confirmed by the bot-
tom panel of Fig. 5 where the rotation rate has been normalised
using the advection timescale. This re-normalisation indeed col-
lapsed the curves with and without dissociation, at least for the
small rotation rates. We note, however, that this argument can-
not explain the dependence on the shock radius of the rotational
destabilisation of SASI, which remains mysterious.

3.2.2. Effect of rotation on the convective instability

We consider in Fig. 6 the effect of the convection parameter on
the eigenfrequency of the mode m = 4 for different rotation rates.
The mode m = 4 was chosen because it is the first mode exhibit-
ing a convective instability when j = 0. The most striking feature
regarding the oscillation frequency (lower plot in Fig. 6), com-
pared to Fig. 2, is the loss of a sharp transition between an oscil-
latory instability for modest neutrino-heating and a purely grow-
ing instability for strong enough neutrino-heating. This effect
blurs the distinction between SASI and convection. This distinc-
tion becomes difficult for j & 0.1 as will be discussed in the next
section. In this section we focus on the regime of slow rotation
( j . 0.1), in which the two instabilities can still be distinguished.

Even with modest angular momentum, the differential nature
of rotation implies that convective motions are sheared, in addi-
tion to being entrained in rotation with a frequency intermediate
between the shock and PNS rotational frequency. The region most
unstable to buoyant motions – namely, the radius rBV correspond-
ing to the largest Brunt–Väisälä frequency N(r) (Eq. (14)) – is
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Fig. 7. Evolution of the corotation radius, rcorot, as a function of the rota-
tion rate for ε = 0 (top) and ε = 0.3 (bottom). The corotation radius of
the most unstable mode is represented with a blue line (numbers above
the line specify the corresponding azimuthal number, m). For compar-
ison, grey lines show the PNS radius, rPNS, the gain radius, rgain, the
radius of the Brunt–Väisälä frequency maximum, rBV, and the shock
radius, rsh. With both values of the dissociation, the corotation radius
of the most unstable mode is close to rBV for slow rotation and moves
away for higher rotation rates ( j > 30%).

expected to contribute most to defining the phase frequency of
the convective mode (i.e. the rotation frequency of the frame in
which the convective pattern is stationary). In Fig. 7 we compare
rBV with the corotation radius rcorot defined by Eq. (30). For small
rotation rates ( j . 0.1), we remark that rcorot is close to rBV as
anticipated for a purely convective mode.

Figure 8 illustrates the effect of rotation on the growth rate
of convective modes at χ = 6.5, which is significantly larger
than the marginal stability threshold of the most unstable mode
(χ = 3.5−4). For both dissociation rates considered (ε = 0 and
ε = 0.3), the differential rotation reduces the growth rate of the
convective instability, in particular for the smaller scale modes.
The adverse effect on the convective instability is less abrupt for
larger-scale modes, which we interpret as a smaller effect of the
shear between the shock and the PNS. As a result, larger angular
scales become dominant for high rotation rates. At the largest
scales (m = 1 for ε = 0, m = 1−2 for ε = 0.3), the effect of
rotation is an increase of the growth rate, which will be discussed
in the next paragraph and section.

Figure 9 shows the effect of rotation on the convection
parameter at marginal stability, referred to as χmarg. This thresh-

Fig. 8. Growth rate evolution depending on the rotation rate for several
modes at χ = 6.5 with ε = 0 (top panel) and ε = 0.3 (bottom panel). For
j = 0, rsh(ε = 0) = 7.8 rPNS and rsh(ε = 0.3) = 4.1 rPNS. For this con-
vection parameter, non-axisymmetric convective modes are quenched
by rotation. In the absence of rotation, all modes are above the transi-
tion from SASI to convection, except for the mode m = 1 in the bottom
panel.

old for unstable convective modes decreases with rotation for all
m considered, thus showing a destabilising effect on convection
near its marginal stability. Such a destabilising effect is surpris-
ing and stands in striking contrast to the adverse effect of rotation
at χ = 6.5 discussed in the last paragraph. We interpret this effect
as a consequence of the mixed nature of the modes near the tran-
sition between SASI and convection. In this interpretation, the
destabilising effect of rotation on convection is a residual effect
of the rotational destabilisation of SASI, which is well estab-
lished numerically (Yamasaki & Foglizzo 2008; Blondin et al.
2017; Walk et al. 2023) but has never been explained physically.
The effect of rotation is thus expected to depend on how close
the convection parameter is to the SASI–convection transition.
This expectation is in agreement with Fig. 9, which shows that
the convection parameter at marginal stability χmarg decreases
faster with rotation for modes with smaller m. In the absence
of rotation, when m increases, the transitional χtrans from SASI
to convection decreases (see Fig. 2) while the marginal stabil-
ity χmarg depends little on the azimuthal number. As a result, the
difference ∆χ ≡ χtrans−χmarg increases with m, and the resid-
ual effect of SASI decreases. This highlights the mixed SASI-
convection nature of the modes near χtrans for small rotation
rates.

A205, page 8 of 17



Buellet, A.-C., et al.: A&A 674, A205 (2023)

Fig. 9. Impact of rotation on the convection parameter at marginal sta-
bility, χmarg. We consider several azimuthal numbers with m > 3, for
which SASI is stable in the absence of rotation. The m = 1 and m = 2
are not shown because they are unstable to SASI, which prevents us
from measuring χmarg. The curves are cut when the mode is unsta-
ble for all convection parameters, in which case χmarg does not exist
anymore.

3.2.3. Mixed SASI-convective mode induced by rotation

For intermediate rotation rates (0.1 < j < 0.3), the behaviour
of the modes is modified by rotation to such an extent that it
becomes impossible to distinguish clearly between convective
and SASI modes. As described in this section, the modes in
this regime retain characteristics of both instabilities and are best
understood as mixed SASI-convection-rotation modes.

In order to gain a deeper understanding of the transition
between SASI dominated and buoyancy dominated regimes
including rotation, we show in Fig. 10 the entropy structure of
the eigenfunction for the modes m = 1, 2, 4, 5 for three values
of the angular momentum j = 0, 0.1 and 0.4 and χ ∼ 6. Without
rotation (first column in Fig. 10), the entropy structure of SASI
(first line) is uniformly spread in the radial direction as a spi-
ral pattern. It is clearly distinct from the structure of convection,
whose perturbations are more localised in the vicinity of the gain
radius and do not display any spiral pattern. In the second col-
umn of this figure, we note that the m = 1 spiral SASI pattern
is little affected by a moderate rotation with j = 0.1 (compare
left and middle columns). This can be interpreted by the fact
that for such moderate rotation, the corotation radius is close to
the PNS surface. For the same rotation rate, the differential rota-
tion shears the convective cells with m = 2−5. This leads to
spiral structures that are smaller but similar to a SASI pattern.
However, the convective nature of the mode is still visible by the
localisation of the perturbations near the gain radius. These sim-
ilar structures suggest that the mode is not purely convective, but
a mixed SASI-convection-rotation regime.

A global panorama of the parameter space is shown in
Fig. 11 where χ and j are varied for three values of the dis-
sociation parameter ε = 0, 0.3 and 0.5 (upper to lower rows).
The four columns represent the growth rate and oscillation fre-
quency of the most unstable mode, its azimuthal number m and
the corotation radius rcorot. A prominent effect of dissociation is
a reduction in rsh and thus the timescale of advection across the
gain region.

For small values of j, a sharp jump in frequency and m is
visible in Fig. 11 where neutrino heating exceeds the threshold
χ ∼ 4, corresponding to the transition from SASI to the convec-
tive instability as the most unstable mode. However, as rotation
increases, the frequency of the convective instability increases
until it becomes similar to the SASI frequency. When the angu-
lar momentum reaches jcrit ∼ 0.08−0.12, the jump disappears
and it becomes impossible to distinguish clearly convective from
SASI modes: this is the regime of mixed modes.

The occurrence of mixed modes can also be recognised in
the evolution of the corotation radius shown in Fig. 7. Above a
critical rotation rate, the corotation radius indeed moves away
from the Brunt–Väisälä radius, where it is located for a convec-
tive mode. We remark that rcorot shifts outwards for rotation rates
exceeding j ∼ 10%, indicating a lower frequency than expected
for a purely convective mode. This slower oscillation frequency
compared to the rotation rate of the most buoyant layer indicates
that some physical process associated with rotation and/or SASI
contributes significantly to the instability mechanism. However,
the decrease of the azimuthal number of the dominant mode
(see below) maintains the corotation close to the Brunt–Väisälä
radius, indicating that convection still plays a role in the insta-
bility mechanism.

We remark in the third column of Fig. 11 that the azimuthal
number m of the most unstable mode decreases with the rota-
tion rate for χ > 4, while it increases for χ < 4. The change of
dominant convective scale induced by rotation is not predicted
by Eq. (29): comparing the magenta and blue triangles in Fig. 3
indicates a shift to larger angular scales induced by a moderate
angular momentum j = 0.1, despite a negligible change in the
size of the gain region. For this small rotation rate, the shortcom-
ing of Eq. (29) is not surprising when considering the rotation-
induced distortion of the convective cells in Fig. 10 and the
residual influence of SASI. The rotational stabilisation of per-
turbations with a large azimuthal wave number m can be under-
stood as a consequence of their strong shear (Eq. (23)), which
induces a short radial wavelength 2πv/ω′ for advected perturba-
tions near the PNS, and thus a phase mixing particularly visible
in the lower right corner of Fig. 10.

The third column of Fig. 11 can be used to better constrain
the domain of existence of these mixed modes. For small rota-
tion rates, the azimuthal number contours converge to a line at
χ ∼ 4. It corresponds to the transition from purely SASI modes
to purely convective modes, across which the azimuthal number
and frequency of the dominant mode is discontinuous. Above
this boundary, the high m modes dominate, and their frequency
depends linearly on the rotation rate. However, this frontier dis-
appears for higher rotation rates, and the transition from small
m to higher m is continuous. The value of the rotation rate jcrit
when the frontier disappears slightly increases when the disso-
ciation rate increases (blue points in Fig. 12). This behaviour
can be quantitatively reproduced if we assume that mixed modes
appear when the frequency of the convective mode 'mΩ(rBV)
matches the frequency of the corresponding SASI mode in the
absence of rotation or heating '2π/τadv. This criterion defines a
critical specific angular momentum,

Jmix ≡
2πr2

BV

mτadv
, (31)

which reproduces remarkably well the variation of jcrit when
considering the mode m = 4 (magenta points in Fig. 12). This
is the signature of the growth of mixed modes SASI-convection-
rotation.
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Fig. 10. Spatial structure of the eigenmode entropy perturbation in the equatorial plane, for ε = 0.3 and χ ∼ 6. Each row corresponds to a value
of m = (1, 2, 4, 5) (from top to bottom) and each column to a rotation rate with j = (0, 0.1, 0.4) (from left to right). In magenta and cyan, we
represent the gain and corotation radii, respectively. The diagonal sequence of framed plots corresponds to the most unstable modes. Coordinates
x and y are expressed in rPNS units. The deformation induced by rotation is stronger for smaller-scale modes.

The first column in Fig. 11 shows the adverse effect of rota-
tion on the growth rate of the convective instability for χ > 5, as
discussed in Sect. 3.2.2. For each rotation rate, the magenta line
highlights the value of χ above which rotation has an adverse
effect on the growth of convection in the equatorial plane. In
this region, the dynamic of the flow is dominated by axisym-
metric convective modes in the plane (r, z), which are expected
to be little affected by rotation for j ∈ [0, 0.3]. This stands in
contrast with the beneficial effect of rotation on the growth rate
of SASI for χ < 3−4, as discussed in Sect. 3.2.1, where spiral
modes are therefore expected to dominate the dynamics. Inter-

estingly, rotation has a beneficial effect on the growth rate of
the dominant non-axisymmetric convective modes for moderate
convection parameters χ ' 4−5 (Fig. 11). The same behaviour
can be observed for the m = 4 mode in the upper plot of Fig. 6,
where the growth rate for χ ∼ 3−4 is significantly enhanced by
rotation. It is also linked to the easier onset of convection with
rotation shown by the decrease of χmarg in Fig. 9, as discussed
in Sect. 3.2.2. All these observations suggest that the perturba-
tion of the shock induced by the convective instability produces
an advective-acoustic cycle favourable to enhance the convec-
tive instability, as already suggested by the entropy structure in
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Fig. 11. From left to right, maps of the growth rate, ωi, frequency, ωr, azimuthal number, m, and corotation radius of the most unstable fundamental
mode with three dissociation rates: ε = 0 (top row), 0.3 (middle row), and 0.5 (bottom row). Above the dashed magenta line, the growth rate of
equatorial perturbations decreases with rotation. In the two left columns, the white lines show where the corotation radius equals rPNS and rgain. In
the two right columns, the black lines highlight the variation in the dominant azimuthal number, m. The numbers in the third and fourth columns
highlight the azimuthal number of the most unstable mode.
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Fig. 12. Evolution of the critical rotation rate, jcrit, depending on the
dissociation using two methods. This critical rotation corresponds to
the apparition of the mixed modes. The higher the dissociation, the later
the transition. For the blue points, we used the discontinuity end of the
dominant m at χ ∼ 4. For the magenta points, we used the advection
timescale, τadv, from the shock to the gain radius for m = 4 and χ ∼ 4.

Fig. 13. Growth rate (top) and frequency (bottom) evolution of several
modes depending on the rotation rate, j, for χ = 4.5, ε = 0, and rsh( j =
0) = 6.8 rPNS.

Fig. 10. The mode m = 1 in Fig. 8 calls for a particular attention,
with a significant enhancement of the growth rate by rotation
(this is also true for the m = 2 mode in the lower panel of the
same figure) in a regime χ = 6.5 a priori dominated by convec-
tion with an adverse effect of rotation. This peculiar behaviour
of the m = 1−2 modes can also be explained by a mixed state
of this mode, with the advective-acoustic cycle interacting con-
structively with the convective mode. Indeed, for these low val-
ues of m the transition from SASI to convection takes place at
a rather large value of χ (e.g. χ ' 6 for m = 1 in Fig. 2). As
a consequence, mixed modes with a beneficial effect of rotation
are expected for larger values of χ close to this transition.

Figures 13 and 14 illustrate the effect of rotation on both
instabilities in two configurations mainly differing by their shock
radius, induced by different values of the dissociation parame-
ter. The value χ = 4.5 is chosen in the region where the most

Fig. 14. Same as Fig. 13 but for ε = 0.3 and rsh( j = 0) = 3.9 rPNS.

unstable mode is convective and the growth rate increases with
rotation (below the magenta line of the first column in Fig. 11).
In the bottom panel of these figures, the oscillation frequency
without rotation ( j = 0) reveals the convective (ωr = 0) or SASI
(ωr , 0) nature of the modes. We can see that the convective fre-
quency, enhanced by rotation, is similar to the SASI frequency
for j ∈ [0.02, 0.08]. The top panels of this figure show that the
effect of rotation varies depending on the nature of the insta-
bility. The growth rate of SASI modes is enhanced by rotation,
as in Yamasaki & Foglizzo (2008) and Blondin et al. (2017). As
mentionned in Sect. 3.2.2, for convective modes, the effect of
rotation depends on the proximity of χ to the transition value
χtrans (defined in Sect. 3.2.1). The rotation can induce an increase
of the growth rate, similar to the effect of rotation on SASI, if
∆χ < 1. Otherwise, the convective modes are quenched by rota-
tion, as observed in Fig. 8.

Figure 15 illustrates the global complexity of the impact of
rotation depending on the azimuthal number. The growth rate
of SASI modes (m = 1, 2) is increased as seen on the left
part of the plot. However, the effect of rotation on convective
modes depends on both the rotation and the azimuthal number.
For m ∼ 3, the destabilising effect of rotation on the convective
instability can be clearly seen in continuity with the increase of
the SASI growth rate. For m ∈ [3, 5], the effect of rotation on
convection is similar to its effect on SASI, but with a smaller
magnitude. For higher m & 6 and low rotation rates, rotation has
an adverse effect and leads to a decrease of the growth rate. The
effect changes for high rotation rates and will be discussed in
Sect. 3.3.

In summary, rotation smoothes the transition from SASI
to convection, leading to a mixed mode regime. These mixed
modes appear when the corotation radius moves away from the
Brunt–Väisälä radius and exist up to j ∼ 30% where the proper-
ties of the modes start to change to the regime induced by strong
rotation.

3.3. Strong rotation-induced instability

The mixed state of the modes seems to disappear when the
rotation becomes too strong. When the rotation rate exceeds
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Fig. 15. Evolution of the growth rate depending on the azimuthal num-
ber, m, for several rotation rates and χ = 4.5.

j ∼ 20%, Fig. 6 shows that both the frequency and the growth
rate of the m = 4 mode, when expressed in units of vsh/rsh,
become strikingly insensitive with respect to the convection
parameter. Rotation also changes the behaviour of the most
unstable mode m as a function of heating. While the domi-
nant m increases with χ for small and intermediate rotations, it
decreases slightly with heating for higher rotation rates. Rota-
tion also diminishes the influence of the parameter χ on the fre-
quency and growth rate of the most unstable mode for j & 0.3
(Fig. 11). This suggests that the mode loses its convective nature
and that the buoyancy driven by the entropy gradient no longer
plays an important role in the strong rotation regime. Another
indication comes from the fact that the corotation radius moves
definitively away from the Brunt–Väisälä radius for high rotation
rate j & 30% (Fig. 7).

The right column of Fig. 10 illustrates the structure of the
modes in the strong rotation regime. The localisation around the
Brunt–Väisälä radius, a characteristic of the convective insta-
bility that was still visible at intermediate rotation, is absent in
this regime. The radial profile of entropy perturbations suggests
that it is driven by the deformations of the shock rather than by
the region of maximum buoyancy. The spiral mode structure of
SASI is also clearly perturbed by rotation due to the corotation
radius, which is well inside the domain. The pattern is similar to
the one obtained by Blondin et al. (2017) at high rotation rates
without heating. In an adiabatic flow where entropy perturba-
tions are simply advected, the entropy pattern would trace the
flow lines and display a change of direction at the corotation
radius since the pattern rotates faster than the outer flow and
slower than the inner flow. In Fig. 10, a change in the direc-
tion of the spiral pattern is clearly visible in the strong rotation
case (right column). The radial location of the pattern extrema
is slightly above the corotation radius due to the non-adiabatic
heating/cooling functions.

For these high rotation rates ( j > 0.3), it seems that the
modes are no longer mixed SASI-convection-rotation but result
from a rotation-induced instability. Some characteristics of this
instability can be inferred from the evolution of the growth rate.

Fig. 16. Frequency of the m = 2 fundamental mode as a function of the
specific angular momentum, j, for several values of χ. The grey-shaded
region illustrates the frequency range corresponding to a corotation
radius located between the gain radius, rgain, and the radius, rBV, that
maximises the Brunt–Väisälä frequency. The frequency is expressed in
units of the approximate inverse advection timescale, vsh/rsh.

Comparing Figs. 13 and 14, we remark that when the modes
properties do not depend on the χ parameter, the dependence of
the modes on the rotation rate is stronger for increasing disso-
ciation rates. In addition, the slope of this increase is approxi-
mately independent of the value of the azimuthal number. This
behaviour of the mode for high rotation rates can also be seen
in Fig. 15. We notice that the rotation enhances the growth rate
of every mode. In particular, for initially convective modes, this
effect is opposite to the rotation effect for low rotation rates.

4. Expected consequences on the gravitational
wave signature

The mode frequencies computed with a linear analysis of
the PNS have been shown to reproduce well the frequencies
present in the GWs spectra in non-linear numerical simulations
(Torres-Forné et al. 2018, 2019a; Westernacher-Schneider et al.
2019; Westernacher-Schneider 2020). Our work can thus be
used to predict the frequency of GW emission. We first focus
on the properties of the fundamental mode m = 2, which has
a direct impact on the production of GWs according to the
quadrupole formula. We include the effect of dissociation with
ε ∼ 0.3 (Fernández & Thompson 2009; Fernández et al. 2014;
Huete et al. 2018) and consider the typical range of shock radius
rsh ∼ (3−7) rPNS.

Figure 7 (bottom) shows that the mode m = 2 is dominant in
the high rotation regime j ∈ [0.2, 0.5] for χ = 6.5 and ε = 0.3.
The modes m = 2, 3 are actually dominant over a large domain
of the parameter space ( j, χ) according to the third column in
Fig. 11 for ε = 0.3−0.5.

Figure 16 shows the impact of rotation on the m = 2 mode
frequency for different values of χ. In the case of SASI modes
(χ = 0 and χ = 2), the frequency increases almost linearly with
the rotation rate for j varying from 0 to 0.5. The convective mode
corresponding to χ = 6 has a more complex behaviour. For small
rotation ( j . 0.1), the frequency is approximately proportional
to the rotation rate similarly to the convective modes in Figs. 13
and 14. This behaviour can be interpreted with an approximately
constant corotation radius located between rgain and rBV (Fig. 7),
as expected for the convective instability and visualised by the
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Fig. 17. Maps, for varying heating and rotation rates, of the growth rate,
the frequency, and the corotation radius of the most unstable fundamen-
tal mode between modes m = 1 and m = 2. In the second panel, we
plot 2ωr when m = 1 is dominant to account for the doubled frequency
expected in the GW signal. In the third panel, the black line separates
the regions dominated by the fundamental mode m = 1 or m = 2.

grey-shaded region in Fig. 16. At higher rotation rates j > 0.2,
the frequency separates from this linear trend, corresponding to
the corotation radius moving to larger radii (Fig. 7) when the
mode takes a mixed nature. At still higher rotation frequencies
( j & 0.3), the frequencies expressed in units of vsh/rsh converge
towards a single linear trend that does not depend on the convec-
tion parameter. The effect of heating has been erased by rotation.
This is consistent with the behaviour of the dominant modes seen
earlier.

Assuming a PNS radius of 50 km, the inverse advection
timescale without heating nor rotation is vsh/rsh ∼ 30 Hz. With
increasing rotation rates, this frequency decreases to ∼25 Hz
when j = 0.5. As a result, in Fig. 16, the frequency of the mode
m = 2, without heating, varies from ∼120 Hz to 250 Hz. In the
case χ = 6, the frequency of the m = 2 mode is in the range
[0, 80] Hz. These frequencies overlap with the optimal detection
frequency range of the current GW detectors.

To account for the possible signature of a dominant mode
m = 1 on the GW signal, we include in Fig. 17 the doubled
frequency of the mode m = 1 when it is more unstable than
the mode m = 2. We note that this frequency is higher than the
frequency of the m = 2 mode. This remarkable property can be
deduced from Figs. 5 and 6 in Foglizzo et al. (2007) where the
frequency of the SASI mode m = 2 is always smaller than twice
the frequency of the mode m = 1. We observe that the region
of the parameter space dominated by the mode m = 1 is limited
to moderate convection parameters χ < 5.2 and modest rotation
rates j < 15%.

In the regime j ≥ 30%, an analytical form of the linear
dependence illustrated by Fig. 16 would be useful to directly
translate the frequency observed in the GW signal into a relation
between j and the advection frequency at the shock vsh/rsh.

5. Conclusion and discussion

In this paper we study a spherical-equatorial toy model that con-
siders the dynamics of the equatorial plane between the shock
and the surface of the PNS. Thanks to a linear analysis, we

computed unstable non-axisymmetric modes for varying rota-
tion and heating rates and different dissociation energies through
the shock. This led to several discoveries concerning the proper-
ties of the convective instability with rotation and its interplay
with SASI and rotation-induced instabilities.

Relatively slow rotation rates (less than 10% of the Keplerian
rotation at the PNS radius), for which centrifugal effects are very
small, can have a strong and complex influence on both SASI
and neutrino-driven convection:

– In the presence of rotation, convective modes have an oscilla-
tion frequency that corresponds to a corotation radius located
close to the maximum of the Brunt–Väisälä frequency, where
the convective engine is expected to be most powerful. The
appearance of this non-vanishing oscillation frequency blurs
somewhat the abrupt transition between SASI and convec-
tion.

– For large convection parameter values, χ & 5, rotation ham-
pers the growth of non-axisymmetric convective modes. The
decrease in growth rate is more pronounced for larger m
modes, which can be interpreted from the greater stabilising
effect of the shear due to differential rotation. In this regime,
axisymmetric modes are expected to dominate the dynamics
because they are only slightly affected by rotation.

– By contrast, for χ . 5, where the advection has a strong
influence on the growth of convection, rotation increases
the growth rate of both SASI and the convective instabil-
ity. The increase in the SASI growth rate with rotation is
well known in the absence of heating (Yamasaki & Foglizzo
2008; Kazeroni et al. 2017; Blondin et al. 2017) and is here
shown to hold in the presence of neutrino heating. On the
other hand, this behaviour was not expected for the convec-
tive instability, which was generally thought to be hampered
by rotation. The destabilising effect of rotation on convec-
tion in this regime leads to a decrease in the value of χ which
defines marginal stability. We interpret this effect as a resid-
ual influence of an advective-acoustic cycle that acts to rein-
force convective motions close to the transition between con-
vection and SASI.

– We observe two different effects of rotation on the dom-
inant scale, depending on the instability mechanism that
dominates without rotation. For SASI, the dominant m
increases with rotation (as in Yamasaki & Foglizzo 2008;
Blondin et al. 2017), while it decreases for the convective
instability.

At moderate rotation rates (10% to 30% of the Keplerian rota-
tion at the PNS surface), the modes are so modified by rotation
that it becomes impossible to distinguish clearly between con-
vective and SASI modes. When the heating rate is increased,
the frequency and azimuthal number of the most unstable mode
change smoothly, with no clear transition from one instability
to the other. Modes retain characteristics of both instabilities
and should therefore be understood as mixed SASI-convection-
rotation modes. The dominant mixed modes have a relatively
large angular scale with m = 1−3, and their growth rate
increases with faster rotation. This regime takes place above a
critical angular momentum where the frequency of a convective
mode (corotating with the radius of the maximum Brunt–Väisälä
frequency) is comparable to the frequency of SASI. The non-
oscillatory nature of convection and the low frequency associ-
ated with SASI both allow for the appearance of a corotation
radius at moderate rotation rates. The corotation radius enables
the extraction of energy and angular momentum from the
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interior region, which is rotating faster than the region exte-
rior to the corotation (Cairns 1979; Yoshida & Saijo 2017;
Saijo & Yoshida 2006). For a PNS radius of rPNS = 50 km, the
mixed mode regime corresponds to an interval of specific angu-
lar momentum 3−9 × 1015 cm2 s−1. Extrapolated to the radius
∼12 km of a cold neutron star, this corresponds to relatively fast
rotation periods of ∼1−3 ms.

For high rotation rates (more than 30% of the Keplerian fre-
quency at the PNS surface, i.e. j & 0.3), the frequency and
growth rate are independent of or only weakly dependent on
the heating rate when they are expressed in terms of the advec-
tion timescale, rsh/vsh. Together with the significant deviation of
the corotation radius from the most buoyant region, this sug-
gests that the instability is dominated by rotational rather than
buoyancy effects. The study of Walk et al. (2023), which does
not include neutrino heating, detects the existence of a similar
instability regime where the frequency of the dominant mode
depends too little on the advection time to be explained by an
advective-acoustic cycle. Our results suggest that their results,
obtained without heating, are still valid when heating is taken
into account. We note that the regime of rapid rotation appears
for j ∼ 0.3, which corresponds to a small ratio, ∼0.03, of the cen-
trifugal force to the gravity at the corotation radius, even though
the centrifugal displacement of the stationary shock is not neg-
ligible. A precise understanding of this strong rotation regime is
still missing, but the corotation radius seems to play an important
role in the instability mechanism.

A future detection of GWs is expected to provide informa-
tion on the physical phenomena occurring during stellar core-
collapse. Our identification of three different instability regimes
depending on the rotation rate should help clarify the still
poorly known influence of rotation on the GW signal. Non-
axisymmetric convective modes become oscillatory in the pres-
ence of rotation. Their frequency could be identified in the
low-frequency part of the GW spectrum. For low to moderate
rotations, the corotation radius of the m = 2 convective-mixed
mode is close to the gain or Brunt–Väisälä radius. The identifi-
cation of the mode frequency would therefore give access to the
rotation frequency at this radius. Non-axisymmetric equatorial
modes with a large angular scale, m = 1, 2, are strongly desta-
bilised by rotation and dominate the dynamics in a wide region
of the parameter space for moderate to strong rotation, which
should be favourable to a strong emission of GWs. In the regime
of strong rotation, the frequency of the m = 2 mode becomes
independent of the convection parameter and depends only on
the advection timescale, rsh/vsh, and the angular momentum, j.
This reduction of the parameter space should help us extract
physical information from the measure of the mode frequency.
These modes should be incorporated into future asteroseismic
studies similar to Torres-Forné et al. (2018, 2019a), with non-
axisymmetric perturbations taken into account.

Our results can be compared to previous 3D numeri-
cal simulations of core-collapse supernovae that include rota-
tion. Simulations with the fastest rotating rates are difficult to
compare because they are often dominated by the low-T/|W |
instability growing rapidly inside the PNS (Ott et al. 2005;
Cerdá-Durán et al. 2007; Kuroda et al. 2014; Takiwaki et al.
2016, 2021; Shibagaki et al. 2021; Bugli et al. 2023), which
is not included in our analysis. We focus our discussion on
the simulations where the dynamics is dominated by post-
shock instabilities. Some simulations focused on the GW sig-
nal (Westernacher-Schneider et al. 2019; Powell & Müller 2020;

Pan et al. 2021) do not contain a detailed enough description of
the post-shock dynamics to allow for a significant comparison.

Fryer & Heger (2000) and Fryer & Warren (2004) found that
convection was quenched by rotation, especially in the equato-
rial plane. For models A and B of Fryer & Warren (2004), this
may be explained by the strong centrifugal effects for such strong
rotation ( j2 > 0.4, Eq. (9)). Convection in the slow rotating
model C ( j ∼ 0.03) does not seem to be confined to the poles,
which is consistent with our study, where a purely convective
instability can be observed in the equatorial plane up to j ∼ 0.1.

The setup of Iwakami et al. (2014) is similar to ours in that
it did not involve the interior of the PNS and considered a sim-
ilar range of rotation rates (corresponding to j = 0−0.33 in our
units). In their models D, E, and F, as displayed in Fig. 5 of
their study, for higher rotation and lower neutrino luminosity, the
scale of entropy structures is larger and buoyant patterns become
spiral ones. This structure change is consistent with the rotation-
induced transformation of convective modes into mixed spiral
modes with a larger angular scale. The precise interpretation of
their results is, however, complicated by the fact that both rota-
tion and the neutrino luminosity are changed, meaning it is dif-
ficult to disentangle their respective influences. In addition, we
note that they identified a pattern referred to as a spiral motion
with buoyant-bubble, which may be related to the mixed SASI-
convection-rotation modes identified for moderate rotation rates.

The 3D simulations of Summa et al. (2018) show two mod-
els with specific angular momenta of ∼5 × 1014 cm2 s−1 and
∼1016 cm2 s−1 at the shock (∼150 km) during its stalled phase
(∼150 ms). These values correspond to j ∼ 1% and j ∼ 33%,
respectively. In the low rotation case, convection is observed in
the stalled phase of the shock. This behaviour is consistent with
our results, showing that a convective behaviour is possible for
j < 10%. For the fast rotating simulation, the large-scale (l = 1)
instability associated with SASI, without a tightly wound spiral
pattern, is consistent with the morphology of our eigenmode in
the fast rotating regime (Fig. 10). Although Fig. 11 suggests that
the fastest growing mode corresponds to m = 2 rather than m = 1
in this regime, Fig. 12 in Summa et al. (2018) shows a dominant
l = 2 component in the turbulent energy spectrum and calls for
a more detailed comparison of the m = 1, 2 components in the
simulation.

To gain a better understanding of the processes at work at the
onset of the shock revival, a non-linear analysis of the dynamics
of the fluid would be necessary. It would shed light on how rota-
tion acts on the saturation mechanism (Guilet et al. 2010) and
show how the system evolves from the linear phase to the explo-
sion. This last part would provide information on the signatures
of linear phenomena that may remain observable in the multi-
messenger signal.

One should keep in mind that our model is idealised in
many respects. We assumed an ideal gas equation of state with
γ = 4/3, dissociation was taken into account as a fixed energy
sink, and neutrinos were parameterised through analytical cool-
ing and heating terms. We also did not describe the equatorial
swelling of the PNS due to the centrifugal force. This effect
increases the neutrinosphere radius, leading to cooler neutrinos
and a lower heating rate in the equatorial plane. As discussed
above, such a centrifugal effect is expected to be very small at
low to intermediate rotation rates ( j < 0.3) but can become
significant for the fastest rotations considered in this analysis.
Part of this complexity is avoided by displaying our results as a
function of χ rather than the heating rate. We note that when χ is
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kept constant and the rotation increased, the heating constant, Ãh,
decreases in a qualitatively similar way as the expected impact
of the neutrinosphere swelling.

The centrifugal force induces a deformation with respect to
the spherical symmetry (Fujisawa et al. 2019), which is chal-
lenging to take into account in our formalism because it would
couple different spherical harmonics. To avoid such a complex-
ity, we restrained our analysis to the equatorial plane while keep-
ing the effect of radial convergence in spherical geometry. As a
result, our conclusions are limited to modes with spherical har-
monic indices m = ±l and cannot describe the dynamics outside
the equatorial plane, such as convective motions along the polar
axis. The equatorial non-axisymmetric modes described here are
nonetheless expected to dominate the dynamics in most of the
parameter space, except at χ & 5−5.5, and slow to moderate
rotation, where axisymmetric convective modes are expected to
be more unstable.

The highest specific angular momentum considered in this
study should lead to the development of the low-T/|W | insta-
bility inside the PNS (Takiwaki et al. 2021; Bugli et al. 2023).
Being restricted to the post-shock region without including the
PNS interior, our linear analysis cannot describe the low-T/|W |
instability and may miss the most unstable mode in the regime
of strong rotation. A linear stability analysis that includes both
the post-shock region and the PNS interior is therefore an impor-
tant next step. Previous linear mode calculations focused on the
prediction of GW mode frequencies and included the post-shock
region in addition to the PNS interior, but they were restricted
to axisymmetric modes and assumed a hydrostatic equilib-
rium, neglecting advection (Torres-Forné et al. 2018, 2019a). To
describe all unstable modes and their possible interactions, a lin-
ear stability analysis will have to face the challenge of combining
the PNS in approximate hydrostatic equilibrium and the advec-
tion in the post-shock region.

Finally, the magnetic field neglected in this study is expected
to play an important role for strong rotation. A strong magnetic
field can, for example, quench the development of the low-T/|W |
instability (Bugli et al. 2023). Even in the absence of rotation,
the magnetic field can have a complex influence on the post-
shock dynamics because of the propagation of vorticity through
Alfvén waves (Guilet & Foglizzo 2010; Guilet et al. 2011), and a
small-scale dynamo can amplify its strength (Endeve et al. 2012;
Müller & Varma 2020). The magnetic field should thus be taken
into account in future studies of post-shock instabilities.
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